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Abstract

Throughout the COVID-19 pandemic, social and traditional media have disseminated pre-

dictions from experts and nonexperts about its expected magnitude. How accurate were the

predictions of ‘experts’—individuals holding occupations or roles in subject-relevant fields,

such as epidemiologists and statisticians—compared with those of the public? We con-

ducted a survey in April 2020 of 140 UK experts and 2,086 UK laypersons; all were asked to

make four quantitative predictions about the impact of COVID-19 by 31 Dec 2020. In addi-

tion to soliciting point estimates, we asked participants for lower and higher bounds of a

range that they felt had a 75% chance of containing the true answer. Experts exhibited

greater accuracy and calibration than laypersons, even when restricting the comparison to a

subset of laypersons who scored in the top quartile on a numeracy test. Even so, experts

substantially underestimated the ultimate extent of the pandemic, and the mean number of

predictions for which the expert intervals contained the actual outcome was only 1.8 (out of

4), suggesting that experts should consider broadening the range of scenarios they consider

plausible. Predictions of the public were even more inaccurate and poorly calibrated, sug-

gesting that an important role remains for expert predictions as long as experts acknowl-

edge their uncertainty.

Introduction

Expert opinion is undoubtedly important in informing and advising those making individual

and policy-level decisions. In the early COVID-19 pandemic, clinicians, epidemiologists, stat-

isticians, and other individuals seen as experts by the media and the general public, were fre-

quently asked to give off-the-cuff answers to questions about how bad the pandemic might get.

Answers to such questions draw upon “skilled intuition,” i.e., rapid judgments based on the

recognition of similarities to other relevant situations, built up over a long period of experience

[1, 2]—as well as the efficient recall of relevant information from long-term memory, which

also benefits from expertise [3]. However, as the quality of expert intuition can vary drastically

depending on the field of expertise and the type of judgment required [2], it is important to

conduct domain-specific research to establish how good expert predictions really are, particu-

larly in cases where they have the potential to shape public opinion or government policy.
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There has been limited research on the accuracy of expert and nonexpert COVID-19 forecasts,

or the accuracy of levels of confidence in such forecasts (“calibration”). One study of COVID-

19-related predictions from 41 U.S. experts found that their proposed method of aggregating

predictions into a combined consensus distribution was more accurate than a more naïve way

of aggregating expert forecasts which they referred to as an “unskilled forecaster” [4], but did

not actually survey nonexperts or evaluate nonexpert predictions. Conversely, [5] investigated

COVID-19 forecasts of nonexperts in Germany in the early pandemic, but did not investigate

expert forecasts. One notable finding was that in a survey conducted in mid-March that asked

participants to predict how many COVID-19 deaths would have occurred in Germany by the

end of the year, the median estimate was exceeded just 16 days after the survey. We are not

aware of any research specifically comparing expert and non-expert COVID-19 forecasts,

although COVID-19 statistical and computational models and some of the expert forecasts

based on them have been roundly critiqued for inaccuracy, overconfidence, and flawed

assumptions [6–8].

It is important to differentiate between research evaluating the forecasts of ‘experts’—opera-

tionally defined in this paper as individuals holding occupations or roles in subject-relevant

fields, such as epidemiologists and statisticians—and research evaluating specific epidemiolog-

ical models, although expert forecasts may well be informed by epidemiological models. There

has been more research evaluating the latter, which has found that many COVID-19 models

achieve reasonable short-term predictions but that longer-term predictions are far more diffi-

cult due to the nonlinear nature of the processes that drive the spread of infection [9–11]. It is

also important to distinguish between forecasts of arbitrary ‘experts’ as defined above, and

those of the much smaller subset of experts who most directly inform public policy (e.g., scien-

tific advisory committees, scientists participating in science policy initiatives, etc.); the latter

are far harder to study, and we necessarily focus on the former here. Arguably, even the fore-

cast accuracy of ‘experts’ by the broad definition is of some interest—should we put any more

weight on an epidemiologist’s Twitter forecasts, or on those of someone interviewed by local

media because they are a well-known statistician, than the predictions of a man or woman

stopped on the street? In any case, systematic analysis of predictions for other viral outbreaks

provides hints that we perhaps should not expect too much from either expert or nonexpert

forecasts of COVID-19. For example, research conducted on disease forecasts (expert forecasts

as well as model predictions) of the 2014 Ebola outbreak appearing in the published literature

found that only 37% of predictions ended up being within 50% - 150% of the actual number of

deaths [12]; furthermore, of seven predictions that were considered to represent “best case sce-

narios”, four of them still predicted death tolls higher than what ultimately resulted. As with

the literature focusing specifically on COVID-19, evaluations of forecasts for other viral out-

breaks have largely focused more on proposing model evaluation frameworks or evaluating

specific models (e.g. [13, 14]) than on expert forecasts.

However, to contextualize conclusions about expert predictions, it is critical to compare

them to nonexpert predictions [15]. After all, if expert predictions are disregarded by the pub-

lic, nonexpert predictions are liable to drive behavior in their stead. To this end, we conducted

a survey of experts and nonexperts in April 2020, asking participants to make four predictions

about the extent and severity of the COVID-19 outbreak by the end of 2020, and to indicate

their confidence in their predictions by providing lower and upper bounds of an interval that

they were 75% confident the true answer would fall within. (We refer to these as ‘75% confi-

dence intervals’, following prior similar literature; this usage is clearly distinct from the tradi-

tional notion of a ‘confidence interval’ as an estimate computed from the statistics of observed

data). The results provided clear evidence of differences between expert and nonexpert predic-

tions in both accuracy and calibration.
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Materials and methods

Participants were asked to make four COVID-19 forecasts (Table 1). In each case they were

asked to estimate what the true answer to the question would be, and afterward to provide two

additional numbers “in such a way that you think there’s about a 75% chance that the real-

world answer will fall between your lower and higher number”. 75% was considered a reason-

able value as it made it possible to identify how well-calibrated participants were on average: it

left room for identifying both overconfidence (if fewer than three of the four real-world out-

comes fell within an individual’s range) and underconfidence (if more than three did), and has

been used in prior literature for similar reasons [16]. Nonexpert participants completed the

survey as a part of a larger set of questions described elsewhere [17] which included the adap-

tive Berlin Numeracy test [18]. We surveyed 2,086 UK laypersons, sampling about half

(N = 1047) from the survey platform Prolific Academic and the remainder from the ISO-certi-

fied panel provider Respondi.com, using proportional quota sampling to achieve a sample pro-

portional to the UK population on age and gender. In parallel, we surveyed a convenience

sample of experts recruited from social media. For the purposes of this survey, ‘experts’ were

defined as epidemiologists, statisticians, mathematical modelers, virologists, and clinicians,

as these represented the occupations/specialties of individuals commonly asked by the

media to give predictions or expert opinions on COVID-19 in the early months of the pan-

demic. 140 respondents indicated that they resided in the UK and held one or more of these

specialties.

Table 1. Questions asked of participants with corresponding forecast medians, median absolute deviation (MAD), median absolute error (MAE) and median rela-

tive error (MRE).

Question 1 Question 2 Question 3 Question 4
Question How many people in the

country you’re living in do

you think will have died

from COVID-19 by

December 31st 2020?

How many people in the country

you’re living in do you think will have

been infected by COVID-19 by

December 31st 2020?

Out of every 1000 people who will

have been infected by the virus

worldwide, how many do you think

will have died by December 31st

2020 as a result?

Out of every 1000 people who will

have been infected by the virus in the

country you’re living in, how many

do you think will have died by

December 31st 2020 as a result?

How true
outcome estimate
was derived

Total number of “deaths

within 28 days of positive

test” having a date of death

earlier than 1 Jan 2021

Number of infections implied by

dividing the total number of COVID-

19 deaths in the UK (left) by the UK

infection fatality rate estimated by

Imperial College COVID-19 response

team in Oct 2020

1000 multiplied by the age-specific

infection fatality rates estimated by

the Imperial College COVID-19

response team in Oct 2020, weighted

by worldwide age distribution

1000 multiplied by the UK infection

fatality rate estimated by the

Imperial College COVID-19

response team in Oct 2020

True outcome
estimate

75,346 6,385,254 4.55 11.8

Experts, median
(MAD)

30,000 (15,000) 4,000,000 (3,687,500) 10 (5) 9.5 (4.5)

High-numeracy
nonexperts,
median (MAD)

25,000 (10,000) 800,000 (700,000) 30 (20) 30 (22)

All nonexperts,
median (MAD)

20,000 (10,000) 250,000 (247,000) 50 (45) 40 (35)

Expert MAE 45,346 5,585,254 5.45 6.80

High-numeracy
nonexpert MAE

55,346 6,085,254 25.45 18.20

Nonexpert MAE 55,346 6,235,254 45.45 28.20

Expert MRE 2.51 3.19 1.98 2.03

High-numeracy
nonexpert MRE

3.32 7.98 5.59 3.20

Nonexpert MRE 3.77 25.54 9.19 3.98

https://doi.org/10.1371/journal.pone.0250935.t001
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All participants completed the survey between 7 April and 12 April 2020, with the exception

of 5 experts who submitted responses between 14 and 16 April, one who submitted a response

on 20 April, and one who submitted a response 7 May. The expert sample contained 19 epide-

miologists, 65 statisticians, 44 mathematical modelers, 35 clinicians, and 1 virologist; this was

defined as the list of “expert occupations” prior to survey distribution, and data from experts

who did not hold one of these occupations/roles was excluded. (Numbers in the previous sen-

tence do not sum to 140, as some individuals reported holding multiple roles). Answers to sur-

vey questions that were entered in non-machine-readable ways (e.g., the phrase “1 million”

rather than “1,000,000”) were normalized with a combination of regular expressions and man-

ual inspection. Removing blanks, uninterpretable answers, answers exceeding 1000 (Q3 & Q4)

or the population of the UK (Q1 & Q2), and answers which did not follow instructions yielded

405 point estimates and 402 ranges from experts, and 7,593 point estimates and 6,801 ranges

from nonexperts.

Free text responses highlighted that some nonexpert participants found the instructions dif-

ficult to understand or follow, so we restricted our primary nonexpert analysis to those who

scored in the top quartile of numeracy (N = 524), and reserved the full nonexpert pool for a

secondary analysis. Accuracy and calibration were calculated by comparing participants’ April

estimates to a “true outcome estimate” determined in January 2021. Specifically, the total num-

ber of COVID-19 deaths by December 31 (Question 1) was assessed using the official criterion

of the United Kingdom: the total number of “deaths within 28 days of positive test” having a

date of death earlier than 1 Jan 2021, as reported at https://coronavirus.data.gov.uk/details/

deaths [19]. The total number of infections by December 31 (Question 2) was estimated by

computing the total number of COVID-19 deaths in the UK as of December 31 by the UK

infection fatality rate (IFR) estimated by the Imperial College COVID-19 response team in

October 2020 [20]. The true outcome estimate for Question 4 was obtained by multiplying this

same estimated IFR by 1000. Finally, the true outcome estimate for Question 3 was obtained

by multiplying the age-specific IFRs estimated by the Imperial College COVID-19 response

team [20]—see [20]’s Table 2—weighted by the worldwide age distribution [21]. In other

words, the IFR for 25–29 year-olds was multiplied by the proportion of the world population

aged 25–29, the IFR for 30–34 year-olds was multiplied by the proportion of the world popula-

tion aged 30–34, and so on, with the sum of the results for all age brackets treated as the world

IFR. As best we can determine from the description available, this was the method used by the

Imperial College team to estimate fatality rates across countries of different income brackets,

but applied to the world rather than only those countries in a specific income bracket. These

outcome estimates necessarily remain approximate but were presumed adequate to compare

expert and nonexpert predictions.

This study was overseen by the Psychology Research Ethics Committee of the University of

Cambridge (approval number PRE.2020.034, amendment 1 April 2020). Participants viewed a

Participant Information Sheet and provided written consent via an electronic consent form

before accessing the survey.

Table 2. Proportions of participants from each group (experts, high-numeracy nonexperts, and all nonexperts) for whom the outcome fell within their own 75%

confidence intervals.

Question no. Experts High-numeracy nonexperts All nonexperts X2, experts vs. high-numeracy nonexperts X2, experts vs. all nonexperts
(p-value) (p-value)

1 39/108 (36%) 78/483 (16%) 169/1757 (10%) 22.2 (p< .001) 72.1 (p< .001)

2 40/100 (40%) 58/479 (12%) 133/1737 (8%) 45.8 (p< .001) 115.9 (p < .001)

3 41/98 (42%) 47/466 (10%) 159/1634 (10%) 62.0 (p< .001) 93.3 (p< .001)

4 55/96 (57%) 129/474 (27%) 330/1673 (20%) 33.0 (p< .001) 75.2 (p< .001)

https://doi.org/10.1371/journal.pone.0250935.t002
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Data and code are available at https://osf.io/dcn5q. See S1 Appendix for questionnaire items.

Construction of linear opinion pools (consensus distributions)

In addition to calculating the accuracy and calibration of experts and nonexperts as individuals,

consensus distributions were generated for each question by aggregating distributions having

75% of the probability mass uniformly distributed within each participant’s 75% confidence

interval. This required constructing and combining distributions for individual participants,

and enabled us to calculate continuous ranked probability scores (CRPS), a common approach

to comparing probabilistic forecasts. Although we computed the CRPS of aggregated consensus

distributions, if we were to compute it for an individual forecast (after transforming that fore-

cast to a probability distribution in the manner described later in this section), it would most

reward participants with relatively narrow 75% confidence intervals that also contained the cor-

rect outcome; it would give poorer scores to participants whose 75% confidence intervals con-

tained the correct outcome, but were somewhat wider, and would give especially poor scores to

participants with narrow 75% ranges that were not anywhere close to the correct outcome.

CRPS is therefore useful in this study as it serves as a measure of accuracy that can be applied to

a consensus distribution constructed from participants’ 75% confidence intervals, rather than

from their point estimates. An alternative, perhaps more straightforward approach would have

been to use the weighted interval score [22], which approximates the CRPS and does not require

the construction of a full predictive distribution. Constructing consensus distributions also

allowed us to better visualize the aggregated predictions.

For each of the four questions, a separate consensus distribution was constructed for

experts, nonexperts, and high-numeracy nonexperts, yielding a total of twelve consensus dis-

tributions (Fig 1). These distributions assigned zero probability mass to values less than 0 or

values greater than a “natural maximum”: 1000 for questions 3 & 4, which asked participants

to estimate how many people out of every 1000 would experience a particular outcome; and 67

million (the approximate population of the UK) for questions 1 and 2, which asked partici-

pants to estimate how many people in the UK would experience a particular outcome. Proba-

bilities were assigned to outcomes between 0 and the natural maximum by averaging together

probability distributions constructed for each participant. The distribution for each [expert /

high-numeracy nonexpert] was constructed as follows: 75% of the probability mass was dis-

tributed uniformly within the interval [lower, upper], where lower and upper refer to the lower

and upper bounds of the range provided by the participant; the width of this interval is given

by upper–lower. The remaining 25% was distributed uniformly within [min, lower) [ (upper,
max], where min was the larger of 0 and lower–(width/2), and max was the smaller of upper +
(width/2) and the natural maximum. This had the effect of restricting the total width of each

individual distribution to a width equal to or less than twice the width of the range provided

by the participant, and was done in order to ensure that the remaining 25% was allocated to

values close to the participant’s 75% confidence interval. While the specific choice of how

much to restrict the distribution was necessarily somewhat arbitrary, if we were to assume that

the participant’s 75% confidence interval corresponds to the “middle 75%” (i.e., the 12.5th to

87.5th percentiles) of a Gaussian distribution, two times this width would span from the 1st

percentile to the 99th percentile. It therefore seems likely that an individual who is truly 75%

confident that a value will fall between lower and upper would be extremely surprised if the

value was less than lower–(width/2) or higher than upper + (width/2). Restricting the distribu-

tions within these bounds therefore seemed justified. Finally, probability distributions of dif-

ferent individuals were combined with simple averaging of the probabilities (i.e. ‘vertical’

combination).
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For nonparametric distributions, the scoringRules R package [23] can make use of random

samples from the forecast distribution to approximate the CRPS. We randomly sampled sets

of 5,000 samples from the consensus distributions repeatedly (100 times per distribution),

resulting in 100 approximate CRPS scores for each consensus distribution.

Results

Accuracy

As reported in Table 1, in terms of absolute error, expert point estimates for each of the four

questions were more accurate than those of high-numeracy nonexperts. Mood’s median tests

indicated that these differences were significant: Q1, p = .03, Q2, p = .04, Q3, p< .001, Q4, p<
.001. Expert point estimates were also more accurate than those of all nonexperts, Q1, p<
.001, Q2, p = .003, Q3, p< .001, Q4, p< .001.

Similar results emerged when evaluating relative error rather than absolute error. Several

measures of relative error exist; for ease of interpretation we here report the exponential of the

absolute value of the log difference measure [24], ln(x̂ / x). This is a natural measure for predic-

tions of this kind as it is scaled to the size of the true outcome. For example, a prediction that is

1/3 the size of the true outcome is treated as having the same amount of relative error as a pre-

diction that is 3 times the size. As shown in Table 1, experts had less relative error than nonex-

perts, with their medians being lowest for each question. Mood’s median tests indicated that

differences in relative error between experts and high-numeracy nonexperts were not signifi-

cant for Q1 (p = .07) but were significant at p< .001 for the remaining three questions. Differ-

ences in relative error between experts and all nonexperts were significant at p< .001 for all

questions.

Calibration

Calibration could be assessed for the 93 experts, 1459 nonexperts, and 434 high-numeracy

nonexperts who fully answered all questions with clearly interpretable responses. Given that

four questions were asked, the number of outcomes falling within an optimally calibrated indi-

vidual’s 75% confidence interval has an expected value of three. Experts came closer to meeting

this standard than nonexperts: The median number of outcomes falling within each partici-

pant’s interval was 2 for experts (mean = 1.82, SD = 1.17), 0 for high-numeracy nonexperts

(mean = 0.68, SD = 0.90) and 0 for all nonexperts (mean = 0.49, SD = 0.77). Mood’s median

tests indicated that the differences in medians between experts and nonexperts, and between

experts and high-numeracy nonexperts, were significant, both p< .001. 20 of 93 experts

(22%), 33 of 1459 nonexperts (2%), and 16 of 434 high-numeracy nonexperts (4%) were cali-

brated such that exactly 75% (three) of the four outcomes fell within their 75% confidence

intervals.

We also calculated the proportion of participants from the given group (experts, high-

numeracy nonexperts, or all nonexperts) for whom the outcome (“true outcome estimate”) fell

within the participant’s 75% confidence interval, inclusive; other investigators have treated this

proportion as a measure of ‘calibration of confidence assessments’ for a group [25]. For a

group in which each individual was perfectly calibrated, 75% of participants’ 75% confidence

intervals would be expected to contain the true value. The “true outcome estimate” fell within

the 75% confidence intervals for Q1 to Q4 of 36%, 40%, 42%, and 57% of experts respectively,

Fig 1. Consensus distributions (linear opinion pools) for Q1 (a), Q2 (b), Q3 (c), and Q4 (d). Axes truncated to allow

the overall shapes of the distributions to be visible.

https://doi.org/10.1371/journal.pone.0250935.g001
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but within the ranges of only 16%, 12%, 10%, and 27% of high-numeracy nonexperts and 10%,

8%, 10%, and 20% of all nonexperts. Chi-squared tests indicated that these proportions dif-

fered significantly between experts and high-numeracy nonexperts on every question, and that

differences between experts and all nonexperts were likewise significant (Table 2).

Continuous ranked probability scores

Experts had lower (i.e., better) CRPS than high-numeracy nonexperts on each question, indicat-

ing superior forecasting overall. Although it was clear that this was the case from the descriptives

alone, two-tailed t-tests were nevertheless used to formally test whether the mean of the 100

approximate CRPS scores calculated from the expert consensus distributions was indeed differ-

ent than that of those calculated from the high-numeracy nonexpert consensus distributions

(Table 3). As the sampling procedure to obtain the inputs for the CRPS analysis was computa-

tionally intensive and time-consuming, and as the full nonexpert distributions clearly predicted

outcomes as poorly or more poorly than the high-numeracy nonexpert distributions (Fig 1), it

was not deemed necessary to repeat this analysis for the full nonexpert consensus distributions.

Accounting for demographic differences

Experts had a mean age of 42.3 (95% CI 40.0–44.7), slightly younger than nonexperts’ mean

age of 45.3 (95% CI 44.6–46.1). Experts were also 75% (66% - 83%) male; this proportion was

higher than either the high-numeracy nonexpert group—51% (47% - 56%) male—or the

group of all nonexperts, 48% (46% - 51%) male. When regressing rank-transformed absolute

error on gender, age, and expert/nonexpert status, expert status was significantly associated

with lower error for each of the four prediction questions, with betas for expert status being 2

to 16 times the magnitude of the corresponding beta for gender, depending on the question

(Table 4). Older age was associated with (lower) error for question 4 only. Similarly, expert sta-

tus (β = 1.3) and male gender (β = 0.2) were both significantly associated with the number of

outcomes falling within each participant’s 75% confidence interval.

Table 3. Descriptive and inferential statistics for the sets of 100 approximate continuous ranked probability scores generated from expert and high-numeracy non-

expert consensus distributions.

Question no. Experts High-numeracy nonexperts Two-tailed t-test comparing experts and high-numeracy
nonexperts

Mean SD Mean SD t df p
1 24,301 289 31,301 364 150.66 188.27 < .001

2 3,210,153 63,585 3,563,702 32,721 49.44 148.00 < .001

3 7.44 0.17 26.60 0.60 306.35 115.06 < .001

4 3.46 0.07 20.27 0.54 310.51 102.50 < .001

https://doi.org/10.1371/journal.pone.0250935.t003

Table 4. Regressions of calibration and accuracy on gender, age, and expert/nonexpert status.

Predictor β

# outcomes within range Q1 error Q2 error Q3 error Q4 error
Expert status 1.284��� -352.22��� -177.61�� -633.91��� -588.34���

Age -0.001 0.061 -0.592 -0.545 -1.658�

Male gender 0.162��� -22.22 -73.68�� -102.21��� -82.76��

Adjusted r2 0.145 0.013 0.006 0.053 0.045

Note. ‘Error’ represents rank-transformed absolute error. Stars represent significance at p < .05 (�), p< .01 (��), p< .001 (���).

https://doi.org/10.1371/journal.pone.0250935.t004
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Numeracy could not be included in these regressions as we did not require experts to com-

plete the Berlin numeracy test. However, when these regressions were repeated but with non-

experts restricted to the subset of high-numeracy nonexperts, expert status continued to

significantly predict the number of outcomes falling within each participant’s interval, and

also continued to significantly predict rank-transformed error for each of the four questions,

with the exception of question 2.

Restricting the dataset to only nonexperts allowed numeracy to be included as a predictor

along with age and gender. Higher numeracy was significantly associated with more outcomes

falling within each participant’s 75% confidence range, as well as with lower error on each pre-

diction question. Male gender remained associated with more in-range outcomes, and also

remained associated with lower error on three of four prediction questions, but the beta for

gender had lower magnitude than the beta for numeracy in each case. As before, age was asso-

ciated with error for question 4 only.

Discussion

Despite the limitations of this survey, there are nevertheless a few key lessons to be drawn.

First, the experts in our study demonstrated overconfidence: out of the four intervals that

experts expected outcomes to fall within 75% of the time, fewer than half of actual outcomes

fell within these intervals on average. This is perhaps unsurprising given reports of poor cali-

bration of disease models of COVID-19 and the 2014 Ebola outbreak [8, 12], but it is notewor-

thy that this was true even when experts were being asked to fill out an informal survey—a

context in which most experts presumably did not run their favorite epidemiological model to

see what it predicted by year end. In the present case, numbers of deaths and infections by the

end of the year were substantially more severe than most expert predictions, unlike in the 2014

Ebola outbreak, when outcomes were less severe than predicted by experts [12]. The common

theme seems to be that estimates of the likely intervals in which future observations would fall

were too narrow.

Second, nonexpert predictions were less accurate than expert predictions, and nonexperts

were more overconfident than experts in their predictions. This was true even of those nonex-

perts who scored in the top quartile of a standard test of numeracy. Follow-up analyses sug-

gested that these differences were not due to confounds with age or gender. Therefore,

although our findings on expert accuracy and overconfidence may read as a cautionary tale

against taking expert predictions at face value, it is critical to highlight that we could do worse:

we could believe the predictions of people who are not experts. We have arguably witnessed

many examples of the latter approach being taken by individuals across the globe, sometimes

with dire results. As [15] notes, the (in)accuracy of lay predictions is essential context when

discussing expert performance. Focusing solely on poor expert performance may simply make

nonexperts more adamant about their own preconceptions—not a good thing if they are

already even more inaccurate and more overconfident than the experts, as our results suggest.

A key limitation with respect to what this study can tell us about expert predictions in the

real world is that there is enormous heterogeneity both among experts and the conditions

under which they make forecasts. The concept of an ‘expert’ as operationalized in this study is

extremely broad. It would be especially helpful to understand more about the accuracy of fore-

casts produced by the subset of experts who are most influential, e.g., those who sit on scien-

tific advisory committees that inform policy. These are a very specific subset of ‘experts’ who

are harder to study, and it is an open question to what degree any findings about off-the-cuff

predictions of the ‘experts’ recruited in our study might generalize to predictions made by

those experts who have an explicit mandate to produce forecasts for policymakers.
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Furthermore, there are ‘experts’ who are selected as policy advisors (or as interviewees on

media programs) because it is known that they support policies preferred by a particular politi-

cal party; experts who choose to become involved in policy precisely because they feel more

confident than others about what policies should be advocated for; experts who may be incen-

tivized to be more cautious, fearing that reputation and employment opportunities may suffer

if they get things too badly wrong; and experts who thrive on media attention (or are even

employed as media pundits), who may have more incentive to make attention-grabbing pre-

dictions than accurate ones. In other words, individual incentives and incentive structures

likely have enormous influence on accuracy and calibration, and it would be a mistake to

assume that our results are equally applicable to all subtypes of ‘expert’.

However, there are some reasons to believe that the general finding of overconfidence

(among both ‘experts’ and laypeople) is likely to generalize to a number of contexts in which

COVID-19 forecasts (and presumably epidemiological forecasts more generally) are made.

First, the finding of overconfidence among individuals with relevant subject-matter expertise

is consistent with, in the words of Philip Tetlock, “a multi-decade line of psychological

research on expert judgment that has shown that experts in a wide range of fields are prone to

think they know more than they do (the overconfidence effect)” [26]; other researchers have

described overconfidence as “the most ubiquitous bias in studies of calibrated judgments

about risks and uncertainties” [27]. Research summarizing relevant studies across a wide vari-

ety of fields finds systematic overconfidence in judgments made by both lay predictors and

those with relevant expertise [28–30]. This is not solely a laboratory phenomenon. For exam-

ple, in an analysis of roughly five thousand 90% confidence ranges from 27 studies mostly

“performed in the course of applied research in the experts’ domains of expertise, not primar-

ily in laboratory studies of overconfidence,” and where all respondents were “experienced pro-

fessionals giving judgments on important real-world problems within their own domains of

expertise,” Lin and Bier [31] found much variation in the extent of overconfidence, but found

overconfidence overall. On average, the percentage of true values falling within respondents’

90% probability intervals was less than 90% for each of the 27 studies they analyzed, although

when digging deeper into the questions asked by each study, they found that the level of over-

confidence was highly variable and that “some questions even produced under-confidence.”

This is not to say that overconfidence in judgments about future events is universal among

experts or nonexperts. Overconfidence is influenced by the frequency and kind of feedback

that individuals typically receive about their predictions; for example, weather forecasters

appear to be particularly well-calibrated [28]. It also seems highly likely that forecasting experi-

ence and the incentive structure of the social environment in which the forecasts are made will

have an effect. For example, members of the Good Judgment Project, a group of forecasters

known for their exceptional performance in a multi-year geopolitical forecasting competition

conducted by the U.S. Intelligence Advanced Research Projects Activity, achieved exception-

ally high calibration [32]. They attributed this success to the fact that they explicitly aimed to

"structure the situation, incentives, and composition" of their team so as to produce accurate

and well-calibrated forecasts, and also present evidence that training and interaction in teams

was beneficial. We therefore certainly would not conclude that domain experts untrained in

forecasting would perform better than large groups of ‘nonexperts’ who are practiced in fore-

casting future events. One such group appears to have outperformed experts in infectious dis-

ease modelling on multiple COVID-19-related forecasts, on the forecasting platform

Metaculus [33]. Promising follow-up research is beginning to combine the predictions of ‘non-

expert’ forecasters from Metaculus and the Good Judgment Project with those of epidemiolog-

ical modelers to produce consensus forecasts of hopefully greater accuracy than either in

isolation, as well as a ‘meta-forecast’ which combines this consensus forecast with an ensemble
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of forecasts from computational models [34]; the results have yet to be systematically evalu-

ated. Other initiatives to solicit and evaluate a wide range of approaches to epidemiological

forecasting, such as the DARPA Chikungunya challenge [35], in combination with research on

approaches to aggregating forecasts of subject-matter experts [36] and nonexperts [37–39],

have also established promising routes toward improving forecasting of epidemics. In other

words, we are not all doomed to be overconfident: there is much that can be done to improve

the accuracy and calibration of forecasts, at least in the context of forecasting tournaments.

Forecasting experience and the incentive structure of the social environment are likely to

affect predictions made outside of forecasting tournaments as well. For example, Mandel and

Barnes’ analysis [40] of over 3,500 geopolitical forecasts from intelligence analysts, extracted

from real-world reports, found systematic underconfidence rather than the overconfidence

seen in Tetlock’s famous studies of expert geopolitical forecasting, or the excellent calibration

seen in forecasting tournaments. Although there were many differences that may have contrib-

uted to the different findings, the researchers noted one plausible factor was that “accountabil-

ity pressures on analysts are far greater than those placed on forecasters in geopolitical

tournaments,” citing research from Tetlock & Kim showing improved calibration in the pres-

ence of social accountability [41]. Incentives to be accurate and well-calibrated in our study

were low for experts and nonexperts alike. It is possible that, with respect to public predictions

which may influence individual behavior, some experts may have an especially strong incen-

tive to be as correct and cautious as possible, feeling that their reputations are on the line and

that their predictions will be subject to future scrutiny. Intuitively, this seems likeliest to be

true for experts who feel that they benefit much more from a reputation for accuracy than

from media attention—although these experts may also be least likely to voice public predic-

tions about highly uncertain events in the first place.

Unfortunately, however, for many public predictions, there are reasons to believe the incen-

tive structure may be the other way round. For example, Tetlock and colleagues asked expert

participants “how often they advised policy makers, consulted with government or business,

and were solicited by the media for interviews”, reporting a significant positive correlation

between these assessments and the degree of overconfidence exhibited by these experts in geo-

political predictions [42]. They also reported a positive correlation between overconfidence

and Google search counts (used as a proxy for the number of times participants were men-

tioned in the media). Tetlock points out that the causal links may be bidirectional: “On one

hand, overconfident experts may be more quotable and attract more media attention. On the

other, overconfident experts may also be more likely to seek out the attention” ([42], p. 63).

Either way, the result is the same: predictions made by overconfident experts may be the most

visible.

In sum, our findings of overconfidence in lay and expert COVID-19 predictions are consis-

tent with what would be expected from literature on predictions and judgments in other

domains. They seem likely to generalize to common real-world contexts in which everyday

people encounter expert or nonexpert predictions (e.g., within traditional or social media), but

not necessarily to all such contexts. They also may not generalize to contexts where accuracy

and good calibration are strongly incentivized, or in which individuals receive systematic

training or practice in forecasting with regular feedback.

Are there other data suggesting overconfidence in experts or nonexperts of COVID-19 case

count and death prediction? There exist a very interesting set of reports associated with the

study mentioned in the introduction by McAndrew and Reich, which solicited COVID-

19-related predictions from U.S. experts in a total of twelve surveys. The fifth survey (adminis-

tered March 16–17, 2020), the first to ask both about the ‘smallest, most likely, and largest’

number of U.S. COVID-19 deaths they expected by the end of 2020, as well as about the
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‘smallest, most likely, and largest’ number of U.S. COVID-19 cases that they expected to have

been reported for specific dates in the future, was completed by 18 experts in infectious disease

modelling [43]. Although the data for individual expert predictions is not available, the 80%

confidence interval of the experts’ consensus distribution for reported U.S. COVID-19 cases

by March 22nd was reported as 7,061–24,180 [43], and the 80% confidence interval for March

29th was 10,500–81,500, according to a news article appearing on ABC News’ FiveThirtyEight

about the same survey [44]. The ‘smallest, most likely, and largest’ estimates of each expert for

the latter prediction were also visualized in the article. Ultimately, according to the ‘truth data-

base’ later compiled by the survey authors [45], the true outcomes for the corresponding ques-

tions were 33,404 and 139,061, respectively, both well outside the 80% confidence intervals.

From FiveThirtyEight’s visualization, it can be inferred that the true March 29th count

exceeded the high-end estimate of 15 of the 18 modellers. On the other hand, the expert con-

sensus 80% confidence interval for the number of U.S. COVID-19 deaths in 2020 was

195,000–1.2 million, with a point estimate of 195,000; the CDC’s ultimate 2020 COVID-19

death count of 379,705 [46] fell within this range, although it exceeded the high-end estimate

of 240,000 announced by U.S. administration scientists on 31 March 2020 [47]. By the time of

McAndrew and Reich’s final survey, administered May 4–5, they were also soliciting crowd-

sourced predictions on the ultimate number of U.S. COVID-19 deaths expected by the end of

2020 from Metaculus; by this time, experts were predicting a median 256,000 deaths (80% CI

118,000–1.2 million), and Metaculus predictors a median 197,000 (80% CI 120,000–460,000)

[48].

It is difficult to draw too many conclusions from these examples, but they do provide an

example of overconfident COVID-19 predictions even among infectious disease modelers,

making predictions for just one week into the future, early in the pandemic. The non-linear

dynamic nature of infectious diseases makes possible futures especially uncertain–small initial

differences in infection parameters can lead to big differences in outcomes with time–and it

certainly seems plausible that this makes it challenging to estimate one’s own level of certainty.

However, overconfidence is not necessarily restricted to experts or to epidemiological fore-

casts, as the prior literature we have discussed makes clear.

We also expect that our finding of poorer accuracy in COVID-19-related predictions for

the “person on the street” versus people with relevant subject-matter expertise is likely to gen-

eralize to some degree, but not to all nonexperts. In addition to being a common-sensical find-

ing, ‘relevant subject-matter expertise’ typically includes knowledge of what real-world data

sources contain the most reliable information; for example, it seems plausible that our ‘experts’

did well on questions 3 and 4 simply because they were aware of preliminary estimates of the

infection fatality rate, whereas our nonexperts may not have been. Individuals with profes-

sional backgrounds in statistics, mathematical modelling, and epidemiology also seem likelier

to have had a greater familiarity with the raw data around COVID-19 infections and death

rates, a firmer grounding in how to interpret that data, and the high levels of uncertainty asso-

ciated with epidemiological forecasts in general. As mentioned, however, the impressive per-

formance of practiced forecasters on crowdsourcing platforms suggests that domain expertise

is not necessarily a prerequisite for good forecasting.

Other limitations of this study include convenience sampling of experts and a small number

of correlated questions. Participants were also asked to produce point estimates before they

were asked to produce ranges, which is known to anchor responses toward the point estimate

[49], so participants may have seemed more overconfident than they would have with other

elicitation methods. Nevertheless, given the stark differences between expert and nonexpert

accuracy and calibration levels, it seems unlikely that alternate elicitation methods would erase

these differences. Additionally, we purposefully cast a broad net in terms of our recruitment of
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experts, and it is certainly possible that a more rigorous process for selecting individuals with

the most relevant subject-matter expertise would have resulted in a set of experts who made

more accurate predictions. However, a more careful selection of experts would presumably

have simply made the differences between nonexpert and expert performance even more stark

(if it had any effect at all), rather than the reverse, so there seems little reason to question the

performance differences between experts and nonexperts.

Conclusions

Much of the discussion around communicating forecasts in the COVID-19 pandemic has cen-

tered around tradeoffs in communicating uncertainty with respect to public trust. For exam-

ple, in some contexts downplaying uncertainties may shore up public trust in the short term,

but confident predictions that later turn out to be wrong may reduce public trust in science

[50]. Overall, our results underscore a need for individuals with expertise in fields relevant to

forecasting epidemiological outcomes (and who communicate about these forecasts publicly)

to consider broad ranges of possible outcomes as plausible, and to consider communicating

this high level of uncertainty to nonexperts. The ultimate message may be that “the experts

have much to learn, but they also have much to teach” [15].

Given the continued impact of COVID-19 and risks of other future pandemics, further

research into improved epidemiological forecasting may prove vital. In the meantime, we

must all learn to acknowledge and admit that the uncertainties may be greater than we think

they are, whether we are experts or not.
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