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Abstract
Drug compulsion manifests in some but not all individuals and implicates multifac-
eted processes including failures in top- down cognitive control as drivers for the 
hazardous pursuit of drug use in some individuals. As a closely related construct, im-
pulsivity encompasses rash or risky behaviour without foresight and underlies most 
forms of drug taking behaviour, including drug use during adverse emotional states 
(i.e., negative urgency). While impulsive behavioural dimensions emerge from drug- 
induced brain plasticity, burgeoning evidence suggests that impulsivity also predates 
the emergence of compulsive drug use. Although the neural substrates underlying 
the apparently causal relationship between trait impulsivity and drug compulsion are 
poorly understood, significant advances have come from the interrogation of defined 
limbic cortico- striatal circuits involved in motivated behaviour and response inhibi-
tion, together with chemical neuromodulatory influences from the ascending neuro-
transmitter systems. We review what is presently known about the neurochemical 
mediation of impulsivity, in its various forms, and ask whether commonalities exist 
in the neurochemistry of compulsive drug- motivated behaviours that might explain 
individual risk for addiction.
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1  | INTRODUC TION

Severe substance use disorder (SUD), herein referred to as addiction, 
is a brain disorder characterised by compulsive drug seeking and in-
take despite harmful consequences. Given the worldwide increase in 
drug consumption (UNODC, 2020) and the opioid epidemic in many 
countries (CDC, 2020), the establishment of new treatments has never 
been more urgent. Clinically, the compulsive quality of drug- seeking 
behaviour features prominently in the revised Diagnostic and Statistical 
Manual of Mental Disorders, specifically the repeated use of drugs even 
when it endangers the life of the user. This defining disregard for 
personal safety and wellbeing corresponds with increasingly risky be-
haviour that exemplifies addiction. Accommodating this contemporary 
view of addiction, experimental studies in animals have evolved from 
the study of drug reinforcement processes to procedures that opera-
tionalise addiction in terms of drug- seeking persistence in the face of 
punishment (Lüscher et al., 2020).

In this review, we assimilate recent studies on the neurochemical 
mediation of drug compulsive phenotypes in addiction- like behaviour 
and extend our analysis to impulsivity— a multidimensional trait re-
flecting a predisposition for rapid, premature actions without fore-
thought and aversion for delayed and uncertain rewards (Dalley & 
Robbins, 2017; Evenden, 1999; Winstanley et al., 2006). Consistent 
with these defining features, impulsivity strongly associates with addic-
tion, both as a vulnerability marker and consequence of drug use (Bickel 
et al., 2019; Ersche et al., 2010; Jentsch & Taylor, 1999; Verdejo- García 
et al., 2008; Weafer et al., 2014). Leaving aside the possibility that drug 
use weakens impulse control (an eventuality that is beyond the scope of 
this review), it is germane to ask [1] why trait impulsivity should increase 
the likelihood of developing compulsive drug- seeking and [2] whether 
overlaps in the neurochemistry of impulsivity and compulsivity under-
lie a latent variable that determines individual risk for addiction.

Impulsive and compulsive behaviours are indeed distinct in many 
ways but nonetheless implicate analogous failures in inhibitory control 
mechanisms within cortical- subcortical circuits (Fineberg et al., 2014). 
Understanding the precise relationship between impulsive and com-
pulsive behaviours is an area of active research. Constructs relating 
to impulsive and compulsive behaviours have been viewed as diamet-
rically opposed on the same spectrum (Fineberg et al., 2010), reflect-
ing distinct forms of cognitive control impairment (Dalley et al., 2011; 
Zorrilla & Koob, 2019). Yet antecedent and drug- induced perturbations 
in impulsivity overlap and confer risk for the development of SUD 
(Everitt, 2014; Jentsch & Taylor, 1999). Recent research highlights 
the heritability of shared impulsive- compulsive behavioural pheno-
types (Tiego et al., 2020) and the strong correspondence between 
co- existing impulsive and compulsive traits in humans (Chamberlain 
et al., 2018). Thus, impulsive and compulsive behaviours may depend 
on distinct cortico- striatal circuits yet implicate deficits in neurochem-
ical signalling that similarly compromise top- down inhibitory control 
mechanisms. We explore this idea by first providing a concise over-
view of the neurochemistry of impulsivity, drawing on research mainly 
carried out in rodents, before reviewing the separate and overlapping 
neurochemical substrates of compulsive drug behaviours.

2  | NEUROCHEMIC AL SUBSTR ATES OF 
IMPUL SIVIT Y

The assessment of impulsivity in rodents relies on analogous tasks de-
veloped for testing in humans and includes the 5- choice serial reaction 
time task (5- CSRTT), the delay discounting task (DDT), the stop signal 
reaction time task (SSRTT) and the Go/No- go task. The implementa-
tion, translational significance and behavioural neurochemistry of 
these widely used impulsivity tasks are discussed in detail elsewhere 
(Dalley & Robbins, 2017) and so are only briefly surveyed below.

Impulsivity is a multifaceted construct with psychologically and 
neuroanatomically distinct subtypes and can be broadly separated 
into impulsive choice (the tendency to accept immediate versus 
delayed reward) and impulsive action (a failure of motor inhibition) 
(Dalley et al., 2011). The construct of impulsivity also includes ‘stop-
ping’ and ‘waiting’ components, each engaging different motor, 
cognitive and emotional processes. Stopping impulsivity, a type of 
motor impulsivity, taxes motor restraint and specifically the abil-
ity to cancel a response after initiation and can be measured with 
the SSRTT or the Go/No- go task. Stop signal reaction time (SSRT) 
depends on several independent cortico- striatal networks, encom-
passing the putamen and caudate (equivalent to the dorsal striatum 
in rodents), pre- supplementary motor area, right inferior frontal 
gyrus, insula, anterior cingulate cortex (ACC), substantia nigra and 
subthalamic nucleus (Whelan et al., 2012). Waiting impulsivity de-
scribes a variety of behaviours requiring temporal restraint, either 
until signalled or non- signalled waiting intervals have elapsed or 
when countering preferences for instant reward and can thus be a 
type of action or choice impulsivity. Waiting impulsivity behaviours 
mainly depend on the ventral striatum, specifically the core and shell 
of the nucleus accumbens (NAcbC, NAcbS) with distinct contribu-
tions from limbic structures depending on the behaviour assessed 
(Caprioli et al., 2014; Robinson, Dalley, et al., 2008; Robinson, Eagle, 
et al., 2008). For example, premature responses in the rodent 5- 
CSRTT depend on the infralimbic cortex, insula and ventral hip-
pocampus (Belin- Rauscent et al., 2016; Chudasama et al., 2003), 
whereas high levels of temporal discounting and impulsivity on the 
DDT implicate the basolateral amygdala, hippocampus, medial and 
lateral orbitofrontal cortex (OFC) (Bett et al., 2015; Ucha et al., 2019; 
Winstanley, Theobald, Cardinal, et al., 2004). Action and choice im-
pulsivity subtypes also include components of risk- based decision 
making (Dalley & Robbins, 2017), including rapid decisions made 
before sufficient evidence has accumulated (known as reflection im-
pulsivity; Clark et al., 2006).

2.1 | 5- HT

The impulsivity networks receive extensive ‘bottom up’ modulation 
from the monoamine neurotransmitter systems. Serotonin (5- HT) 
was considered early on as a key modulator of many forms of im-
pulsivity in rodents and non- human primates. The realisation that 
5- HT depletion ‘releases’ behaviour suppressed by punishment 
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(Soubrié, 1986) was a breakthrough that catalysed efforts to refine 
the neurochemistry of impulsivity. Subsequently, reports emerged 
that forebrain 5- HT depletion in rats selectively increased prema-
ture responding on the 5- CSRTT (Harrison et al., 1999; Winstanley, 
Theobald, Dalley, et al., 2004) and impulsivity in the DDT (Mobini 
et al., 2000), thus affecting both action and choice impulsivity, re-
spectively. Additionally, optogenetic stimulation of 5- HT neurons in 
the dorsal raphé nucleus (DRN) reduced impulsivity on a DDT— in 
other words, mice shifted their preference away from small, imme-
diate rewards (Miyazaki et al., 2014). These findings are consistent 
with a role of 5- HT neurons in behavioural restraint for delayed re-
wards. The same group later proposed that serotonergic afferents 
in the OFC, rather than the nucleus accumbens (NAcb), mediated 
the effect of DRN stimulation, which transferred to the medial pre-
frontal cortex (mPFC) when the timing of rewards was uncertain 
(Miyazaki et al., 2020). Thus, 5- HT neurons appear to promote pa-
tience for delayed rewards via signalling to the mPFC and OFC. The 
striatal locus of this effect is unresolved but may involve the dorsal 
striatum and interactions with dopamine (DA) in this region. This is 
supported by the finding that selective DA depletion in the rat dorsal 
striatum increased impulsive choice for low magnitude intracranial 
self- stimulation (Tedford et al., 2015).

It is noteworthy that 5- HT dysfunction was one of the first 
neurochemical phenotypes identified in rats screened for impul-
sivity in the 5- CSRTT. However, against expectations, levels of 
5- HT in the mPFC, assessed using in vivo microdialysis, correlated 
positively with impulsivity (Dalley et al., 2002), a finding consis-
tent with increased cortical 5- HT utilization post- mortem in rats 
screened for impulsivity on this task (Puumala & Sirviö, 1998) but 
contrary to other impulsivity phenotypes linked to low 5- HT func-
tion at this time. However, a striking positive relationship between 
an analogous form of impulsivity in rats was related to the ratio 
of 5- HT2A to 5- HT2C receptors in the mPFC, suggesting that 5- HT 
receptor subtypes play distinct roles in the modulation of motor 
impulsivity (Anastasio et al., 2015). Supporting this idea, 5- HT2C 
receptor knockdown increased waiting impulsivity and upregu-
lated 5- HT2A receptor expression, indicating an opponent relation-
ship between 5- HT2C and 5- HT2A receptor subtypes (Anastasio 
et al., 2015), conceivably co- expressed within the same population 
of PFC neurons (Nocjar et al., 2015). Serotonergic receptor interac-
tions extend to the dorsomedial striatum where activation and an-
tagonism of 5- HT2C and 5- HT2A receptors, respectively, decreased 
premature and perseverative (a form of compulsivity) responses 
in the 5- CSRTT following local N- methyl- d- aspartate (NMDA) re-
ceptor antagonism in the mPFC (Agnoli & Carli, 2012). Contrary to 
these findings, interventions in rodents affecting 5- HT neuronal 
transmission such as gene knockdown, 5- HT depletion and selec-
tive 5- HT reuptake inhibition do not affect impulsivity assessed 
using the SSRTT (Hausknecht et al., 2006; Bari et al., 2009; Eagle 
et al., 2008; Eagle et al., 2009). Such dissociations point to a se-
lective involvement of 5- HT in specific aspects of impulsivity. The 
implications of these findings for drug compulsion are discussed in 
later sections.

2.2 | Noradrenaline and dopamine

The catecholamines DA and noradrenaline (NA) lie at the centre 
of many impulsive behaviours. The clearest evidence comes from 
administering amphetamine and other stimulant drugs, gener-
ally improving stopping impulsivity in the rodent SSRTT (Eagle 
et al., 2007; Feola et al., 2000) and decreasing choice impulsivity 
in delay- discounting procedures (Floresco et al., 2008; van Gaalen 
et al., 2006). Stopping efficiency appears to have its origins within 
PFC circuitry and NA transmission (Bari et al., 2011) and via oppo-
nent interactions between D1 and D2 receptors in the dorsomedial 
striatum (Eagle et al., 2011). Delay- discounting impulsivity impli-
cates reduced DA release in the mPFC, NAcbC, NAcbS (Diergaarde 
et al., 2008) and altered DA receptor signalling in prefrontal regions 
such as the mPFC, where D1/D5 receptor stimulation increased 
choice for delayed rewards (Loos et al., 2010). This form of impulsiv-
ity also inversely relates to D2 receptor availability in the NAcbC, 
assessed using positron emission tomography (PET) and autoradi-
ography (Barlow et al., 2018). However, stimulant effects on delay 
discounting depend critically on the functional integrity of the 5- HT 
systems (Winstanley et al., 2003), a salutary lesson that interactions 
between the amine transmitters often underlie impulsivity pheno-
types (Dalley & Roiser, 2012).

The mesolimbic DA system further modulates premature re-
sponding in the 5- CSRTT, with DA depletion in the NAcb greatly 
reducing this form of impulsivity (Cole & Robbins, 1989). Infusions of 
a D1 receptor antagonist decreased premature responses whether 
given in the NAcbS or NAcbC (Pattij et al., 2007) implying be-
havioural activation to depend on D1 receptors in these regions. 
Following systemic amphetamine administration or disinhibiting le-
sions of the PFC, NAcbC infusions of D2 antagonists attenuated pre-
mature responding (Pattij et al., 2007; Pezze et al., 2009). Opposing 
these effects, blocking D2- like receptors in the NAcbS increased 
premature responding (Besson et al., 2010), consistent with trait 
impulsivity correlating with low D2 receptor binding in this region 
(Jupp et al., 2013). These findings imply that inhibitory presynap-
tic D2 receptors may be selectively downregulated in the NAcbS 
of trait impulsive rats, in turn leading to increased synaptic DA re-
lease. Evidence that intra- NAcbS administration of the selective 
NA reuptake inhibitor, atomoxetine, reduces premature responding 
(Economidou et al., 2012) lends further support to interactive rela-
tionships between the amine neurotransmitters.

2.3 | Glutamate

As the backbone of the impulsivity networks, glutamate has been 
widely researched in recent years (Carli & Invernizzi, 2014; Ucha 
et al., 2019; Weidacker et al., 2020; Yates & Bardo, 2017), with 
glutamatergic and gamma- aminobutyric acid (GABA)- ergic interac-
tions within and between the PFC/OFC and basal ganglia mediat-
ing different aspects of inhibitory control. To illustrate this point, rat 
PFC neurons encode waiting intervals by ramping activity upwardly 
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or downwardly to the expected timing of rewards (Donnelly 
et al., 2015) and target the dorsomedial striatum to mediate proac-
tive inhibitory control (Terra et al., 2020), perhaps by shifting the 
balance between the direct (Go) and indirect (No- Go) striatal path-
ways (Dunovan et al., 2015). The PFC, especially the more ventral 
infralimbic cortex, plays an important role in the regulation of wait-
ing impulsivity. Thus, locally administered NMDA receptor antago-
nists in this subregion (Benn & Robinson, 2014; Murphy et al., 2005) 
weakened impulse control and increased premature responding in 
the 5- CSRTT. Further implicating PFC glutamatergic dysfunction in 
impulse control, an altered subunit composition of NMDA receptors 
was recently identified in trait impulsive rats. Rats deemed high- 
impulsive on a simple serial reaction time task, showed low expres-
sion of GluN1 and GluN2A but increased expression of GluN2B and 
phosphorylated GluN2B compared with low- impulsive rats (Davis- 
Reyes et al., 2019). Such findings reinforce translational interest in 
the GluN2B subunit as a target to treat impulsive and compulsive 
disorders (Higgins et al., 2016).

In humans, glutamate levels in the ACC, assessed using magnetic 
resonance spectroscopy (MRS), correlated positively with impulsive 
symptoms in subjects with attention- deficit hyperactivity disorder 
(ADHD) (Bauer et al., 2018; Ende et al. 2016). Similar findings were 
found in relation to SUD using the Barratt Impulsiveness Scale (Li 
et al., 2020), which collectively highlight an involvement of gluta-
mate signalling in prefrontal cortical regions in impulsive behaviour.

2.4 | GABA

GABA- ergic neurons in cortical microcircuits contribute to a va-
riety of cognitive control processes, including working memory 
(Auger & Floresco, 2015), attention (Auger & Floresco, 2017; Paine 
et al., 2015) and cognitive flexibility (Page et al., 2018; Reichel 
et al., 2015). In rodents, an MRS- GABA study revealed decreased 
GABA levels in the ventral striatum of high- impulsive rats in the 5- 
CSRTT (Sawiak et al., 2016). Grey matter density in the core sub-
region of the NAcb was also decreased in these animals and was 
accompanied by reduced expression of glutamate decarboxylase, 
the rate- limiting enzyme responsible for GABA synthesis and syn-
aptic proteins, such as spinophilin (Caprioli et al., 2014). Validating 
these findings, fast- spiking GABA- ergic neurons in the NAcb, was 
recently shown to restrain behaviour and lessen the likelihood of 
impulsive responses (Pisansky et al., 2019). In the lateral OFC, but 
not the medial OFC, lower gene expression of the ɑ1 GABAA recep-
tor subunit correlated with impulsive action but not impulsive choice 
in rats (Ucha et al., 2019). In humans, reduced MRS- GABA levels in 
the PFC correlated with risky and impulsive decision making (Boy 
et al., 2011; Weidacker et al., 2020), with Barratt Impulsiveness Scale 
impulsivity scores correlating negatively with MRS GABA levels in 
the PFC and ACC (Ende et al. 2016; Li et al., 2020). Finally, reductions 
in GABA levels in the inferior frontal gyrus were found to under-
lie SSRT impulsivity (Murley et al., 2020), suggesting that multiple 

subtypes of impulsivity implicate diminished GABA- ergic function in 
several cortico- striatal regions.

The above synopsis, summarised in Table 1, highlights distinct 
nodes within the stopping and waiting impulsivity networks that 
depend on separate and interacting contributions from the ascend-
ing monoaminergic systems and amino- acid neurotransmitters. We 
recognise that our analysis is far from complete and omits, for ex-
ample, neuropeptides (Alcaraz- Iborra & Cubero, 2015), endocan-
nabinoids (Ucha et al., 2019) and the cholinergic systems (Mamiya 
et al., 2020), but nevertheless enables the greatest volume of liter-
ature on impulsive and compulsive behaviours to be integrated. We 
next discuss the neurochemistry of drug compulsion as a prelude to 
identifying neurochemical substrates and mechanisms that overlap 
with impulsivity.

3  | NEUROCHEMIC AL MARKERS OF DRUG 
COMPUL SION

The transition to compulsion is hypothesised to result from impaired 
inhibitory response control and a progressive shift in the locus of 
behavioural control from ventral limbic regions of the striatum (i.e., 
the NAcb) to more dorsal associative and sensorimotor areas of the 
striatum (Everitt & Robbins, 2016; Jentsch & Taylor, 1999; Kalivas & 
Volkow, 2005; Lüscher et al., 2020; Porrino et al., 2004). Although 
experimental approaches in rodents can never fully recapitulate the 
complex personal and environmental reasons why humans abuse 
drugs, behavioural paradigms have been developed in rodents to 
investigate tractable components of addiction that contribute to 
compulsive drug seeking. Thus, contemporary procedures to assess 
‘addiction- like’ or compulsive behaviour in rodents de- emphasise 
the reinforcing effects of drugs that determine individual variation in 
the acquisition, escalation and reinstatement of drug responses and 
instead probe the persistence of drug- seeking and drug- taking in the 
face of punishment or aversive consequences (Lüscher et al., 2020). 
Compulsive drug- taking is assessed by response- contingent self- 
administration despite concurrent punishment (e.g., a mild foot- 
shock or adding an unpleasant tastant like quinine to an alcohol 
solution) and forms one component of the three- criteria model of 
stimulant addiction (Deroche- Gamonet et al., 2004).

In the three- criteria model, both drug delivery and foot- shocks 
are delivered concurrently on an FR- 5 schedule of reinforcement, 
with an additional foot- shock delivered during the response preced-
ing drug delivery (i.e., FR- 4). In a series of studies, the three- criteria 
model has been used to assess interindividual differences in clini-
cally translatable behavioural endophenotypes in rodents and has 
demonstrated striking cross- species convergence. For example, high 
levels of trait impulsivity predict compulsive cocaine taking in ro-
dents (Belin et al., 2008) and is also a vulnerability marker for human 
substance dependence (Verdejo- García et al., 2008; Verdejo- Garcia 
& Albein- Urios, 2021). However, in the three- criteria model, punish-
ment is immediate and explicitly linked to the drug- taking response. 
In humans, this may not always be the case, where drug- taking 
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TA B L E  1   A summary of the effects of neurochemically selective interventions on distinct forms of impulsivity in rodents

Task Manipulation Mechanism of action

Route or 
site of 
administration Effect Reference

DA 5- CSRTT 6- hydroxydopamine Selective neurotoxin NAcb ↓ premature responses Cole and Robbins 
(1989)

5- CSRTT SCH 23390 Selective D1R 
antagonist

NAcb ↓ premature responses Pattij et al. (2007)

5- CSRTT Sulpiride administration 
after mPFC lesion

Selective D2/3R 
antagonist

NAcbC ↓ increase in premature 
responses caused by 
lesion

Pezze et al. (2009)

5- CSRTT Nafadotride D3R antagonist NAcbS
NAcbC

↑ premature responses (HI)
↓ premature responses (HI)

Besson et al. (2010)

SSRTT Amphetamine DA/NA reuptake 
inhibitor

I.P ↓ SSRT (HI) Feola et al. (2000)

SSRTT Methylphenidate DA/NA reuptake 
inhibitor

I.P ↓ SSRT (HI)
↑ SSRT (LI)

Eagle et al. (2007)

SSRTT SCH 23390
Sulpride

Selective D1R 
antagonist;

selective D2/3R 
antagonist

DMS ↓ SSRT
↑ SSRT

Eagle et al. (2011)

DDT 6- hydroxydopamine Selective neurotoxin DMS ↑ delay aversion Tedford et al. (2015)

DDT Ibotenic acid Neurotoxin STN ↓ delay aversion Winstanley 
et al. (2005)

DDT Flupenthixol D1R/D2R antagonist I.P ↑ delay aversion Floresco et al. (2008)

5- HT 5- CSRTT 5,7- dihydroxytryptamine Selective neurotoxin ICV ↑ premature responses Winstanley, Theobald, 
Dalley, et al. (2004)

5- CSRTT 5,7- dihydroxytryptamine Selective neurotoxin ICV ↑ premature responses Harrison et al. (1997)

5- CSRTT M100907 5- HT2AR antagonist DS ↑ premature responses Agnoli and Carli 
(2012)

5- CSRTT Lorcaserin
SB−242084

5- HT2CR agonist
5- HT2CR antagonist

S.C ↓ premature responses
↑ premature responses

Higgins et al. (2020)

1- CSRTT 5- HT2CR knockdown — mPFC ↑ premature responses Anastasio et al. (2015)

DDT 5,7- dihydroxytryptamine Selective neurotoxin Dorsal and 
median raphe 
nuclei

↑ delay aversion Mobini et al. (2000)

DDT Optogenetic stimulation — Dorsal raphe 
nucleus

↓ delay aversion Miyazaki et al. (2014)

NA 5- CSRTT Atomoxetine Selective NA 
reuptake inhibitor

NAcbS ↓ premature responses Economidou 
et al. (2012)

5- CSRTT Atomoxetine Selective NA 
reuptake inhibitor

I.P ↓ premature responses Robinson et al. (2008)

5- CSRTT Prazosin ɑ1- adrenoceptor 
antagonist

S.C ↑ premature responses Koskinen et al. (2003)

DDT Atomoxetine Selective NA 
reuptake inhibitor

I.P ↓ delay aversion Robinson et al. (2008)

DDT Phenylephrine ɑ1- adrenoceptor 
agonist

I.P ↑ delay aversion van Gaalen 
et al. (2006)

SSRTT Atomoxetine Selective NA 
reuptake inhibitor

I.P ↓ SSRT Robinson, Dalley, 
et al. (2008), 
Robinson, Eagle, 
et al. (2008)

SSRTT Atipamezole ɑ2- adrenoceptor 
antagonist

I.P ↓ SSRT Bari and Robbins 
(2013)

(Continues)
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responses can be associated with delayed and often probabilis-
tic detrimental consequences. In addition, the three criteria model 
primarily models compulsive drug- taking and does not assess drug- 
seeking behaviour under the threat of punishment.

Conversely, well- established cue- controlled cocaine seeking and 
compulsive drug- seeking responses can be measured using second- 
order schedules of reinforcement paired with or without contingent 
foot- shocks, respectively. In such procedures, drug delivery occurs 
after a certain time has elapsed— the fixed interval (e.g., 15 min), with 
drug- seeking responses maintained by classically conditioned stim-
uli previously paired with a drug reinforcer. One advantage of the 
second- order schedule is that it can be used to probe drug- seeking 
behaviour in the absence of direct drug effects. Thus, an important 
distinction between instrumental responding during the first drug- 
free interval and subsequent intervals is made, the former behaviour 
being directly under control of the conditioned reinforcing prop-
erties of the drug- conditioned stimulus, the latter behaviour influ-
enced also by the rate- altering effects of the drug.

So- called heterogeneous seeking- taking chain schedules index 
compulsive drug- seeking by requiring animals to press a ‘seeking’ 
lever, to gain access to a drug ‘taking’ lever, responding on which re-
sults in drug delivery. Under this schedule, compulsive drug- seeking 
is assessed with the introduction of an unpredictable, mild foot- shock 
that occurs 50% of the time after the completion of the seeking lever 
response (Pelloux et al., 2012). The unpredictable nature of punish-
ment under these conditions may more closely relate to the uncer-
tainty of adverse consequences during drug procurement in humans. 
Alternatively, threat of punishment and anticipation of aversive con-
sequences has been used in conjunction with the seeking- taking 
chain schedule as an alternative to contingent foot- shock punish-
ment delivered immediately after the instrumental seeking response 
(Vanderschuren & Everitt, 2005). After limited drug taking experience, 

presentation of a tone previously paired with foot- shock suppressed 
cocaine seeking, an effect not observed after prolonged self- 
administration (i.e., after an extended history of self- administration 
cocaine seeking was no longer suppressed by the presentation of the 
aversive conditioned stimulus) (Vanderschuren & Everitt, 2005).

Compulsive alcohol intake is often assessed by the addition 
of the bitter tastant quinine to an oral alcohol solution, rendering 
the solution less palatable (for review see Hopf & Lesscher, 2014). 
Several aspects of the human disorder are captured within the qui-
nine model. For example, alcohol- dependent individuals will con-
sume toxic products that contain alcohol (e.g., Eau de Cologne and 
antiseptics) (Leon et al., 2007), clearly demonstrating alcohol use in 
the face of negative consequences. This has obvious parallels with 
quinine adulteration and highlights the face validity of the paradigm 
in simulating alcohol abuse in humans. Similar to compulsive co-
caine use, rats become averse- resistant to quinine after extended 
access to alcohol (Hopf et al., 2010), a phenotype that persists for 
many months (Wolffgramm & Heyne, 1991). Approximately 15% 
of animals with extensive alcohol self- administration exposure 
(~10 weeks) continue to administer alcohol when offered an alterna-
tive sugar reward. This subpopulation of rats then go on to display 
several addiction- like behaviours and continue to self- administer al-
cohol in (a) the face of foot- shock punishment and (b) after the adul-
teration of alcohol with quinine (Augier et al., 2018). This report, and 
others (Seif et al., 2013), suggests that resistance to multiple forms 
of punishment may be subserved by overlapping neural mechanisms 
and co- occur within an individual. Thus, Seif et al. showed that com-
pulsive alcohol taking as measured by both quinine adulteration and 
foot- shock punishment is mediated by PFC to NAcbC circuitry (Seif 
et al., 2013). Indeed, preclinical circuit- mapping studies have shown 
impaired fronto- striatal connectivity in compulsive drug- seeking 
rats (Chen et al., 2013). Moreover, translationally relevant imaging 

Task Manipulation Mechanism of action

Route or 
site of 
administration Effect Reference

SSRTT Atomoxetine Selective NA 
reuptake inhibitor

dPL, OFC ↓ SSRT Bari et al. (2011)

SSRTT Guanfacine ɑ2a- adrenoceptor 
agonist

dPL ↑ SSRT Bari et al. (2011)

GLUT 5- CSRTT (R)- CPP NMDAR antagonist IL ↑ premature responses Murphy et al. (2005)

5- CSRTT MK801 Non- competitive 
NMDAR antagonist

IL ↑ premature responses Benn and Robinson 
(2014)

GABA 5- CSRTT Muscimol GABAAR agonist IL ↑ premature responses Murphy et al. (2012)

SSRTT Muscimol GABAAR agonist dPL, ACC ↓ SSRT Bari et al. (2011)

Abbreviations: ↑, increased; ↓, decreased; 1- CSRTT, 1- choice serial reaction time task; 5- CSRTT, 5- choice serial reaction time task; ACC, anterior 
cingulate cortex; D1R, dopamine D1 receptor; D2/3R, dopamine D2/3 receptor; D2R, dopamine D2 receptor; DA, dopamine; DDT, delay- discounting 
task; DMS, dorsomedial striatum; dPL, dorsal prelimbic cortex; DS, dorsal striatum; GABA, γ- amino- butyric acid; GABAAR, γ- amino- butyric acid 
B receptorGABAAR, γ- amino- butyric acid A receptor; Glut, glutamate; HI, high impulsive; I.P, intraperitoneal; ICV, intracerebroventricular; IL, 
infralimbic cortex; LI, low impulsive; mPFC, medial prefrontal cortex; NA, noradrenaline; NAcb, nucleus accumbens; NAcbC, nucleus accumbens 
core; NAcbS, nucleus accumbens shell; NMDAR, N- methyl- d- aspartic acid receptor; OFC, orbitofrontal cortex; S.C, subcutaneous. (R)- CPP, 3- [(R)- 2- 
carboxypiperazin- 4- yl]- propyl- 1- phosphonic acid; SSRT, stop- signal reaction time; SSRTT, stop- signal reaction time task; STN, subthalamic nucleus.
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techniques have highlighted overlapping cross- species neural cir-
cuits linked to compulsive drug use (Hu et al., 2015, 2019).

Finally, for the purposes of this review, schedule- induced polydip-
sia (SIP) assesses the compulsive consumption of freely available water 
when food reward is unpredictable. Adjunctive drinking behaviour 
under SIP captures several hallmark features of compulsive disorders, 
specifically the tendency of some animals to develop drinking that 
is excessive, repetitive and maladaptive. Although the link between 
compulsive drinking and psychostimulant use has yet to be fully ex-
plored, enhanced self- administration of amphetamine is related to en-
hanced levels of SIP (Piazza et al., 1993) and several behavioural traits 
confer risk for both SIP and stimulant use. For example, rats screened 
for high impulsivity in the 5- CSRTT, which subsequently develop 
compulsive cocaine self- administration (Belin et al., 2008), develop 
high levels of drinking when trained on a SIP task (Belin- Rauscent 
et al., 2016; Higgins et al., 2020). In the sections that follow, we survey 
the evidence linking each of the major neurotransmitter systems with 
compulsive drug- seeking and drug- taking (for a summary see Table 2).

3.1 | 5- HT

The 5- HT systems have long been implicated in reward and pun-
ishment (Patkina & Lapin, 1976; Soubrie et al., 1981) with median 
and dorsal raphe 5- HT neurons contributing, respectively, to con-
ditioned fear and behavioural control under punishment (Avanzi 
et al., 2003; Thiébot et al., 1983). Adaptations in the 5- HT systems 
are also widely implicated in addiction to a variety of abused drugs 
(for review see Müller & Homberg, 2015 ). In the context of compul-
sion, rats identified as compulsive drug seekers on a seeking- taking 
task showed reduced 5- HT turnover (5- HT/5- HIAA ratio) in the PFC, 
striatum and amygdala and decreased DA turnover in the dorsal 
striatum, compared with non- compulsive rats (Pelloux et al., 2012). 
Roughly 20% of rats developed compulsive cocaine seeking, a pro-
portion comparable to the probability of humans giving way to 
stimulant addiction (Anthony et al., 1994). Importantly, the quan-
tity of cocaine administered was no different between compulsive 
and non- compulsive rats, suggesting individual variability in com-
pulsive drug- seeking was determined by other factors, most likely 
underlying risk variables. For example, addiction- prone, impulsive 
rats in the 5- CSRTT show pre- existing cortical 5- HT dysfunction, 
as discussed above and a reduced expression of 5- HT2c receptors 
in the ACC and NAcbS (Besson et al., 2013). Further, in the Pelloux 
study above, 5- HT depletion via intracerebroventricular 5– 7- DHT, or 
systemic administration of a 5- HT2C receptor antagonist, increased 
levels of drug- seeking under punishment. Moreover, citalopram, a 
selective 5- HT reuptake inhibitor, reduced compulsive seeking in a 
dose- dependent manner, suggesting that reduced 5- HT forebrain 
signalling is causally involved in compulsive cocaine seeking.

Supporting these findings, reduced 5- HT2C protein production 
via genetic depletion of 5- HT2C receptors in the mPFC induced 
motor impulsivity and enhanced cocaine seeking during withdrawal 
(Anastasio et al., 2014). Furthermore, administration of the 5- HT2C 

antagonist SB242084 increased compulsive drinking in the SIP pro-
cedure and increased premature responses in the 5- CSRTT, with the 
5- HT2C agonist CP809101 having the opposite effect, in reducing 
compulsive drinking and decreasing premature responding (Higgins 
et al., 2020). High drinking in the SIP procedure was also associ-
ated with reduced 5- HT2A receptor binding in the PFC, and DOI, a 
5- HT2A/C receptor agonist decreased water consumption when in-
fused directly into this region (Mora et al., 2018), an effect found 
earlier to be mediated by 5- HT2A receptors (Navarro et al., 2015). 
Taken together, these findings reveal a bidirectional role of 5- HT in 
compulsive cocaine seeking and imply specific key roles of 5- HT2A 
and 5- HT2C receptors.

3.2 | Dopamine

The ascending DA systems contribute in multifaceted ways to re-
ward and addiction by supporting the initiation and reinforcing 
effects of drugs, associative learning processes and vulnerability 
mechanisms (Berridge & Robinson, 2016; Hyman, 2005; Koob & 
Volkow, 2016; Lüscher et al., 2020; Nader et al., 2002). Spiralling 
pathways between midbrain DA neurons and striatal subregions 
(Haber et al., 2000; Ikemoto, 2007) are hypothesised to underlie the 
shift in behavioural control over drug seeking (Everitt et al., 2008) 
with established seeking responses eventually transferring to 
the dorsal striatum and a habit- based system (Belin et al., 2013). 
Disconnecting intrastriatal connectivity through specific lesions of 
the NAcbC as well as dorsolateral striatal infusions of the DA re-
ceptor antagonist α- flupenthixol decreased cocaine seeking in rats 
extensively trained under a second order schedule of reinforcement 
(Belin & Everitt, 2008). This observed shift in behavioural control 
by DA reflects well- established cue- controlled cocaine- seeking, re-
flecting the habitual quality of drug- seeking behaviour but not nec-
essarily compulsion per se. Nonetheless, consistent with this shift, 
earlier seminal studies remarkably demonstrated that neurochemi-
cal and metabolic markers in the dorsal striatum were affected by 
chronic, but not acute, cocaine self- administration in non- human 
primates (Letchworth et al., 2001; Porrino et al., 2004). Moreover, 
phasic DA release decreased in the ventromedial striatum (VMS) 
and increased in the dorsolateral striatum after several weeks of 
cocaine exposure (Willuhn et al., 2012), while DA release in the dor-
sal striatum, but not the ventral striatum, was evoked by response- 
contingent, drug- associated stimuli, during well- established cocaine 
seeking (Ito et al., 2002).

After extended training, compulsive alcohol seeking in a pun-
ished seeking- taking task was recently shown to depend on the DA- 
rich anterior dorsolateral striatum (Giuliano et al., 2019). Animals 
showing increased reliance on anterior dorsolateral striatum do-
paminergic mechanisms were subsequently more likely to develop 
compulsive alcohol seeking. As well as the dorsal striatum, D1 recep-
tors in the NAcbS and NAcbC play a critical role in drug- seeking after 
punishment. Infusions of the D1- R antagonist SCH 23390 in both the 
NAcbS and NAcbC decreased the renewal of alcohol seeking after 
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punishment- induced abstinence (Marchant & Kaganovsky, 2015), 
whereas infusions of the D1/D2 receptor antagonist, α- flupenthixol, 
in the NAcbC decreased cue- evoked cocaine seeking in a punish-
ment reinstatement task (Saunders et al., 2013). These studies high-
light the important contribution of ventral and dorsal striatal DA in 
invigorating drug- seeking irrespective of the punishment schedule 
used to suppress responding.

More generally, DA mechanisms are implicated in a variety 
of compulsive behavioural phenotypes from rigid, stereotyped 
movements of dorsal striatal origin (Amalric & Koob, 1993), com-
pulsive checking responses that implicate D2- like receptors (Eagle 
et al., 2020) and perseverative errors in reversal learning procedures 
(Izquierdo, 2017). In one noteworthy study, D2 receptor availabil-
ity in the dorsal striatum of non- human primates, assessed using 
PET, was inversely related to reversal learning efficiency (Groman 
et al., 2011). In the same study, D2 receptor availability correlated 
with behavioural sensitivity to positive, but not negative, feed-
back during learning. Parallel findings from the same group further 
showed that ex vivo monoamine levels predicted reversal perfor-
mance. Thus, variance in behavioural inflexibility was largely ac-
counted for by ex vivo DA and 5- HT levels in the dorsal striatum and 
OFC, respectively (Groman et al., 2013).

3.3 | Noradrenaline

The locus coeruleus noradrenergic system has been widely re-
searched in addiction- relevant behavioural processes. NA neurons 
are a central component of the brain stress systems that under-
pin increased propensity for drug- seeking during negative emo-
tional states (Koob, 2009) and relapse to a variety of stimuli (Erb 
et al., 2000; España et al., 2016; Smith & Aston- Jones, 2011; Solecki 
et al., 2018; Weinshenker & Schroeder, 2007). To briefly illustrate 
this latter influence, the α2- antagonist yohimbine, which increases 
NA release by blocking inhibitory α2 autoreceptors, increased cue- 
induced seeking for cocaine in monkeys trained under a second order 
schedule of reinforcement, an effect that was attenuated by the α2- 
agonist clonidine (Lee et al., 2004). Similarly, using a conditioned 
place preference procedure in mice, reinstatement of a cocaine place 
preference was induced by forced swim stress and yohimbine and 
decreased by propranolol and low- dose clonidine, but not prazosin, 
suggesting an involvement of α1 and β2 receptors in reinstatement 
(Mantsch et al., 2010). These reports highlight the important role 
of the central noradrenergic systems in mediating drug- seeking in 
response to stress. In other settings, the α1 antagonist prazosin, 
previously shown to reduce cue- induced craving, reduced both the 
breakpoint for cocaine (Wee et al., 2008), a measure of motiva-
tion to acquire the drug, and heroin self- administration (Greenwell 
et al., 2009) in rats with a history of extended drug access.

Intrinsic impulsiveness in the 5- CSRTT has previously been 
shown to predict cocaine relapse and compulsive cocaine seeking. 
In one study (Economidou et al., 2009), outbred rats were divided 
into low-  and high- impulsive groups and subsequently trained to 
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self- administer cocaine under a seeking- taking chain schedule. 
After stable responding was acquired, seeking was paired with a 
mild foot- shock for several sessions. Following punishment, drug 
seeking was assessed after 1 week of withdrawal. It was found that 
atomoxetine, a selective NA reuptake inhibitor, that also increases 
DA release in cortical regions, attenuated the enhanced propensity 
to relapse after abstinence, an effect that was more pronounced 
in high- impulsive rats than low- impulsive rats (Economidou 
et al., 2009). In a second study, extreme impulsivity phenotypes 
in the 5- CSRTT were related to the propensity to develop SIP 
(Ansquer et al., 2014). Here, chronic administration of atomoxe-
tine reduced premature responding in high impulsive rats, as well 
as compulsive adjunctive drinking (Ansquer et al., 2014), although 
it should be noted that null effects of atomoxetine on SIP have also 
been reported (Higgins et al., 2020; Navarro et al., 2015). More re-
cent studies confirm the anti- compulsivity actions of atomoxetine, 
for example, in compulsive marble burying (Grassi et al., 2016), a 
behaviour that depends on the functional integrity of the brain NA 
systems (Lustberg et al., 2020).

3.4 | Glutamate

The transition to addiction is hypothesised to involve a dysregula-
tion of glutamate homeostasis and long- term changes in synaptic 
plasticity (van Huijstee & Mansvelder, 2015; Kalivas, 2009). Using 
the three- criteria model of addiction, Kasanetz et al., (2010) evalu-
ated long- term depression (LTD) in the NAcbC following short and 
long access exposure to cocaine self- administration. Short access 
cocaine led to a suppression in NMDA receptor- dependent LTD 
in all subjects. However, after prolonged access to cocaine, three 
criteria rats (rats showing three of the addiction- like behaviours, 
including compulsive cocaine intake in the face of punishment) 
showed persistently impaired LTD whereas LTD progressively 
recovered in zero criteria rats (rats showing no addiction- like be-
haviours). Utilising the same paradigm, three criteria rats showed 
impaired mGluR2/3- dependent LTD mechanisms in the dorsome-
dial PFC and reduced mGluR2/3 protein expression. Moreover, the 
α- amino- 3- hydroxy- 4- isoxazolepropionic acid (AMPA) to NMDA 
ratio, an index of synaptic strength, increased in the prelimbic cor-
tex (PrL) of three criteria rats (Kasanetz et al., 2013). Extending 
these findings, Chen et al., (2013) used a seeking- taking chain task 
to demonstrate that compulsive cocaine seeking manifests from 
PrL hypoactivity (Chen et al., 2013). Thus, optogenetic stimulation 
and inhibition of the PrL bi- directionally modulated compulsive co-
caine seeking, both suppressing and enhancing seeking behaviour, 
respectively. The causally responsible output structures mediat-
ing top- down inhibitory control by the PrL remain to be fully de-
fined but may involve in part circuits to the dorsal periaqueductal 
grey in the brainstem (Siciliano et al., 2019) and NAcbS (Piantadosi 
et al., 2020). More globally, deletion of the NMDAR subunit 
GluN2B in principal neurons of the cortex and hippocampus re-
duced punished suppression of reward seeking in mice (Radke 

et al., 2015). This report and others (Wang et al., 2010) highlight 
the important role of NMDAR subunit composition on glutamater-
gic signalling and reward seeking. In humans, perturbations in glu-
tamate concentration are reported in the NAcb (Engeli et al., 2020) 
and caudate putamen (Ersche et al., 2020) of substance dependent 
individuals.

Many studies have investigated the role of specific glutamate 
receptor subtypes in cue- induced reinstatement of drug seeking. 
For example, AMPA receptor blockade in the NAcbC, but not the 
NAcbS, prevented reinstatement (Cornish et al., 1999). Furthermore, 
inactivation of the PFC → NAcbC pathway via administration of 
baclofen and muscimol in the PrL cortex decreased glutamate 
output in the NAcbC and decreased drug- seeking (LaLumiere & 
Kalivas, 2008). Glutamatergic mechanisms of drug- seeking have 
also been assessed using second order schedule of reinforcement. 
Thus, intra- NAcbC but not intra- NAcbS infusions of the selective 
AMPA/kainate receptor antagonist LY293558 dose- dependently 
decreased cocaine seeking in rats during the drug- free first interval 
and throughout the session. Infusion of the NMDA receptor antag-
onist AP- 5 in the NAcbS produced a limited effect and no effect in 
the NAcbC (Di Ciano & Everitt, 2001). LY293558 (and the DA recep-
tor antagonist α- flupenthixol) also decreased well- established cue- 
controlled cocaine seeking when infused in the dorsolateral striatum 
(Vanderschuren et al., 2005). Additionally, systemic administration 
of N- acetylcysteine, which reduces glutamate release, reduced co-
caine seeking in the first drug- free interval of a second order sched-
ule of reinforcement (Murray et al., 2012). In summary, several lines 
of enquiry converge on the importance of glutamatergic signalling in 
regulating drug- seeking behaviour. It is clear that this may be depen-
dent on the specific location (ventral striatum versus PFC), as well as 
specific glutamatergic receptor subtypes.

Alcohol consumption has also been linked to glutamatergic neu-
rotransmission. Selectively bred alcohol- preferring rats homozygous 
for the Grm2 stop codon, a phenotype that results in a severe loss 
of mGluR2 and impaired mGluR2 synaptic depression, showed in-
creased alcohol intake (Zhou et al., 2013). In the SIP paradigm, rats 
showing compulsive adjunctive drinking had reduced levels of glu-
tamate in the mPFC (Mora et al., 2018). Nevertheless, whereas N- 
acetylcysteine did not reduce water intake in high drinking animals, 
both the non- competitive NMDA receptor antagonist, memantine, 
and the glutamate/aspartate release- lowering drug, lamotrigine, did 
reduce SIP (Prados- Pardo et al., 2019).

In a longitudinal, pre- clinical imaging study using PET, Groman 
and colleagues assessed baseline levels of dopamine D2/3 and me-
tabotropic Glu5 (mGluR5) receptor availability in rats trained on a 
probabilistic reversal learning task before and after cocaine self- 
administration (Groman et al., 2020). Cocaine exposure significantly 
disrupted reversal learning performance, leading to a reduced sen-
sitivity to, and integration of, negative feedback. These outcomes 
were associated with an increase in mGlu5 binding potential in the 
mPFC, suggesting that impaired mGlu5 signalling in this region may 
contribute to the formation of inflexible, perseverative- like respond-
ing (Groman et al., 2020).
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3.5 | GABA

Abnormalities in GABA signalling are seen across a wide range of 
neuropsychiatric disorders including obsessive compulsive dis-
order (Li et al., 2019), schizophrenia (de Jonge et al., 2017) and 
addiction (Tyacke et al., 2010). In a recent study to investigate 
GABA- ergic mechanisms in compulsive alcohol consumption, rats 
were given a choice between alcohol and a high incentive sweet-
ened solution (Augier et al., 2018). A small subset of the rats (~15%) 
preferred alcohol and developed addiction- like behaviours, includ-
ing (a) an increased motivation to work for alcohol, as indexed by 
increased breakpoints in a progressive ratio task, (b) increased alco-
hol intake when the alcohol solution was adulterated with quinine 
and (c) continued alcohol intake despite foot- shock punishment. 
Investigation of the molecular substrates revealed a significant de-
crease in the GABA transporter, GAT- 3, in the amygdala of alcohol- 
choosing rats. This was associated with increased tonic inhibition 
in the central nucleus of the amygdala (CeA). Moreover, short 
hairpin RNA knockdown of GAT- 3 in the high incentive preferring 
group increased choice behaviour for alcohol, demonstrating a 
causal role of GABA- ergic mechanisms in the CeA in the devel-
opment of alcohol- choice behaviour. Activation of GABA recep-
tors in the CeA has also been shown to influence cocaine seeking 
under punishment (Sun & Yuill, 2020). Thus, reversibly inactivat-
ing doses of GABA agonists in the CeA increased the number of 
punished seeking responses. These findings are consistent with 
reports demonstrating increased inhibitory GABAergic transmis-
sion in rats after chronic ethanol treatment (Roberto et al., 2004). 
Using slice electrophysiology and in vivo microdialysis, rats treated 
chronically with ethanol exhibited augmented inhibitory postsyn-
aptic potentials, an index of increased basal GABA release, relative 
to control animals. Moreover, both at baseline and after chronic 
ethanol treatment, dialysate levels of GABA were higher in rats 
treated chronically with ethanol than ethanol- naïve control rats 
(Roberto et al., 2004).

GABA signalling has also been shown to play a role in well- 
established cue- controlled drug seeking. Using a second order 
schedule of reinforcement, Di Ciano and Everitt showed that admin-
istration of the GABAB receptor agonist baclofen dose dependently 
decreased cue- controlled cocaine and heroin seeking (Di Ciano & 
Everitt, 2003). Moreover, baclofen and muscimol administration in 
the ventral tegmental area dose- dependently decreased drug- free 
cocaine seeking during the first interval (Di Ciano & Everitt, 2004). 
Systemically administered baclofen also decreased cue- induced re-
instatement of alcohol- seeking in Sardinian alcohol- preferring rats 
(Maccioni et al., 2008), an effect also generalising to the reinstate-
ment of heroin- seeking (Spano et al., 2007).

Several studies have also evaluated the role of GABA signal-
ling in SIP. Administration of the GABAA receptor antagonist pen-
tylenetetrazol decreased drinking in both high-  and low- drinkers 
(López- Grancha et al., 2008). However, the effects of the GABAA 
agonist diazepam on SIP are more mixed and dependent on dose. 
In general, whereas low doses of diazepam increase compulsive 

adjunctive drinking (López- Grancha et al., 2008), higher doses re-
duce the temporal regulation of licking responses during intervals 
between food delivery (Pellon & Blackman, 1992). Although an 
emerging area of interest, one recent report indicates a potential 
role of GABA in the bed nucleus of the stria terminalis in modulating 
SIP (Angelis et al., 2019).

4  | SYNTHESIS AND THEORETIC AL 
IMPLIC ATIONS

The now widely accepted multidimensionality of impulsivity chal-
lenges any straightforward relationship between impulsive and 
compulsive behavioural phenotypes in addiction. The broad con-
struct of compulsivity also encompasses several psychological 
processes from rigid strategies or attentional set shifting, stereo-
typy, perseveration, resistance to extinction and the persistence of 
stimulus- response habits despite negative consequences (Robbins 
et al., 2012). Further challenges arise from the fact that impulsivity 
is often assessed in humans using subjective self- report measures, 
for example, the Barratt Impulsiveness Scale (Patton et al., 1995) or 
such factors as follows: (a) a lack of premeditation or the failure to 
plan carefully before acting; (b) sensation- seeking or the desire for 
intense, exciting experiences despite inherent risks; (c) a lack of per-
severance during boring or demanding tasks; and (d) urgency or the 
propensity for rash or risky behaviour in positive or negative emo-
tional settings (Whiteside & Lynam, 2001). Nevertheless, impulsivity 
and compulsivity both result from failures in response inhibition or 
top- down control and implicate aberrant reward processing and im-
paired insight into the consequences of inappropriately elicited ac-
tions (Dalley et al., 2011).

This review outlines the complexities of impulsive- compulsive 
phenotypes in addiction and highlights the shifting neural cir-
cuitries underlying the transition to compulsive drug- seeking. 
The main neuromodulatory systems are all implicated in differ-
ent aspects of impulsive- compulsive behaviours. However, DA 
and 5- HT dysfunction in striatal and cortical domains is a recur-
ring theme, especially in trait impulsive subtypes, while enhanced 
noradrenergic neurotransmission in the brain reduces most forms 
of impulsive and compulsive behaviour. Overall, our analysis re-
veals partially overlapping neurochemical substrates of impulsiv-
ity and compulsivity, which may underlie the recognised causal 
influence of trait impulsivity on the emergence of compulsive 
drug- seeking (Everitt, 2014). Figure 1 provides an overview of 
the involvement of the main neurotransmitter systems in various 
forms of impulsivity and compulsivity. Overall, the evidence sug-
gests that 5- HT similarly and bidirectionally modulates impulsive 
and compulsive phenotypes with reduced transmission associated 
with both increased impulsivity and compulsivity. The exception 
however is SSRT impulsivity which appears to be insensitive to al-
terations in 5- HT function. Enhancing NA function via selective 
reuptake inhibition decreases the main forms of impulsivity but 
to date there is a paucity of data on the effects of selective NA 
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depletion on impulsivity and compulsivity. Altered DA transmis-
sion generally has the opposite effects on impulsive- compulsive 
behaviours than 5- HT, presumably because these two monoamine 
systems are mutually regulated, often via antagonistic interactions 
(Howell & Cunningham, 2015). However, the effects of DA manip-
ulations on impulsivity and compulsivity are more nuanced and 
task- dependent with the strongest alignment evident for prema-
ture responding in the 5- CSRTT and compulsive behaviour in the 
seeking- taking chain- schedule.

As highlighted in Figure 1, the most consistent overlap be-
tween impulsivity and compulsivity involves the 5- HT systems. 
Pelloux and colleagues showed that administration of the 5- HT2C 
receptor antagonist SB242084 increased drug seeking under pun-
ishment, while M100907, a 5- HT2A antagonist, decreased pun-
ished drug seeking (Pelloux et al., 2012). Consistent with these 
findings, knockdown of mPFC 5- HT2c receptor increased impul-
sivity in a 1- choice variant of the 5- CSRTT (Anastasio et al., 2015) 
while M100907 had the opposite effect (Fink et al., 2015). These 
findings lend support to the notion of overlapping 5- HT signalling 

across impulsive and compulsive phenotypes. The underlying 
mechanism is unclear but may relate to observations that 5- HT 
neurons innervating the OFC and mPFC mediate restraint for de-
layed and uncertain rewards (Miyazaki et al., 2020) while deple-
tion of 5- HT from the OFC increases behavioural perseveration, 
a form of compulsive behaviour (Clarke et al., 2004). Evidence 
of diminished 5- HT levels in the PFC of stimulant- addicted in-
dividuals (Wilson et al., 1996), and following unlimited cocaine 
self- administration in rats (Parsons et al., 1995), links 5- HT dys-
function with impulsive- compulsive behavioural phenotypes. Also 
of relevance, 5- HT modulates sensitivity to negative and positive 
(reward) feedback (Bari et al., 2010), consistent with earlier theo-
rising that tonic 5- HT activity signals average reward rate whereas 
phasic 5- HT codes prediction errors for future punishment (Daw 
et al., 2002). Thus, 5- HT plays a critical role in behavioural regu-
lation and the processing of punishment signals. Through inter-
actions with other neurotransmitters (e.g., DA), 5- HT dysfunction 
is a prime neurochemical substrate of impulsivity and compulsive 
drug- seeking.

F I G U R E  1   Schematic sagittal sections showing the distribution of serotonin (5- HT), dopamine (DA) and noradrenaline (NA) pathways in 
the rat brain (far left images). Diagrams show the locations of cell bodies in the dorsal raphé nucleus (DRN), ventral tegmental area (VTA) and 
locus coeruleus (LC), together with their ascending projections to the forebrain. The main effects of globally increasing or decreasing 5- HT 
(yellow arrows) and DA (blue arrows) on different forms of impulsivity and compulsivity are summarised in the panels on the right. These 
manipulations typically involve selective neurochemical depletion (e.g., effected with ICV infusions of the 5- HT neurotoxin 5,7- DHT) or 
systemic pharmacological agents that directly or indirectly increase synaptic neurotransmission (e.g., stimulant drugs or selective reuptake 
inhibitors). As few or no studies have investigated the effects of reducing NA function on impulsive- compulsive behaviours, only the effects 
of increased NA neurotransmission are shown (orange arrows). Upward and downward arrows denote increased and decreased impulsivity 
and compulsivity, respectively. Horizontal bidirectional arrows indicate no clear effect of the manipulation. The red asterisk (*) indicates that 
studies have reported both a decrease and null effects on SIP. A dash (- ) indicates that the effects are unknown. Abbreviations: 5- CSRTT, 
5- choice serial reaction time task; DDT, delay- discounting task; SIP, schedule- induced polydipsia; SSRTT, stop- signal reaction time task
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Compulsivity can be operationally defined by the persistence 
of behaviour in the face of punishment. However, the relationship 
between impulsivity and compulsive drug- seeking/- taking requires 
further discussion. Punishment is a multidimensional construct that 
may be experienced in different ways by people addicted to sub-
stances of abuse. For example, punishment may be experienced on 
different temporal scales with drug use associated with potentially 
immediate criminal and legal consequences versus longer- term fi-
nancial loss, which often manifests long after drug use. In addition, 
substance- dependent individuals may compulsively seek drugs 
after experiencing aversive stimuli within the environment related 
to punishment, without actually experiencing direct punishment 
per se. Thus, negating signals of punishment may also capture one 
important dimension of compulsivity. In preclinical research stud-
ies, explicit punishment is presented in several ways. For example, 
mild electric foot- shock may be delivered (a) alongside a drug- taking 
response as in the three- criteria model of addiction- like behaviour 
(Belin et al., 2008; Deroche- Gamonet et al., 2004); (b) alongside a 
probabilistic drug seeking response, as in the seeking- taking chain 
task (Pelloux et al., 2012) or (c) paired with a conditioned stimulus to 
suppress drug- seeking responses (Vanderschuren & Everitt, 2005). 
These procedures are based on the delivery of a foot- shock or the 
signalling of such with punishers delivered as a result of a partic-
ular instrumental response. Punishment is therefore immediately 
experienced, although it is important to note that punishment on 
the seeking- taking task is probabilistic in nature, and therefore, it is 
uncertain when the punishment will be delivered. Trait impulsivity in 
the 5- CSRTT predicts the persistence of cocaine- taking responses 
during the delivery of foot- shock (Belin et al., 2008) and also pre-
dicts higher levels of cocaine seeking after punishment induced ab-
stinence in the seeking- taking chain task (Economidou et al., 2009). 
Thus, pre- existing impulsivity in the 5- CSRTT predicts compulsive 
responding for cocaine.

Punishment can also be modelled by the absence of an expected 
reward or combined with explicit punishment, for example, in such 
paradigms involving decision making tasks that also incorporate the 
risk (and delivery) of explicit punishment. For example, the risky 
decision- making task (RDT) combines a discounting procedure with 
an escalating risk of foot- shock punishment (Orsini et al., 2020; 
Orsini et al., 2019; Simon et al., 2009). This paradigm extends the 
traditional discounting paradigm (small rewards now versus larger 
rewards later) by the addition of a foot- shock delivered probabilisti-
cally in combination with the delivery of the large reward. Critically, 
the task models the discounting of delayed punishments and not 
delayed rewards as in the DDT. In humans, differences between dis-
counting costs and rewards are also observed (Murphy et al., 2001), 
thus providing a translational impetus to dissociate the two experi-
mentally in rodents, as in the RDT. At the behavioural level, it appears 
that this dissociation holds for rodents, with one report showing that 
discounting rewards on the DDT was unrelated to discounting risky 
choice on the RDT (Liley et al., 2019). One question, therefore, is 
how does increased levels of risky decision making, and insensitivity 
to delayed punishment on the RDT, relate to the self- administration 

of cocaine? To answer this question, Orsini and colleagues assessed 
performance on the RDT and then trained rats to self- administer 
cocaine on a short/long access paradigm (Orsini et al., 2020). Rats 
that showed a higher preference for the large, punished reward were 
more likely to escalate their cocaine intake; however, these effects 
were sex specific with the effect observed in females only. These 
results echo that observed for impulsive choice (Anker et al., 2009) 
and also converge with other reports demonstrating increased esca-
lation of cocaine self- administration in rats who show deficits in the 
rat gambling task, an alternative measure of decision making with 
the risk of reward omission (Cocker et al., 2020).

Impulsive choice as measured through the delay discounting 
task is also linked to addiction- relevant behaviours. Thus, steeper 
discounting of delayed rewards, an index of increased impulsive 
choice, predicts increased acquisition (Perry et al., 2005) and esca-
lation (Anker et al., 2009) of cocaine self- administration in rats. Rats 
with high trait levels of impulsive choice also show stronger resis-
tance to extinction of cocaine seeking and higher rates of context- 
induced cocaine seeking (Broos et al., 2012). Taken together, these 
results suggest that both impulsive choice and impulsive action 
represent pre- existing vulnerability markers to the development of 
addiction- like behaviour. However, whereas impulsive choice may 
be important for the acquisition, initiation and escalation of cocaine 
self- administration, impulsive action is more strongly associated 
with compulsive cocaine- related behaviours.

Molecular imaging techniques such as PET provide the unique 
opportunity to bridge the translational gap between rodents and 
humans to probe the underlying neurochemical substrates of 
addiction- like behaviour. In rats and humans, diminished D2/3 re-
ceptor availability is related to increased impulsivity across multi-
ple dimensions (Barlow et al., 2018; Buckholtz et al., 2010; Dalley 
et al., 2007). Further PET- derived markers include decreased glu-
cose metabolism in the OFC and ACC of humans with SUD, as-
sessed using [18F]- fluorodeoxyglucose (Volkow et al., 1993, 2001). 
Paralleling these findings, Cannella and colleagues showed that 
three criteria rats (rats displaying addiction- like behaviour) exhibit 
reduced frontal cortical glucose metabolism compared with zero cri-
teria rats (rats displaying no addiction- like behaviour) and cocaine- 
naïve rats (Cannella et al., 2017). These reports and others (de Laat 
et al., 2018) reveal the translational utility of both longitudinal and 
cross- sectional PET studies to understand both vulnerability mech-
anisms and addiction- like behaviour, highlighting successful cross- 
species convergence.

As discussed throughout this review, 5- HT and DA have important 
and interacting roles in regulating impulsive action, impulsive choice 
and risky decision making (Basar et al., 2010; Winstanley et al., 2006; 
Yates, 2019). A potential locus for this interaction is via 5- HT neurons in 
the raphé nucleus which innervate the dopaminergic ventral tegmental 
area (Hervé et al., 1987) and substantia nigra (Clavier & Fibiger, 1977) and 
powerfully inhibit these regions and the terminal limbic cortico- striatal 
regions to which they project (Kapur & Remington, 1996). In a recent re-
markable study, interactions between DA and 5- HT were investigated in 
seventeen non- dependent cocaine users using PET and [11C]- raclopride 
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to image D2 receptors in the striatum (Cox et al., 2017). Acute dietary 
depletion of tryptophan to reduce brain 5- HT function led to greater 
reductions in [11C]- raclopride binding potential in response to a low in-
tranasal dose of cocaine (an index of DA release) than when cocaine was 
administered alone. Augmented reductions in [11C]- raclopride binding 
potential were observed in dorsal regions of the anterior and posterior 
putamen, and bilateral caudate, and were associated with increased drug 
craving. These findings show that low 5- HT increases the subjective and 
DA releasing effects of cocaine in non- dependent drug users. Low 5- HT 
states, extending into the nigrostriatal DA system, may thus be further 
drivers for the development of compulsive drug- seeking in susceptible 
individuals, a possibility meriting further research.

In conclusion, we have discussed mainstream examples of 
neurochemical substrates underlying impulsive and compulsive 
behavioural phenotypes relevant to addiction. By continuing to re-
search the neuromodulatory systems, a clearer understanding of the 
neurochemical substrates of impulsive- compulsive behaviours in 
addiction is expected, particularly the modulation of top- down cog-
nitive control mechanisms by the major neurotransmitter systems.
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