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Abstract

Methods for Using Biomarker Information in Randomized Clini-
cal Trials

Jixiong Wang

Advances in high-throughput biological technologies have led to large numbers of

potentially predictive biomarkers becoming routinely measured in modern clinical trials.

Biomarkers which influence treatment efficacy may be used to find subgroups of patients

who are most likely to benefit from a new treatment. Consequently, there is a growing

interest in better approaches to identify biomarker signatures and utilize the biomarker

information in clinical trials.

The first focus of this thesis is on developing methods for detecting biomarker-treatment

interactions in large-scale trials. Traditional interaction analysis, using regression models

to test biomarker-treatment interactions one biomarker at a time, may suffer from poor

power when there is a large multiple testing burden. I adapt recently proposed two-stage

interaction detecting procedures for application in randomized clinical trials. I propose two

new stage 1 multivariate screening strategies using lasso and ridge regressions to account

for correlations among biomarkers. For these new multivariate screening strategies, I prove

the asymptotic between-stage independence, required for family-wise error rate control.

Simulation and real data application results are presented which demonstrate greater

power of the new strategies compared with previously existing approaches.

The second focus of this thesis is on developing methods for utilizing biomarker

information during the course of a randomized clinical trial to improve the informativeness

of results. Under the adaptive signature design (ASD) framework, I propose two new

classifiers that more efficiently leverage biomarker signatures to select a subgroup of

patients who are most likely to benefit from the new treatment. I provide analytical

arguments and demonstrate through simulations that these two proposed classification

criteria can provide at least as good, and sometimes significantly greater power than the

originally proposed ASD classifier.

Third, I focus on an important issue in the statistical analysis of interactions for

binary outcomes, which is pertinent to both topics above. Testing for biomarker-treatment



interactions with logistic regression can suffer from an elevated number of type I errors due

to the asymptotic bias of the interaction regression coefficient under model misspecification.

I analyze this problem in the randomized clinical trial setting and propose two new de-

biasing procedures, which can offer improved family-wise error rate control in various

simulated scenarios.

Finally, I summarize the main contributions from the work above, discuss some practical

limitations as well as their real world value, and prioritize future directions of research

building upon the work in this thesis.
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Chapter 1

Introduction

1.1 Motivation

Recent developments in medicine have seen a shift toward targeted therapeutics [13]. It

has been shown that individual variability can often contribute to differences in response

to the same treatment [41]. For example, patients with leukemia respond to the treatment

with all-trans retinoic acid if they have the PML-RARA translocation and patients with

breast cancer benefit from the targeted antibody drug trastuzumab if the gene ERBB2 is

over-expressed [64]. Conversely, use of some drugs can lead to increased risk to patients

with specific genetic variants, e.g. a strong association of carbamazepine-induced Stevens-

Johnsons syndrome and the human leukocyte antigen-B (HLA-B)*1502 allele was reported

[48]. Another example is that the Class II allele HLA-DRB1*07:01 has been associated

with lapatinib-induced liver injury [58]. Detecting such interactions between biomarkers

and treatments in randomized clinical trials is of growing interest.

Discovering biomarker-treatment interactions helps identify predictive biomarkers1 [62]:

Biomarkers which influence treatment efficacy can be used to find subgroups of patients

who are most likely to benefit from the new treatment, as well as to predict subgroup

treatment effects [78]. When there are known predictive biomarkers, new adaptive design

approaches can be used in settings where there are genetically-driven subgroups to improve

efficiency [80]. Furthermore, the discovery of novel biomarker-treatment interactions may

result in the identification of new disease susceptibility loci, providing insights into the

biology of diseases. Such outcomes are very much aligned with the goals of precision

medicine: to enable the provision of “the right drug at the right dose to the right patient”

[13].

The first focus of this thesis is on developing methods for detecting biomarker-treatment

interactions in large-scale studies of human populations. This is a non-trivial task, which

1A predictive biomarker is used to predict the effect of a therapeutic intervention. In contrast, a
prognostic biomarker is used to predict patients’ disease progression regardless of treatment.
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faces several challenging problems [51]. Traditional interaction analysis, using regression

models to test biomarker-treatment interactions one biomarker at a time, may suffer from

poor power when there is a large multiple testing burden, for example when performing such

analysis on a genome-wide scale for genetic biomarkers. Standard genotyping microarrays

measure half a million or more variants and, when combined with whole genome imputation,

can lead to millions of biomarkers to consider. Another type of omics, metabolomics - the

measurement of metabolite concentrations in the body - may have a more direct effect

on drug efficacy and is also becoming increasingly widely assayed [2, 33, 74]. As -omics

technologies continue to drop in price and become routinely measured in clinical trials,

interaction testing frameworks which are designed to scale to large numbers of covariates

will become ever more important. Another limitation of the traditional approach testing

each biomarker at a time is that it fails to model correlations between covariates. When

there exists strong multicollinearity, confounding due to correlations can lead to a lot of

false positives, i.e. the precision to detect true signals can be significantly reduced.

The second topic of this thesis is to develop methods for utilizing biomarker information

during the course of a randomized trial. In molecularly targeted cancer drugs, therapies are

often effective only for a subset of patients [34]. Genomic technologies, such as microarrays

and single-nucleotide polymorphism genotyping, provide rich biomarker panels from which

to develop potential signatures2 to discriminate the subset of patients, who will most likely

benefit from a targeted therapy. In the context of clinical trials, the predictive biomarkers

hold great potential to improve trial efficacy [83, 80]. However, there has so far only been

limited work on optimal methods for identifying and utilizing predictive biomarkers to

improve efficiency of randomized clinical trials.

1.2 Methods for detecting biomarker-treatment in-

teractions

This section provides a formal description of the biomarker-treatment interaction detecting

problem, and introduces some approaches in existing literature. The challenges of detecting

biomarker-treatment interactions in large-scale studies of human populations are also

discussed. This motivates the development of new methods in the subsequent chapters.

2Biomarker signature is the behavior or the pattern of a set of biomarkers that can be used to make
prediction. For example, a predictive biomarker signature can determine patients who are more likely to
respond to a specific treatment.
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1.2.1 Standard one-biomarker-at-a-time interaction tests

In the context of randomized clinical trials, one can test each biomarker in turn for a

biomarker-treatment interaction using the following generalized linear model

G{E(Yi | Xij, Ti)} = β0j + βXj
Xij + βTTi + βXj×TXij × Ti (1.1)

with Yi denoting the response outcome, Ti the binary treatment-control indicator, and

Xi1, . . . , Xim representing the values of m biomarkers, for the ith patient. G is a canonical

link function that depends on which parametric distribution the outcome follows. The

null hypothesis H0j : βXj×T = 0 could be tested for each j = 1, . . . ,m, e.g. using a Wald

test with the Bonferroni correction applied to preserve the family-wise error rate (the

probability of at least one type I error).

The intercept term β0j is the expected value of the linear predictor G{·} when all

covariates are 0; the coefficient βXj
can be interpreted as the addictive factor by which

the expected linear predictor changes given a unit increase of the corresponding covariate

(“main effect”), when there is no interaction between Xij and Ti; lastly the interaction

coefficient βXj×T measures the departure from these corresponding main effects. Another

way to interpret the interaction term βXj×TXij × Ti in (1.1) is that the effect of Ti upon

the linear predictor now involves Xij, which can be expressed as βT + βXj×TXij, since we

are able to write the model form as

G{E(Yi | Xij, Ti)} = β0j + βXj
Xij + (βT + βXj×TXij)× Ti

In contrast, when there is no interaction between Xij and Ti, i.e. βXj×T = 0, the treatment

effect is a constant βT , which does not depend on the value of Xij.

In the generalized linear model (1.1), G is a canonical link function: To evaluate a

quantitative outcome in linear regression, an identity function is used [85]; for a binary

response outcome, G can be a logit function [40]; in a cohort study, a log-linear model is

typically used to estimate relative risks [7].

The number of biomarkers m to be considered in modern clinical trials is potentially

large. For example, standard genome-wide association study (GWAS) micro-arrays measure

several hundred thousand variants scattered throughout the genome. Next generation

sequencing, which is becoming increasingly prevalent, can measure the genotype at every

single nucleotide, leading to millions of variants. Given a desired overall family-wise

error rate α, a Bonferroni correction [21] requires an adjusted significance level for each

individual test to be α/m. Thus, the traditional interaction analysis can significantly lack

power, because this forms a multiple testing problem when there is a large number of

biomarkers to be considered [31]. As there is a trade-off between the type I error rate and

the power of a hypothesis test, other less stringent correction methods can be more suitable
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in scenarios where multiple testing adjustment is considered less important (depending on

the end goal of predictive biomarker discovery).

Another drawback of the traditional approach is that the univariate tests can result

in a lot of false positives when there exist substantial correlations between biomarkers.

Multivariate modeling allows testing each predictor, while accounting for correlations

with the other predictors. However, for a high-dimension, low-sample-size data set, a

traditional multivariate regression analysis is not feasible because the maximum likelihood

solution is not uniquely defined. This motivated the work in Chapter 2 to seek modern

penalized regression procedures such as ridge and lasso regressions to model correlated high-

dimensional data. These techniques have proven useful for feature selection in genomics

[82, 49, 55], but there has so far been little exploration of their utility in the context of

randomized clinical trials to identify features associated with the trial response.

1.2.2 Gene-environment interaction studies

The topic of detecting biomarker-treatment interactions in randomized clinical trials is

closely related to gene-environment interaction studies, which have been a focus of genetic

epidemiology for years. There is now a significant literature on statistical methods for

discovering gene-environment interactions, which exploit aspects of the study design to

improve power thus mitigating the multiple testing burden. These include case-only tests

[59], empirical Bayes [52], Bayesian model averaging [45], and two-stage tests with different

screening procedures [43, 53, 38, 30, 79]. Some of these methods seek to leverage the

reasonable assumption of independence between most environment variables and genotypes

at the population level. To alleviate the multiple testing burden, two-stage methods use

independent information from the data to perform a screening test to select a subset of

genetic biomarkers, and then only test interactions within this reduced set. Since there is

a clear analogy to gene-environment interaction problems, in this thesis, I examine how

existing gene-environment interaction testing methods may be modified so that they are

transferable to the biomarker-treatment setting [16, 18, 19, 78]. Table 1.1 summarizes

shared and, more importantly, key different features between these two types of studies.
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Table 1.1: Comparing gene-environment interaction studies and biomarker-treatment

interaction studies
Gene-Environment Interaction Stud-

ies

Biomarker-Treatment Interaction

Studies

Multiple testing issues.

Importance of accounting for correlations between covariates.

Environmental factors are not necessarily

independent of genetic variants, although it

is usually assumed.

Biomarker-treatment independence is guar-

anteed through randomization.

Disease outcomes are usually rare events,

under this and other assumptions, case-only

methods give valid inference and can im-

prove power.

Treatment responders are not usually rare,

except for some scenarios, e.g. prevention

trials.

In the following subsections, I introduce some existing gene-environment interaction

testing methods. Their applicability to predictive biomarker discovery in randomized

clinical trials will be further discussed in Chapter 2.

1.2.2.1 Case-only tests

Analogously to the model of the form (1.1), in gene-environment interaction studies, one

can test each genetic biomarker (e.g. gene expression or single-nucleotide polymorphism)

for a gene-environment interaction using the model:

G{E(Yi | Xij, ei)} = β0j + βXj
Xij + βeei + βXj×eXij × ei (1.2)

where Yi denotes the response outcome, ei the environmental factor, and Xi1, . . . , Xim

represent the values of m genetic biomarkers, for the ith patient. G is a canonical link

function. The null hypothesis H0j : βXj×e = 0 could be tested for each j = 1, . . . ,m with

the Bonferroni correction applied for family-wise error rate control. This type of approach

is sometimes referred to as “case-control” analysis when Yi is binary.

To improve power, an alternative type of approach, i.e. “case-only” analysis [59],

was proposed for detecting gene-environment interactions under the assumptions: 1) the

environmental factor and genetic variants occur independently; 2) the disease is rare and

individuals are either “affected” (cases) or “unaffected” (controls), i.e. the outcome is

binary. This type of test corresponds to the logistic regression model of the following form:

logit{E(ei | Xij, Ri = 1)} = γ0j + γXj
Xij (1.3)
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where Ri denotes the ith patient’s binary response outcome. Notice that we use Yi in (1.2)

to represent the general type of response outcome (e.g. continuous, binary or categorical)

and Ri in (1.3) for the binary response outcome, to highlight that the case-only analysis

is only applicable for binary outcomes. The gene-environment independence condition

and the rareness of response events are assumed, i.e. pr(Ri = 1 | Xij) ≈ 0. Under such

conditions, it can be shown that the estimator of γXj
in equation (1.3) is a consistent

estimator of the interaction coefficient βXj×e in equation (1.2) for the standard interaction

test. The original mathematical derivation of this estimator and what conditions its

consistency relies on was shown in [59]. A re-worked, more detailed derivation is presented

in Appendix A.1 for reference. When the response is not rare, the estimator is biased in

either a positive or negative direction depending on the sign of the true interaction effect.

In gene-environment interaction studies, a case-only analysis can be substantially more

powerful than a case-control analysis. Cases within the current data set were oversampled

relative to their prevalence in the population. Thus, given the disease is rare, a case-only test

is equivalent to a comparable case-control test with infinitely many controls. Conceptually,

when genetic biomarkers are independent of the environmental factor within the source

population, gene-environment interaction will induce gene-environment association within

the oversampled cases, which is captured by the model (1.3).

Another assumption the case-only tests rely on is gene-environment independence. If

this condition is violated at the population level, the case-only estimator will be biased,

because now the gene-environment association within cases is not only introduced by the

interaction but also the gene-environment association from the source population. This

motivated proposals of empirical Bayes [52] and also Bayes model averaging [45] approaches

combining case-only and case-control tests, based on prior evidence of gene-environment

dependence.

1.2.2.2 Two-stage interaction tests

To alleviate the multiple testing burden, two-stage approaches have been gaining traction

for interaction testing. Two-stage approaches use a screening test as a filtering stage (stage

1) to select a subset of genetic biomarkers, and then in stage 2, only test interactions

within the reduced set of genetic biomarkers (the Bonferroni Correction only accounts for

this reduced set of genetic biomarkers, resulting in a less stringent significance level used in

each single test), thus increasing power. Typically, a powerful but less robust test is used

in stage 1, with a robust test being used in stage 2 {e.g. using the one-biomarker-at-a-time

model (1.2)}. To preserve the overall family-wise error rate, two-stage approaches rely on

the stage 1 screening tests being independent of the final stage 2 tests. More detail on

how this can be established follows.

In gene-environment studies, several testing procedures have been proposed to be used
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to prioritize genetic biomarkers in the screening stage. Most of them fall into one of three

categories:

1. Testing marginal effects of genetic biomarkers (marginal association screening tests)

[43].

2. Testing correlations between genetic biomarkers and environmental factors of interest

(case-only style gene-environment association screening tests) [53].

3. A combination of 1 and 2 [30, 38].

A common stage 1 screening test used in two-stage interaction testing is a marginal

association test [43]. The marginal effect of a biomarker on the outcome can be modeled

in a regression model of the form

G{E(Yi | Xij)} = δ0j + δXj
Xij (1.4)

The screening procedure is conducted by testing the null hypothesis H0j : δXj
= 0

for j = 1, . . . ,m, with a pre-specified significance level α1 ∈ (0, 1). In stage 2, one

then tests interactions using the one-biomarker-at-a-time model (1.2) within the set of

genetic biomarkers selected at stage 1 (those with null hypotheses rejected at the specified

significance level). Another way to utilize stage 1 information is to test all m genetic

biomarkers in stage 2 using weighted significance levels, that add up to the targeted error

rate α, based on ranked genetic biomarkers from stage 1. One possible weighting scheme

[39] is: the B most significant biomarkers, i.e. with lowest p-values in stage 1, are compared

with an adjusted significance level (α/2)/B, the next 2B biomarkers are compared with

(α/4)/(2B), ..., the next 2kB biomarkers are compared with (α/2k+1)/(2kB), and so on.

The motivation of conducting marginal association tests to screen for candidate in-

teraction tests is that we expect a genetic biomarker that has an interaction with the

environmental factor for the disease will also show some level of marginal association with

the response. This is usually true because: 1) when there is an interaction effect, we

may expect a marginal effect in the same direction; 2) if there is an interaction which is

not accounted for in a model, e.g. of the form (1.4), then it will appear as a marginal

effect. However, it is also possible that the biomarker’s main association with response

and the interaction effect may be in opposite directions, such that the overall marginal

effect cancels out. When this is the case, a marginal screening strategy would fail due to

the first stage test statistic having low power.

In the context of gene-environment interaction studies of binary outcomes, an alter-

native type of screening is testing the correlation between a genetic biomarker and the
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environmental factor of interest [53]:

logit{E(ei | Xij)} = ω0j + ωXj
Xij

In contrast to a traditional case-only interaction test of the form (1.3), the use of a

combination of cases and controls is necessary to preserve the independence between stage

1 and stage 2. Like the case-only analysis, this type of screening requires case-control

sampling for a rare response endpoint and gene-environment independence. There exist

other related proposals combining this type of screening and marginal association screening

tests [30, 38].

To preserve the overall family-wise error rate, a key requirement to apply the two-stage

approach is the independence between stage 1 and 2 tests. Both Murcray et al. [53] and

Dai et al. [17] proved that: If stage 1 and 2 test statistics are asymptotically independent

and m∗ denotes the number of stage 1 selected biomarkers, then using a Bonferroni

adjusted significance level α = α/m∗ at stage 2 to test interactions within the reduced set

is sufficient to preserve the overall family-wise error rate of the two-stage procedure under

α.

Murcray et al. [53] provided the proof of the between-stage independence for the

case-only style gene-environment association screening tests. The proof relied on an

analysis of a contingency table for binary response outcomes and the use of the delta

method to derive a joint distribution of stage 1 and 2 test statistics from the distribution

of table variables. More generally, Dai et al. [17] provided a unified approach to proving

the asymptotic between-stage independence by evaluating the covariance matrix between

stage 1 and 2 test statistics directly. Specifically, their between-stage independence proof

for the marginal association screening tests also applied to generalized linear models. In

Appendix A.2 and A.3, I provide re-worked, more detailed derivations of these proofs.

In Chapter 2, I discuss adaption of the two-stage approach for detecting biomarker-

treatment interactions in randomized clinical trials. A substantive part of the work in

Chapter 2 is proving that the critical between-stage independence assumption could be

maintained in a randomized trial setting.

1.3 Multiple testing correction procedures

The traditional interaction analysis typically applies the Bonferroni correction to control

the family-wise error rate. This approach can significantly lack power, because this

creates a multiple testing problem when there is a large number of biomarkers to be

considered. With regard to our interest in high-dimensional interaction testing it is worth

considering whether other procedures to declare statistical significance are able to provide

22



improved efficiency. This section introduces some frequently used procedures for controlling

family-wise error rates and false discovery rates when conducting multiple hypothesis tests.

1.3.1 Bonferroni correction

Given the desired overall significance level α, let the significance level of each test be

α = α/m

where m is the total number of hypothesis tests. Free of dependence and distributional

assumptions, we can say the overall family-wise error rate, defined as the probability of at

least one type I error, is controlled under mα = α, which follows from Boole’s inequality

[32].

A great flexibility the Bonferroni correction [21] provides is that rather than testing

each hypothesis at the α/m level, the hypotheses may be tested at any other combination

of levels that add up to α, provided that the level of each test is determined before looking

at the data. This technique, known as “alpha splitting”, in the context of feature selection,

can be used to funnel power into features we are more interested in.

However, the correction is criticized for being very stringent when there are a large

number of positively correlated tests. This point can be illustrated using the following

case: For testing m = 10, 000 covariates which are completely correlated to each other

(one covariate determines all the other covariates), a single hypothesis can only be declared

significant at α = α/m = 0.000005 using a Bonferroni correction to target an overall

family-wise error rate under 0.05. With totally correlated tests, the family-wise error rate

is actually controlled under 0.000005, instead of the desired 0.05.

1.3.2 Šidák correction

A slightly less conservative correction [66] can be obtained under the assumption of

independence between individual tests, by solving the following equation

α = 1− (1− α)1/m

In the previous case, α = 0.05 and m = 10, 000, the Šidák corrected significance level

is approximately 0.00000513 which is only slightly less stringent than the Bonferroni

correction. The Šidák correction is conservative when tests are positively dependent. In

contrast, the correction can be liberal for tests that are negatively dependent.
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1.3.3 Holm-Bonferroni method and other family-wise error rate

controlling procedures

A more complex step-down3 procedure [37] which is uniformly more powerful than the

Bonferroni correction and controls the family-wise error rate at α is described as below:

1. Order the p-values of the m hypotheses in ascending order: p(1), p(2), ..., p(m).

2. For a given significance level α, find the minimal index k such that

p(k) >
α

m+ 1− k

3. Reject the first k − 1 null hypotheses H(1), ..., H(k−1) and accept H(k), ..., H(m).

In a very similar method, the Hochberg procedure [35], rejection of H(1), ..., H(k) is made

after finding the maximal index k such that p(k) ≤ α/(m + 1 − k). This method is

more powerful than the Holm-Bonferroni procedure, but requires the hypotheses to be

independent or under certain forms of positive dependence.

1.3.4 Benjamini-Hochberg method and other false discovery rate

controlling procedures

In scenarios when controlling the family-wise error rate is too stringent and not necessary,

controlling the false discovery rate, which is defined as the expected proportion of “discov-

eries” (rejected null hypotheses) that are false, can be a more reasonable goal. Generally,

false discovery rate controlling procedures have greater power, at the cost of an increased

number of type I errors.

A step-up4 procedure, the Benjamini-Hochberg method [3], controls the false discovery

rate at α as described below:

1. Given p-values in ascending order: p(1), p(2), ..., p(m), find the largest k such that

p(k) ≤
k

m
α (1.5)

2. Reject the first k null hypotheses H(1), ..., H(k) and accept H(k+1), ..., H(m).

This method is valid when the m tests are independent or positively dependent.

3Start with the most significant hypothesis and examine less significant hypotheses in subsequent steps,
in comparison with “single-step” methods (e.g. Bonferroni correction) comparing test statistics to their
critical values simultaneously.

4Start with the least significant hypothesis and examine more significant hypotheses in subsequent
steps.
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A slightly more complicated Benjamini-Hochberg-Yekutieli procedure [4] allows arbi-

trary dependence by changing (1.5) to the following condition:

p(k) ≤
k

m · c(m)
α

where c(m) = Σm
i=11/i.

1.4 Sparse regression methods

One significant drawback of existing two-stage interaction testing procedures is that

biomarkers are only tested one at a time, which ignores correlations between biomarkers.

Thus, the number and locations of interaction signals may be unclear when there are

substantial biomarker-biomarker correlations, since one true effect may be repeatedly

represented in the results from testing multiple correlated proxies univariately. In a high-

dimensional, low-sample-size data set, a traditional ordinary least squares multivariate

regression analysis testing each predictor, while accounting for correlations with the other

predictors, is not feasible. Therefore I will consider modern sparse regression methods

to model correlated high-dimensional data. There are multiple examples where the use

of these techniques has proven useful in the analysis of high-dimensional biomarker data

[82, 49, 55].

1.4.1 Ridge regression

Ridge regression [36] is a multivariate analysis method, which applies regularization to

avoid overfitting in high-dimensional, low-sample-size problems. Typically, the objective

of ridge regression is to minimize a loss function Ln along with an L2 regularization term:

Ln(δ) + λn||δ||22

where δ = (δ1, δ2, . . . , δm)T is a vector of model coefficients, n is the sample size, m is the

total number of covariates and ||δ||22 =
∑m

j=1 δ
2
j . Through penalizing coefficient magni-

tudes, ridge regression can achieve a better bias-variance trade-off for high-dimensional

problems. Ridge shrinks all the estimated coefficients towards zero, but will not set them

exactly to zero. Another property of ridge is the grouping effect, such that strongly

correlated covariates tend to have similar estimated coefficients. The optimal value of the

regularization parameter λn can be chosen using cross-validation based on prediction error

(sum of squared errors for linear regression, deviance for logistic regression).
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1.4.2 Lasso regression

Lasso [73] was introduced in order to improve the prediction accuracy and interpretability

of regression models by altering the model fitting process to select only a subset of the

provided covariates for use in the final model rather than using all of them. It introduces L1

penalties on coefficients, thus only retaining those stronger covariates, to avoid overfitting

when facing a high-dimensional, low-sample-size problem. Typically, the objective of lasso

is to minimize a loss function along with an L1 regularization term:

Ln(δ) + λn||δ||1

where ||δ||1 =
∑m

j=1 |δj|. As compared with ridge regression, which uses a L2 regularization

term, lasso does not only shrink coefficients towards 0, it also forces small coefficients to

exactly 0, thus explicitly selecting a simpler model with fewer covariates. This behavior

is different from that of ridge, because the L1 penalty is singular at origin while the L2

penalty is not. Lasso also does not have a grouping effect like ridge regression. In contrast,

it tends to select only one from each group of highly correlated covariates. Fitting a lasso

model can be efficiently done through the pathwise coordinate descent method [27], and

the optimal value of λn can be chosen using cross-validation.

There exist a number of variants in order to overcome the limitations of the original

lasso regression. For example, elastic net regularization [87] introduces an additional L2

penalty, allowing the method to have a grouping effect, which can select highly correlated

covariates together. Another generalization, group lasso [84], was proposed to ensure that

a group of certain covariates are either included or excluded in the model together. This

phenomenon is sometimes useful, e.g. for detecting biomarker-treatment interactions, a

biomarker’s main effect term and its corresponding interaction term are usually desired to

be selected or excluded in the model together [47].

1.5 Adaptive signature design (ASD) for randomized

clinical trials

One motivation of finding biomarker-treatment interactions is to identify subgroups of

patients who will likely benefit from a new treatment and also predict subgroup treatment

effects. In the context of clinical trials, these predictive biomarkers with biomarker-

treatment interactions hold great potential to improve trial efficiency [83, 80]. However,

there has so far only been limited work on optimal methods for utilizing predictive

biomarkers during the course of a randomized trial.

The adaptive signature design (ASD) was proposed as a solution for developing and

testing a biomarker signature all within the same trial [25]. The approach employs two
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stages: Stage 1 uses a proportion of patients to develop a classifier that can predict

whether a patient is more likely to benefit from the new treatment by finding a subset of

“sensitive” biomarkers which have significant biomarker-treatment interactions. In stage

2, the established classifier is applied to the remaining patients to identify a “sensitive”

subgroup who will likely benefit from the new treatment compared to the control. Since

the classification process is carried out after the trial is complete, it neither restricts the

entry of patients nor guides the treatment allocation. The final analysis under an ASD

tests the treatment effect in both the sensitive subset of patients, as well as in all the

patients. The treatment effect is considered efficacious if either of the tests is significant.

The ASD is potentially useful, when there exists heterogeneity in the expected treatment

effect and no pre-specified biomarker signature is available before the trial. An extension

of the ASD achieves better power by employing a cross-validation procedure to make

more efficient use of the available data [26]. In Chapter 3, I develop new classifiers within

the cross-validated ASD framework to improve trial efficiency. Next, I describe how the

cross-validated ASD works in detail.

1.5.1 Cross-validated ASD design

Following the original setting [25], our use of the cross-validated ASD is described in the

context of a binary response end point. For the ith patient, we model their binary outcome,

Ri, as a function of covariates Xi1, . . . , Xim and the treatment assignment variable Ti,

using logistic regression. Therefore

logit{E(Ri | Xi1, . . . , Xim, Ti)} = β0 + βTTi +
m∑
j=1

(βXj
Xij + βXj×TXij × Ti) (1.6)

where β0 is the intercept, βT is the treatment main effect, βXj
is the jth biomarker’s main

effect, and the coefficient βXj×T measures its biomarker-treatment interaction effect. If for

some j, βXj×T is not zero, then a patient’s treatment effect depends on their value of the

jth biomarker Xj . Those patients, whose individual biomarker profiles mean they respond

more positively to the new treatment, form a potentially identifiable “sensitive” subgroup.

In a K-fold cross-validated ASD, a proportion of (K − 1)/K of all the patients

(development cohort) are used to develop a classifier for identifying the sensitive subgroup

(stage 1), then the classifier is applied to the remaining 1/K patients (validation cohort)

to select a subset of patients who are more likely to benefit from the new treatment (stage

2). This procedure is repeated K times over K non-overlapping validation cohorts (with

corresponding development cohorts). At the end, each patient is either selected to the

sensitive subgroup or not according to their individual biomarker profiles and the finalized

classifier. A test for treatment effect is then carried out within this subgroup, for example
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using a Fisher’s exact test. Because standard asymptotic theory does not apply when the

analysis sample has been defined in this way using cross-validation, as opposed to through

random sampling from the underlying population, a permutation method is recommended

to obtain a valid p-value [26]. The permutation derived one-sided p-value is defined as:

1 + number of permutations where T ∗ ≤ T

1 + number of permutations

where T is the statistic for the observed data and T ∗ is the statistic for the data with

permuted treatment labels.

Since the adaptive signature inferential procedure is not carried out until the end of

the trial, the stage 1 developed classifier neither restricts entry of patients during stage

2 nor has bearing on the randomized treatment allocation. This preserves the design’s

ability to evaluate the new treatment effect within all the eligible patients. The overall

procedure is considered positive if either the test in the whole sample or the subgroup

test is significant. The overall type I error rate is controlled by distributing type I error

between the two tests. For example, for an overall significance level α = 0.05, Freidlin and

Simon [25] used α1 = 0.04 for the whole-group test and α2 = 0.01 for the subgroup test.

There are potentially many algorithms for developing the classifier to identify the

sensitive subgroup. Freidlin and Simon [25], Freidlin et al. [26] used an approach based on

an individual’s predicted odds ratio between the treatment and the control arms. The

approach proceeds as follows:

1. Using stage 1 data, the following logistic regression model is fit in turn for each

biomarker j

logit{E(Ri | Xij, Ti)} = β0j + βXj
Xij + βTTi + βXj×TXij × Ti

The null hypothesis βXj×T = 0 is tested, e.g. using a Wald test with a significance

level µ.

2. Classify stage 2 patients based on the m∗ biomarkers with significant biomarker-

treatment interactions found in stage 1: A patient is designated sensitive if the

predicted odds ratio p̂r(Ri = 1 | Xij, Ti = 1)p̂r(Ri = 0 | Xij, Ti = 0)/{p̂r(Ri = 0 |
Xij, Ti = 1)p̂r(Ri = 1 | Xij, Ti = 0)} exceeds a threshold γ for at least G of the m∗

biomarkers.

This classification method requires a set of three tuning parameters: µ (the stage 1

biomarker-treatment interaction significance level), γ (the stage 2 odds ratio threshold),

and G (the threshold on the number of biomarkers with significant predicted marginal

odds ratios which exceed γ). In the cross-validated ASD, tuning parameter selection is

28



embedded into each loop of the cross-validation using each development cohort. From a

list of prespecified sets of each parameter value, the combination of values achieving the

smallest subgroup treatment effect test p-value is selected. We will refer to this tuning

parameter selection procedure as “inner” cross-validation, in contrast to the “outer” cross-

validation procedure which ensures independent patients are used for training the classifier

and testing treatment in the sensitive subgroup. This nested cross-validation procedure

can be computationally expensive, when the tuning procedure considers a large number of

potential sets for the three parameters. Figure 1.1 illustrates this nested cross-validation

procedure for one permutation.
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Figure 1.1: Nested cross-validation procedure: Di is the ith outer development cohort; V i

is the ith outer validation cohort; Si is the ith outer selected subset from V i; di is the ith

inner development cohort of an outer development cohort; vi is the ith inner validation

cohort of an outer development cohort; si is the ith inner selected subset from vi.
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1.6 Trial data sets used as case studies through this

thesis

1.6.1 START trial

The first real data set is from the Systematic Therapy of At Risk Teens (START trial)

[24], which is composed of 684 participants aged from 11 to 17 with antisocial behavior,

half of whom were treated with management as usual (the control arm) and the rest

were treated with multisystemic therapy followed by management as usual (the treatment

arm). The primary binary outcome of this trial is whether or not a young person was

placed in specialist accommodation for young offenders at 18 months post randomization

(1 means at home, 0 means out-of-home placement, thus an odds ratio larger than 1

means benefiting more from the new treatment). For this primary outcome, the trial

does not show significant difference between the multisystemic therapy group vs the

management-as-usual group. A secondary outcome of this trial is a continuous response

endpoint, the 18 months’ follow-up outcome from Inventory of Callous and Unemotional

Traits. The result for this secondary outcome shows multisystemic therapy was detrimental

to trial participants compared with management as usual. The findings of this trial do no

recommend multisystemic therapy to be used over management as usual in young offenders

as the intervention.

In the analysis conducted in the later chapters, I excluded covariates with more than

10% missing data and used mean imputation to replace missing values for covariates

with less than 10% missing data. As a result, 75 covariates (demographics, baseline

questionnaires, offending history and psychiatric diagnoses) were included in the analysis.

A correlation plot is shown in Figure 1.2. There exist several clusters of correlated

covariates. The ratio of highly correlated covariates (defined as correlating to at least one

another covariate with ρ ≥ 0.6) to all covariates is 0.324.
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Figure 1.2: Correlation heat map: 75 covariates from the START trial data.

1.6.2 STOPAH trial

The second data set is from a randomized clinical trial evaluating the treatment of

alcoholic hepatitis upon steroid response (STOPAH trial) [72]. The data set consists of

1, 068 subjects. In this 2× 2 factorial trial, each patient was randomized twice: The first

randomization was between with and without prednisolone (534 : 534) and the second was

between with and without pentoxifylline (537 : 531). The 28-day mortality was used as

the binary response endpoint. The trial finds: 1) Prednisolone reduced 28-day mortality

within trial participants but the association did not reach significance; 2) pentoxifylline

did not improve patients’ survival at 28 days.

In the analysis conducted in the later chapters, I excluded biomarkers with more than

10% missing data and used mean imputation to replace missing values for biomarkers

with less than 10% missing data. As a result, 40 covariates (a small number of which were

demographic variables) were included in the analysis conducted in all the later chapters.

There exist several clusters of highly correlated covariates, as shown in Figure 1.3. The

ratio of highly correlated covariates (defined as correlating to at least one another covariate

with ρ ≥ 0.6) to all covariates is 0.600.
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Figure 1.3: Correlation heat map: 40 covariates from the STOPAH trial data.

1.6.3 PREVAIL trial

The third trial data set, which has high-dimensional gene expression biomarkers, is the

publicly available PREVAIL trial [54]. The data set is a phase II randomized trial evaluating

the efficacy of lactoferrin as a preventative measure for hospital-acquired infections. Gene

expression data are available for 61 patients at the National Center for Biotechnology

Information (NCBI) website (GSE118657). Of all the 61 patients, 32 were in the lactoferrin

group, and the remaining were in the placebo group. The trial did not find significant

difference in clinical outcomes between lactoferrin vs placebo groups. In the analyses within

this thesis, the Sequential Organ Failure Assessment (SOFA) score measuring change in

organ function post-randomization, was used as the continuous response endpoint, and

ICU (intensive care unit) mortality was used as the binary response endpoint. From a total

of 49, 495 genes, I restricted my analysis to the 10, 000 probes with the highest standard

deviations. There exists substantial correlation among these biomarkers. The ratio of

highly correlated covariates (defined as correlating to at least one another covariate with

ρ ≥ 0.6) to all covariates is 0.991.
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1.7 Thesis overview

This thesis is organized as follows. The focus of Chapter 2 is on improving two-stage

approaches for detecting biomarker-treatment interactions. I propose two novel screening

tests to be used within a two-stage framework, which utilize ridge and lasso regressions to

model correlated high-dimensional data. I provide a proof of asymptotic independence

between the stage 1 ridge regression screening and stage 2 standard one-biomarker-at-a-

time interaction test statistics. Furthermore, it is shown by simulations and real data

applications that my newly proposed methods can provide better performance than

traditional one-biomarker-at-a-time approaches for correlated biomarkers. Chapter 2

ends with a proposal to incorporate weighted false discovery rate controlling procedures

in the two-stage interaction detecting framework and demonstrates the performance

by simulations. Chapter 3 focuses on how to utilize biomarker-treatment interaction

information in clinical trial designs. In the ASD (adaptive signature design) framework,

I propose two new types of classifiers for selecting sensitive patients who likely benefit

from a treatment. I explore both theoretically and through simulations how the two

proposed classifiers compare to the existing classifier that is currently used within the ASD.

Chapter 4 returns to the topic of detecting biomarker-treatment interactions. It attempts

to solve a generic interaction testing issue which is relevant to the work in both Chapter 2

and 3: When testing for interactions under logistic regression for binary outcomes, the

interaction effect estimate can be biased when the biomarker is either indirectly or directly

associated with the outcome, since this implies a form of model misspecification. This issue

can lead to an elevated family-wise error rate. I propose two de-biasing approaches for the

standard one-biomarker-at-a-time interaction tests and demonstrate the performance by

simulations. Lastly, Chapter 5 concludes the thesis with a summary of my contributions

and potential future directions of this research.
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Chapter 2

Sparse regression screening

procedures in a two-stage interaction

detecting framework

2.1 Introduction

High-dimensional biomarkers such as genomics are increasingly being measured in ran-

domized clinical trials. Consequently, there is a growing interest in developing methods

that improve the power to detect biomarker-treatment interactions. In the different but

related context of gene-environment interaction studies, there is now a significant literature

of statistical methods, which exploit aspects of the study design to improve power thus

mitigating the multiple testing burden. These include case-only tests [59], empirical Bayes

[52], Bayesian model averaging [45], and two-stage tests with different screening procedures

[43, 53, 38, 30, 79]. To alleviate the multiple testing burden, two-stage methods use

independent information from the data to perform a screening test to select a subset of

genetic biomarkers that are more likely to have statistical interactions, and then only test

interactions within this reduced set. In the wider context of variable selection, screening

strategies have also been explored to focus algorithms on a reduced search space [23, 77].

To our knowledge, all current screening strategies use one-biomarker-at-a-time tests. These

univariate screening tests will result in a lot of false positives at stage 1 when there exist

substantial correlations between biomarkers. False positives at stage 1 will harm power of

the overall two-stage procedure because now stage 2 multiple testing correction needs to

account for more biomarkers that have passed stage 1.

In this chapter, I propose two novel screening tests to be used within the two-stage

framework for detecting biomarker-treatment interactions, which utilize ridge and lasso

regressions to model correlated high-dimensional data at stage 1. I prove these two-

stage methods incorporating stage 1 sparse regression screening procedures are able to
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preserve the overall family-wise error rate given independence between the treatment and

biomarkers. Furthermore, it is shown by simulations and real data applications that the

new methods can provide better performance than traditional one-biomarker-at-a-time

approaches for correlated biomarkers.

2.2 Lack of applicability of responder-only tests in

randomized clinical trials

As previously discussed in Section 1.2.1, the traditional interaction analysis can lack power

when the number of biomarkers to be considered is large. A Bonferroni correction is often

used for family-wise error rate control. With regard to our interest in high-dimensional

interaction testing, it is worth exploring whether other procedures are able to provide

improved efficiency. In Appendix A.4, I demonstrate some alternative family-wise error rate

controlling methods (Šidák correction [66], Holm-Bonferroni procedure [37] and Hochberg

procedure [35]) can only provide a small improvement across the randomized clinical trial

settings I consider in this thesis: when the number of biomarkers is large and only a small

subset of biomarkers have true interactions with treatment.

In gene-environment studies, case-only tests were proposed to improve power under

the assumption of gene-environment independence and the rareness of response events.

Section 1.2.2.1 introduced case-only tests in detail. Analogously to the model (1.3), we

consider adapting this type of test for detecting biomarker-treatment interactions in

randomized clinical trials:

logit{E(Ti | Xij, Ri = 1)} = γ0j + γXj
Xij (2.1)

with Ri denoting the binary response outcome, Ti the binary treatment-control indicator,

and Xi1, . . . , Xim representing the values of m biomarkers, for the ith patient. Generally,

randomized clinical trials for rare responses are not conducted, because only very large

trials are powered to show a treatment effect for a rare response outcome. Violation of

the rare response assumption prevents applying such approaches to finding biomarker-

treatment interactions in principle. Secondly, although biomarker-treatment independence

is guaranteed in randomized clinical trials, responder-only tests cannot outperform standard

interaction tests (1.1), as the trial population represents the entire data set that has

been randomized and thus responders (corresponding to “cases”) are not “oversampled”.

To conclude, responder-only tests are not applicable for detecting biomarker-treatment

interactions in principle.
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2.3 Two-stage interaction tests in randomized clini-

cal trials

To alleviate the multiple testing burden, as discussed in Section 1.2.2.2, two-stage gene-

environment interaction testing approaches have been proposed. A two-stage interaction

testing approach uses a screening stage to select a subset of biomarkers, and then in

stage 2, only tests biomarker-treatment interactions within the reduced set of biomarkers.

The multiple correction procedure (e.g. Bonferroni correction) at stage 2 only needs to

account for this reduced set of biomarkers, instead of all the biomarkers, thus increasing

power. To preserve the overall family-wise error rate of the two-stage approach, both

Murcray et al. [53] and Dai et al. [17] proved that the stage 1 screening test statistic

needs to be (asymptotically) independent of the stage 2 test statistic. Further detail of

existing two-stage approaches for detecting gene-environment interactions was given in

Section 1.2.2.2. We now consider in more detail, the applicability of this framework for

detecting biomarker-treatment interactions in data from randomized clinical trials.

A marginal association test of the form (1.4), testing the marginal effect of a biomarker

on the outcome, is typically used as the stage 1 screening test. This type of screening

test can readily be used when applying this framework to detect biomarker-treatment

interactions in randomized clinical trials. By using the marginal association screening test,

we expect that a biomarker’s marginal association with the response is informative for the

existence of a biomarker-treatment interaction.

An alternative type of screening that has been proposed in the gene-environment testing

literature, is to test the correlation between a genetic biomarker and the environmental

factor of interest. This has been discussed in detail in Section 1.2.2.2. If applied to detect

biomarker-treatment interactions, this type of screening test corresponds to the model of

the following form:

logit{E(Ti | Xij)} = ω0j + ωXj
Xij

However, such a screening procedure is not generally applicable in randomized clinical

trials, where the rare response condition does not hold and the trial population represents

the entire data set thus responders (cases) are not “oversampled”. Indeed, biomarker-

treatment independence induced by randomization dictates ωXj
= 0 in the whole sample.

The stage 1 test statistic is not informative for the interaction parameter being non-zero

at all.

Thus, I recommend the marginal screening test of the form (1.4), i.e. testing for

associations between biomarkers and the outcome, to be used in the two-stage interaction

testing framework for detecting biomarker-treatment interactions in randomized clinical
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trials.

2.4 New stage 1 sparse regression screening proce-

dures accounting for biomarker-biomarker corre-

lations

A limitation in the existing literature on two-stage interaction testing approaches is that

biomarkers are tested one at a time. When there are substantial correlations between

biomarkers, stage 1 one-biomarker-at-a-time tests can result in a lot of false positives.

This reduces power of two-stage interaction testing approaches, because false positives

from the stage 1 screening tests have a negative impact on the multiple testing adjustment

at stage 2 interacting testing.

To account for biomarker-biomarker correlations, I propose new stage 1 multivariate

screening tests of the following form

G{E(Yi | Xi1, . . . , Xim)} = δ0 + δTTi +
m∑
j=1

δXj
Xij (2.2)

This multivariate version of the marginal association screening test also includes the

treatment main effect term. This is necessary to preserve the independence between stage

1 screening and stage 2 interaction tests as described later. When n < m, as will usually

be the case with high-dimensional biomarker data, fitting this multivariate model directly

is infeasible. Thus, penalized regression methods are introduced to address this issue.

2.4.1 Ridge regression screening

To fit the above multivariate model, I use ridge regression, with a L2 regularization term

||δ||22 = δ2T +
∑m

j=1 δ
2
Xj

to fit the model (2.2). Ridge regression was introduced in detail in

Section 1.4.1 of the introduction chapter.

Ridge shrinks all the estimated coefficients towards zero, but will not set them exactly to

zero. For use in a two-stage interaction testing strategy, I propose ordering the biomarkers

based on the ridge coefficients obtained from stage 1, and then use the resulting ranking

to determine varying significance thresholds across buckets of markers during stage 2 one-

at-a-time interaction tests according to the weighting scheme [39]: the B most significant

biomarkers, i.e. with smallest estimated ridge coefficients in stage 1, are compared with an

adjusted significance level (α/2)/B, the next 2B biomarkers are compared with (α/4)/(2B),

..., the next 2kB biomarkers are compared with (α/2k+1)/(2kB), and so on.

The L2 penalty is a smooth function of δ at the origin, which allows us to prove the
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between-stage independence as explained in Section 2.5. However, It is known that ridge

regression has a tendency to average effects across strongly correlated covariates. This

phenomenon is not desirable for a screening strategy since it could inflate the number of

non-interacting biomarkers being put forward to stage 2.

2.4.2 Lasso regression screening

Lasso is an alternative method to fit the model (2.2) with a L1 regularization term

||δ||1 = |δT |+
∑m

j=1 |δXj
|. Lasso selects a subset of biomarkers which can be next tested

by the stage 2 interaction testing procedure.

Lasso does not exhibit the grouping effect, which in principle makes it more desirable

for a screening strategy. However, as lasso uses a L1 penalty which is not a smooth

function, it is challenging to prove the between-stage independence requirement to preserve

the overall family-wise error rate in two-stage approaches using current asymptotic theory.

2.5 Asymptotic between-stage independence for stage

1 sparse regression screening

In this section, I show that independence between stage 1 and stage 2 test statistics holds

for stage 1 ridge regression screening tests.

For the ith subject, let Yi denote the outcome variable, X i = (Ti, Xi1, . . . , Xim)T be a

vector of the binary treatment-control indicator and the values of m biomarkers. Consider

the proposed stage 1 marginal association screening test based on the multivariate model

of the form

G{E(Yi |X i)} = XT
i δ

where δ = (δT , δX1 , . . . , δXm)T and G is a canonical link function. The model underlying

the stage 2 standard one-biomarker-at-a-time interaction test is of the form

G{E(Yi | V ij)} = V T
ijβj (j = 1, . . . ,m)

where V ij = (Xij, Ti, XijTi)
T and βj = (βXj

, βTj , βXj×T )T . The above forms ignore

intercepts without loss of generality. Homogeneity of variance is assumed, i.e. var(Yi |X i)

and var(Yi | V ij) are constants. I first show the property of between-stage asymptotic

independence for the stage 1 multivariate regression marginal association estimator without

regularization.
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Theorem 2.5.1. For any j = 1, . . . ,m, if Xij is independent of Ti, and, E(Ti) = 0 or

E(Xij) = 0 (i.e. Ti or Xij is centered around 0), then under the null hypothesis βXj×T = 0,

cov{n1/2(δ̂0Xj
− δXj

), n1/2(β̂Xj×T − βXj×T )} p→ 0

where δ̂0Xj
and β̂Xj×T are the maximum likelihood estimators for unknown parameters δXj

and βXj×T respectively without regularization (i.e. λn = 0).

Proof. Based on the unified approach to proving the between-stage asymptotic indepen-

dence by Dai et al. [17], we need to evaluate the covariance matrix A−11 BA
−1
2 , where

A1 = E[(X iX
T
i ){Yi − E(Yi |X i)}2]

B = E[(X iV
T
ij){Yi − E(Yi |X i)}{Yi − E(Yi | V ij)}]

A2 = E[(V ijV
T
ij){Yi − E(Yi | V ij)}2]

Of this (m+ 1)× 3 matrix product A−11 BA
−1
2 , the (j + 1)th element of the last column

is the value which cov{n1/2(δ̂0Xj
− δXj

), n1/2(β̂Xj×T − βXj×T )} converges to in probability.

We need to show this limiting value is zero. In fact, I am able to prove a stronger result

that the last column of A−11 BA
−1
2 are all zeros as follows.

We simplify the expression of B as

B = E[(X iV
T
ij){Y 2

i − YiE(Yi |X i)− YiE(Yi | V ij) + E(Yi |X i)E(Yi | V ij)}]

= E[(X iV
T
ij)E{Y 2

i − YiE(Yi |X i)− YiE(Yi | V ij) + E(Yi |X i)E(Yi | V ij) |X i}]

= E(X iV
T
ij)var(Yi |X i)

which uses the law of iterated expectations, the fact that X i includes V ij under the

null hypothesis βXj×T = 0, and assumes homogeneity of variance, i.e. var(Yi | X i) is a

constant.

Similarly, we have A1 = E(X iX
T
i )var(Yi | X i) and A2 = E(V ijV

T
ij)var(Yi | V ij).

Thus,

A−11 BA
−1
2 ∝ E(X iX

T
i )−1E(X iV

T
ij)E(V ijV

T
ij)
−1 (2.3)

I will show that the last column of the right hand side of (2.3) above are all zeros, by first
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considering the second and the third terms, which may be expressed as:

E(X iV
T
ij)

(m+1)×3
=


E(TiXij) E(T 2

i ) E(T 2
i Xij)

E(Xi1Xij) E(TiXi1) E(TiXi1Xij)
...

...
...

E(XimXij) E(TiXim) E(TiXimXij)


E(V ijV

T
ij)
−1

3×3
=


E(X2

ij) E(TiXij) E(TiX
2
ij)

E(TiXij) E(T 2
i ) E(T 2

i Xij)

E(TiX
2
ij) E(T 2

i Xij) E(T 2
i X

2
ij)


−1

=
1

det{E(V ijV
T
ij)}


· · E(TiXij)E(T 2

i Xij)− E(T 2
i )E(TiX

2
ij)

· · E(TiXij)E(TiX
2
ij)− E(X2

ij)E(T 2
i Xij)

· · E(X2
ij)E(T 2

i )− E(TiXij)
2


Thus, for the (m+ 1)× 3 matrix product of these terms E(X iV

T
ij)E(V ijV

T
ij)
−1, the

(k + 1)th element (k = 1, . . . ,m) of the last column is

1

det{E(V ijV
T
ij)}

{
E(XikXij), E(TiXik), E(TiXikXij)

}

·


E(TiXij)E(T 2

i Xij)− E(T 2
i )E(TiX

2
ij)

E(TiXij)E(TiX
2
ij)− E(X2

ij)E(T 2
i Xij)

E(X2
ij)E(T 2

i )− E(TiXij)
2


=

1

det{E(V ijV
T
ij)}

E(Ti)var(Ti)E(Xij){E(XikXij)E(Xij)− E(Xik)E(X2
ij)}

= 0

The result above uses the independence between Ti and Xij , and the assumption E(Ti) = 0

or E(Xij) = 0. Similarly, the first element of the last column is also zero.

Premultiplying E(X iV
T
ij)E(V ijV

T
ij)
−1 by E(X iX

T
i )−1 completes the right side of

(2.3). Since the last column of E(X iV
T
ij)E(V ijV

T
ij)
−1 are all zeros, the last column of

E(X iX
T
i )−1E(X iV

T
ij)E(V ijV

T
ij)
−1 in (2.3) are also all zeros. Thus, I have proved that

cov{n1/2(δ̂0Xj
− δXj

), n1/2(β̂Xj×T − βXj×T )} converges to zero in probability and this result

holds for any j = 1, . . . ,m.

Previous work [17] has demonstrated that stage 1 univariate marginal association

screening tests are independent with the stage 2 one-biomarker-at-a-time interaction tests.

Theorem 2.5.1 extends this to show independence still holds when stage 1 tests are extended

to a multivariate regression. My proof relies on: 1) the inclusion of the treatment main

effect in the multivariate regression of the form (2.2); 2) an assumption of independence

between the treatment assignment and biomarker values, which is valid in the context of a
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randomized clinical trial; and 3) homogeneity of variance, which is a common assumption

for continuous outcomes in linear regression.

Next I establish the asymptotically linear form of the ridge estimator to show it only

differs from the non-penalized estimator in a constant.

Lemma 2.5.2. Under standard regularity conditions [75, p. 51-52] and if λn = O(n1/2),

i.e. limn→∞ λn/n
1/2 = λ0 ≥ 0, then

n1/2(δ̂
λ
− δ)→ N (−2λ0Σ

−1δ, σ2Σ−1)

in distribution, where δ̂
λ

is the ridge estimator, N is a normal distribution, σ and Σ are a

constant and an invertible constant matrix.

Based on the asymptotic distributions derived in Lemma 2.5.2 above and Theorem 2.5.1,

I am able to prove the asymptotic independence between the stage 1 ridge marginal

association screening estimator and the stage 2 one-at-a-time interaction estimator in the

following corollary.

Corollary 2.5.2.1. For any j = 1, . . . ,m, if Xij is independent of Ti, and, E(Ti) = 0 or

E(Xij) = 0 (i.e. Ti or Xij is centered around 0), then under the null hypothesis βXj×T = 0,

cov{n1/2(δ̂λXj
− δXj

), n1/2(β̂Xj×T − βXj×T )} p→ 0

where δ̂λXj
is the maximum likelihood estimator with the ridge penalty.

Proofs of Lemma 2.5.2 and Corollary 2.5.2.1 are given in Appendix A.5. In addition,

a sketch proof for lasso regression is also provided in Appendix A.5, which shows the

asymptotic independence between the stage 1 lasso marginal association screening selector

and the stage 2 one-at-a-time interaction estimator.

2.6 Weighted false discovery rate controlling proce-

dures in a two-stage interaction detecting frame-

work

The existing two-stage interaction testing literature has focused on controlling family-wise

error rates. Sometimes, in the context of predictive biomarker detection in randomized

clinical trials, controlling the family-wise error rate is too stringent and not necessary.

Decisions around approving a new drug require strict error control. However, when

prediction or pure exploration is the end goal of predictive biomarker discovery, false

positives have less direct impact on patient safety. In these cases, controlling the false
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discovery rate, which is defined as the expected proportion of “discoveries” (rejected null

hypotheses) that are false, can be a more reasonable goal. Generally, false discovery rate

controlling procedures lead to greater power, at the cost of an increased number of type I

errors.

Thus, I propose incorporating the weighted false discovery rate controlling procedures

provided by Ramdas et al. [61] into the two-stage framework. The algorithm works as

below:

1. For all m biomarkers, define positive prior weights {wj}mj=1 with the normalization

condition
∑m

j=1wj = m, and assign weights based on the m∗ biomarkers which

have passed stage 1 screening: If the jth biomarker passed the screening, assign

wj = m/m∗, otherwise, wj = 0. An alternative way is to use ordered biomarkers

based on stage 1 p-values and assign weights like the weighted hypothesis testing

described previously: B most significant biomarkers with weights m/2/B, 2B with

m/4/2B, and so on.

2. Given p-values {pj}mj=1 from stage 2 interaction tests, make adjustments using prior

weights p̄j = pj/wj .

3. Use a false discovery rate controlling procedure, e.g. the Benjamini-Hochberg (BH)

procedure [3], on the adjusted p-values {p̄j}mj=1, to control the overall false discovery

rate.

Similarly to controlling family-wise error rates in two-stage approaches, the weighted false

discovery rate controlling procedures also require independence between stage 1 and stage

2 tests {Proposition 2 and Lemma 1(b) in Ramdas et al. [61]}.

2.7 Simulation studies

To evaluate performance of my proposed biomarker-treatment interaction testing proce-

dures described above, I generated simulated data sets, with m = 1, 000 biomarkers each.

Data were simulated under the model Yi = β0 +βTTi +
∑m

j=1(βXj
Xij +βXj×TXij×Ti) + εi,

where the treatment main effect was set to βT = 0.5 and the intercept to β0 = 0. All

1, 000 biomarkers were partitioned into 50 clusters of correlated biomarkers, containing 20

biomarkers each. We denote the clusters C1 = {X1, . . . , X20}, C2 = {X21, . . . , X40}, and so

on. One biomarker in the first cluster was ascribed a main effect and an interaction effect,

i.e. βX1 = 0.5 and βX1×T = 1. Four other biomarkers in four other different clusters were as-

cribed main effects on the trait without interactions, i.e. βX21 = βX41 = βX61 = βX81 = 1.5.

All other biomarkers do not have direct effects on the outcome. Each biomarker Xj was gen-

erated from a standard normal distribution N (0, 1) and the binary treatment assignment

43



was drawn from a Bernoulli(0.5) distribution, while εi was generated from a normal dis-

tribution with standard deviation 5. The residual standard deviation was chosen such that

the proportion of variance explained by the true model is 0.292, which is realistic for various

biomarkers and traits. I considered two types of correlation patterns among biomarkers:

1) The 20 biomarkers within each cluster are correlated with each other (ρ = 0.6), but

there are no correlations between biomarkers in different clusters; 2) all biomarkers are

independent of one another (ρ = 0). For each scenario, 1, 000 replicate data sets were

generated to estimate power and family-wise error rates. Power for all the approaches

listed below is defined according to the idea of “cluster discoveries” in Brzyski et al. [8]

as pr(reject at least one Hj
0 for any Xj ∈ Ci | at least one Hk

1 is true for any Xk ∈ Ci),

where Hj
0 is the null hypothesis for Xj and Hk

1 is the alternative hypothesis for Xk.

Five different screening procedures were compared:

1. “Univariate screening (threshold)”: A selection of biomarkers to take forward to

stage 2 was based on significance in a regression of response on the biomarkers one at

a time, of the form (1.4). A significance level α1 = 0.05 was used without adjustment

for each stage 1 biomarker test.

2. “Univariate screening (rank)”: All biomarkers were taken forward to stage 2, and

the stage 1 p-value ranking was used to conduct a stage 2 weighted hypothesis test

described in Section 1.2.2.2 with B = 5 (a number recommended by [30]).

3. “Ridge screening (rank)”: Ridge regression was used to estimate marginal effects at

stage 1. Then all biomarkers were ordered based on these stage 1 coefficients and

the rank would be used by the stage 2 weighted hypothesis test with B = 5. The

optimal λn was chosen to minimize predictive errors under 5-fold cross-validation.

The R package glmnet [27] was used.

4. “Lasso screening”: A selection of biomarkers was based on the result from a lasso

multivariate regression for estimating marginal effects. The optimal λn was chosen

to minimize predictive errors under 5-fold cross-validation. The R package glmnet

was used.

5. “No screening”: A standard single-step interaction test of the form (1.1), targeting

an overall family-wise error rate α = 0.05, was performed as a baseline comparator

with a Bonferroni correction applied with m = 1, 000.

The standard interaction tests were also performed as the stage 2 tests for all the four

two-stage approaches (1 - 4) described above.
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Figure 2.1: Comparison of two-stage interaction tests with different screening procedures

in simulated data. The four panels represent: (a) power, highly correlated biomarkers

(ρ = 0.6), (b) power, independent biomarkers (ρ = 0), (c) family-wise error rate, highly

correlated biomarkers (ρ = 0.6), (d) family-wise error rate, independent biomarkers (ρ = 0).

In Figure 2.1(a), with highly correlated biomarkers, the ridge and lasso screening pro-
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cedures demonstrated substantially higher power than the univariate screening procedures,

showing a clear benefit of accounting for correlations between the biomarkers at stage 1.

For the univariate screening procedures, the five biomarkers with true marginal signals and

all the biomarkers associated with them, including X1, . . . , X100, were likely to be retained

after screening in the “threshold” approach or land into the top buckets at stage 2 in the

“rank” approach. In contrast, the sparse regression screening procedures considered the

effect of each biomarker, adjusted for all other biomarkers, and therefore tended to ascribe

less evidence to biomarkers whose marginal associations were exaggerated by correlation

with the true signal(s). Thus, much fewer biomarkers (five including X1, X21, X41, X61,

X81), i.e. the true simulated marginal signals, tended to pass the screening or land in

the top buckets at stage 2. This enhanced the power of the overall two-stage approach

compared with using the univariate screening procedures, because the multiple testing

correction at stage 2 funneled more power into each “promising” biomarker which has

passed stage 1 screening or landed into the top buckets. In Figure 2.1(b), with independent

biomarkers, where the multivariate regression is not required for unbiased effect estima-

tion at stage 1, the univariate screening using weighted hypothesis tests and the sparse

regression screening procedures performed similarly. All four two-stage tests outperformed

the single-step interaction test by providing better power at the same family-wise error

rate level. Figure 2.1(c) and (d) showed that all five procedures controlled the family-wise

error rates around the desired level of 0.05, in either the scenario with highly correlated

biomarkers or the scenario with independent biomarkers.
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Figure 2.2: Comparison of two-stage interaction tests with different screening procedures

in simulated data. The four panels represent: (a) highly correlated biomarkers (ρ = 0.6),

changing the interaction effect of the interacting biomarker βX1×T , (b) highly correlated

biomarkers (ρ = 0.6), changing the standard deviation of the normal distribution from

which εi was drawn and consequently the variance explained in the outcome, (c) changing

the biomarker-biomarker correlation, (d) independent biomarkers (ρ = 0), changing the

main effect of the interacting biomarker βX1 .
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In Figure 2.2(a), I used the base scenario with one biomarker having an interaction

(biomarker-biomarker correlation ρ = 0.6, sample size of 1, 500) described above, and

changed only the interaction effect of the interacting biomarker βX1×T . Figure 2.2(a)

showed that when the true interaction effect was too small, all the procedures failed to

identify the interaction. When the interaction effect was large enough, all the procedures

were able to find the interaction. In the wide spectrum between the two extremes, the

sparse regression screening strategies performed consistently the best among these methods,

followed by the two univariate screening procedures.

In Figure 2.2(b), we compared power of the different screening strategies while varying

the proportion of explained variation by the true model. Specifically, I changed the

standard deviation of the normal distribution from which εi was drawn from. For this

exploration, biomarkers were set to be correlated at 0.6 and the sample size to 1, 500.

Figure 2.2(b) showed that when the true model explained either a low or high proportion of

the variance, all the methods tended to perform similarly to each other. Again, in the wide

spectrum between the two extremes, the comparison was rather consistent: The sparse

regression screening strategies performed best, followed by the two univariate screening

procedures, with the single-step interaction test always resulting in the lowest power.

In Figure 2.2(c), I changed only the correlation among biomarkers to examine how it

would affect the power comparison of these screening procedures. The sample size was

fixed at 1, 500. It is shown that with the increasing correlation, power of the univariate

screening procedure (rank) decreases and the benefit using the sparse regression screening

strategies increases. This phenomenon is consistent with our observation from the base

scenarios shown in Figure 2.1, as previously explained.

In Figure 2.2(d), I simulated scenarios with one biomarker having an interaction, no

correlations among the biomarkers, and changed only the main effect of the interacting

biomarker βX1 , i.e. main effects of the other four biomarkers were the same as the base

scenario. The sample size was fixed at 1, 500. Figure 2.2(d) reveals that there are some

special cases where all two-stage approaches give lower power than a standard single-step

interaction test. In the cases where power of the two-stage approaches was lower, the main

and interaction effect parameters were in opposite directions, which reduces the strength

of the marginal association for true interactions.

Next, I examine the weighted false discovery rate controlling procedures (described in

Section 2.6), which I incorporated into the two-stage approaches. This was done for the

two base simulation scenarios: the one with highly correlated biomarkers and the other

with independent biomarkers. Shown in Table 2.1 and Table 2.2, all the weighted BH

procedures correctly achieved false discovery rates controlled around 0.05. As expected,

they provided increased power but incurred a higher family-wise error rate compared with

corresponding family-wise error rate controlling procedures.
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Table 2.1: Comparison of two-stage tests with different screening procedures in simulated

data. (ρ = 0.6, sample size of 1, 500)

Family-wise error rate controlling method applied at stage 2

Power Family-wise error rate False discovery rate

No screening 0.278 0.035 0.0300

Univariate screening (threshold) 0.454 0.035 0.0234

Univariate screening (rank) 0.414 0.041 0.0328

Lasso screening 0.696 0.044 0.0278

Ridge screening (rank) 0.616 0.039 0.0266

False discovery rate controlling method applied at stage 2

Power Family-wise error rate False discovery rate

No screening 0.287 0.078 0.0424

Univariate screening (threshold) 0.479 0.124 0.0361

Univariate screening (rank) 0.424 0.078 0.0452

Lasso screening 0.700 0.079 0.0423

Ridge screening (rank) 0.622 0.077 0.0381

Table 2.2: Comparison of two-stage tests with different screening procedures in simulated

data. (ρ = 0, sample size of 1, 500)

Family-wise error rate controlling method applied at stage 2

Power Family-wise error rate False discovery rate

No screening 0.232 0.043 0.0400

Univariate screening (threshold) 0.513 0.065 0.0495

Univariate screening (rank) 0.700 0.045 0.0295

Lasso screening 0.728 0.036 0.0220

Ridge screening (rank) 0.700 0.045 0.0307

False discovery rate controlling method applied at stage 2

Power Family-wise error rate False discovery rate

No screening 0.236 0.051 0.0430

Univariate screening (threshold) 0.529 0.101 0.0640

Univariate screening (rank) 0.706 0.082 0.0475

Lasso screening 0.732 0.061 0.0337

Ridge screening (rank) 0.706 0.089 0.0517

Lastly, I simulated a high-dimensional scenario (n < m), where each data set has 5, 000

highly correlated biomarkers. All 5, 000 biomarkers were partitioned into 250 clusters of

biomarkers, containing 20 biomarkers each. The 20 biomarkers within each cluster are
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correlated with each other (ρ = 0.6), but there are no correlations between biomarkers

in different clusters. One biomarker in the first cluster was ascribed a main effect and

an interaction effect, i.e. βX1 = 0.5 and βX1×T = 1. Four other biomarkers in four

other different clusters were ascribed main effects on the trait without interactions, i.e.

βX21 = βX41 = βX61 = βX81 = 1.5. All other biomarkers do not have direct effects on the

outcome.

Figure 2.3(a) shows that the ridge and lasso screening procedures accounting for

biomarker-biomarker correlations at stage 1 still demonstrated substantially higher power

than the univariate screening procedures. Lasso screening was more powerful than ridge.

This is because the weighting strategy used by the “rank” procedure of ridge screening is

more conservative than lasso screening which explicitly selects a subset of biomarkers for

stage 2 testing. Figure 2.3(b) shows that family-wise error rates of all the procedures were

controlled around 0.05 as expected.

Figure 2.3: Comparison of two-stage interaction tests with different screening procedures in

simulated data. The two panels represent: (a) power, 5, 000 highly correlated biomarkers

(ρ = 0.6), (b) family-wise error rate, 5, 000 highly correlated biomarkers (ρ = 0.6).

In Appendix C.1, I provide simulation results of additional scenarios in which I
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changed the main effects of the four biomarkers βX21 , βX41 , βX61 , βX81 . Relative patterns

of performance among the screening strategies were consistent with the results described

above, demonstrating further robustness of our methods and findings.

2.8 Data applications

In addition to validating my methods through simulations, I exemplified these approaches

in three real data applications.

2.8.1 START trial

The START trial data and any required pre-processing were described in Section 1.6.1.

I included 684 participants with 75 covariates in the analysis. I performed all the five

interaction detecting procedures described in the previous section targeting a family-wise

error rate of 0.05 and did not find any significant interactions. The top covariates output by

the two “rank” approaches (the univariate screening and the ridge screening) are presented

in Table 2.3, which shows that the top ranked covariates from these two procedures are

similar in this data set where covariates have low correlation. This is because the ridge

screening procedure mainly offers a benefit through the use of the multivariate model at

stage 1 accounting for biomarker-biomarker correlations.
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Table 2.3: Top covariates from different stage 1 marginal screening procedures: A covariate

is highlighted in bold when the two screening procedures disagree in its rank. A covariate

is underlined when it does not appear in the top 10 covariates of the other screening

procedure.

START trial

Univariate screening Ridge screening

1 Total Inventory of Callous and Unemo-

tional Traits

Total Inventory of Callous and Unemo-

tional Traits

2 Total Antisocial Beliefs and Attitudes

Scale

Total Antisocial Beliefs and Attitudes

Scale

3 Strengths & Difficulties Conduct Problems

Score

Strengths & Difficulties Conduct Problems

Score

4 Strengths & Difficulties ProSocial Be-

haviour Score

Strengths & Difficulties ProSocial Be-

haviour Score

5 Strengths & Difficulties Hyperactivity

Score

Strengths & Difficulties Hyperactivity

Score

6 Volume of self reported delinquency exclud-

ing violence towards siblings

Volume of self reported delinquency exclud-

ing violence towards siblings

7 Strengths & Difficulties Total Difficulties

Score

Strengths & Difficulties Total Difficulties

Score

8 IQ IQ

9 Variety of self reported delinquency

excluding violence towards siblings

Parental reported total Inventory of

Callous and Unemotional Traits

10 Parent reported Strengths & Difficul-

ties Conduct Problems Score

Alabama Positive Parental Involve-

ment Score

2.8.2 STOPAH trial

The 2× 2 factorial STOPAH trial data and any required pre-processing were described in

Section 1.6.2. In this application with binary outcomes, I applied my approaches to detect

predictive biomarkers of steroid response in the treatment of alcoholic hepatitis. I included

1, 068 subjects with 40 covariates (a small number of which were demographic variables)

in the analysis for detecting interaction with treatment (pentoxifylline or prednisolone).

All five methods described in Section 2.7 did not find any significant biomarker-treatment

interactions targeting a family-wise error rate of 0.05. Table 2.4 summarizes the top

biomarkers from two “rank” procedures (univariate screening and ridge screening): The

results are quite different between the ridge regression screening and the univariate

screening, likely owing to the moderate correlation among the biomarkers.
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Table 2.4: Top covariates from different stage 1 marginal screening procedures: A covariate

is highlighted in bold when the two screening procedures disagree in its rank. A covariate

is underlined when it does not appear in the top 10 covariates of the other screening

procedure.

STOPAH trial (pentoxifylline vs non pentoxifylline)

Univariate screening Ridge screening

1 Max GAHS Age

2 MELD Max GAHS

3 GAHS MELD

4 UNOS MELD UNOS MELD

5 Max GAHS - Categorical GAHS

6 GAHS - Categorical WHO Performance Status - Worst

7 Creatinine Hepatic Encephalopathy

8 Discriminant Function Urea

9 WHO Performance Status - Worst Hepatic Encephalopathy - Worst

10 Urea WHO Performance Status

STOPAH trial (prednisolone vs non prednisolone)

Univariate screening Ridge screening

1 Max GAHS MELD

2 MELD Max GAHS

3 GAHS UNOS MELD

4 UNOS MELD GAHS

5 Max GAHS - Categorical Age

6 GAHS - Categorical Creatinine

7 Creatinine Urea

8 Discriminant Function WHO Performance Status - Worst

9 WHO Performance Status - Worst Hepatic Encephalopathy

10 Urea Hepatic Encephalopathy - Worst

2.8.3 PREVAIL trial

In the third application, I applied my approaches retrospectively to a phase II trial data

set, which has high-dimensional gene expression biomarkers. The data set and any required

pre-processing were described in Section 1.6.3. I restricted the analysis to 10, 000 probes

with the highest standard deviations and the sample size is 61. The Sequential Organ

Failure Assessment (SOFA) score was used as the continuous response endpoint. All

five methods described in Section 2.7 did not find any significant biomarker-treatment

interactions targeting a family-wise error rate of 0.05. A list of the top biomarkers from two
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“rank” procedures (univariate screening and ridge screening) are presented in Table 2.5. The

rankings of selected covariates are quite different between the ridge regression screening

and the univariate screening procedures, likely owing to the high correlation among the

biomarkers.

Table 2.5: Top covariates from different stage 1 marginal screening procedures: A covariate

is highlighted in bold when the two screening procedures disagree in its rank. A covariate

is underlined when it does not appear in the top 10 covariates of the other screening

procedure.

PREVAIL trial

Univariate screening Ridge screening

1 11715617 a at 11715488 s at

2 11749774 x at 11715489 a at

3 11725694 at 11739745 a at

4 11746124 x at 11749774 x at

5 11739745 a at 11746124 x at

6 11747047 a at 11747047 a at

7 11715488 s at 11728717 at

8 11720970 at 11725694 at

9 11751473 a at 11716479 s at

10 11756156 s at 11752423 a at

2.8.4 Empirical between-stage correlation

In Section 2.5, I proved that stage 1 sparse regression screening and stage 2 interaction

test statistics are asymptotically independent to each other for continuous outcomes. I

calculated empirical correlations between stage 1 ridge screening and stage 2 interaction

test statistics applied in the above three trial data sets (the lasso results are ignored because

few stage 1 covariates have non-zero stage 1 lasso coefficients). Table 2.6 summarizes

results from Pearson correlation tests, which shows that the empirical correlations between

stages are close to zero. In all cases, with either continuous or binary outcomes, the 95%

confidence interval contains zero. It is worth noting that even if my theoretical results in

Section 2.5 only hold for continuous outcomes, application of my methods to the STOPAH

trial data set with binary outcomes also yields nearly zero empirical correlation.
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Table 2.6: Empirical correlation between stage 1 ridge screening and stage 2 interaction

test statistics

Response type Estimate p-value 95% confidence interval

START continuous 0.044 0.711 (−0.188, 0.271)

PREVAIL continuous 0.001 0.938 (−0.019, 0.020)

STOPAH (pentoxifylline) binary 0.104 0.523 (−0.214, 0.402)

STOPAH (prednisolone) binary 0.008 0.960 (−0.304, 0.319)

2.9 Discussion

Progress towards an era of precision medicine is accelerating due to the increasing avail-

ability of personal multi-omic data. Consequently, there is a growing need for studying

biomarker-treatment interactions in large-scale studies of human populations. In this

chapter, I have reviewed a variety of interaction testing methods and discussed which of

them are applicable for detecting biomarker-treatment interactions in randomized clinical

trials. Specifically, I showed that two-stage approaches, incorporating a marginal effect

screening test to select a subset of biomarkers in stage 1, can provide greater power than

a standard single-step interaction test in various scenarios.

The performance of a traditional one-biomarker-at-a-time screening test [43] tends to

deteriorate when there is substantial correlation between covariates. Thus, I introduced

two novel screening procedures using sparse regression methods, lasso and ridge regressions,

to account for biomarker-biomarker correlations. One key requirement of applying two-

stage approaches is independence between stage 1 and 2 tests, in order to preserve

the overall family-wise error rate. In this chapter, I presented a proof for asymptotic

independence between stage 1 sparse screening tests and stage 2 standard one-biomarker-

at-a-time interaction tests. While asymptotic independence has been shown previously

in the context of stage 1 univariate screening [53, 17], I have extended this theory to

show the independence also holds for the use of multivariate models at stage 1, and

furthermore, that it holds when inferring parameter estimates from penalized regression.

To the best of our knowledge, this is the first time a theoretical basis is provided for

incorporating sparse regression methods into two-stage interaction testing approaches.

I demonstrated, in various simulated scenarios of highly correlated biomarkers, that

these sparse regression screening methods can perform better than the traditional one-

biomarker-at-a-time screening procedure. I exemplified my proposed methods for detecting

biomarker-treatment interactions in three real trial data sets in which I evaluated the

empirical between-stage correlations to verify my theory held out in practice.

I argue that a further limitation in the existing literature on two-stage interaction
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testing for application to randomized clinical trials is the historical focus on family-wise

error rates. Controlling the false discovery rate is less stringent than controlling the family-

wise error rate. When prediction or exploration is considered as an end goal of detecting

biomarker-treatment interactions, false positives are less likely to lead to severe safety risks.

Controlling the false discovery rate has consequently been promoted as a more pragmatic

choice, especially in genome-wide studies [68, 8]. Therefore, I also proposed adapting

weighted false discovery rate controlling procedures [61] in the two-stage frameworks and

demonstrated their effectiveness in simulations. Generally, false discovery rate controlling

procedures have greater power, at the cost of an increased number of type I errors.

I showed that there exist special cases where my proposed two-stage screening strategy

offers no benefit, e.g. when the main effect of a biomarker and its interaction effect with

the treatment to the response are in opposite directions, such that the marginal effect

cancels out. Different weighted hypothesis testing strategies differ in how much stage 1

information is used in the following stage 2 tests. I suggest exploring how these weighting

schemes affect the power in different scenarios as a future topic for investigation.

It is known that ridge regression has a tendency to average effects across strongly

correlated covariates. This phenomenon is not desirable for a screening strategy since

it could inflate the number of non-interacting biomarkers being put forward to stage 2.

Lasso, as an alternative sparse regression technique, does not exhibit this effect-averaging

behavior. However, in the lasso screening procedures, covariates with small marginal

effects may be dropped from further consideration, which is a clear disadvantage. Thus,

to alleviate these issues, other formulations of sparse regression methods, which could

be used for multivariate interaction analysis, are worth exploring in future research. For

example, elastic net [87] and Bayesian variable selection [57] can be used as the screening

procedure at stage 1; group lasso can be used as a single-stage or stage 2 interaction

detecting method [84].

Since the main goal of employing the sparse regression screening procedures in stage 1

is to account for biomarker-biomarker correlations, some less computationally intensive

multiple testing correction methods for correlated tests might be beneficial [56, 14, 29].

However, applying such methods, which calculate an “effective” number of independent

tests [56, 29], to the single-step interaction test in a limited set of simulations did not

offer any power improvement when controlling for the same family-wise error rate (results

shown in Appendix C.1). I suggest further investigation into how to incorporate these

methods into the two-stage interaction framework including a formal justification of the

family-wise error rate control as a topic of future work.

My theoretical work only guarantees family-wise error rate control when using linear

regression. A related technical issue was demonstrated by Sun et al. [69] that, for logistic

regression, the interaction estimator under model misspecification can be biased when
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the biomarker is associated either indirectly or directly with the outcome. This is a

generic issue to interaction modeling using logistic regression, but could manifest in my

framework as an elevated family-wise error rate at stage 2 one-biomarker-a-time tests.

Chapter 4 discusses this problem in detail and proposes a de-biasing approach for the

standard one-biomarker-a-time tests. However, the extent to which this bias might inflate

family-wise error rates when applying the two-stage framework using logistic regression,

and potential corrections, will be the topic of future work.

In summary, I adapted recently proposed two-stage methods for biomarker-treatment

interaction testing in the randomized clinical trial setting, and proposed two novel screening

tests using sparse modern regression techniques, lasso and ridge regressions, to account for

biomarker-biomarker correlations. The simulation and real application results suggest use

of sparse regression techniques in two-stage approaches can provide increased power for

detecting interactions in randomized clinical trials.
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Chapter 3

Adaptive signature design using

biomarker-treatment interaction

information to maximize treatment

effect test statistics

3.1 Introduction

Modern medicine has seen an increasing interest in the development of targeted therapies

[13]. Significant heterogeneity in response to treatments, resulting from individual genetic

variability, has been found in many diseases. In molecularly targeted cancer drugs, therapies

are often effective only for a subset of patients [34]. As a result, there is increasing attention

toward discovery of biomarkers to identify subgroups of patients likely to benefit from a

treatment [78]. In the context of clinical trials, these predictive biomarkers hold great

potential to improve trial efficiency [83, 80]. When a treatment works only for a subgroup

of patients, the overall treatment effect within the whole population might be low and

undetected by a trial with moderate sample size. Identifying and targeting subgroups that

likely benefit from the treatment will mean the power to show the effectiveness of the

treatment may be much higher. Despite work on methods for identifying and utilizing

predictive biomarkers, I will describe below a case for further work in this area.

Genomic technologies, such as microarrays and single-nucleotide polymorphism geno-

typing, provide rich biomarker panels from which to develop potential signatures to

discriminate the subset of patients, who will most likely benefit from a targeted therapy.

However, due to vast potential numbers of candidate biomarkers across different -omics

platforms and the small sample size of early phase I and II trials, it is very challenging to

develop reliable predictive signatures before a phase III trial, especially when the biological

interplay between the treatment and the disease is not well understood [20]. The adaptive
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signature design (ASD) was proposed as a solution for developing and testing a biomarker

signature all within the same trial [25]. The approach employs two stages: stage 1 to use a

proportion of patients to develop a signature to predict whether a patient is more likely to

benefit from the new treatment, and stage 2 to use this signature to identify a “sensitive”

subgroup from the remaining patients. More detail on how the ASD framework works was

given in Section 1.5 of the introduction chapter.

In the signature development phase, the previously proposed ASD framework [25, 26]

fits a univariate model (e.g. logistic regression) for each biomarker and selects “sensi-

tive” biomarkers which exhibit significant interaction effects. In a subsequent classifier

development phase, the marginal odds ratios for each selected sensitive biomarker are

predicted using results from fitted univariate models in the previous phase. Specifically, the

classification of a patient into a sensitive subgroup is based on whether or not the number

of predicted marginal odds ratios for each “sensitive” biomarker carried by the patient

that are significant exceeds a pre-specified threshold. Most subsequent literature focused

on improving the signature development. When there is a large number of candidate

biomarkers, a pre-selection procedure was shown to be beneficial in the ASD setting [12].

Sparse regression techniques such as lasso and ridge regressions were also recommended

to be incorporated into the estimation of model parameters [86]. In the ASD setting,

several papers [9, 10, 11] explored the use of Bayesian methods, and demonstrated that

incorporating prior information improved estimation of marginal odds ratios for each

biomarker. In addition to the binary outcome considered in the original ASD, methods to

predict survival outcomes using the subset of selected biomarkers have also been proposed

[50].

However, there has so far been limited work on optimizing the classification algorithm,

which is a key ingredient of all these frameworks. In particular, it is unlikely that classifying

patients according to simple univariate odds ratios is optimal. This motivates us to propose

two new types of classifiers to be used in the ASD framework: one that thresholds the

predicted risk difference, and one that classifies patients according to the expected change

of the treatment effect test statistic. The prediction of risk differences and expected test

statistic changes in both of my proposed classifiers are based on fitting a multivariate

regression model using all stage 1 selected sensitive biomarkers at once. I explore both

theoretically and through simulations how the two proposed classifiers compare to the

existing classifier that is currently used within the ASD. I also illustrate application of my

methods in two real clinical trial data sets.
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3.2 Methods

The original ASD framework and its cross-validated extension were described in detail in

Section 1.5. To recap, in order to perform a K-fold cross-validated ASD, a proportion of

(K−1)/K of trial participants form a development cohort to identify a biomarker signature.

Then the signature is applied to the remaining 1/K participants (validation cohort) to

select a sensitive subset of patients, who are more likely to benefit from the new treatment.

The above procedure is repeated K times over K pairs of development vs validation cohorts.

All K sensitive subsets of patients, selected from the K non-overlapping validation cohorts

respectively, form the final subgroup. Presence of treatment effect is then tested within this

subgroup (referred to as “subgroup test”). Since this test statistic is obtained by testing

within a sample selected by cross-validation, as opposed to a standard trial population,

the distribution of test statistic cannot be derived by standard asymptotic theory. A

permutation-based method is recommended to approximate the empirical distribution of

this test statistic and derive the p-value. A treatment effect test is also carried out within

the whole sample (referred to as “whole-group test”). An ASD claims the treatment effect

is efficacious if either the subgroup test or the whole-group test is significant. An overall

significance level (e.g. 0.05) is distributed between the two tests (e.g. 0.01 for the subgroup

test and 0.04 for the whole-group test).

The original ASD requires three parameters to develop the signature and classify

patients: one for selecting predictive biomarkers and two for thresholding the predicted

odds ratios between the new and control arms. Parameter tuning based on cross-validation

(referred to as “inner cross-validation”) is embedded into each loop of the cross-validation

training the classifier using each development cohort (referred to as “outer cross-validation”,

of which the procedure is described in the previous paragraph). This nested cross-validation

procedure was described in detail in Section 1.5 and illustrated in Figure 1.1.

In this section, within the cross-validated ASD framework, I develop two new types of

classifiers and discuss theoretically how they compare to the classifier that is currently

used in the ASD.

3.2.1 Multivariate risk difference (MRD) classifier

I propose the following classification method based on predicted risk differences:

1. Stage 1 as described in Section 1.5.1 remains the same. However, I also use stage

1 data to fit a multivariate regression model including the m∗ sensitive biomarkers
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that displayed significant univariate interactions:

logit{E(Ri | Xi(1), . . . , Xi(m∗), Ti)} = β0 + βTTi +
m∗∑
j=1

(βX(j)
Xi(j) + βX(j)×TXi(j) × Ti) (3.1)

where Ri is the binary response outcome, Ti is the binary treatment assignment

indicator, and Xi(1), . . . , Xi(m∗) are the values of m∗ sensitive biomarkers.

2. In stage 2, a patient is designated sensitive if the predicted risk difference p̂r(Ri = 1 |
Xi(1), . . . , Xi(m∗), Ti = 1)− p̂r(Ri = 1 | Xi(1), . . . , Xi(m∗), Ti = 0) exceeds a threshold

γ.

I name the method employing this type of classifier the MRD (multivariate risk difference)

design. Multivariate risk (or utility) differences are commonly used in precision medicine

to model treatment effect heterogeneity and predict individual treatment responses for

optimal therapy decisions [60, 65]. Particularly, in the context of clinical trials, multivariate

risk differences are estimated to help identify individuals who are more likely to benefit from

the new intervention [44, 46]. Within the ASD framework, in one cross-validation iteration,

we use a portion of data to fit the regression model and make prediction of risk differences

for the remaining patients to select a “sensitive” subgroup. Compared with the original

ASD classifier, this method does not need the tuning parameter G, which thresholds the

number of biomarkers with significant predicted marginal odds ratios which exceed γ.

However, the price is that a multivariate regression model needs to be fit using stage 1

data. This multivariate model considers the joint effect of all sensitive biomarkers, thus

potentially allowing a more sensitive summary measure for each patient than considering

each sensitive biomarker separately. When the number of selected biomarkers is large,

e.g. in a high-dimensional setting where m∗ > n, fitting this multivariate model directly

can become computationally prohibitive. I provide possible solutions to address this issue

in the discussion section. Although one could also predict odds ratios by fitting this

multivariate model, in Section 3.2.3, following a theoretical argument, I demonstrate how

thresholding the predicted risk difference is better able to maximize the subgroup test

statistic compared to thresholding the predicted odds ratio.

3.2.2 Multivariate gradient-based (MGB) classifier

To maximize the subgroup test statistic, there exists a trade-off between treatment effect

and sample size. If a classifier is too stringent when selecting patients with a high

probability of responding to the new treatment, it will tend to select a small, highly

specific subgroup. Conversely, if a classifier is too liberal, the subgroup specific treatment
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effect will be diluted. Thus, this trade-off inspired us to develop a classifier that directly

maximizes the predicted test statistic change. I start my derivation by defining the

contingency table over the selected sensitive subgroup as:

Table 3.1: 2× 2 contingency table in the sensitive subgroup

R = 1 R = 0

T = 1 n11 n10

T = 0 n01 n00

Note that the numbers in Table 3.1 depend on the classifier definition. If we wish to

test the hypothesis whether the odds ratio is larger than one or not within this sensitive

subgroup, the test statistic of Woolf’s method [81] is a function of the above cell values

Z(n11, n10, n01, n00) =
log(n11n00

n10n01
)√

1
n11

+ 1
n10

+ 1
n01

+ 1
n00

(3.2)

I would like to estimate how this test statistic changes after newly classifying an additional

individual as sensitive or not. Thus I express the gradient of this function as

∇Z = (d11, d10, d01, d00)
T =

(
∂Z

∂n11

,
∂Z

∂n10

,
∂Z

∂n01

,
∂Z

∂n00

)T
(3.3)

which is a vector of partial derivatives that shows how the test statistic changes as a

(continuous) change in the cell counts. Then, according to a particular patient’s expected

response with and without treatment, along with the treatment allocation fraction, We

can calculate the expectation of the test statistic change when adding them into the table,

assuming we know the current cell values. By the law of total expectation, the expectation

of the test statistic change is

E = (d11, d10, d01, d00)(pi11, pi10, pi01, pi00)
T (3.4)

where pitr = pr(Ti = t, Ri = r | Xi(1), . . . , Xi(m∗)) = pr(Ri = r | Xi(1), . . . , Xi(m∗), Ti =

t)pr(Ti = t). Leveraging these analytical results, the gradient-based classifier works as

follows:

1. Stage 1 as described in Section 3.2.1 remains the same. In addition, stage 1 data is

also used to form a 2×2 contingency table like Table 3.1 to estimate the gradient ∇Z.

More precisely, assuming stage 1 sample set {(K− 1)/K of all the patients in K-fold

cross-validation} as S1 and the overall sample set as S, we initialize the contingency

table for the sensitive subgroup as n̂tr =
∑

i∈S1
I(Ti = t, Ri = r) · (|S| − |S1|)/|S|,

where I is the indicator function. Intuitively, this assumes all the stage 2 patients
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are initially selected into the sensitive subgroup, with numbers in the contingency

table predicted with stage 1 data. Next, I use the predicted cell numbers n̂tr to

estimate the gradient ∇Z expressed by equation (3.3), of which the detailed formula

is provided in Appendix A.6.

2. For the ith patient from stage 2 data, the four predicted probabilities p̂i11, p̂i10, p̂i01, p̂i00

can be calculated based on coefficients obtained from fitting the model (3.1) with

stage 1 data. Using equation (3.4) to predict the test statistic change E specific to

patient i, they are designated sensitive if the predicted value Ê is positive. Conversely,

the patient is excluded from the sensitive subset if Ê is negative, since their inclusion

is predicted to dilute the subgroup effect such that the test statistic would decrease.

I refer to this method the MGB (multivariate gradient-based) design. The classification

procedure is carried out for all stage 2 patients simultaneously. This preserves independence

between patient selection and treatment allocation. An advantage of this classification

process is that it only requires one tuning parameter µ for selecting significant biomarker-

treatment interactions in stage 1. This alleviates the computational burden compared

with the original ASD which needs to tune three parameters.

3.2.3 Relationships between the ASD, MRD and MGB classi-

fiers

In this section, I show how my two proposed classifiers - the risk difference classifier and

the gradient-based classifier - relate to one another. I also show, numerically, how they

will result in similar performance over a wide range of scenarios.

Considering first the gradient-based classifier, the expected test statistic change of

equation (3.4) can be easily re-expressed as:

E = (d00 − d01)
(
d11 − d10
d00 − d01

pi11 − pi01
)

+ d10pt + d00(1− pt)

where pt = pr(Ti = 1). A predicted positive test statistic change (i.e. Ê > 0) therefore

implies:

d̂11 − d̂10
d̂00 − d̂01

p̂i11 − p̂i01 >
d̂10p̂t + d̂00(1− p̂t)

d̂01 − d̂00
(3.5)

This inequality can be simplified to

A1p̂i11 − p̂i01 > A2 (3.6)

where A1 = (d̂11− d̂10)/(d̂00− d̂01) and A2 equals to the right side of (3.5). In Appendix A.6,
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I show that both A1 and A2 are asymptotically constants, relative to p̂i11 and p̂i01.

In comparison, the risk difference classifier thresholds p̂(Ri = 1 | Xij1 , . . . , Xijm∗ , Ti =

1)− p̂(Ri = 1 | Xij1 , . . . , Xijm∗ , Ti = 0), which can be expressed as

p̂i11
p̂t
− p̂i01

1− p̂t
=

1

1− p̂t

(
1− p̂t
p̂t

p̂i11 − p̂i01
)

= A3(A4p̂i11 − p̂i01)

where A3 = 1/(1 − p̂t) and A4 = (1 − p̂t)/p̂t, both of which are asymptotic constants,

relative to p̂i11 and p̂i01. Assuming the gradient-based classification criterion implied by

inequality (3.6) is optimal in the sense of maximizing the subgroup test statistic, the risk

difference classifier can achieve the equivalent criterion by using a threshold of A2A3, i.e.

A3(A4p̂i11 − p̂i01) = A3(A1p̂i11 − p̂i01) > A2A3

provided A1 = A4. I conduct a numerical analysis and show that when the probability

of treatment assignment pt is 0.5, A1 ≈ A4 for a variety of scenarios. The results are

provided in Appendix B.1. This implies the risk difference and gradient-based classifiers

can achieve similar performance in practice, when the former has a sufficiently large space

of tuning parameters to search for the optimal risk difference threshold.

I take a further step to compare the risk difference classifier with the classifier used by

the original ASD. For a particular risk difference threshold to select a sensitive subgroup,

in general, the same subgroup will not be discriminable using an odds ratio threshold.

This is because there will always be individuals with different predicted odds ratios who

exhibit the same risk difference for the new treatment versus control, and therefore would

be selected into (or out of) the sensitive subgroup together under a risk difference classifier,

but not necessarily under an odds ratio classifier. A numerical example is provided in

Appendix B.2. Thus, if the gradient-based and risk difference classifiers always have

the potential to select an optimal sensitive subgroup in the sense of maximizing the test

statistic, it follows that classification by thresholding the odds ratio is sub-optimal since it

may be unable to discriminate the same (optimal) subgroup.

3.3 Simulation studies

I conducted a simulation study to evaluate performance of my proposed methods described

above. I generated 1, 000 replicate data sets, each of which has m = 100 biomarkers.

Data were simulated under the model (1.6), where the treatment main effect was set

to βT = log(1.5) and the intercept β0 = 0. Three biomarkers were ascribed main

effects and interaction effects, i.e. βX1 = βX2 = βX3 = log(1.5) and βX1×T = βX2×T =

βX3×T = log(2.5). Seven other biomarkers were ascribed main effects on the trait without
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interactions, i.e. βX4 = βX5 = βX6 = βX7 = βX8 = βX9 = βX10 = log(1.5). All other

biomarkers do not have direct effects on the response. The binary treatment assignment

was drawn from a Bernoulli(0.5) distribution and each biomarker Xj was generated from

a standard normal distribution N (0, 1). All biomarkers were simulated as independent

of one another - in practice this would be the case for a collection of -omics biomarkers

corresponding to different gene regions, transcripts or proteins. A 0.01-level Fisher’s exact

test is carried out within the subgroup, and a 0.04-level Fisher’s exact test is conducted

within the whole sample (using the R function fisher.test, one-sided). For the cross-

validated ASD framework with each of the three classifiers (the original ASD classifier, the

MRD classifier and the MGB classifier), I use 10-fold outer cross-validation for selecting

the sensitive subgroup and 10-fold inner cross-validation for selecting tuning parameters.

The tuning sets of parameters are provided in Table 3.2. As suggested by Cherlin and

Wason [12], in practice, I only use one inner cross-validation fold to select parameters

within each outer cross-validation fold to save computational time. The permutation

method repeats the whole process for the additional 99 (the number used by Freidlin et al.

[26]) permuted data sets to obtain a valid p-value for subgroup treatment effect analysis.

Table 3.2: The tuning sets of parameters used by the inner cross-validation procedure

µ γ G

ASD (0.05, 0.20, 0.35, 0.50) exp(0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8) (1, 2, 3)

MRD (0.05, 0.20, 0.35, 0.50) (0.00, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21) NA

MGB (0.05, 0.20, 0.35, 0.50) NA NA
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Figure 3.1: Comparison of adaptive signature designs in simulated data. The four panels

represent power of: (a) the subgroup 0.01-level test with increasing sample size, (b) the

overall adaptive test (the subgroup 0.01-level test and the overall 0.04-level test) with

increasing sample size, (c) the subgroup 0.01-level test with increasing interaction effect,

(d) the overall adaptive test with increasing interaction effect.
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Table 3.3: Comparison of adaptive signature designs in simulated data when sensitive

patients exist: sample size of 1, 000, βT = log(1.5), three biomarkers have interaction

effects of βX1×T = βX2×T = βX3×T = log(2.5), 1, 000 repetitions for power estimation

ASD MRD MGB

Power (subgroup 0.01-level test) 0.390 0.803 0.832

Power (overall adaptive test) 0.650 0.860 0.879

Power (overall non-adaptive 0.05-level test) 0.632

Average subgroup size 709 463 541

Average subgroup odds ratio 1.46 2.21 2.07

Average overall odds ratio 1.31

Stage 2 computational time (hours) 15.6 17.0 12.6

Figure 3.1(a) and (b) compare power of subgroup 0.01-level tests and overall adaptive

design tests among the three classifiers. The proposed MRD and MGB designs demonstrate

substantial power increases over the original ASD. Consistently with my argument in

Section 3.2.3, the risk difference classifier performs similarly to the gradient-based classifier

across all simulation scenarios. Table 3.3 lists detailed results for when the sample size

is 1, 000. The adaptive design incorporating a subgroup 0.01-level test using any of the

three classifiers outperforms the non-adaptive design. As explained in Section 3.2.2, when

selecting a treatment sensitive subgroup, there exists a trade-off between the degree of

increased treatment effect and the size of the subgroup. In this scenario of a trial with

sample size 1, 000, the original ASD classifier selects subgroups of average size 709 with

an average odds ratio of 1.46, while the MRD classifier is more stringent, and selects

averagely 463 patients with a higher average subgroup odds ratio of 2.21. The MGB

classifier achieves a similar average odds ratio of 2.07 compared with the MRD classifier

but with a larger average subgroup size of 541, which represents a better trade-off between

the size of the sensitive group and increased efficacy there-in. Another advantage of the

MGB classifier is that, free of tuning two extra parameters, it is the least computationally

expensive procedure among the three: its computational time is reduced by 20% to 25%

compared with the other two classifiers in stage 2.
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Table 3.4: Comparison of adaptive signature designs in simulated data when sensitive

patients do not exist and the new treatment is effective within the whole group: sample

size of 1, 000, βT = log(1.5), no biomarkers have interaction effects, 1, 000 repetitions for

power and error rate estimation. Subgroup test error rates are counted as the proportion

of repetitions that the overall 0.04-level test is non-significant and the subgroup 0.01-level

test is significant

ASD MRD MGB

Power (subgroup 0.01-level test) 0.372 0.213 0.218

Power (overall adaptive test) 0.741 0.736 0.740

Power (overall non-adaptive 0.05-level test) 0.758

Average subgroup size 781 616 583

Average subgroup odds ratio 1.35 1.38 1.38

Average overall odds ratio 1.37

Stage 2 computational time (hours) 15.1 16.2 12.1

Subgroup error rate 0.008 0.003 0.007

In Table 3.4, I simulated a scenario with no biomarker having any biomarker-treatment

interaction. Other settings remain the same as the previous scenario. Thus, the treatment

effect is expected to be significant within the whole sample, but no sensitive subgroup exists

with a larger treatment effect. The adaptive designs perform similarly to the non-adaptive

design in regards to power, as it allocates 80% of the significance level to the overall

0.04-level test and only 20% to the subgroup 0.01-level test. Though the three classifiers

still select subgroups of patients, the odds ratios within these subgroups are close to those

within the whole sample. In Table 3.4, I list the subgroup test error rates which are

counted as the proportion of repetitions that the overall 0.04-level test is non-significant

and the subgroup 0.01-level test is significant, which are controlled under 0.01 as expected

for all three classifiers.
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Table 3.5: Comparison of adaptive signature designs in simulated data when sensitive

patients do not exist and the new treatment is not effective within the whole group: sample

size of 1, 000, βT = 0, no biomarkers have interaction effects, 1, 000 repetitions for power

and type I error rate estimation

ASD MRD MGB

Type I error rate (subgroup 0.01-level test) 0.014 0.011 0.014

Type I error rate (overall adaptive test) 0.044 0.042 0.044

Type I error rate (overall non-adaptive 0.05-level test) 0.047

Average subgroup size 410 461 498

Average subgroup odds ratio 0.953 1.02 1.02

Average overall odds ratio 1.01

Stage 2 computational time (hours) 15.1 16.1 12.0

In Table 3.5, I simulated a null scenario in which the treatment effect is zero and no

biomarker-treatment interactions exist. The subgroup type I error rates are controlled

under 0.01 successfully and the overall type I error rates are controlled under 0.05 as

expected for both the overall adaptive and non-adaptive design tests. The overall type I

error rate is probably below nominal level as there exists correlation between the overall

test statistic and the subgroup test statistic.

Next, I simulated additional scenarios with one biomarker having a main effect log(1.5)

and interaction effects varying from log(1.5) to log(12). Nine other biomarkers were

ascribed only main effects log(1.5). Figure 3.1(c) and (d) show that when the interaction

effect is small, the three classification methods cannot develop a reliable signature, thus

meaning all the subgroup tests are not powerful. When the interaction effect increases,

power of all the three designs increases. The MRD and MGB classifiers perform consistently

better than the original ASD classifier, demonstrating the robustness of my methods.
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Figure 3.2: Comparison of adaptive signature designs in simulated data. The four

panels represent: (a) (b) the data-generating model includes higher-order interactions

X1 × X2 × T,X1 × X3 × T,X2 × X3 × T but the analysis model does not, (c) (d) the

data-generating model includes a higher-order interaction X1 × X2 × X3 × T but the

analysis model does not.
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Lastly, I simulated scenarios where data-generating models are not in line with analysis

models. In Figure 3.2(a, b) and (c, d), I added log(1.5)X1×X2×T +log(1.5)X1×X3×T +

log(1.5)X2 ×X3 × T and log(1.5)X1 ×X2 ×X3 × T respectively into the data-generating

model (1.6) (other parameters remain the same with the setting described in the first

paragraph of this section), while the fitted model does not include these higher-order

interaction terms. Figure 3.2 shows that relative patterns of performance among the

classifiers were consistent with the results described previously, demonstrating further

robustness of our methods and findings.

3.4 Data applications

In addition to examining performance of my methods through simulation studies, I further

compare the different approaches in two real randomized clinical trial data applications.

3.4.1 START trial

The START trial data and the pre-processing steps applied were described in Section 1.6.1.

The primary binary outcome was used and 675 participants with 75 covariates were

included in the analysis. I applied my methods to assess if the new treatment is superior

to the control within the whole sample or within the sensitive subgroup selected by the

inferred signature. I used 5-fold outer and inner cross-validation, and permuted data sets

999 times to obtain the adjusted subgroup test p-value.

Table 3.6: Comparison of adaptive signature designs: START trial, sample size of 675

ASD MRD MGB

p-value (subgroup test) 0.294 0.514 0.535

p-value (overall test) 0.813

Subgroup size 423 291 308

Subgroup odds ratio 1.14 0.945 0.927

Overall odds ratio 0.832
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Table 3.7: 2× 2 contingency tables of different adaptive signature designs: START trial

Whole trial sample

Response No response

Treatment 297 43

Control 299 36

Sensitive subgroup (ASD)

Response No response

Treatment 184 22

Control 191 26

Sensitive subgroup (MRD)

Response No response

Treatment 128 18

Control 128 17

Sensitive subgroup (MGB)

Response No response

Treatment 134 19

Control 137 18

Table 3.6 summarizes results of applying the methods described in the previous section

and Table 3.7 gives numbers of responders and non-responders between arms within

sensitives subgroups selected by the three classifiers respectively. Neither the overall

0.05-level nor 0.04-level whole-group test were significant with the p-value of 0.813. The

subgroups found by the three classifiers had odds ratios close to 1, indicating that the

classifier did not develop a signature with evidence of being sensitive.

3.4.2 STOPAH trial

The STOPAH trial data and any required pre-processing were described in Section 1.6.2.

In this application with 28-day mortality as the binary response endpoint, I applied my

approaches to assess: 1) if the treatment with pentoxifylline is superior to the control

without pentoxifylline; and 2) if the treatment with prednisolone is superior to the control

without prednisolone. I used 5-fold outer and inner cross-validation, and permuted data

sets 999 times to obtain the adjusted subgroup test p-value.
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Table 3.8: Comparison of adaptive signature designs: STOPAH trial, sample size of 1, 068

Pentoxifylline vs no pentoxifylline

ASD MRD MGB

p-value (subgroup test) 0.378 0.591 0.608

p-value (overall test) 0.468

Subgroup size 432 424 457

Subgroup odds ratio 1.02 0.913 0.914

Overall odds ratio 1.03

Prednisolone vs no prednisolone

ASD MRD MGB

p-value (subgroup test) 0.257 0.251 0.199

p-value (overall test) 0.034

Subgroup size 545 463 699

Subgroup odds ratio 1.09 1.13 1.18

Overall odds ratio 1.38

Table 3.8 summarizes results of applying my methods to the STOPAH trial data.

Treatment with pentoxifylline was not significant in the overall test with a p-value of

0.468. The three adaptive designs also did not find pentoxifylline effective within patient

subgroups defined by the respective resulting classifiers, all of which still resulted in odds

ratios around 1. Treatment with prednisolone was significant in the overall 0.05-level test.

However, the subgroup 0.01-level tests were not significant under all the three designs.

The odds ratios within the patient subgroups defined under each design were all smaller

than the overall odds ratio of 1.38, demonstrating that all designs failed to find a reliable

signature. In spite of this, since the overall treatment effect of prednisolone was significant

under a significance level 0.04, the three adaptive designs were still able to conclude an

effect in the overall patient population. This demonstrates that the adaptive signature

design does little to compromise the trial’s ability to detect treatment efficacy within the

overall sample, even if a sensitive subgroup does not exist. Table 3.9 and 3.10 give numbers

of responders and non-responders between arms within sensitives subgroups selected by

the three classifiers respectively.
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Table 3.9: 2× 2 contingency tables of different adaptive signature designs: STOPAH trial,

pentoxifylline vs no pentoxifylline

Whole trial sample

Response No response

Pentoxifylline 451 86

No pentoxifylline 444 87

Sensitive subgroup (ASD)

Response No response

Pentoxifylline 175 45

No pentoxifylline 168 44

Sensitive subgroup (MRD)

Response No response

Pentoxifylline 168 46

No pentoxifylline 168 42

Sensitive subgroup (MGB)

Response No response

Pentoxifylline 183 45

No pentoxifylline 187 42
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Table 3.10: 2 × 2 contingency tables of different adaptive signature designs: STOPAH

trial, prednisolone vs no prednisolone

Whole trial sample

Response No response

Prednisolone 459 75

No prednisolone 436 98

Sensitive subgroup (ASD)

Response No response

Prednisolone 237 48

No prednisolone 213 47

Sensitive subgroup (MRD)

Response No response

Prednisolone 291 59

No prednisolone 271 62

Sensitive subgroup (MGB)

Response No response

Prednisolone 300 51

No prednisolone 290 58

The results of these two real examples in Table 3.6 and 3.8 show that the MRD and

MGB designs tend to perform similarly to each other, but differently to the original ASD.

This is consistent with my theoretical argument in Section 3.2.3.

3.5 Discussion

This chapter has proposed two classification strategies to be used in the cross-validated

adaptive signature framework. The MRD (multivariate risk difference) design relies on

thresholding each patient’s predicted risk difference. The MGB (multivariate gradient-

based) design classifies patients based on the expected change of the treatment effect

test statistic within the selected subgroup. Both designs consider the joint effect of all

stage 1 selected sensitive biomarkers by fitting a multivariate model. This gives a more

informative summary measure for each patient, compared to the classification strategy

used in the original ASD (adaptive signature design), which considers a patient’s predicted

marginal odds ratio for each sensitive biomarker separately. I demonstrated that the MRD

and MGB designs perform similarly to each other in a variety of scenarios, and presented

an analytical argument that they both perform consistently better than the original ASD.

This point is further validated through simulations and real data applications. I showed
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that, in various simulated scenarios, the MRD and MGB designs achieve superior power

compared to the original ASD. Another limitation of the original ASD is that it requires

three tuning parameters to develop the classifier: µ for selecting sensitive biomarkers, γ

for thresholding the predicted marginal odds ratio for each sensitive biomarker, and G for

thresholding the number of sensitive biomarkers with predicted marginal odds ratios that

exceed γ. This is computationally intensive, especially within the cross-validated ASD.

In contrast, my MGB design requires the optimization of just a single tuning parameter

and consequently, as I have demonstrated, offers a more computationally efficient ASD

framework.

In the adaptive signature framework, the classification process is carried out after the

completion of the trial, which preserves the ability to detect the overall treatment effect

in all eligible patients. Throughout this chapter, my adaptive designs follow the original

ASD, with 80% of the overall significance level allocated to the whole-group test and 20%

to the subgroup test. This minimizes the risk of missing an overall treatment effect even

when a signature is not detectable. Indeed, this property was demonstrated in my analysis

of the effect of prednisolone on alcoholic hepatitis in data from the STOPAH trial. Even

though no robust biomarker signature was detected, all adaptive signature designs still

provided evidence for a significant effect of prednisolone in the combined set of all patients.

One limitation of the ASD is that it does not give a clear answer to the question

of whether the use of any detected signature should be recommended in practice, if the

treatment is still significant in the overall trial population. When the subgroup test is

not significant, the answer is negative, because a reliable signature is not found. The

answer is more ambiguous when the whole-group test and the subgroup test are both

significant, because we cannot be certain if the significance of the subgroup test is driven

by a genuine biomarker signature, or whether it represents a consistent overall treatment

effect across subgroups. The reason we cannot be certain whether the signature should

be recommended going forward is because the adaptive signature framework does not

directly test for a difference in treatment effect between the subgroup and overall trial

population. Further investigation is necessary into the comparison between the overall

and subgroup treatment effects. This might be done either by using the existing trial data

(e.g. a positive interaction effect between the signature and the treatment on the outcome

would indicate the usefulness of a detected signature) or conducting a new randomized

trial. I wish to pursue this question as a topic of future work. Thus, in the current ASD

setting, I can only recommend use of any detected signature in the following scenario: The

overall test is not significant while the subgroup test is significant.

My proposed MRD and MGB designs rely on fitting a multivariate model to all

“sensitive” biomarkers, that is, which have demonstrated a univariate influence on efficacy.

In a high-dimensional setting, where the number of selected biomarkers is larger than
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the sample size, this approach may be infeasible using traditional regression methods.

One option is that instead of selecting all sensitive biomarkers which exhibit biomarker-

treatment interaction effects at some pre-specified significance threshold, I can use a

fixed number (smaller than the sample size) of top ranked biomarkers to be selected

into the next phase. Doing so would allow control over the number of parameters in the

multivariate model to be fitted. Another option is to utilize sparse regression techniques

such as lasso, ridge regression, or Bayesian variable selection to make predictions of relevant

quantities (e.g. the odds ratio, risk difference or expected test statistic change) under

high-dimensional settings, which is another area I wish to explore in future work [47, 76].

One limitation of my proposed MGB design is that the gradient ∇Z of the test statistic

is estimated once using stage 1 data, and never updated as I classify patients one by one as

“sensitive” or not in stage 2. Intuitively, updating this gradient after each stage 2 patient

is processed may provide an “adaptive” classification criterion that better maximizes the

subgroup test statistic. However, sequentially updating the classification algorithm in this

way would introduce association between patient selection and treatment allocation within

the subgroup, because the treatment allocation of the processed stage 2 patients will

have bearing on the classification of the remaining unprocessed patients. Thus, different

processing sequences of stage 2 patients could result in different sensitive subgroups,

thus different subgroup test results, which would require careful thought around how to

interpret. Therefore, although developing a sequentially updated classification algorithm

is not trivial, I plan to explore the possibility in the future.

My discussion of the MGB in Section 3.2.2 was in terms of Woolf’s association test

statistic. I chose this statistic since concise analytical forms of its partial derivatives

were available, which allowed my analytical arguments around the relative performance

of the different adaptive signature designs. In practice, a Fisher’s exact or chi-squared

test is usually used to analyze a 2 × 2 contingency table like Table 3.1. Extending the

gradient-based classifier to these statistics is possible and I present how to do this in

Appendix A.7. The test (3.2) approximates these tests asymptotically and so I expect the

comparative performances inferred in Section 3.2.3 to still hold, although extended formal

analytical arguments based on these tests are non-trivial and beyond the scope of this

thesis. Furthermore, as also demonstrated in Appendix A.7, the gradient-based classifier

can be extended to some other types of outcomes, in addition to the binary end point

which this chapter focused on.

In summary, I have presented two novel classification algorithms for use within the

cross-validated ASD (adaptive signature design) framework: the MRD (multivariate

risk difference) classifier and the MGB (multivariate gradient-based) classifier. Through

theoretical arguments and simulations, I demonstrated that the MRD and MGB classifiers

provided substantially better power than the original ASD univariate classifier. The MGB
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classifier also exhibited the most computationally efficient performance. Application of my

methods was further illustrated using two real trial data sets.
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Chapter 4

De-biased logistic regression

biomarker-treatment interaction

estimator under model

misspecification

4.1 Introduction

Heterogeneity in response to a treatment can be explained by the complex relationships

between each person’s biological characteristics and the treatment. These complex re-

lationships often make it challenging to correctly specify a model. Inference based on

misspecified models can result in false conclusions [15]. Therefore, understanding how

sensitive results are to misspecified models is important.

The commonly used one-biomarker-at-a-time model for biomarker-treatment interaction

analysis, which plays an important role in the frameworks proposed in Chapter 2 and 3,

is incorrectly specified when a true interaction signal between another covariate and the

treatment is not accounted for. This problem is closely related to the issue of invalid model-

based inference when the relationship between the outcome and the environmental factor is

misspecified in the model, which has been reported in gene-environment interaction studies

[15, 1]. (The relevancy to our work follows from the fact that a binary environmental factor

may be thought of as analogous to a treatment intervention.) Tchetgen and Kraft [70]

analyzed gene-environment interaction testing using one-biomarker-at-a-time models under

model misspecification in the scenario that the genetic biomarker is independent of all other

biomarkers, the environmental factor, and also the outcome. In this particular setting,

they proved that the estimated gene-environment interaction coefficient is asymptotically

unbiased even if the environmental factor is misspecified in the fitted logistic regression

model. Rosenblum and Van Der Laan [63] provided a proof of a similar result for the
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generalized linear model in the randomized clinical trial setting. However, these theoretical

results are constrained by the condition that the genetic biomarker is not associated with

the outcome.

Sun et al. [69] showed that, under model misspecification, the estimated gene-environment

interaction coefficient is unbiased for linear regression given gene-environment indepen-

dence. They also showed that the interaction coefficient estimator is generally biased for

logistic regression when the genetic biomarker is associated with the outcome directly

or indirectly through correlation with confounding covariates. Their results built upon

previous work in two respects. First, the result for linear regression does not depend on

independence between the genetic biomarker and the outcome. Second, they formally

specified the conditions under which the gene-environment interaction parameter estimate

is biased.

This chapter is organized as follows. Section 4.2 summarizes the theoretical results of

Sun et al. [69] in the gene-environment interaction setting. Section 4.3 applies these results

to the randomized clinical trial setting and analyzes asymptotic bias of the biomarker-

treatment interaction estimator for linear regression and logistic regression respectively

under model misspecification. Section 4.4 derives two de-biasing approaches for testing

biomarker-treatment interactions under logistic regression, and Section 4.5 evaluates

performance of these de-biased estimators in different simulated scenarios. Section 4.6

illustrates applicability of my proposed methods in a real trial data set. The final section

discusses potential future work related to this topic.

4.2 Asymptotic bias of the gene-environment inter-

action estimator under model misspecification

In this section, I summarize the existing theoretical results concerning asymptotic bias

when testing for gene-environment interactions if the outcome-environment relationship is

misspecified in the model.

Suppose the true data-generating model is specified by the generalized linear model of

the form

G{E(Yi | Xij, ei,Zij)} = β0j + βXj
Xij + βef(ei) + βXj×eXij × h(ei) +ZT

ijβZj
(4.1)

with Yi denoting the response outcome, ei the environmental exposure variable, Xi1, . . . , Xim

representing the values ofm biomarkers, for the ith patient. The vectorZij = (Zi1, . . . , Zipj )
T

includes additional predictor variables, which could consist of functions of Xik for any

k = 1, . . . ,m and k 6= j (e.g. the main effect or interaction terms of Xik other than Xij),

the environmental factor ei, and any other confounding variables. The model coefficients
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βZj
= (βi1, . . . , βipj)

T for Zij are all non-zero, i.e. βik 6= 0 for k = 1, . . . , pj. This means

Zij only retains the predictor variables that have effects on the outcome. f and h are

functions of ei (e.g. e2i ). G is a canonical link function.

A standard interaction test for the jth biomarker fits the (misspecified) model of the

following form

G{E(Yi | Xij, ei)} = δ0j + δXj
Xij + δeei + δXj×eXij × ei (4.2)

and the null hypothesis δXj×e = 0 is tested. Notice that I use δXj×e to denote the interaction

coefficient in the fitted (misspecified) model (4.2) and βXj×e as the interaction coefficient

in the true data-generating model (4.1).

Comparing the fitted model (4.2) with the true model (4.1), the environmental exposure

factor ei is misspecified in (4.2) when either f or h is a nonlinear function of ei, or Zij

includes any term involving a nonlinear function of ei. It has been reported [15, 1] that,

under exposure misspecification, i.e. when either of these conditions holds, the inference on

interaction could be invalid, resulting in inflated p-values, and therefore more type I errors.

More precisely, when ei is misspecified and the interaction coefficient is βXj×e = 0 within

the true data-generating model (4.1), the interaction estimator δ̂Xj×e does not necessarily

converge to zero in probability, i.e. the large sample limiting value of the coefficient δXj×e

is not necessarily zero.

Sun et al. [69] summarized the conditions under which the exposure misspecification

does not invalidate the interaction inference, i.e. δXj×e = 0 in the fitted (misspecified)

model when βXj×e = 0 in the true model. For linear regression, with G set as an identity

link function in the models (4.1) and (4.2), the sufficient conditions for valid interaction

inference are (both of the following conditions must be met):

1. Gene-environment independence, i.e. Xij ⊥ ei.

2. At least one of Xij or ei is independent of each Zik for all k = 1, . . . , pj.

For logistic regression, with G set as a logit link function, the sufficient conditions for

an interaction not being falsely detected under exposure misspecification are (all of the

following conditions must be met):

1. Gene-environment independence, i.e. Xij ⊥ ei.

2. The jth biomarker Xij is independent of each Zik for all k = 1, . . . , pj.

3. The jth biomarker’s mains effect is zero, i.e. βXj
= 0.

These conditions for logistic regression are much more stringent than those for linear

regression, therefore the interaction tests for binary outcomes are more susceptible to the

issue of bias under model misspecification.

83



4.3 Asymptotic bias of the biomarker-treatment in-

teraction estimator under model misspecification

I now examine how the issue of bias discussed in the previous section manifests in a

randomized clinical trial setting. I assume a true data-generating model of the following

form

G{E(Yi | Xi1, . . . , Xim, Ti)} = β0 + βTTi +
m∑
j=1

(βXj
Xij + βXj×TXij × Ti) (4.3)

with Yi denoting the response outcome, Ti the binary treatment-control indicator, Xi1, . . . , Xim

representing the values of m biomarkers, for the ith patient. G is the canonical link function.

A common approach for detecting biomarker-treatment interactions tests each biomarker

one at a time by fitting the model of the form

G{E(Yi | Xij, Ti)} = δ0j + δXj
Xij + δTTi + δXj×TXij × Ti (4.4)

and performing inference on the null hypothesis δXj×T = 0, for each j = 1, . . . ,m. This

particular setup is a special case of the setting discussed in Section 4.2. Next, I will

describe how the relevant theoretical results in Section 4.2 can be translated to this clinical

trial setting.

The relationship between the outcome and the treatment variable Ti is misspecified

in the fitted model (4.4) when there exists any other biomarker which has an interaction

with the treatment, i.e. βXk×T 6= 0 for any k = 1, . . . ,m and k 6= j in the true model

(4.3). Notice that if all the biomarkers do not have interaction with the treatment, i.e. the

outcome-treatment relationship is correctly specified in (4.4), then no bias will be induced

for testing biomarker-treatment interactions.

For linear regression, the sufficient conditions for valid interaction inference (δXj×T = 0

when βXj×T = 0) are achieved when the treatment allocation Ti is independent of both

Xij and Xij × Ti for each j = 1, . . . ,m. The condition that Ti is independent of Xij × Ti,
i.e. cov(Ti, Xij × Ti) = 0, is met when Ti is independent of Xij and E(Xij) = 0.1 All the

standard interaction tests I performed for continuous outcomes in Chapter 2 met these

conditions.

For logistic regression, the biomarker-treatment independence should be guaranteed in

a randomized trial. However, the third condition for valid interaction inference described

in Section 4.2, i.e. βXj
= 0, can be violated, because the main effect βXj

is not necessarily

zero when the interaction effect βXj×T is zero. This means that any biomarker with

1cov(Ti, Xij × Ti) = E(XijT
2
i ) − E(Ti)E(XijTi) = E(Xij)E(T 2

i ) − E(Xij)E(Ti)
2 = 0 given that

Xij ⊥ Ti and E(Xij) = 0.
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a non-zero main effect (βXj
6= 0 in the true model) will generally result in an invalid

interaction test under the model (4.4) (δXj×T 6= 0) even under the null (βXj×T = 0 in the

true model). It is not implausible that many treatment interacting biomarkers may also

have an independent main effect on the outcome. Thus, the issue of bias could manifest in

the standard one-biomarker-at-a-time interaction tests for binary outcomes as an elevated

number of type I errors.

This motivated us to develop a de-biased logistic regression biomarker-treatment

interaction estimator in this randomized clinical trial setting.

4.4 De-biased biomarker-treatment interaction esti-

mator

In this section, I derive a de-biased estimator for one-biomarker-at-a-time interaction

testing under logistic regression.

For logistic regression, we rephrase the true data-generating model (4.3), of which G is

a logit link function, as

S−1{E(Yi |X i)} = XT
i β (4.5)

where the vector X i = (1, Ti, Xi1, . . . , Xim, Xi1Ti, . . . , XimTi)
T includes the treatment

assignment Ti, the values of m biomarkers Xi1, . . . , Xim, and multiplicative interactions

between the treatment and biomarkers Xi1Ti, . . . , XimTi. The coefficient vector β =

(β0, βT , βX1 , . . . , βXm , βX1×T , . . . , βXm×T )T defines the corresponding model coefficients for

the treatment main effect, biomarkers’ main effects and interaction effects. S is the sigmoid

function which is the inverse of the logit link function for binary outcomes. The fitted

one-biomarker-at-a-time models (4.4) for logistic regression are reformulated as

S−1{E(Yi | V ij)} = V T
ijδj (j = 1, . . . ,m) (4.6)

where V ij = (1, Ti, Xij, XijTi)
T includes the treatment assignment Ti, the value of jth

biomarker, and their multiplicative interaction XijTi. The vector δj = (δ0j , δT , δXj
, δXj×T )T

defines the coefficients in this fitted model. I assume treatment Ti ∈ {0, 1} and Xij ∼
N (0, 1) for j = 1, . . . ,m (which it is assumed can be achieved by properly scaling each

covariate).

To evaluate asymptotic bias of the biomarker-treatment estimate, I first seek to

establish a relationship between the coefficients δj in the (misspecified) model (4.6) and

the coefficients β in the true model (4.5). The asymptotic mean δj of a maximum likelihood
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estimator δ̂j is the solution to the following score equations

E[V ij{Yi − S(V T
ijδj)}] = 0

which may be re-expressed as

E[(1, Xij, Ti, XijTi)
T{S(XT

i β)− S(V T
ijδj)}] = 0 (4.7)

The above equation involving vectors and matrices defines a system of equations. Solving

this equation system requires evaluating the expectation of a sigmoid function, which

generally does not have a closed-form expression. A sigmoid function can, however,

be accurately approximated by the standard normal cumulative distribution function

[6, 67, 22]. Utilizing this technique, I am able to show (in Appendix A.9) that solving the

equation system (4.7) is approximately equivalent to solving the following four equations

rE(XT
i β)− E(V T

ijδj) = 0 (4.8)

rE(XijX
T
i β)− E(XijV

T
ijδj) = 0 (4.9)

rTE(XT
i β | Ti = 1)− E(V T

ijδj | Ti = 1) = 0 (4.10)

rTE(XijX
T
i β | Ti = 1)− E(XijV

T
ijδj | Ti = 1) = 0 (4.11)

of which r and rT are defined as

r =

√
1 + ξ2var(V T

ijδj)

1 + ξ2var(XT
i β)

(4.12)

rT =

√
1 + ξ2var(V T

ijδj | Ti = 1)

1 + ξ2var(XT
i β | Ti = 1)

(4.13)

where ξ is a parameter used in the approximating function of the sigmoid function. I use

ξ2 = π/8 in the subsequent simulation studies [6].

Solving the system of equations (4.8) to (4.11) for δj gives the solutions to the

biomarker’s main effect coefficient δXj
and the interaction effect coefficient δXj×T for the

(misspecified) model

δXj
=

r(βXj
+ pTβXj×T )− pT rT (βXj

+ βXj×T )

1− pT
(4.14)

δXj×T =
rT (βXj

+ βXj×T )− r(βXj
+ pTβXj×T )

1− pT
(4.15)

where pT = pr(Ti = 1) is the probability of treatment assignment. Under the null

βXj×T = 0, formula (4.15) immediately gives δXj×T = (rT − r)βXj
/(1− pT ). This implies,
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under the null βXj×T = 0, when the main effect is not zero βXj
6= 0, the asymptotic

limit δXj×T of the interaction estimator in the fitted one-biomarker-at-a-time model

(4.4) is generally not zero. Sun et al. [69] provided a similar result but I establish a

quantitative relationship between the biomarker’s main effect βXj
and the estimated

interaction coefficient δXj×T .

Notice equations (4.14) and (4.15) involve βXj×T , which is the interaction coefficient

in the true model (4.3). Next, I seek to derive an unbiased interaction estimator, which

will converge to βXj×T . I first solve equations (4.14) and (4.15) for βXj×T . This gives the

following expression for βXj×T :

βXj×T =
(r−1T − r−1)δXj

+ (r−1T − pT r−1)δXj×T

1− pT

of which, all the terms on the right side can be estimated from data (as described below).

Thus, I propose the following de-biased estimator

β̃Xj×T =
(r̂−1T − r̂−1)δ̂Xj

+ (r̂−1T − p̂T r̂−1)δ̂Xj×T

1− p̂T

where δ̂Xj
and δ̂Xj×T are maximum likelihood estimators of δXj

and δXj×T , which can

be obtained by fitting the model (4.4). The treatment assignment probability pT can

be estimated empirically or in most cases will be a known feature of the trial design.

Estimating r and rT defined by equations (4.12) and (4.13) is more challenging, as it

involves estimating the variances of two linear predictors in the true model, var(XT
i β)

and var(XT
i β | Ti = 1), and the variances of two linear predictors in the fitted model

var(V T
ijδj) and var(V T

ijδj | Ti = 1). Fitting model (4.4) gives estimates of var(V T
ijδj)

and var(V T
ijδj | Ti = 1).

To estimate var(XT
i β) and var(XT

i β | Ti = 1), I propose fitting the saturated model

(4.3) involving the main effect and interaction effect terms of all the biomarkers. When the

true data-generating model is correctly expressed by (4.3) and sample size is sufficiently

large, this approach will give good estimates of var(XT
i β) and var(XT

i β | Ti = 1). In

high-dimensional settings where m � n, I propose using group lasso to fit model (4.3).

In practice, it is usually not possible to specify the true model correctly, e.g. when there

exists some unknown confounder. I examine how our proposed methods perform in these

scenarios in the simulation section.

The variance of the estimator β̃Xj×T can be obtained in a similar manner:

var(β̃Xj×T )

= {(r̂−1T − r̂
−1)2var(δ̂Xj

) + (r̂−1T − p̂T r̂
−1)2var(δ̂Xj×T )

+2(r̂−1T − r̂
−1)(r̂T − p̂T r̂−1)cov(δ̂Xj

, δ̂Xj×T )}/(1− p̂T )2
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This completes my derivation of the de-biased interaction estimator.

Throughout this section, we have assumed Ti ∈ {0, 1}. An alternatively way is to code

treatment as Ti ∈ {−0.5, 0.5}, i.e. −0.5 for the control arm and 0.5 for the experiment

arm [71]. In Appendix A.10, I give the form of the de-biased interaction estimator under

this alternative treatment coding scheme.

4.5 Simulation studies

I generated simulated data sets to evaluate performance of my proposed de-biasing

interaction testing procedures for binary outcomes. Data were simulated under the model

(1.6), where the treatment main effect was set to βT = log(1.5) and the intercept to β0 = 0.

Three biomarkers were ascribed main effects and interaction effects, i.e. βX1 = βX2 =

βX3 = log(1.5) and βX1×T = βX2×T = βX3×T = log(3). Three other biomarkers were

ascribed main effects on the trait without interactions, i.e. βX4 = βX5 = βX6 = log(4.5).

All other biomarkers do not have effects on the outcome. Each biomarker Xj was generated

from a standard normal distribution N (0, 1) and the binary treatment assignment was

drawn from a Bernoulli(0.5) distribution. All biomarkers were simulated as independent

of one another. I considered two different numbers of simulated features: 1) a moderate

number of biomarkers, m = 100, and sample size varying from 1, 000 to 2, 000; 2) a

relatively larger number of biomarkers, m = 1, 000, and sample size varying from 1, 500 to

2, 500. For each scenario, 1, 000 replicate data sets were generated to estimate power and

family-wise error rates.

Three interaction testing procedures were compared:

1. “No de-biasing”: A standard one-biomarker-at-a-time interaction test of the form

(4.4) was performed.

2. “Non-penalized de-biasing”: The one-at-a-time model of the form (4.4) was fitted

for each biomarker j = 1, . . . ,m to obtain the estimated main effect coefficients,

interaction coefficients and the standard errors of these estimators. The full model

of the form (4.3) was fitted to estimate r and rT expressed by equations (4.12) and

(4.13). The de-biased interaction estimators and their estimated standard errors

were calculated as described in the previous section, which were further used to

obtain the corrected p-values.

3. “Lasso de-biasing”: The only difference from the above “non-penalized de-biasing”

procedure is that group lasso was used to fit the full model of the form (4.3) to

estimate r and rT . The R package glinternet [47] was used with the penalization

parameter λn chosen to minimize predictive errors under 5-fold cross-validation.
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The Bonferroni correction was applied to all three procedures described above, targeting a

family-wise error rate of 0.05.
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Figure 4.1: Comparison of interaction tests with different de-biasing strategies in simulated

data. The four panels represent: (a) family-wise error rate, 100 independent biomarkers,

(b) power, 100 independent biomarkers, (c) family-wise error rate, 1, 000 independent

biomarkers, (d) power, 1, 000 independent biomarkers.

In Figure 4.1(a), I simulated a scenario with a moderate number of biomarkers m = 100
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and sample sizes around 1, 500. The issue of asymptotic bias is evident for the standard

interaction test as it suffered an increasing family-wise error rate with increasing sample

size. Its family-wise error rate was inflated to above 0.1, while the two proposed de-biasing

approaches demonstrated successful family-wise error rate control at the desired level of

0.05. Although the primary purpose of the de-biased interaction estimator is to reduce

the number of type I errors, it is worth examining power. In Figure 4.1(b), both of the

two proposed approaches showed higher power than the standard interaction test. This

indicates, in this simulated scenario, the bias is in the opposite direction to the signal of

the interacting biomarker, but has been corrected by the de-biasing approaches. The group

lasso de-biasing procedure had lower power than the non-penalized de-biasing procedure

in the scenario with m� n, possibly because its penalizing regression coefficients led to

underestimated var(XT
i β) and var(XT

i β | Ti = 1) in equations (4.12) and (4.13).

In Figure 4.1(c), with a larger number of biomarkers m = 1, 000, the proposed de-

biasing procedures demonstrated improved family-wise error rate control compared to

the standard interaction test. The standard interaction test still resulted in a severely

inflated family-wise error rate. An inflated family-wise error rate was also evident for the

non-penalized de-biasing procedure where the error rate is increased above the targeted

level of 0.05 with increasing sample size. When the number of features is similar to the

sample size, fitting a multivariate model like (4.3) can suffer from overfitting, thus leading

to less accurate estimation of r and rT expressed by equations (4.12) and (4.13). Notice

that there are two trends for the de-biasing procedures as the sample size increases: 1)

Asymptotic bias tends to result in more type I errors, and 2) the de-biasing procedure

tends to better correct this bias, thus reducing the number of type I errors. Therefore,

further increasing the sample size will likely improve the performance of the non-penalized

de-biasing procedure. However, in this simulated scenario, the former trend dominated

{Figure 4.1(c)} and the family-wise error rate increased with sample size for the non-

penalized de-biasing procedure. Group lasso demonstrated better performance in this

scenario, likely attributed to its use of penalization to avoid overfitting, which is expected

to offer an advantage in the setting where the number of features is similar to the sample

size. Figure 4.1(d) compares power between these approaches. The group lasso de-biasing

procedure still resulted in better power than the standard interaction test, demonstrating

the improvement it offers over standard logistic regression analysis with no de-biasing

is robust across different dimension settings. The non-penalized de-biasing procedure,

however, had lower power than the standard interaction test without de-biasing, owing to

less accurate regression coefficient estimation due to overfitting.

In the above simulated scenarios, I assume all true predictors are available to the

two de-biasing procedures for estimating r and rT . Next, I examine how these methods

perform when there exist unmeasured interacting biomarkers.
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Figure 4.2: Comparison of interaction tests with different de-biasing strategies in simulated

data. The four panels represent: (a) 100 independent biomarkers (ρ = 0), including 1

unmeasured interacting biomarker, (b) 100 independent biomarkers (ρ = 0), including

2 unmeasured interacting biomarkers, (c) 100 highly correlated biomarkers (ρ = 0.6),

including 1 unmeasured interacting biomarker, (d) 100 highly correlated biomarkers

(ρ = 0.6), including 2 unmeasured interacting biomarkers.
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Using the base scenario with 100 independent biomarkers described above, I ascribed

one biomarker with an interaction effect log(3) and a main effect log(1.5), in addition to the

existing three interacting biomarkers and three biomarkers having only main effects. This

additional interacting biomarker was “masked” from my interaction testing procedures.

In practice, this corresponds to the case where there exists an unknown interacting

confounder. Figure 4.2(a) shows that all the three interaction testing procedures resulted

in inflated family-wise error rates above 0.05. Although the two de-biasing approaches

demonstrated improved family-wise error rate control, the error rates increased with

increasing sample size, which is evidence that the loss of information from the “masked”

interacting biomarker is detrimental to the effectiveness of de-biasing. In Figure 4.2(b),

I simulated a scenario with two masked interacting biomarkers in addition to the three

interacting biomarkers. As more information was hidden, the non-penalized de-biasing

procedure sometimes performed worse than the standard interacting test in this scenario.

Although the group lasso de-biasing procedure also failed to control the family-wise error

rate at 0.05, it demonstrated improved error rate control compared with the standard

interaction test.

Next, I simulated scenarios with correlated biomarkers. All 100 biomarkers were

partitioned into 10 clusters of correlated biomarkers, containing 10 biomarkers each.

The 10 biomarkers within each cluster are correlated with each other (ρ = 0.6), but

there are no correlations between biomarkers in different clusters. As in the scenario

of Figure 4.2(a), four biomarkers were ascribed main effects and interaction effects, i.e.

βX1 = βX11 = βX21 = βX31 = log(1.5) and βX1×T = βX11×T = βX21×T = βX31×T = log(3).

One of these four interacting biomarkers was masked. Three other biomarkers were

ascribed main effects on the trait without interactions, i.e. βX41 = βX51 = βX61 = log(4.5).

All other biomarkers were assumed to not have effects on the outcome. Figure 4.2(c)

shows family-wise error rates of all the interaction testing procedures under this scenario

with highly correlated biomarkers. Although one interacting biomarker remained hidden,

both of the two de-biasing approaches demonstrated substantially better error rate control

than the standard interacting test. Intuitively, this is because information of this hidden

biomarker is likely to be retained by its correlation with other “observed” biomarkers. In

Figure 4.2(d), I introduced two hidden interacting biomarkers in this scenario with highly

correlated biomarkers. The two de-biasing procedures did not control the family-wise error

rate at 0.05, but both of them demonstrated improved error rate control compared with

the standard approach without de-biasing.

93



Figure 4.3: Comparison of interaction tests with different de-biasing strategies in simulated

data. The two panels represent: (a) family-wise error rate, 5, 000 independent biomarkers,

(b) power, 5, 000 independent biomarkers.

Lastly, I illustrated applicability of the group lasso de-biasing procedure in a high-

dimensional setting where n < m. The parameterization remains the same with the base

scenario, except that each generated data set now has 5, 000 biomarkers. Figure 4.3(a) and

(b) show that the group lasso de-biasing procedure effectively controlled the family-wise

error rate at around 0.05 without harming power compared with the standard interaction

test.

In summary, the group lasso de-biasing procedure demonstrated robustness across

different scenarios; when there are substantial correlations between biomarkers, the de-

biasing procedures are able to improve family-wise error rate control even if some of

interacting biomarkers were unmeasured.

In Appendix C.3, I provide additional simulation results under {−0.5, 0.5} treatment

coding, which showed slightly improved power of the group lasso de-biasing procedure

compared with {0, 1} treatment coding used in the simulations conducted in this section.
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4.6 Data applications

4.6.1 PREVAIL trial

I applied my de-biasing approaches to a phase II trial data set with high-dimensional gene

expression biomarkers. The data set and any required pre-processing were described in

Section 1.6.3. Of all the 61 patients, 32 were in the lactoferrin-treated group, and the

remaining were in the placebo group. No significant difference in clinical outcomes was

found between the lactoferrin vs placebo groups by the trial. I restricted the analysis to

10, 000 probes with the highest standard deviations. ICU (intensive care unit) mortality

was used as the binary response endpoint. Both the standard interaction test without

de-biasing and the group lasso de-biasing procedure described in Section 4.5 did not find

any significant biomarker-treatment interactions targeting a family-wise error rate of 0.05.

Figure 4.4: Histograms of p-values of interaction tests with different de-biasing strategies.

Figure 4.4 shows distributions of p-values of the standard interaction test without

de-biasing and the group lasso de-biasing procedure. If the null hypotheses for all the

biomarkers are correct, the distribution of p-values is expected to be uniform. However,

both the distributions shown in Figure 4.4 were skewed towards 0. This could indicate

that the p-values were skewed towards 0 due to model misspecification and the de-biasing

procedure did not remove the bias here. Or this could indicate the existence of genes
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interacting with the treatment but not sufficiently significant to be detected in this trial

(not all the null hypotheses are true). The shapes of the distributions for the two procedures

did not notably differ, which implies that the de-biasing procedure may not adjust the

p-values much. Figure 4.5 shows the scatter plot of p-values on a logarithm scale before

and after de-biasing. The diagonally aligned points of log-scale p-values before and after

de-biasing mean that the de-biasing procedure did not make significant changes to the

p-values.

Figure 4.5: Scatter plot of -log10(p-value) before and after de-biasing: x-axis: -log10(p-

value) of the no de-biasing procedure; y-axis: -log10(p-value) of the lasso de-biasing

procedure.
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Table 4.1: Empirical de-biasing parameters

Estimate (averaged)

r 1.06

rT 1.05

var(V T
ijδj) for the fitted model 0.305

var(V T
ijδj | Ti = 1) for the fitted model 0.250

var(XT
i β) for the saturated model 0

var(XT
i β | Ti = 1) for the saturated model 0

Table 4.1 lists the empirical de-biasing parameters estimated in the group lasso de-

biasing procedure for adjusting the p-values of the standard interaction test. The fact that

r ≈ rT also indicates that the de-biasing procedure did not adjust the p-values very much.

The two estimated variances of linear predictors var(XT
i β) and var(XT

i β | Ti = 1) for

the saturated model are both zeros, because group lasso did not find any predictor with a

non-zero coefficient, thus rendering the coefficient estimator β̂ for the saturated model a

vector of all zeros.

4.7 Discussion

Biomarker-treatment interaction analysis plays an important role in explaining response

heterogeneity to a therapy. However, interaction tests based on misspecified models can

sometimes lead to asymptotic bias of interaction coefficient estimates. In this chapter,

I studied the problem of interaction inference based on one-biomarker-at-a-time logistic

regression models for binary outcomes under potential model misspecification. I found

that when there exists at least one biomarker with a biomarker-treatment interaction,

one-at-a-time interaction models for (almost) all candidate biomarkers are sensitive to

model misspecification. The interaction effect estimate for a biomarker is generally only

unbiased when the biomarker is not associated with the outcome. This issue can result in

a lot of false positives when testing biomarker-treatment interaction based on one-at-a-

time models. I proposed two de-biasing interaction testing procedures and demonstrated

through simulations that my methods are able to substantially improve family-wise error

rate control in various scenarios.

My proposed de-biased interaction estimators rely on fitting a saturated model including

the treatment main effect term, the main effect and interaction terms of all biomarkers.

In the high-dimensional setting, where the number of model parameters is larger than the

sample size, it is not feasible to fit this model directly. Thus, I proposed use of group lasso

to fit the saturated model. Other penalized regression methods, such as ridge regression

and elastic net [87], can also be used. A performance comparison between group lasso and
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these alternative methods for use in my framework is a topic I am interested to investigate

in future work.

My work primarily focused on asymptotic bias of the estimated biomarker-treatment

interaction coefficient for logistic regression. The results and approaches are also applicable

to probit regression for binary outcomes, because the probit function is the inverse of

the standard normal cumulative distribution function, which I used to approximate the

sigmoid function in logistic regression. Generalized linear models with other types of link

functions, e.g. the log function for Poisson regression, can also suffer from the issue of

asymptotic bias when testing biomarker-treatment interactions [63]. I suggest extensions

to these models as a topic of future work.

The work in this chapter is also applicable to gene-environment interaction testing,

when the environmental factor is dichotomous and an assumption of gene-environment

independence is valid. The de-biasing approaches are also potentially extendable for

categorical environmental factors. How to alleviate the issue of asymptotic bias for

continuous environmental factors or treatment variables (e.g. drug dose) may be an

interesting topic to explore in the future.

Two-stage interaction tests (described in Chapter 2), incorporating a screening step to

select a subset of biomarkers into stage 2 one-biomarker-at-a-time interaction tests, have

been proposed to increase power. Unfortunately, my proposed de-biasing approaches for

one-biomarker-at-a-time interaction tests are generally not applicable in this two-stage

framework when a marginal association screening test is used in stage 1 (this type of

screening was described in Section 1.2.2.2 and has been extended in Chapter 2). This is

because the formula of my proposed de-biased interaction estimator involves both the main

effect and interaction estimators for a biomarker, which introduces association between

the de-biased interaction estimator (potentially used in stage 2) and the stage 1 marginal

effect estimator for this biomarker (as a biomarker’s main effect is associated with its

marginal effect). Thus, my proposed de-biased estimator would break the between-stage

independence required for family-wise error rate control by the methods described in

Chapter 2. One possible solution is to utilize permutation tests to estimate the distribution

of the stage 2 test statistic and further control the overall family-wise error rate [43].

Developing de-biased two-stage interaction tests for binary outcomes could be an interesting

topic to study in the future.

In summary, I studied interaction testing based on one-biomarker-at-a-time models

under model misspecification, and proposed two de-biasing interaction testing procedures.

The simulation results show that my methods can provide improved family-wise error rate

control for detecting biomarker-treatment interactions across various realistic randomized

clinical trial scenarios.
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Chapter 5

Conclusions and future directions

5.1 Conclusions

Throughout this thesis, I have been focusing on development of methods to analyze or

utilize biomarker information in randomized clinical trials. Chapters 2 and 4 concentrated

on the problem of detecting biomarker-treatment interactions. Chapter 3 had a focus on

how to utilize biomarker information during the course of a randomized clinical trial.

In Chapter 2, I sought to overcome two limitations of traditional interaction analysis.

First, the multiple testing burden of considering a large number of biomarkers may lead

to low power for detecting biomarker-treatment interactions in clinical trials. Thus,

only very large trials are sufficiently powered to detect an interaction effect. Developing

statistical methods to overcome the low power problem in traditional interaction testing

holds increasing importance, as modern medical research sees a growing amount of

high-dimensional data. The same problem occurs in the closely related area of gene-

environment interaction studies, when testing for a large number of genetic biomarkers

(typically in thousands to millions). I examined how existing gene-environment interaction

testing approaches can be modified for detecting biomarker-treatment interactions in the

randomized clinical trial setting. Particularly, I found that the two-stage interaction testing

approach is a promising framework to port from gene-environment to biomarker-treatment

interaction analyses. Under a two-stage interaction testing framework, the analyst first

performs a stage 1 screening procedure to select a reduced subset of biomarkers for the

subsequent stage 2 interaction test, thus alleviating the multiple testing burden. I adapted

this two-stage framework for application to detecting biomarker-treatment interactions

in randomized clinical trials and found that it provides greater power than a traditional

single-step interaction test.

The second limitation of traditional interaction analysis is that interaction testing

is usually based on one-biomarker-at-a-time models. This ignores correlations between

biomarkers. Thus, the number and locations of signals become ambiguous when there exist
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substantial biomarker-biomarker correlations, which could lead to a lot of false positives.

When the two-stage framework mentioned above uses a one-biomarker-at-a-time screening

procedure, false positives from the screening test will lower power of the subsequent stage

2 interaction test, as now there are much more biomarkers that the multiple testing

correction needs to account for. Chapter 2 proposed use of sparse regression methods

accounting for biomarker-biomarker correlations at stage 1 to address this limitation. Two

sparse regression screening procedures, utilizing lasso and ridge regression respectively,

were proposed to be used in the two-stage framework. In order to preserve the overall

family-wise error rate when applying a two-stage approach, stage 1 and 2 test statistics

need to be (asymptotically) independent to each other. In novel theoretical developments,

I proved the between-stage independence required for use of the new sparse regression

screening procedures.

I demonstrated that, in a variety of simulated scenarios with highly correlated biomark-

ers, these sparse regression screening methods performed substantially better than the

traditional single-step one-biomarker-at-time test and the two-step approach using a

one-biomarker-at-a-time screening procedure. These results show that use of sparse

regression techniques in the two-stage framework offers promising power increases for

detecting biomarker-treatment interactions in randomized clinical trials. I further ap-

plied my methods in three real randomized clinical trials. Although I did not find any

significant interaction effects using sparse regression for first stage screening, the empirical

between-stage correlations were not significantly different from zero, verifying my theory

in practice.

In Chapter 3, I changed my focus to the problem of how to utilize biomarker information

during the course of a randomized clinical trial to improve trial efficiency. When a treatment

is only or mostly beneficial to a subgroup of patients, an ordinary clinical trial may not be

sufficiently powered to detect a significant treatment effect. In the absence of a predictive

biomarker signature before the trial, the adaptive signature design (ASD) provides a useful

framework to develop a signature and test the subgroup treatment effect all within the

same trial. The approach works in a two-stage manner: stage 1 to develop a signature by

selecting “sensitive” biomarkers which exhibit significant univariate biomarker-treatment

interaction effects, and stage 2 to classify a patient into a sensitive subgroup based on

predicted marginal odds ratios for each stage 1 selected biomarker. Upon examination

of the existing literature in this area I found two key areas for improvement. First, the

choice of classifying patients according to simple univariate odds ratios is sub-optimal.

Secondly, the originally proposed ASD requires three tuning parameters to develop the

classifier: one for selecting predictive biomarkers and two for thresholding the predicted

odds ratios between the new and control arms. Selection of these tuning parameters based

on cross-validation is computationally intensive.
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To overcome these two limitations, I proposed two new classifiers to be used within

the ASD framework for subgroup identification: the multivariate risk difference (MRD)

classifier which thresholds the predicted risk difference, and the multivariate gradient-based

(MGB) classifier which classifies patients according to the expected change of the treatment

effect test statistic. The prediction of risk differences and expected test statistic changes are

based on fitting a multivariate regression model using all stage 1 selected biomarkers. This

multivariate model considers the joint effect of all sensitive biomarkers, thus potentially

allowing a more sensitive summary measure for each patient than considering each sensitive

biomarker separately. I argued theoretically and demonstrated through simulations how

these two classification criteria provide greater power than the originally proposed univariate

ASD classifier. The MGB classifier also leads to reduced computational times, because

it only requires one tuning parameter for selecting sensitive biomarkers. I exemplified

my methods using real data from two randomized trials. While I found no evidence

of significant treatment signatures, I demonstrated that the adaptive signature design

does little to compromise the trial’s ability to detect treatment efficacy within the overall

sample, even if a sensitive subgroup does not exist.

Chapter 4 returned to the topic of detecting biomarker-treatment interactions. I

proposed methods to address a generic issue in interaction testing based on (misspecified)

one-biomarker-at-a-time models for binary outcomes. The biomarker-treatment interaction

coefficient estimate can be biased under model misspecification and lead to an increased

number of false positives. This problem is closely related to the issue of invalid model-

based inference in gene-environment interaction studies when the outcome-environment

relationship is misspecified in the model. I translated the relevant theoretical results in

the existing gene-environment interaction studies to the biomarker-treatment interaction

setting, and derived conditions in which asymptotic bias of the interaction estimator

will occur. I found when there exists at least one biomarker having biomarker-treatment

interaction, one-at-a-time interaction models for all other biomarkers are sensitive to

model misspecification. In this case, if a biomarker is associated with the response

outcome directly or indirectly (through correlations with other confounding covariates),

the interaction effect estimate for this biomarker is generally biased. This implies that

prognostic biomarkers could sometimes be mistakenly identified as predictive biomarkers

by using these (misspecified) one-biomarker-at-a-time interaction testing models.

Chapter 4 proposed two de-biasing procedures to adjust original one-biomarker-at-a-

time test statistics. The de-biasing procedures rely on fitting a saturated model involving

the main effect and interaction effect terms of all the available biomarkers, thus taking

information from all interacting biomarkers to “correct” the bias. One de-biasing procedure

fits this multivariate model directly without penalization, while the other de-biasing

procedure utilizes the penalized regression technique, group lasso, to fit this model, which
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is necessary in a high-dimensional setting. In simulated scenarios where all interacting

biomarkers are observed, my proposed de-biasing interaction testing procedures are able to

control the family-wise error rate at the desired level. The group lasso de-biasing procedure

showed robustness across different dimension settings, different biomarker-biomarker

correlation settings, and demonstrated improved family-wise error rate control even if

some of interacting biomarkers are unmeasured. I illustrated applicability of the group

lasso de-biasing interaction testing procedure in a trial data set with high-dimensional

gene expression biomarkers.

5.2 Future directions

Limitations of the work presented in this thesis and some potential future topics to

investigate have been discussed in each relevant chapter respectively. In this section, I go

on to describe two possible extensions of the proposed methods, which could considerably

increase the utility of my work, thus being the highest priority.

5.2.1 Extension of the ASD framework to account for biomarker-

biomarker correlations

The classifiers proposed in Chapter 3 use standard one-biomarker-at-a-time interaction tests

for selecting biomarkers with significant interaction with the treatment. These univariate

models ignore correlations between biomarkers, which is sub-optimal. Although the MRD

and MGB classifiers do consider joint effects of all the selected sensitive biomarkers, they

do not account for correlations between all the biomarkers. Accounting for biomarker-

biomarker correlations can reduce the number of false positives when selecting sensitive

biomarkers, thus potentially increasing accuracy of predicting relevant quantities (e.g. the

odds ratio, risk difference or expected test statistic change) for building the classifier to

select sensitive patients. This could also potentially reduce computational times for the

MRD and MGB classifiers, since they will consider fewer sensitive biomarkers when fitting

the multivariate model.

Simulation studies in Chapter 3 assumed a simple setting where all the biomarkers

are independent of one another. One might wonder how my proposed methods perform

when there are substantial correlations between biomarkers and how we can further

account for correlations among all the biomarkers other than correlations among only the

selected sensitive subset of biomarkers. The two-stage interaction detecting framework

incorporating sparse regression screening proposed in Chapter 2 is immediately available

for use in the ASD framework to replace the standard one-biomarker-at-a-time interaction

test. Using a two-stage interacting testing approach could increase power for selecting
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sensitive biomarkers with biomarker-treatment interactions, as demonstrated in Chapter 2.

It would be interesting to see how much the increased accuracy of interaction detection

when using multivariate models will impact the overall power of the ASD framework for

detecting the treatment effect.

The goal of testing interactions in the signature development phase within the ASD

framework is to estimate relevant quantities (e.g. the odds ratio, risk difference or expected

test statistic change) for building a classifier to select sensitive patients in the classification

phase. Thus, another direction would be to extend the proposed framework in order to

take account of biomarker-biomarker correlations. One approach may be to explore the

applicability of sparse regression methods that are able to predict such quantities (e.g.

the odds ratio, risk difference or expected test statistic change) for an individual without

explicitly selecting sensitive biomarkers with biomarker-treatment interactions in the

signature development phase. For example, using group lasso to fit a multivariate model

considering all the biomarkers together has the potential of providing correlation-adjusted

biomarker effect estimates which could be used to build a (newly proposed or existing)

ASD classifier directly, without the need for explicitly selecting sensitive biomarkers.

Therefore, as well as offering potentially more precise patient stratification by accounting

for correlated biomarkers, the use of multivariate models in the ASD would avoid tuning

the parameter µ for selecting sensitive biomarkers and can potentially further reduce

computational times. An alternative approach to dimension reduction, while accounting

for correlations between covariates, is to use Bayesian variable selection. In Appendices A.8

and C.2, I describe a framework for how to use Bayesian variable selection for detecting

biomarker-treatment interactions in the ASD and demonstrate its performance in a limited

set of simulations.

5.2.2 Extension of the two-stage interaction testing framework

to binary outcomes with family-wise error rate control

The theoretical work in Chapter 2, proving asymptotic between-stage independence for

stage 1 sparse regression screening, relies on homogeneity of variance, which is a standard

assumption in linear regression. Therefore, the overall family-wise error rate control of the

two-stage interaction testing procedures incorporating these sparse regression screening

methods is only expected to work for continuous outcomes. There are two technical

caveats of applying the two-stage interaction framework under logistic regression for binary

outcomes. First, it is unknown whether the asymptotic between-stage independence for

stage 1 sparse regression screening still holds or not in the absence of homoscedasticity.

Under logistic regression for binary outcomes, the error variances differ for each value

of the linear predictor, which is usually referred to as “heteroscedasticity”, in contrast
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to homoscedasticity. If the lack of homoscedasticity when modelling binary outcomes

means that stage 1 and stage 2 test statistics are correlated with each other, the overall

two-stage framework may result in an inflated family-wise error rate. The second issue

which complicates application of the two-stage interaction framework for binary outcomes

is the asymptotic bias of interaction coefficient estimates based on stage 2 one-biomarker-

at-a-time interaction models, which has been discussed in Chapter 4. This issue, which is

generic to interaction testing under logistic regression for binary outcomes, could result in

an inflated family-wise error rate. Notice that the classifiers (existing and newly proposed)

within the ASD framework described in Chapter 3 use one-biomarker-at-a-time models for

binary outcomes, thus they are subject to asymptotic bias of interaction effect estimates.

However, since prediction is the end goal of detecting biomarker-treatment interactions in

the ASD, strict family-wise error rate control of interaction testing is not required (though

a reduced number of false positives may increase the prediction accuracy). The de-biasing

interaction testing procedures proposed in Chapter 4 are able to correct asymptotic bias

induced by the (misspecified) one-biomarker-at-a-time interaction models in a variety

of scenarios. However, application of these de-biasing procedures within the two-stage

framework as stage 2 interaction tests will induce correlation between stage 1 and 2 test

statistics, if (univariate or sparse regression) marginal association screening tests are used

at stage 1. This is because these de-biasing procedures take account of both the main effect

and interaction effect estimators for a biomarker, and the biomarker’s main effect estimator

(used in the stage 2 de-biased test) is usually associated with its marginal effect estimator

(used in the stage 1 screening test). There are three possible routes to solutions for the

two issues described above which currently face application of the two-stage interaction

testing framework for binary outcomes:

1. Use stage 1 screening methods (existing or newly proposed in Chapter 2) and stage

2 de-biasing interaction testing procedures proposed in Chapter 4, and develop

methods to control the overall family-wise error rate for the two-stage framework

with correlated stage 1 and 2 tests: one possible solution to the between-stage

correlation is to use permutation tests as suggested by Kooperberg and LeBlanc [43].

2. Use stage 1 screening methods (existing or newly proposed in Chapter 2) and stage

2 de-biasing interaction testing procedures proposed in Chapter 4, and derive condi-

tions in which the between-stage correlation makes the overall two-stage procedure

conservative in family-wise error rate control: one example of proving conservative

family-wise error rate control for using a screening test correlated to stage 2 is shown

in [38].

3. Develop new stage 1 screening and new stage 2 de-biasing interaction testing proce-

dures, and prove asymptotic between-stage independence or demonstrate family-wise
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error rate control building on the approaches (a permutation test or a proof of

conservative error rate control) mentioned within the above two points. Ideally, the

new methods are able to account for biomarker-biomarker correlations.

The first possible solution mentioned above can be attempted immediately. The second

possible solution needs mathematical derivation for conditions demonstrating conservative

family-wise error rate control and could lead to a negative result. The third solution needs

substantial innovation and could be overoptimistic. It would be interesting to investigate

into the possibility of extending the two-stage framework to interaction analysis for binary

outcomes, as this would considerably increase its utility.

5.3 Concluding remark

In today’s information-driven age, the analysis of randomized clinical trial data while

utilizing biomarker information holds growing importance in modern medical research. In

this thesis, I have developed several new methods to improve the existing approaches for

detecting biomarker-treatment interactions and the existing adaptive signature design for

using biomarker information in trials. In Chapter 2, I have shown that use of the two-stage

interaction testing approach with sparse regression screening procedures is able to provide

increased power for detecting biomarker-treatment interactions in randomized clinical

trials. Chapter 3 proposed two new types of classifiers, for selecting patients who likely

benefit from a new treatment, to be used in the adaptive signature design. These new

classification strategies demonstrated improved power for determining the effectiveness of

a new treatment. In Chapter 4, I proposed new procedures to tackle a generic interaction

testing issue for binary outcomes under model misspecification and demonstrated my

newly proposed procedures can provide improved family-wise error rate control. All of the

methods proposed in this thesis have shown promising performance in various simulated

scenarios and I have illustrated their applicability in the analysis of several real trial data

sets. Existing literature of biomarker-treatment interaction studies and adaptive signature

designs can hopefully benefit from this work and I am keen to see future extensions of my

methods further enhance the utility of the work in this thesis.
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Cristina Andres Lacueva, René Badertscher, Lorraine Brennan, Carl Brunius, Achim

Bub, Francesco Capozzi, et al. Nutrimetabolomics: an integrative action for

metabolomic analyses in human nutritional studies. Molecular Nutrition & Food

Research, 63(1):1800384, 2019.

113



[75] Aad W Van der Vaart. Asymptotic Statistics, volume 3. Cambridge university press,

2000.

[76] Jixiong Wang, Ashish Patel, James MS Wason, and Paul J Newcombe. Two-stage pe-

nalized regression screening to detect biomarker-treatment interactions in randomized

clinical trials. Biometrics, 2021.

[77] Xiangyu Wang and Chenlei Leng. High dimensional ordinary least squares projection

for screening variables. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 78(3):589–611, 2016.

[78] Xiaoyu Wang and James Y Dai. TwoPhaseInd: an R package for estimating gene–

treatment interactions and discovering predictive markers in randomized clinical trials.

Bioinformatics, 32(21):3348–3350, 2016.

[79] James MS Wason and Frank Dudbridge. A general framework for two-stage analysis

of genome-wide association studies and its application to case-control studies. The

American Journal of Human Genetics, 90(5):760–773, 2012.

[80] James MS Wason, Jean E Abraham, Richard D Baird, Ioannis Gournaris, Anne-Laure

Vallier, James D Brenton, et al. A Bayesian adaptive design for biomarker trials with

linked treatments. British Journal of Cancer, 113(5):699, 2015.

[81] Barnet Woolf et al. On estimating the relation between blood group and disease. Ann

Hum Genet, 19(4):251–253, 1955.

[82] Tong Tong Wu, Yi Fang Chen, Trevor Hastie, Eric Sobel, and Kenneth Lange. Genome-

wide association analysis by lasso penalized logistic regression. Bioinformatics, 25(6):

714–721, 2009.

[83] Timothy A Yap, Shahneen K Sandhu, Paul Workman, and Johann S De Bono.

Envisioning the future of early anticancer drug development. Nature Reviews Cancer,

10(7):514–523, 2010.

[84] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

68(1):49–67, 2006.

[85] Pingye Zhang, Juan Pablo Lewinger, David Conti, John L Morrison, and W James

Gauderman. Detecting gene–environment interactions for a quantitative trait in a

genome-wide association study. Genetic Epidemiology, 40(5):394–403, 2016.

114



[86] Lihui Zhao, Lu Tian, Tianxi Cai, Brian Claggett, and Lee-Jen Wei. Effectively

selecting a target population for a future comparative study. Journal of the American

Statistical Association, 108(502):527–539, 2013.

[87] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):

301–320, 2005.

115



116



Appendix A

Derivations

A.1 Power of case-only interaction tests

In this section, I first review the original validity proof of case-only tests by Piegorsch

et al. [59], and then illustrate why it is not beneficial using this approach when cases are

not oversampled.

I start by writing the interaction coefficient βXj×T in model (1.1) as (Yi is assumed to

be a binary response endpoint here, denoted as Ri)

exp(βXj×T ) =
pr(Ri = 1 | Xij = 1, Ti = 1)pr(Ri = 1 | Xij = 0, Ti = 0)

pr(Ri = 0 | Xij = 1, Ti = 1)pr(Ri = 0 | Xij = 0, Ti = 0)

/
pr(Ri = 1 | Xij = 1, Ti = 0)pr(Ri = 1 | Xij = 0, Ti = 1)

pr(Ri = 0 | Xij = 1, Ti = 0)pr(Ri = 0 | Xij = 0, Ti = 1)

where Xij is assumed to be binary.

Applying Bayes’ rule, i.e. pr(Ri = r | Xij = x, Ti = t) = pr(Xij = x, Ti = t | Ri =

r)pr(Ri = r)/pr(Xij = x, Ti = t), and next making substitutions with the definition of

the conditional probability, i.e. pr(Xij = x, Ti = t | Ri = r) = pr(Ti = t | Ri = r,Xij =

x)pr(Xij = x | Ri = r)), we have

exp(βXj×T ) =
pr(Ti = 1 | Ri = 1, Xij = 1)pr(Ti = 0 | Ri = 1, Xij = 0)

pr(Ti = 1 | Ri = 0, Xij = 1)pr(Ti = 0 | Ri = 0, Xij = 0)

/
pr(Ti = 0 | Ri = 1, Xij = 1)pr(Ti = 1 | Ri = 1, Xij = 0)

pr(Ti = 0 | Ri = 0, Xij = 1)pr(Ti = 1 | Ri = 0, Xij = 0)

=
pr(Ti = 1 | Ri = 1, Xij = 1)pr(Ti = 0 | Ri = 1, Xij = 0)

pr(Ti = 0 | Ri = 1, Xij = 1)pr(Ti = 1 | Ri = 1, Xij = 0)

×pr(Ti = 0 | Ri = 0, Xij = 1)pr(Ti = 1 | Ri = 0, Xij = 0)

pr(Ti = 1 | Ri = 0, Xij = 1)pr(Ti = 0 | Ri = 0, Xij = 0)
(A.1)

Notice the first multiplicative term involves only Ri = 1 and the second term only

Ri = 0. Next we show the second term is close to 1 under certain conditions. First, the

117



biomarker-treatment independence assumption implies

pr(Ti = 1 | Xij = 1)

pr(Ti = 0 | Xij = 1)
=
pr(Ti = 1 | Xij = 0)

pr(Ti = 0 | Xij = 0)
(A.2)

Recall using the law of total probability

pr(Ti = t | Xij = x) = pr(Ti = t | Ri = 0, Xij = x)pr(Ri = 0 | Xij = x)

+pr(Ti = t | Ri = 1, Xij = x)pr(Ri = 1 | Xij = x)

pr(Ri = 1 | Xij = x) is negligible under the rare response assumption, so we can write

pr(Ti = t | Xij = x) ≈ pr(Ti = t | Ri = 0, Xij = x) and substitute them into (A.2)

pr(Ti = 0 | Ri = 0, Xij = 1)pr(Ti = 1 | Ri = 0, Xij = 0)

pr(Ti = 1 | Ri = 0, Xij = 1)pr(Ti = 0 | Ri = 0, Xij = 0)
≈ 1 (A.3)

Now we have shown that the second term of (A.1) is close to 1. Then we have

exp(βXj×T ) ≈ pr(Ti = 1 | Ri = 1, Xij = 1)pr(Ti = 0 | Ri = 1, Xij = 0)

pr(Ti = 0 | Ri = 1, Xij = 1)pr(Ti = 1 | Ri = 1, Xij = 0)
(A.4)

where no Ri = 0 is involved. We are able to estimate the interaction coefficient βXj×T

with the marginal effect γXj
in (2.1) using cases only (responders where Ri = 1).

Notice varstandard, the variance of the maximum likelihood estimator of the logarithm of

(A.1) is the sum of the variances of the maximum likelihood estimators of the logarithm of

(A.4) and the logarithm of (A.3), varres and varnres. Thus when using (A.4) to estimate

the interaction, we essentially regard there are infinitely many controls (non-responders

where Ri = 0) and varnres is 0. This is a gain compared with estimating the interaction

using (A.1) when cases (responders) are “oversampled” and varnres is (relatively) far from

0.

However, in randomized clinical trials, even if the response event is rare, we already

have all the responders and non-responders in the data set. varnres is effectively close to 0

relative to varres, no matter which model to use, (A.1) or (A.4).

A.2 Between-stage independence proof: Murcray et al.

In this section, we show how Murcray et al. proved the asymptotic independence between

the stage 1 gene-environment association test statistic and the stage 2 standard interaction

test statistic.

Assuming a binary value of a biomarker X, a binary treatment assignment variable T

and a binary response outcome R, the 2× 2× 2 table for the study is:
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Table A.1: 2× 2× 2 contingency table in a randomized clinical trial

R = 0 T = 0 T = 1

X = 0 n000 n001

X = 1 n010 n011

R = 1 T = 0 T = 1

X = 0 n100 n101

X = 1 n110 n111

Assume that the random variables Y = (n000, n001, n010, n011)
T andZ = (n100, n101, n110, n111)

T

both yield the multinomial distribution, i.e. Y ∼ Mult{(p000, p001, p010, p011)T , NY } and

Z ∼Mult{(q100, q101, q110, q111)T , NZ} where NY represents the number of controls (non-

responders) and NZ the number of cases (responders).

Applying the normal approximation to the multinomial distribution, we know Y
d−→

N (µY ,ΣY ) and Z
d−→ N (µZ ,ΣZ), where

d−→ means “convergence in distribution”, the

corresponding means and covariances are

µY = (NY p000, NY p001, NY p010, NY p011)
T

µZ = (NZq100, NZq101, NZq110, NZq111)
T

ΣY =


NY p000(1− p000) −NY p000p001 −NY p000p010 −NY p000p011

−NY p000p001 NY p001(1− p001) −NY p001p010 −NY p001p011

−NY p000p010 −NY p001p010 NY p010(1− p010) −NY p010p011

−NY p000p011 −NY p001p011 −NY p010p011 NY p011(1− p011)



ΣZ =


NZq100(1− q100) −NZq100q101 −NZq100q110 −NZq100q111

−NZq100q101 NZq101(1− q101) −NZq101q110 −NZq101q111

−NZq100q110 −NZq101q110 NZq110(1− q110) −NZq110q111

−NZq100q111 −NZq101q111 −NZq110q111 NZq111(1− q111)


Define X = (Y T ,ZT )T , thus we have X

d−→ N (µ,Σ) where µ = (µTY ,µ
T
Z)T and

Σ =

(
ΣY 0

0 ΣZ

)

Define the transformation function f(X) = {f1(X), f2(X)}T , where f1 is the numerator

of the stage 1 test statistic and f2 the numerator of the stage 2 test statistic. When using a

standard interaction test, we have f2 = log(OR2) = log(n111n100n001n010/n101n110n011n000),

which is the numerator of a Wald test statistic.
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We denote the first-order partial derivatives (the Jacobian matrix) as

Df(µ) =



∂f1
∂n000

∂f2
∂n000

∂f1
∂n001

∂f2
∂n001

∂f1
∂n010

∂f2
∂n010

∂f1
∂n011

∂f2
∂n011

∂f1
∂n100

∂f2
∂n100

∂f1
∂n101

∂f2
∂n101

∂f1
∂n110

∂f2
∂n110

∂f1
∂n111

∂f2
∂n111


=



df11 df12

df21 df22

df31 df32

df41 df42

df51 df52

df61 df62

df71 df72

df81 df82


and also

Df(µ)TΣDf(µ) =

(
σ2
11 cov12

cov21 σ2
22

)

The delta method implies that

f(X) =

{
f1(X)

f2(X)

}
d−→ N{f(µ), Df(µ)TΣDf(µ)}

The off-diagonal entries of the covariance matrix Df(µ)TΣDf(µ) can be evaluated by

cov12 = cov21 =

(df11a11 + df21a12 + df31a13 + df41a14)df12

+(df11a12 + df21a22 + df31a23 + df41a24)df22

+(df11a13 + df21a23 + df31a33 + df41a34)df32

+(df11a14 + df21a24 + df31a34 + df41a44)df42

+(df51b11 + df61b12 + df71b13 + df81b14)df52

+(df51b12 + df61b22 + df71b23 + df81b24)df62

+(df51b13 + df61b23 + df71b33 + df81b34)df72

+(df51b14 + df61b24 + df71b34 + df81b44)df82

=

(df12a11 + df22a12 + df32a13 + df42a14)df11

+(df12a12 + df22a22 + df32a23 + df42a24)df21

+(df12a13 + df22a23 + df32a33 + df42a34)df31

+(df12a14 + df22a24 + df32a34 + df42a44)df41

+(df52b11 + df62b12 + df72b13 + df82b14)df51

+(df52b12 + df62b22 + df72b23 + df82b24)df61

+(df52b13 + df62b23 + df72b33 + df82b34)df71

+(df52b14 + df62b24 + df72b34 + df82b44)df81

which is a measure of dependence between the stage 1 and stage 2 test statistics.
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f1 = log(OR1) = log[(n011 + n111)(n000 + n100)/{(n001 + n101)(n010 + n110)}], where

the odds ratio OR1 is the numerator of the Wald test statistic for the gene-environment

correlation test against the full data set of cases and controls combined.

The full Jacobian matrix is then

Df(µ) =



df11 df12

df21 df22

df31 df32

df41 df42

df51 df52

df61 df62

df71 df72

df81 df82


=



1
NY p000+NZq100

−1
NY p000

−1
NY p001+NZq101

1
NY p001

−1
NY p010+NZq110

1
NY p010

1
NY p011+NZq111

−1
NY p011

1
NY p000+NZq100

1
NZq100

−1
NY p001+NZq101

−1
NZq101

−1
NY p010+NZq110

−1
NZq110

1
NY p011+NZq111

1
NZq111


Following df11 = df51, df21 = df61, df31 = df71, df41 = df81, we can derive

cov12 = cov21 = −df11 + df21 + df31 − df41 + df51 − df61 − df71 + df81 = 0

These two tests are independent of each other.

A.3 Between-stage independence proof: Dai et al.

The stage 1 marginal association screening model (1.4) and the stage 2 interaction testing

model (1.1) are nested, since the latter contains all the terms of the former. Dai et al.

proved, in this case, the two stages are independent with each other. Consider the stage 1

marginal association screening test based on the model of the form

G{E(Yi |X i)} = XT
i δ

where δ is a q-vector. The model underlying the stage 2 standard one-biomarker-at-a-time

interaction test is of the form

G{E(Yi | V i)} = V T
i β

where β is a p-vector (p > q). The above forms ignore intercepts without loss of generality.

Notice that V i includes X i.
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Dai et al. [17] showed that the covariance matrix between stage 1 and stage 2 test

statistics is A−11 BA
−1
2 , where

A1 = E[(X iX
T
i ){Yi − E(Yi |X i)}2]

B = E[(X iV
T
i ){Yi − E(Yi |X i)}{Yi − E(Yi | V i)}]

A2 = E[(V iV
T
j ){Yi − E(Yi | V i)}2]

We simplify the expression of B as

B = E[(X iV
T
i ){Y 2

i − YiE(Yi |X i)− YiE(Yi | V i) + E(Yi |X i)E(Yi | V i)}]

= E[(X iV
T
i )E{Y 2

i − YiE(Yi |X i)− YiE(Yi | V i) + E(Yi |X i)E(Yi | V i) | V i}]

= E{X iV
T
i var(Yi | V i)}

which uses the law of iterated expectations and the fact that V i includes X i.

Similarly, we have A1 = E{X iX
T
i var(Yi | X i)} and A2 = E{V ijV

T
ijvar(Yi | V i)}.

Thus,

A−11 BA
−1
2 = E{X iX

T
i var(Yi |X i)}−1E{X iV

T
i var(Yi | V i)}E{V ijV

T
ijvar(Yi | V i)}−1

Now,

BA−12 = E{X iV
T
i var(Yi | V i)}E{V ijV

T
ijvar(Yi | V i)}−1

=


1 0 · · · 0

· · · ... · · · ...

1 0 · · · 0


of which the left hand side q × q block equals to an identity matrix and the right hand

side q × (p− q) block is a matrix of all zeros.

Premultiplying E{X iV
T
i var(Yi | V i)}E{V ijV

T
ijvar(Yi | V i)}−1 by E{X iX

T
i var(Yi |

X i)}−1 completes the covariance matrix. We are interested in the right hand side q×(p−q)
block which corresponds to the covariance between (δ̂1, . . . , δ̂q) and (β̂q+1, . . . , β̂p). By the

above, this is a block of zeros.

A.4 Discussion of alternative family-wise error rate

controlling methods

Detail of alternative family-wise error rate controlling methods, including Šidák correction,

Holm-Bonferroni procedure and Hochberg procedure, have been introduced in Section 1.3.

122



The Šidák correction is only slightly less stringent than the Bonferroni correction as

demonstrated in the exampled presented in Section 1.3.

Now we examine the Holm-Bonferroni procedure. We consider the scenario when the

false null hypotheses are sparse, e.g. m0, the number of biomarkers with true biomarker-

treatment interactions, is small compared with m. Let m1 be the number of rejected true

null hypotheses, then the total number of rejections k − 1 yields

k − 1 ≤ m0 +m1 ≈ m0 + (m−m0)α = m0(1− α) +mα ≈ mα

The first approximate equality sign≈ follows from the fact that m1 is close to its expectation

E(m1) = (m−m0)α with high possibility, because when the majority of biomarkers are in

low linkage disequilibrium with each other, var(m1) ≈ m1α(1− α) is small relative to m1.

The second ≈ follows from the m0 � m assumption. Thus, the hypotheses are essentially

compared with the significance levels α/m, α/(m− 1), . . . , α/(m+ 1− k) ≈ α/{m(1−α)}.
The Taylor series of α/{m(1− α)} around α = 0 is

α

m(1− α)
=
α

m
+
α2

m
+ · · ·

This again differs from the Bonferroni adjusted significance level α/m with O(α2/m).

In a very similar method, the Hochberg procedure, rejection of H1, ..., Hk is made after

finding the maximal index k such that pk ≤ α/(m+ 1− k). This method is more powerful

than the Holm-Bonferroni procedure, but requires the hypotheses are independent or

under certain forms of positive dependence. In a similar manner to the argument for

Holm-Bonferroni, one can demonstrate that the improvement by applying this method is

subtle when biomarker-treatment interactions are sparse.

A.5 Proof of independence between stage 1 sparse

regression screening and stage 2 standard inter-

action tests

A.5.1 Proof of Lemma 2.5.2

The proof of Theorem 3 in Fu [28] gave

n1/2(δ̂
λ
− δ) = −{ 1

n
∇δδTLn(δ) +

2λn
n
}−1{ 1

n1/2
∇δLn(δ) +

2λnδ

n1/2
}

for the ridge estimator. Under regularity conditions described in Van der Vaart [75, p.

51-52]: ∇δLn(δ)/n1/2 is asymptotically normal with a mean 0 and a finite variance σ2 by
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the central limit theorem; ∇δδTLn(δ)/n converges in probability to Σ by the law of large

numbers. When λn = O(n1/2), 2λn/n vanishes and 2λnδ/n
1/2 goes to 2λ0δ. Thus,

n1/2(δ̂
λ
− δ)

d→ N (−2λ0Σ
−1δ, σ2Σ−1)

A similar result for ridge regression can be immediately derived by Theorem 2 in Knight

et al. [42]. When λ0 = 0, this reduces to a well known result for the multivariate regression

estimator without regularization

n1/2(δ̂
0
− δ)

d→ N (0, σ2Σ−1)

A.5.2 Proof of Corollary 2.5.2.1

Based on Lemma 2.5.2, we know the distribution of n1/2(δ̂
λ
− δ) differs from that of

n1/2(δ̂
0
− δ) asymptotically only with a constant. Along with Theorem 2.5.1, the following

holds immediately

cov{n1/2(δ̂λXj
− δXj

), n1/2(β̂Xj×T − βXj×T )} p→ 0

A.5.3 Proof for the lasso screening test

Theorem A.5.1. For any j = 1, . . . ,m, under standard regularity conditions [75, p.

51-52], if λn = Θ(n1/2), i.e. limn→∞ λn/n
1/2 = λ0 > 0, and the true marginal association

coefficient is zero, i.e. δXj
= 0, then the stage 1 lasso variable selection indicator I(δ̂λXj

6= 0)

is independent of the stage 2 interaction estimator β̂Xj×T .

Proof. By Theorem 2 in [42], if λn = Θ(n1/2), then

√
n(δλ − δ)

d→ argmin(V )

where

V (u) = −2uTw + uTCu+ λ0

m∑
j=1

{ujsign(δXj
)I(δXj

6= 0) + |uj|I(δXj
= 0)}

in which w has a N (0, σ2C) distribution and C = E(X iX
T
i ).

Without loss of generality, suppose that the true marginal effects δX1 , . . . , δXr are all

non-zero and δXr+1 = · · · = δXm = 0. Let

C =

(
C11 C12

C21 C22

)
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where C11 is a r × r matrix, and

w =

(
w1

w2

)

u =

(
u1

u2

)

δ =

(
δ1

δ2

)

where w1, u1 and δ1 are all r-vectors.

To assess when the lasso estimator δ̂λXj
is non-zero if δXj

= 0, it is easier to consider

when δ̂λXj
is zero, which is equivalent to considering when u2 = 0. Knight et al. [42] (the

discussion after Theorem 3) showed that u2 = 0 {where V (u) is minimized} if

−λ0
2

1 ≤ C21C
−1
11 {w1 − λ0sign(δ1)/2} −w2 ≤

λ0
2

1 (A.5)

Next we will show that C21C
−1
11 {w1 − λ0sign(δ1)/2} − w2 is fully determined by the

unpenalized estimator δ̂
0

= (δ̂0X1
, . . . , δ̂0Xm

)T when n → ∞. Theorem 1 in [42] indicates

that
√
n(δ̂

0
− δ)

d→ C−1w. Using blockwise matrix inversion, we derive

√
n(δ̂

0

2 − δ2)
d→ −(C22 −C21C

−1
11C12)

−1(C21C
−1
11w1 −w2)

After reorganizing, we have

√
n(C21C

−1
11C12 −C22)(δ̂

0

2 − δ2)− λ0C21C
−1
11 sign(δ1)/2

d−→ C21C
−1
11 {w1 − λ0sign(δ1)/2} −w2

Substituting δ2 = 0 and limn→∞ sign(δ̂
0

1) = sign(δ1) into the above expression, we derive

C21C
−1
11 {w1 − λ0sign(δ1)/2} −w2 = lim

n→∞
fn(δ̂

0
)

where fn(δ̂
0
) =
√
n(C21C

−1
11C12 −C22)δ̂

0

2 − λ0C21C
−1
11 sign(δ̂

0

1)/2. Along with condition

(A.5), asymptotically (when n→∞), δ̂
λ

2 = 0 if

−λ0
2

1 ≤ fn(δ̂
0
) ≤ λ0

2
1
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This means that I(δ̂λXj
= 0) is a function of δ̂

0
when δXj

= 0. Thus I(δ̂λGj
6= 0) is also

asymptotically a function of δ̂
0
. Since the unpenalized estimator δ̂

0
= (δ̂0X1

, · · · , δ̂0Xm
)T

is independent of the interaction estimator β̂Xj×T by Theorem 2.5.1, I(δ̂λXj
6= 0) is also

asymptotically independent of β̂Xj×T when δXj
= 0. Notice that when λ0 > 0, there is a

positive probability that δ̂λXj
= 0 when δXj

= 0, which is a desirable property using lasso

in practice.

A.6 Calculating the test statistic gradient for the

MGB classifier

The gradient expressed by equation (3.3) can be calculated with cell values n11, n10, n01, n00

in Table 3.1 by

d11 =
∂Z

∂n11

=
1

n11SE

(
1 +

Z

2n11SE

)
d10 =

∂Z

∂n10

=
1

n10SE

(
−1 +

Z

2n10SE

)
d01 =

∂Z

∂n01

=
1

n01SE

(
−1 +

Z

2n01SE

)
d00 =

∂Z

∂n00

=
1

n00SE

(
1 +

Z

2n00SE

)

where SE =
√
n−111 + n−110 + n−101 + n−100 .

Let n = n11 +n10 +n01 +n00 and assume that (n11, n10, n01, n00)
T yields a multinomial

distribution Mult{(p11, p10, p01, p00)T , n}. For any t, r ∈ {0, 1}, by law of large numbers,

limn→∞ ntr/n = ptr. Thus,

lim
n→∞

dtr
SE

=
1

ptr(
1
p11

+ 1
p10

+ 1
p01

+ 1
p00

)

{
1 +

log(p11p00
p10p01

)

2ptr(
1
p11

+ 1
p10

+ 1
p01

+ 1
p00

)

}

Substituting this result into A1 and A2 in Section 3.2.3 shows that both A1 and A2

converge to functions of cell probabilities, i.e. they are asymptotically constants, relative

to individual probabilities p̂i11 and p̂i01.

A.7 Extending the MGB classifier

In practice, an alternative way to estimate the test statistic gradient is to add one to each

cell of the contingency table and calculate the difference between the current test statistic
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and the previous one:

d11 ≈ Z(n11 + 1, n10, n01, n00)− Z(n11, n10, n01, n00)

d10 ≈ Z(n11, n10 + 1, n01, n00)− Z(n11, n10, n01, n00)

d01 ≈ Z(n11, n10, n01 + 1, n00)− Z(n11, n10, n01, n00)

d00 ≈ Z(n11, n10, n01, n00 + 1)− Z(n11, n10, n01, n00)

This idea can be generalized to any type of outcome wherever a test statistic is calculable.

For a test where a statistic is not available, e.g. a Fisher’s exact test, minimizing the

p-value is an equivalent approach.

A.8 A proposed framework for detecting biomarker-

treatment interactions using Bayesian variable

selection

From a Bayesian perspective, a natural way to pose the variable selection problem is to

define an indicator random variable Ij for each covariate Xij, where Ij = 1 indicates the

jth covariate is included, otherwise excluded. Thus, the statistical challenge is to estimate

the marginal posterior probability of Ij. Variable selection is then achieved by selecting

covariates or combinations of covariates with strong selection probabilities. We can regard

the number of covariates to be selected into the model as a random variable Nv. Reversible

jump MCMC (Markov chain Monte Carlo) is a technique that extends a traditional MCMC

algorithm in order to draw posterior samples of potential models along with samples of

parameter values. The Metropolis-Hastings acceptance rule is adjusted to allow updating

the chain with a change of the model dimension Nv as well as the parameter values at an

iteration. The algorithm requires choosing a prior for Ij : The prior distribution on each Ij

is Bernoulli(πj) conditional on πj and a recommended choice of the prior on πj [55] is

πj ∼ Beta(1,m)

where m is the total number of covariates; this imposes some level of sparseness. When

assuming all models of the same dimension are equally likely, this results in the so-called

“Beta-Binomial” model space prior on the total number of selected covariates Nv. In

contrast to frequentist analyses, Bayesian variable selection provides readily interpretable

uncertainty around the selected covariates and combinations of covariates. However,

evaluating posterior distributions in Bayesian analyses with the MCMC algorithm is

generally more time consuming.
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In this section, I propose a framework for detecting biomarker-treatment interactions

using Bayesian variable selection. The proposal was inspired by the case-only interaction

tests, which have been introduced in Section 1.2.2.1 and Appendix A.1.

I start my derivation by assuming models in responders and non-responders as

logit{E(Ti | Xij, Ri = 1)} = γ0re +
m∑
j=1

γXrejXij (A.6)

logit{E(Ti | Xij, Ri = 0)} = γ0nre +
m∑
j=1

γXnrejXij (A.7)

Following a similar discussion in Appendix A.1 {equation (A.1)}, I have

exp(βXj×T ) =
exp(γXrej)

exp(γXnrej)

where βXj×T is the interaction effect coefficient in model (1.1). Thus,

βXj×T = γXrej − γXnrej

By applying Bayesian variable selection to models (A.6) and (A.7), I can obtain the

estimated posterior probabilities pr(γXrej 6= 0 | Data) and pr(γXnrej 6= 0 | Data). Next, I

calculate pr(βXj×T 6= 0 | Data) as

pr(βXj×T 6= 0 | Data)

= 1− pr(βXj×T = 0 | Data)

= 1− pr(γXrej = γXnrej | Data)

= 1− {pr(γXrej = γXnrej = 0 | Data) + pr(γXrej = γXnrej 6= 0 | Data)}

= 1− pr(γXrej = γXnrej = 0 | Data)

= pr(γXrej 6= 0 or γXnrej 6= 0 | Data)

= pr(γXrej 6= 0 | Data) + pr(γXnrej 6= 0 | Data)

−pr(γXrej 6= 0 | Data)pr(γXnrej 6= 0 | Data)

which uses pr(γXrej = γXnrej 6= 0 | Data) ≈ 0 under biomarker-treatment independence

dictated by randomization (γXrej = γXnrej 6= 0 implies that there exists non-zero biomarker-

treatment association within the whole sample). This provides a way to use pre-existing

main-effect Bayesian variable selection algorithms for detecting interactions in randomized

clinical trials, without having to adapt the algorithms to search over the much wider

model space of main effects and interaction effect terms. This framework is applicable

under arbitrary response rates, and it only assumes the biomarker-treatment independence
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condition in the context of randomized clinical trials.

There are three options to use the above procedure in the ASD framework:

1. Use it in stage 1 to select biomarkers with posterior selection probabilities larger

than a threshold µ. The inner cross-validation then needs to tune µ.

2. Use it in stage 1 to select biomarkers with the combination of biomarkers having the

largest posterior selection probability. In this way, there is not any parameter for

stage 1 to be tuned by cross-validation.

3. Use it in stage 1 to obtain samples of coefficient values and then use these samples to

estimate relevant stage 2 quantities (e.g. the odds ratio, risk difference or expected

test statistic change) for building the classifier. For example, we need to evaluate

the following probabilities for the kth stage 2 patient:

pr(Rk = 1 |Xk, Data) =

∫
pr(Rk = 1 |Xk,β)pr(β | Data)dβ

where Xk = (Tk, Xk1, . . . , Xkm)T , β = (β0, βT , βX1 , . . . , βXm , βX1×T , . . . , βXm×T )T

andData representing stage 1 data. In practice, main-effect coefficients, βX1 , . . . , βXm ,

are omitted as recommended by [11]. In Appendix C.2, I demonstrate this approach

in a limited set of simulations.

A.9 Asymptotic score functions for logistic regres-

sion

A.9.1 Approximating the sigmoid function

Lemma A.9.1. If x ∼ N (µ, σ2), then

E{S(x)} ≈ S(
µ√

1 + ξ2σ2
) = S{ E(x)√

1 + ξ2σ2
}

where ξ2 = π/8.

Proof. By definition, we have

E{S(x)} =

∫ ∞
−∞

S(x)N (x | µ, σ2)dx =

∫ ∞
−∞

1

1 + exp(−x)

1√
2πσ2

exp{−(x− µ)2

2σ2
}dx

which does not have an analytic expression. However, we can approximate the sigmoid

function S with a probit link function Φ, which is the cumulative distribution function of
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a standard normal distribution [6].

S(x) ≈ Φ(ξx)

where Φ(x) =
∫ x
−∞N (y | 0, 1)dy. ξ is a parameter used in the approximating function of

the sigmoid function. I use ξ2 = π/8 in the simulation studies. Therefore,

E{S(x)} =

∫ ∞
−∞

S(x)N (x | µ, σ2)dx

≈
∫ ∞
−∞

Φ(ξx)N (x | µ, σ2)dx

= Φ(
ξµ√

1 + ξ2σ2
)

≈ S(
µ√

1 + ξ2σ2
)

which uses the fact that
∫∞
−∞Φ(x)N (µ, σ2)dx = Φ(µ/

√
1 + σ2).

Lemma A.9.2. If x ∼ N (0, 1), then

E{xS(µ+ σx)} ≈ σ√
1 + ξ2σ)

S ′(
µ√

1 + ξ2σ2
) =

E{x(µ+ σx)}√
1 + ξ2σ2

S ′(
µ√

1 + ξ2σ2
)

where ξ2 = π/8.

Proof. By definition and Lemma A.9.1, we have

E{xS(µ+ σx)}

=

∫ ∞
−∞

xS(µ+ σx)N (x | 0, 1)dx

≈
∫ ∞
−∞

xΦ{ξ(µ+ σx)}N (x | 0, 1)dx

=

∫ ∞
−∞

xΦ(a+ bx)
1√
2π

exp(−x
2

2
)dx

where ξ2 = π/8, a = ξµ and b = ξσ. Next, we use integration by substitution

E{xS(µ+ σx)}

≈
∫ ∞
−∞

xΦ(a+ bx)
1√
2π

exp(−x
2

2
)dx

= − 1√
2π

∫ ∞
−∞

Φ(a+ bx)d{exp(−x
2

2
)}

= − 1√
2π
{exp(−x

2

2
)Φ(a+ bx)|∞−∞ −

∫ ∞
−∞

exp(−x
2

2
)dΦ(a+ bx)}
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where the first additive term is 0. Thus, we have

E{xS(µ+ σx)}

≈ 1√
2π

∫ ∞
−∞

exp(−x
2

2
)dΦ(a+ bx)

=
1√
2π

∫ ∞
−∞

exp(−x
2

2
)d

∫ a+bx

−∞

1√
2π

exp(−y
2

2
)dy

=
b

2π

∫ ∞
−∞

exp(−x
2

2
) exp{−(a+ bx)2

2
}dx

We complete the square in this Gaussian integral as follows

E{xS(µ+ σx)}

≈ b

2π

∫ ∞
−∞

exp{−
(1 + b2)x2 + 2abx+ ( ab√

1+b2
)2 − ( ab√

1+b2
)2 + a2

2
}dx

=
b

2π

∫ ∞
−∞

exp{−
(
√

1 + b2x+ ab√
1+b2

)2

2
} exp{− a2

2(1 + b2)
}dx

=
b√

2π(1 + b2)
exp{− a2

2(1 + b2)
}
∫ ∞
−∞

1√
2π(1 + b2)−1

exp{−
(x+ ab

1+b2
)2

2(1 + b2)−1
}dx

The function within the integral in the above formula is in fact a probability density

function of a normal distribution N{x | −ab/(1 + b2), (1 + b2)−1}, the integral of which

evaluates to 1. Thus, we have

E{xS(µ+ σx)}

≈ b√
2π(1 + b2)

exp{− a2

2(1 + b2)
}

=
b√

1 + b2
Φ′(

a√
1 + b2

)

=
ξσ√

1 + ξ2σ2
Φ′(

ξµ√
1 + ξ2σ2

)

≈ σ√
1 + ξ2σ2

S ′(
µ√

1 + ξ2σ2
)

=
σ√

1 + πσ2/8
S ′(

µ√
1 + πσ2/8

)

=
E{x(µ+ σx)}√

1 + πσ2/8
S ′(

µ√
1 + πσ2/8

)

which uses Φ′(x) = dΦ(x)/dx = exp(−x2/2)/
√

2π and S ′(x) = dS(x)/dx = S(x){1−S(x)}.
This completes my proof.
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A.9.2 Asymptotic score functions

Let us consider the asymptotic limit of the four score equations (4.7). The first equation

of this system is

E{S(XT
i β)− S(V T

ijδj)} = 0

By Lemma A.9.1, we have

S{ E(XT
i β)√

1 + ξ2var(XT
i β)
} − S{

E(V T
ijδj)√

1 + ξ2var(V T
ijδj)

} = 0

which is equivalent to

E(XT
i β)√

1 + ξ2var(XT
i β)
−

E(V T
ijδj)√

1 + ξ2var(V T
ijδj)

= 0

The second equation of (4.7) is

E{XijS(XT
i β)−XijS(V T

ijδj)} = 0

Assuming Xij ∼ N (0, 1), by Lemma A.9.2, we have

E(XijX
T
i β)√

1 + ξ2var(XT
i β)

S ′{ E(XT
i β)√

1 + ξ2var(XT
i β)
} −

E(XijV
T
ijδj)√

1 + ξ2var(V T
ijδj)

S ′{
E(V T

ijδj)√
1 + ξ2var(V T

ijδj)
} = 0

Applying the result of the first equation, we have

E(XijX
T
i β)√

1 + ξ2var(XT
i β)
−

E(XijV
T
ijδj)√

1 + ξ2var(V T
ijδj)

= 0

The third equation of the system is

E{TiS(XT
i β)− TiS(V T

ijδj)} = 0

Assuming Ti ∈ {0, 1}, by Lemma A.9.1, we have

E(XT
i β | Ti = 1)√

1 + ξ2var(XT
i β | Ti = 1)

−
E(V T

ijδj | Ti = 1)√
1 + ξ2var(V T

ijδj | Ti = 1)
= 0
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The fourth equation is

E{XijTiS(XT
i β)−XijTiS(V T

ijδj)} = 0

With Ti ∈ {0, 1}, by Lemma A.9.2, we have

E(XijX
T
i β | Ti = 1)√

1 + ξ2var(XT
i β | Ti = 1)

S ′{ E(XT
i β | Ti = 1)√

1 + ξ2var(XT
i β | Ti = 1)

} −

E(XijV
T
ijδj | Ti = 1)√

1 + ξ2var(V T
ijδj | Ti = 1)

S ′{
E(V T

ijδj | Ti = 1)√
1 + ξ2var(V T

ijδj | Ti = 1)
} = 0

Applying the result of the third equation, we have

E(XijX
T
i β | Ti = 1)√

1 + ξ2var(XT
i β | Ti = 1)

−
E(XijV

T
ijδj | Ti = 1)√

1 + ξ2var(V T
ijδj | Ti = 1)

= 0

To summarize the results of all the four equations, we have

rE(XT
i β)− E(V T

ijδj) = 0

rE(XijX
T
i β)− E(XijV

T
ijδj) = 0

rTE(XT
i β | Ti = 1)− E(V T

ijδj | Ti = 1) = 0

rTE(XijX
T
i β | Ti = 1)− E(XijV

T
ijδj | Ti = 1) = 0

of which r and rT are defined as

r =

√
1 + ξ2var(V T

ijδj)

1 + ξ2var(XT
i β)

rT =

√
1 + ξ2var(V T

ijδj | Ti = 1)

1 + ξ2var(XT
i β | Ti = 1)

where ξ2 = π/8 is a parameter used in the approximating function of the sigmoid function.

This is the result shown in Section 4.4.

Notice the asymptotic limit of score equations for a linear regression model is

E(XT
i β)− E(V T

ijδj) = 0

E(XijX
T
i β)− E(XijV

T
ijδj) = 0

E(XT
i β | Ti = 1)− E(V T

ijδj | Ti = 1) = 0

E(XijX
T
i β | Ti = 1)− E(XijV

T
ijδj | Ti = 1) = 0
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which differ from the asymptotic score equation system for a logistic regression model in

the ratios r and rT .

A.10 De-biased biomarker-treatment interaction es-

timator under alternative treatment coding

In models (4.5) and (4.6), I assume treatment Ti ∈ {0, 1}. Alternatively, I may encode

treatment as Ti ∈ {−0.5, 0.5}, i.e. −0.5 for the control arm and 0.5 for the experiment

arm. Then, solving equation (4.7) gives the following form of the de-biased interaction

estimator

β̃Xj×T =
(r̂−1T − r̂−1)δ̂Xj

+ {0.5r̂−1T − (p̂T − 0.5)r̂−1}δ̂Xj×T

1− p̂T

where

r̂ =

√
1 + ξ2 ˆvar(V T

ijδj)

1 + ξ2 ˆvar(XT
i β)

r̂T =

√
1 + ξ2 ˆvar(V T

ijδj | Ti = 0.5)

1 + ξ2 ˆvar(XT
i β | Ti = 0.5)

The variance of the estimator β̃Xj×T can be obtained as

var(β̃Xj×T )

= [(r̂−1T − r̂
−1)2var(δ̂Xj

) + {0.5r̂−1T − (p̂T − 0.5)r̂−1}2var(δ̂Xj×T )

+2(r̂−1T − r̂
−1){0.5r̂T − (p̂T − 0.5)r̂−1}cov(δ̂Xj

, δ̂Xj×T )]/(1− p̂T )2
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Appendix B

Numerical analysis

B.1 Relationship between the MRD and MGB clas-

sifiers

We conduct a numerical study of the value of A1 = (d̂11 − d̂10)/(d̂00 − d̂01) defined in

Section 3.2.3. Considering the contingency Table 3.1, we assume n11+n10 = n01+n00 = 500,

which corresponds to a sample size of 1, 000 and a new treatment assignment probability

of 0.5. We varied n11 and n01 from 1 to 499, which corresponds to 499 × 499 different

contingency tables of cell values. A1 was calculated for each table. The numerical result is

shown in Figure B.1.
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Figure B.1: Color map of A1 under n11 and n01 of different values from 1 to 499: grey if

A1 > 3/2 or A1 < 2/3; white otherwise

Figure B.1 shows that A1 is away from 1 only for extreme cell values. Let us examine

what happens in the two extreme areas in Figure B.1: the bottom-right corner and the

top-left corner. In the bottom-right area, n11 is large and n01 is small, which means the

new treatment is much more effective than the control. The overall test will be significant

regardless of the subgroup test result. In the top-left area, the control treatment is much

more effective than the new, which is unlikely to happen if the new treatment has entered

a phase III trial. In sum, for various plausible scenarios, the value of A1 is around 1.

In addition, A4 = (1 − p̂t)/p̂t is asymptotically 1 when pt = 0.5. Thus, we draw our

conclusion A1 ≈ A4, which indicates the risk difference classifier can perform similarly to

the gradient-based classifier across various scenarios in practice.

B.2 Relationship between the ASD and MRD classi-

fiers

We examine the odds ratio classifier used by the original ASD. Assuming pr(Ti) = 0.5, for

a fixed risk difference pr(Ri = 1 | Ti = 1)− pr(Ri = 1 | Ti = 0) = 0.2, the odds ratio can
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vary, e.g. when pi11 = pr(Ti = 1, Ri = 1) is varying.

Figure B.2: The odd ratio varies with pi11 = pr(Ti = 1, Ri = 1) for a fixed risk difference

of 0.2.

The result is shown in Figure B.2. This demonstrates that if there is an optimal risk

difference threshold (e.g. 0.2 in the above case), it is usually impossible to find an odds

ratio threshold identifying the same subgroup.
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Appendix C

Additional simulation results

C.1 Sparse regression screening procedures

Figure C.1: Comparison of two-stage interaction tests with different screening testing

procedures. The two panels represent: (a) power, changing the main effects of the four

biomarkers βX21 , βX41 , βX61 , βX81 , (b) family-wise error rate, changing the main effects of

the four biomarkers βX21 , βX41 , βX61 , βX81 .
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In Figure C.1, we used the scenario with one biomarker having an interaction (biomarker-

biomarker correlation ρ = 0.6) described in Section 2.7 as the base, and changed only the

main effects of the four biomarkers with main effects alone βX21 , βX41 , βX61 , βX81 . Figure C.1

shows that the performance of the univariate screening using weighted hypothesis testing

downgrades when the main effects of these four biomarkers become too large. This is

because more noise biomarkers with marginal signals tend to fall into the top buckets

(indeed, in the simulated scenario, 100 biomarkers have true “univariate” marginal signals).

The ridge regression screening strategy does not suffer this issue as much fewer biomarkers

(five including X1, X21, X41, X61, X81) have true “multivariate” marginal signals.

Next, we applied Nyholt’s method [56] and Gao’s method [29] to the base scenario we

described in Section 2.7 Simulation Study with a reduced number of repetitions (100). For

the single-stage approach (“no screening”), we used the obtained “effective” number of

independent tests, meff , in the Bonferroni correction to adjust for multiple testing. For

the two-stage approaches using weighted hypothesis testing (two “rank” approaches), we

first adjusted the significance level α with αm/meff , then applied the weighting scheme

as described in Section 1.2.2.2. Results are shown in Figure C.2.

Figure C.2: Comparison of two-stage interaction tests with different screening testing

procedures: The two panels represent: (a) power, comparing with Nyholt’s multiple

correction method, (b) power, comparing with Gao’s multiple correction method.

In Figure C.2(a), Nyholt’s method appeared to be too conservative to improve power

for interaction discovery in the simulated scenario. With a closer look at several repetitions,
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we found the obtained meff is around 992, which is not far away from m = 1, 000. Some

further experiments showed that Nyholt’s method could only show moderate improvement

for extremely highly correlated data (ρ ≥ 0.9). In Figure C.2(b), we applied Gao’s

method with a PCA (principal component analysis) percentage cutoff C = 95% instead

of the recommended 99.5%, as the latter also appeared to be too conservative. Gao’s

method performed better than Nyholt’s method and showed moderate improvement in

the simulated scenario (the improvement is still much smaller than incorporating the

ridge screening to account for biomarker-biomarker correlations). However, we found the

family-wise error rates exceeded above the targeted 0.05 (inflated to around 0.06 to 0.10)

for the three methods shown in Figure C.2(b) after applying Gao’s adjustment, which

indicated C = 95% could be liberal.

C.2 The MGB classifier using Bayesian variable se-

lection

Additional simulations were done to demonstrate my proposed framework in Appendix A.8

using Bayesian variable selection with the ASD. The R package R2BGLiMS [55] was

used to run reversible jump MCMC. Simulation settings are the same as those described in

Section 3.3 except that there exist non-zero correlations (ρ = 0.6) among biomarkers and

the number of replicated data sets is 100. Figure C.3 showed that, in the scenarios with

highly correlated biomarkers, the MGB design using Bayesian variable selection provided

better power than the traditional ASD. However, running the reversible jump MCMC

algorithm is time-consuming, especially within the cross-validated ASD framework. I may

be interested in how to leverage parallel resources to speed up by using “population” based

MCMC methods [5].
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Figure C.3: Comparison of adaptive signature designs in simulated data. The two panels

represent: (a) the subgroup 0.01-level test with increasing sample size, (b) the overall

adaptive test (the subgroup 0.01-level test and the overall 0.04-level test) with increasing

sample size.

C.3 De-biasing procedures under alternative treat-

ment coding

Throughout Chapter 4, we have assumed treatment Ti ∈ {0, 1}. In this section, we encoded

treatment as Ti ∈ {−0.5, 0.5} and repeated simulations shown in Figure 4.1(a) and (b).

When a {0, 1} treatment coding is applied, in comparison with a {−0.5, 0.5} coding, the

variance in control arms decreases and the variance in experimental arms in the model

increases. This will have an impact on fitting the saturated model (4.3) using penalized

regression.
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Table C.1: Comparison of different treatment coding schemes when using the lasso de-

biasing procedure in simulated data.

Treatment coded as Ti ∈ {0, 1}
Sample size 1, 100 1, 300 1, 500 1, 700 1, 900

Power 0.508 0.667 0.753 0.841 0.900

Family-wise error rate 0.049 0.047 0.031 0.056 0.046

Treatment coded as Ti ∈ {−0.5, 0.5}
Sample size 1, 100 1, 300 1, 500 1, 700 1, 900

Power 0.514 0.670 0.756 0.844 0.902

Family-wise error rate 0.048 0.047 0.031 0.058 0.046

Table C.1 showed that the {−0.5, 0.5} treatment coding does increase power of the

group lasso de-biasing procedure compared with the {0, 1} treatment coding, although the

benefit is small (< 0.01) in our simulations.
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