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Genetic structure of a remnant 
Acropora cervicornis population
Steven W. J. Canty1,2,3,4*, Graeme Fox3, Jennifer K. Rowntree3 & Richard F. Preziosi3

Amongst the global decline of coral reefs, hope spots such as Cordelia Bank in Honduras, have been 
identified. This site contains dense, remnant thickets of the endangered species Acropora cervicornis, 
which local managers and conservation organizations view as a potential source population for coral 
restoration projects. The aim of this study was to determine the genetic diversity of colonies across 
three banks within the protected area. We identified low genetic diversity (FST = 0.02) across the three 
banks, and genetic similarity of colonies ranged from 91.3 to 95.8% between the banks. Clonality 
rates were approximately 30% across the three banks, however, each genotype identified was unique 
to each bank. Despite the low genetic diversity, subtle genetic differences within and among banks 
were demonstrated, and these dense thickets were shown not to be comprised of a single or a few 
genotypes. The presence of multiple genotypes suggests A. cervicornis colonies from these banks 
could be used to maintain and enhance genetic diversity in restoration projects. Management of hope 
spots, such as Cordelia Bank, and the incorporation of genetic information into restoration projects 
to ensure genetic diversity within out-planted populations, will be critical in the ongoing challenge of 
conserving and preserving coral reefs.

Coral reefs are under severe threat from global climate change. Particular issues include increases in sea surface 
temperature1,2, ocean acidification3, and localized stressors such as overfishing4 and eutrophication5. Coral reefs 
are reaching a tipping point, with phase shifts from coral to algal dominance becoming increasingly prevalent6,7, 
and potentially irreversible. As the biological and physical structure of coral reefs change, ecosystem service 
provision and the resilience of these systems to future stresses is reduced8. The loss of ecosystem services is of 
concern for coastal populations who rely on them, both directly, e.g., for fisheries9, and indirectly, e.g., for storm 
protection10. To abate phase shifts and conserve coral reef biodiversity, urgent management is required at both 
global and local scales.

Within the Caribbean, average coral cover declined from 34.8% in 1970 to 16.3% in 201211. Of significance 
during this period was the loss of approximately 80% of Caribbean Acroporid corals, which was triggered by an 
outbreak of white band disease in combination with multiple climatic events, including hurricanes12. During 
the intervening decades, there has been little to no recovery of these populations, and both Acropora palmata 
(elkhorn coral) and A. cervicornis (staghorn coral) have been listed as critically endangered by the Interna-
tional Union for Conservation of Nature13,14. However, remnant Acroporid populations have been documented 
throughout the Caribbean, e.g. in Mexico and Belize15, Honduras16, Guadeloupe17, U.S. Virgin Islands, St. Vincent 
and the Grenadines, Bonaire and Curacao18.

Low genetic diversity and high clonal frequency can be common within Acroporid populations17. Asexual 
or clonal reproduction strategies are associated with maintaining and preserving existing genetic diversity dur-
ing periods of population decline and poor recruitment from sexual reproduction, a particular concern in 
fragmented and remnant populations19. Critically, remnant populations have the potential to become sexually 
extinct after prolonged periods of clonal growth, if recruitment of sexually reproduced individuals from other 
populations is low20. Which may be attributed to the Allee effect, as fertilization success in broadcast spawning 
corals, such as Acroporids, is density dependent21. Caribbean Acroporid populations are generally considered 
to be dominated by clones, and thus non-sexual reproduction, however, there are exceptions to this; high lev-
els of genetic diversity have been observed in populations of A. palmata in Mexico, Belize15, and the Eastern 
Caribbean22, and A. cervicornis populations along the Florida Reef Tract23. Higher levels of genetic diversity 
suggest a greater prevalence of sexual reproduction, and within the Eastern Caribbean this has been considered 
to be related to habitat characteristics22. Sexual reproduction has the potential to promote genetic diversity and, 
therefore, the ability to respond to environmental change within a species, increasing resilience in the face of 

OPEN

1Working Land and Seascapes, Conservation Commons, Smithsonian Institution, Washington, DC  20013, 
USA. 2Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL  34949, USA. 3Department of Natural 
Sciences, Ecology and Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, 
UK. 4Centro de Estudios Marinos, Tegucigalpa, Honduras. *email: cantys@si.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-83112-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3523  | https://doi.org/10.1038/s41598-021-83112-4

www.nature.com/scientificreports/

environmental stresses24, and may enhance species diversity at the community level25. Further, areas with high 
genetic diversity have been associated with higher coral cover26. Within A. cervicornis clumping of ramets, or 
clonal genotypes, has been observed across the reef scape22,27. This clumping suggests low genetic diversity at 
the micro-scale and increased genetic diversity at the macro-scale, therefore greater allelic diversity is observed 
in larger populations.

Whilst the presence of remnant populations of threatened species is a cause for hope, there is a realization 
that coral reefs are unlikely to return to past configurations in terms of community assemblage. Therefore, the 
challenge for both the scientific and management communities is to maintain ecosystem function in these criti-
cal systems28. There is concern that recovery by natural processes may not be sufficient, e.g., if coral settlement 
is inhibited by algae29, interventions such as anthropogenic restoration may also be required30. In light of this, 
initiatives are focusing on remnant populations as potential seed populations31, at least at the local scale.

Remnant populations of A. palmata and A. cervicornis have been observed in Honduras16, and Guadeloupe17 
and corals from these populations have the potential to seed the recovery of Caribbean Acroporid populations31. 
The Cordelia Bank Site of Special Importance to Wildlife is one such area. The reef system, located in the Hon-
duran Caribbean, was identified to contain extensive A. cervicornis colonies16 (Fig. 1). Due to the prevalence 
of colonies, the area is being considered as the potential source of colonies for use in local restoration projects. 
Knowledge of the genetic composition of colonies prior to restoration is essential32–34, but to date, no genetic 
studies have been conducted on the colonies within Cordelia Bank Site of Special Importance to Wildlife. It is 
not known if a single, or multiple genotypes are found within these populations. We used microsatellite markers 
to assess the genetic diversity of individual sexually mature colonies of A. cervicornis across three banks within 
Cordelia Bank Site of Special Importance to Wildlife. Our aim was to provide a genetic baseline of colonies 
within the protected area prior to the implementation of restoration projects that plan to use these colonies as 
a source population.

Materials and methods
Study site and sample collection.  Cordelia Bank (N 16.30°; W 086.52°) was officially declared a Site 
of Special Importance for Wildlife in 2012, by the Honduran government35. The area consists of four offshore 
banks, Cordelia Shoal, Smith Bank, Big Cay and Little Cay, located approximately one mile south-west of the 
island of Roatan, Bay Islands, Honduras (Fig. 1). The area was given protective status due to the abundance of A. 
cervicornis, with colonies estimated to extend over an area of 63,440m2, across three primary banks36.

Sampling was conducted in April 2014 on three of the four banks: Big Cay; Cordelia Shoal and Smith Bank, 
based on the presence of high densities of A. cervicornis, as identified by Riegl et al.36. Sampling was not under-
taken on Little Cay due to weather constraints. In-water observations were first conducted to confirm the suit-
ability of sampling areas and ensure that the selected locations had close to 100% A. cervicornis coral cover. For 
each bank, 100 5 m × 5 m sampling cells were initially established across a 50 m × 50 m grid. Due to inclement 

Figure 1.   Map of the Honduran north shore, highlighting the location of Cordelia Bank Site of Special 
Importance to Wildlife, and the three banks with dense thickets of Acropora cervicornis, BC—Big Cay, CS—
Cordelia Shoal, SB—Smith Bank, approximate sampling locations are indicated by red stars. Maps were created 
with R Studio version 1.2.133537 using satellite images provided by Google Maps.
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weather and the risk of causing damage to the reef, the sampling grid was modified on the shallowest banks: Big 
Cay to 50 m x 25 m and on Cordelia Shoal to 50 m × 30 m. This provided a combined area of 5250m2, represent-
ing over 8% of the total estimated cover of A. cervicornis cover across the three banks.

The sampling grid was laid out on the reef using four 50 m measuring tapes, to demark the sampling area. 
Three additional measuring tapes were used to make horizontal internal lines at 5 m intervals, to create two 
adjacent rows. Flagging tape placed at 5 m intervals along the measuring tapes was used to demark individual 
sampling cells of 5 m x 5 m. Once sampling was completed for these two rows, measuring tapes were moved 
further up the reef to create two subsequent rows and repeated until the sampling was complete. Sampling started 
at the deepest part of the reef, working up to the shallows.

Corals were sampled by taking a small cutting, 2–3 cm long, from the branch of a single A. cervicornis colony 
within each of the sampling cells. Cuttings were placed into individually labelled bags containing seawater, taken 
ashore and then transferred to 100% ethanol and frozen for storage prior to genetic analyses. Sampled colonies 
were chosen if: (1) they were the dominant colony within the grid that had a basal attachment, and had not been 
sampled in a previous grid; and (2) they had a minimum branch length of 17 cm, to ensure they were sexually 
mature38. If the dominant colony had been sampled previously, the next largest colony in the grid was sampled 
instead. Sampling only mature colonies was a specific strategy to detect the full genetic composition of the 
potential reproductive stock of A. cervicornis within the protected area. Each sample was geo-referenced, with 
GPS coordinates recorded by a snorkeler at the surface, and depth recorded to 0.1 m accuracy using a Matrix 
dive computer (Mares™, Rapallo, Italy). A total of 205 samples were collected and successfully genotyped from 
across three offshore banks, Big Cay n = 50, Cordelia Shoal n = 57, Smith bank n = 98 (Table 1).

Genotyping.  Fragments of approximately 1 cm length of coral were used for DNA extraction. These were 
crushed using a 0.5″ chisel and transferred to a microcentrifuge tube, to which Qiagen DNeasy Blood and Tissue 
ATL buffer and Proteinase K were added. Samples were then placed in an Eppendorf thermomixer (Hamburg, 
Germany) at 56 °C and 600 rpm for 4 h. Once digestion was completed, DNA extractions followed the Qiagen 
DNeasy Blood and Tissue protocol. DNA concentration was calculated using a BioTek Epoch Microplate Spec-
trophotometer (Winooski Vermont, United States), and where necessary, DNA was concentrated to ensure that 
20 ng of DNA was used in each subsequent amplification reaction.

Individual A. cervicornis colonies were genotyped using fourteen polymorphic microsatellite loci: 0166, 
0181, 0182, 0192 & 020739 and 0513, 0585, 1195, 1490, 2637, 5047, 6212, 9253 & 000740. Polymerase chain reac-
tions were carried out on BIO-RAD T100™ Thermal Cyclers (Hercules California, United States), with an initial 
denaturation step at 95 °C for 5 min followed by 35 cycles of 95 °C for 20 s, 51–55 °C for 20 s, 72 °C for 30 s, and 
a final extension of 30 min at 72 °C, with the exception of 0007. This marker required an initial denaturation 
step at 95 °C for 5 min followed by 31 cycles of 95 °C for 15 s, 55 °C for 15 s, 72 °C for 30 s, and a final exten-
sion of 30 min at 72 °C. Genotyping was performed using an ABI 3730xl automatic DNA analyzer (Applied 
Biosystems, Waltham, Massachusetts, United States). An internal size standard (GeneScan 500-LiIZ, Applied 
Biosystems) was used for accurate sizing. Electropherograms were analyzed using GeneMapper v.5.0 and alleles 
were subsequently binned with the R-package Msatallele version 1.0241. Genotyped colonies with more than 20% 
missing data (missing data from three or more loci) were removed from subsequent analyses. The locus 0192 
did not genotype evenly across samples and therefore was removed from the analysis. All of the laboratory and 
computer work was conducted in and with the support of the Laboratories of Analytical Biology facilities of the 
Smithsonian’s National Museum of Natural History (Washington, D.C., United States).

Data analysis.  Clones were identified as genetically identical to another individual, and these individuals 
were then assigned to a ramet, using a two-step process. Firstly in GenoDive42, a distance matrix was calcu-
lated using a stepwise mutation model, where missing data was not counted, the threshold was set at zero, and 
clonal structure was tested using a stepwise mutation model of the corrected Nei’s diversity index statistic with 
the randomize alleles over individual colonies of all three banks, using 999 permutations. These outputs were 
cross-checked in GenAlEx 6.543, which allows for the inclusion of colonies with missing data, using the match-
ing function where all data is considered as a single population and alleles are codominant. Through this step, 
an additional three colonies were identified as clones and assigned to corresponding ramets. Where clones were 

Table 1.   Description of ramet and clonal diversity of Acropora cervicornis within the Cordelia Bank Site 
of Special Importance to Wildlife. N, is the total number of colonies sampled; Ng, is the number of unique 
genotypes identified; Ng/N is the genotype to colony ratio; Cg is the number of ramets identified; C is the total 
number of colonies identified as clones. No significant difference in the number of clones per bank (chi-
squared = 4.125 p = 0.127), the number clonal genets per bank (chi-squared = 1.348 p = 0.510), or the mean 
ramets per genotype per bank (chi-squared = 0.392 p = 0.822) were observed.

N Ng Ng/N Cg C

Colonies per ramet

Percentage clones (%)Maximum Minimum Mean

Big Cay 50 42 0.84 7 15 3 2 2.1 30.0

Cordelia Shoal 57 44 0.77 4 17 10 2 4.3 29.8

Smith Bank 98 75 0.77 10 33 8 2 3.3 33.7

Combined 205 161 0.79 21 65 10 2 3.1 31.7
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corroborated, a single representative of the ramet was used in further analysis. Summary data of each locus 
(number of alleles, expected and observed heterozygosity) were calculated for each population, and pairwise FST 
and Nei unbiased genetic identity tests were conducted in GenAlEx 6.543.

Population structure of A. cervicornis colonies was analyzed using the software STRU​CTU​RE44, using an 
admixture model with allele correlation. The Burn-in period length was set at 100,000, and the number of Markov 
chain Monte Carlo replications after Burn-in was set at 100,000. We ran the model with K values of 1 through 
10, and with 10 permutations for each K value. To identify the optimal K, the model outputs were analyzed in 
STRU​CTU​RE HARVESTER45, with the highest delta K value used to identify the optimal K value. Mantel tests 
were conducted to test for correlations between genetic distance and geographic distance, and genetic distance 
and depth, and a partial Mantel test to test for partial correlations among all three, these analyses were conducted 
using the vegan package46. Additional Chi-squared analyses of clonal diversity across the three banks were con-
ducted in R Studio version 1.2.133537.

Results
Clonal genetic analysis.  A total of 65 clones, belonging to 21 ramets, were identified across the three 
banks, and were unique to individual banks (Fig. 2, Table 1). Approximately one third (31.7%) of all colonies 
sampled were identified as a clone. Ranging from 29.8% to 33.7% across the three banks, no significant differ-
ences in the occurrence of colonies identified as clones were observed (chi-squared, p = 0.846). Across all alleles, 
the number of ramets varied among banks, as did the mean number of colonies per ramet, and neither was 
significant (chi-squared, p = 0.654, chi-squared, p = 0.132 respectively), nor was there an interaction between the 
number of ramets and the number of colonies per ramet, per bank (chi-squared, p = 0.654) (Table 1).

Genetic structure.  Genetic diversity across the Cordelia Bank Site of Special Importance to Wildlife was 
low (FST = 0.020), varying from FST = − 0.032 to 0.102 across the individual banks (Table 2). Pairwise FST analyses 
suggested low genetic differentiation among the colonies sampled across the three banks, with values rang-
ing from 0.014 to 0.025. Nei’s unbiased genetic identity analyses corroborate these findings, indicating limited 
genetic differentiation among the three banks, ranging from 0.913 to 0.958, with greatest similarities observed 
between Big Cay and Smith Bank (Table 3). A weak significant relationship was observed between genetic dis-

Figure 2.   Depth profiles of sampled Acropora cervicornis colonies and location of clones within the three banks 
of Cordelia Bank Site of Special Importance to Wildlife, each letter represents a unique ramet (clonal genotype).
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tance and geographic distance (Mantel test, r = 0.108, p = 0.002), no relationship was observed between genetic 
distance and depth (Mantel test, r = − 0.038, p = 0.909) or between genetic distance and a combination of geo-
graphic distance and depth (Partial mantel, r = − 0.089, p = 0.993). Population structure analyses highlight the 
similarities in the genetic structure of A. cervicornis colonies within and across the sampling locations, with indi-
vidual colonies having both K clusters well represented and no individual colony fully assigned to either cluster 
(Fig. 3a). However, subtle differences in cluster allocation were observed at the bank level. Greater proportions of 
cluster 2, 56% and 55%, were presented in colonies on Big Cay (Fig. 3b), and Smith Bank (Fig. 3c), respectively. 
Whereas colonies on Cordelia Shoal (~ 51%) have a slightly greater proportion of cluster 1 (Fig. 3d).

Discussion
The extensive thickets of Acropora cervicornis colonies within the Cordelia Bank Site of Special Importance to 
Wildlife are comprised of numerous genetically distinct colonies, however genetic diversity within and among 
the three banks was low. Clones were observed in each of the three banks, with mean clonality across the three 
banks at 31.7%. However, genotypes were unique to individual banks suggesting spatial structuring between 
the banks, which has been observed in other populations22,27. The high number of unique genotypes which 
was observed (mean Ng/N = 0.79) differs from how Acropora reefs are generally considered and what has been 
observed in other populations, e.g. Florida (Ng/N = 0.33), Belize (Ng/N = 0.39)47 and Guadeloupe (Ng/N = 0.01)17. 
The systematic sampling methodology used in this study, which ensured that multiple sexually mature colonies 
were sampled, can maximize the genetic diversity observed. This may have contributed to the lower prevalence 
of clonality than that observed in other studies. However, similar to this study, high frequencies of unique 
genotypes and low clonality have been observed in A. cervicornis populations, e.g., the Bahamas (Ng/N = 0.64), 
Turks and Caicos (Ng/N = 0.65), and Panama (Ng/N = 0.66). The high frequency of distinct, but similar, genotypes 
within and across the three banks of Cordelia Bank Site of Special Importance to Wildlife provide a small, but 
potentially significant, reservoir of genetic diversity. Whilst genetic diversity may be low within, and across A. 
cervicornis populations, significant, but weak, genetic differences driven by geographic distance were observed. 

Table 2.   Genetic diversity at 13 microsatellite loci for Acropora cervicornis for the three sample sites of 
Cordelia Bank Site of Special Importance to Wildlife. Only one representative of each clonal genotype is 
included in the analysis. Na, number of alleles; FST, Fixation coefficient.

Big Cay Cordelia Shoal Smith Bank All sites

Na FST Na FST Na FST Na FST

0166 7 − 0.086 6 0.017 7 0.021 9 0.024

0181 8 − 0.081 12 0.026 12 0.064 13 0.015

0182 10 − 0.124 11 0.006 14 0.031 16 0.013

0207 8 − 0.094 7 − 0.060 8 0.014 9 0.034

0513 6 − 0.088 8 0.009 8 − 0.190 10 0.009

0585 7 0.020 7 0.146 4 − 0.013 7 0.004

1195 4 0.071 5 0.242 6 0.372 6 0.021

1490 5 0.220 3 0.634 5 0.404 6 0.065

2637 7 0.012 6 − 0.178 10 0.030 10 0.005

5047 7 − 0.159 7 0.293 7 − 0.068 9 0.023

6212 12 − 0.026 10 0.120 13 0.122 15 0.006

9253 2 − 0.024 3 − 0.018 4 − 0.030 6 0.047

0007 10 − 0.060 12 0.093 12 0.063 13 0.017

Overall − 0.032 0.102 0.063 0.020

Table 3.   Pairwise FST and Nei unbiased genetic identity values of Acropora cervicornis colonies from three 
banks within the Cordelia Bank site of special importance to wildlife.

Big Cay Cordelia Shoal Smith Bank

Pairwise FST

Big Cay –

Cordelia Shoal 0.025 –

Smith Bank 0.014 0.017 –

Nei unbiased genetic identity

Big Cay –

Cordelia Shoal 0.913 –

Smith Bank 0.958 0.939 –
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This research did not address the drivers of genetic differentiation, and therefore we can only postulate that 
the genetic differentiation observed is a result of natural selection or a founder effect. These subtle genetic dif-
ferentiations could be key in allowing individual colonies to adapt to future stressors, and therefore it is critical 
that this diversity is protected and conserved, this will become more important if these reefs, and others, are not 
restored through sexual recruitment.

Maintaining this genetic diversity will be crucial if sexual reproduction events are triggered in the future; 
such events provide the opportunity to increase genetic diversity within populations48. Spawning activity within 
Acroporid populations has been observed in the Florida Keys, Panama and Belize, July through October49, and 
spawning in Belizean A. palmata has been observed most years from 2010–2019 (Personal communication, M. 
Scott Jones, Smithsonian Marine Station). Monitoring for spawning activity of A. cervicornis in Cordelia Bank 
Site of Special Importance to Wildlife was last conducted during the full moons of June, July and August 2013. No 
spawning was observed in A. cervicornis colonies during this period, however, spawning of Orbicella annularis 
and O. faveolata was observed during the August full moon (Personal observations, SWJC). Spawning in multi-
ple A. palmata colonies in Tela Bay, Honduras, was observed during the same August 2013 full moon (Personal 
communications, Andrea Rivera, Universidad Nacional Autónoma de México). These observations suggest that 
environmental cues to trigger spawning are present in the region. Whilst the potential for natural recovery exists, 
even where spawning has regularly been observed, the overall cover of Acroporids has remained low50. It is 
therefore likely that further intervention is required to assist in the recovery of Caribbean Acroporid populations.

Restoration is becoming an increasingly popular tool for conservation and management of marine habitats51,52 
and within the Caribbean over 150 projects in more than 20 countries have been implemented53. Coral garden-
ing, a preferred technique in the Caribbean, inherently limits genetic diversity as the technique focuses on the 
growing and out-planting of clones54. Despite genetics being an important factor that complements traditional 
restoration ecology methodologies55, and ensures ecological and evolutionary processes are incorporated into 
the restoration process56. Genetic diversity provides colonies with the potential to respond to changing environ-
mental conditions, and where no genetic variation exists, responses are limited to phenotypic plasticity to deal 
with these stressors. During restoration there is the potential for the loss or reduction of fitness in the restored 
population, driven by founder effects, genetic swamping and inbreeding or outbreeding depression32. Greater 
attention needs to be given to genetic diversity when restoring systems57, especially when projects are domi-
nated by a single species, such as coral gardening of A. cervicornis, the genetic diversity represents the primary 

Figure 3.   STRU​CTU​RE outputs for all genotypes (K = 2), mean of 10 permutations, for each colony within each 
of the banks (a); and the mean cluster classifications of all colonies within Big Cay (b); Cordelia Shoal (c); and 
Smith Bank (d). Blue—Cluster 1; and Orange—Cluster 2.
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biodiversity of the habitat. Genetic composition of out-planted colonies is one of many important criteria that 
should be considered within a best practices approach to restoration58.

Understanding the drivers of existing genetic structure and environmental conditions will be important in 
the successful management and conservation of these populations, and of restoration projects that use colonies 
from these populations. If a restoration project using colonies from Cordelia Bank Site of Special Importance 
to Wildlife is to be implemented, then the genetic diversity across the banks observed in this study should 
be considered. Selectivity of colonies during the restoration process can ensure representation of a range of 
genotypes maximizing the potential for evolutionary adaptation of corals within a restored area. There is an 
important caveat that underlies this potential and the future of the corals within Cordelia Bank, the Caribbean, 
and globally. Understanding and reversing the ultimate localized drivers of reef decline (e.g., overfishing and 
eutrophication) must be part of comprehensive local and regional management strategies. The coral populations 
of the Mesoamerican barrier reef system, which encompasses Cordelia Bank, are under pressure from ocean 
acidification, hurricanes, pollution and fishing, and at high risk from mass bleaching over the next decades, 
and the ecosystem has been categorized as critically endangered by the IUCN59. In the specific case of Cordelia 
Bank, fishing and recreational activities have been excluded from highly sensitive areas, however, urban runoff 
and untreated effluents from Coxen Hole, and the proximity of two major cruise ship docks and an international 
airport, represent potential major threats60. If coral reefs are to have sufficient resilience to climate change and 
continue to provide critical ecosystem services to the coastal communities that depend on these resources, the 
drivers of their decline must be reduced. Whilst management cannot prevent the damaging effects of major 
disturbances, it can provide protection to reefs that have the greatest potential to be resilient and contribute to 
recovery through natural processes61. Natural regeneration promotes more complex and resilient systems than 
active restoration62, therefore restoration should be considered as one of a multitude of management tools in 
the conservation of coral reefs.

Received: 19 February 2020; Accepted: 13 January 2021
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