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Abstract. In this work, we used an adaptive feature-selactind function ap-
proximation model, called, flexible neural tree (BNor predicting Poly (lac-
tic-co-glycolic acid) (PLGA) micro- and nanoparétd dissolution-rates that
bears significant role in the pharmaceutical, madiand drug manufacturing
industries. Several factor influences PLGA nanagag dissolution-rate pre-
diction. FNT model enable us to deal with featuzkestion and prediction sim-
ultaneously. However, a single FNT model may or mat/offer a generalized
solution. Hence, to build a generalized model, s&duan ensemble of FNTSs. In
this work, we have provided a comprehensive stuyekamining the most
significant (influencing) features that influenalissolution rate prediction.

Keywords: poly (lactic-co-glycolic acid) (PLGA) micro- and meparticle,
flexible neural tree, function approximation, featselection.

1 Introduction

Application domains, such as chemical, pharmacaltimedical, biology, etc.,
yields a large volume of data with a large numifefeatures. Researchers often use
computational intelligence tools for data analypistarily, for discovering the rela-
tionship between independent and dependent vasiabladitional data-driven com-
putational intelligence method are insufficientdealing with such volume of data
with high accuracy. Mostly, a single function-apgmation model may not be able
to offer the most general solution to a problemthis work, we solve a pharmaceuti-
cal industry problem that sought for a computationadel that can predict the disso-
lution-rate profile of poly (lactic-co-glycolic atj (PLGA) micro-and nanopatrticles.
PLGA dissolution profile prediction is a complexoptem in terms of the number of
feature that governs its dissolution-rate proffethorough examination of the aca-
demic literature provides us 300 potential facthis may influence the dissolution-
rate of the PLGA protein particles [1] [3].

In this work, our approach was to find the mosh#igant features that will govern
the dissolution profile and to construct an appmation model with high accuracy



without the loss of generality. The significancetlud features selection is not limited
only to finding most significant features, but is@reduces the computational com-
plexity of the problem and significantly contribaten improving model's computa-

tional speed, predictability, and generalizationlitgb There are several techniques
available for the pre-selection of the most probalglatures [2]. However, in this

work, we presents a computational tool, namelyefogfeneous flexible neural tree-
(HFENT) that offers automatic features selection amdttion approximation. Interest-

ingly, HENT also make sure diversity in the featspace that makes it an adaptive
feature selector. In general, combined knowledgmaiy experts (predictors) offers
better solution in terms of reliability and gendésathan that of a single expert. So, an
ensemble of several HFNT would offer most geneshlt®n.

We provides a comprehensive discussion on the dilegse problem and dataset
collection mechanisms that tells the significan€enacro-and nanoparticle dissolu-
tion-rate profile prediction (section 2.1). In tf@lowing selection, we will offer a
discussion on HFNT and ensemble methods. Finally,digcuss the experimental
results followed by conclusion.

2 M ethodology

21 ThePLGA dissolution-rate prediction problem

PLGA micro- and nanoparticles plays a significaiéin the medical application and
toxicity evaluation of PLGA-based multi-particulattosages [13]. PLGA micro-
particles are important diluents used to produaeysiiin their correct dosage form.
Apart from playing the role as a filler, PLGA as excipient, and alongside pharma-
ceutical APIs, plays other crucial roles in variausys. It helps in the dissolution of
drugs, thus increasing the absorbability and sbtylf drugs [14], [15]. It helps in
pharmaceutical manufacturing processes by impro&ingpowders’ flow ability and
non-stickiness.

The dataset collected from various academic liteeatontains 300 input features
categorized into four groups, including protein atggor, plasticizer, formulation
characteristics, and emulsifier. Table 1 provideetiled description of the dataset.

Table 1. The PLGA dataset description

# Group name # features Importance

1 Protein descriptors 85 Describes the type of oubds and proteins used

2 Formulation characteristics 17 Describe the mdégcproperties such as molec-
ular weight, particle size, etc.

3 Plasticizer 98 Describe the properties such ailify of the
material used

4 Emulsifier 99 Describe the properties of stabiligincrease the
pharmaceutical product life

5 Time in days 1 Time taken to dissolve

6 % of molecules dissolved 1 PLGA micro-nanopagtitissolution-rate




2.2  Background Study

In the scope of this study, our focus was on PL@5alution properties and drug
release rate. S et al. [3] and Fredenbergt al. [4] described two mechanisms:
diffusion and degradation/erosion that is mainlweyas the drug release from the
PLGA matrix. Several factors influencing the diffus and degradation rates of
PLGAs described by Kang al. [5], [6] Blanco and Alonso [7] and Mainardes and
Evangelista [8] includes pore diameters, matrixivactpharmaceutical ingredient
(API) interactions, API-API interactions, and tharrhulation composition. Sgk et
al. [3] developed a predictive model to describe thdeulying relationship between
those influencing factors on the drug's releasdilprahey focused on feature selec-
tion, artificial neural network, and genetic pragirmaing approaches to come up with
a suitable prediction model. In the past, severathematical models, including the
Monte Carlo and cellular automata microscopic medetre proposed by Zygourakis
and Markenscoff [9] and Gopferich [10]. A partidffedrential equation model was
proposed by Siepmaret al. [11] to address the influence of underlying PLGAR®
erties on the drug's release rate/protein dissolutDjhaet al. [12] used a pool of
several trained predictors and made an ensemigletta model with high predictabil-
ity. However, they had to use separate techniquethé feature-selection beforehand
to make approximation models, in contrast to thathis work, we proposed a tool
for function-approximation and feature-selectiom@itaneously.

2.3  Flexible Neural Tree Approach

For a dataset witlh many independent variablés and a dependent varialife an
approximation model tries finds relationship betw&eem. Moreover, it tries to find
unknown parametef such that root mean square error (RMSE) betweedelsd
output? and actual outpuf be zero. Therefore, we may write RMSE as:

1 ~
RMSE = |-XL (i — 9% (@)

whereN is number of examples.

A wide range application accepts artificial neuratwork (ANN) as most conven-
ient tool for the approximation [16]. Thus, makés iuniversal approximator. ANN
performance heavily relies on its structure, patense and activation-functions [16]
optimization. Researchers have investigated vaneags in the past to optimize the
individual components of ANN using evolutionary pedure [17, 18]. Chest al.
[19] proposed flexible neural tree (FNT) that added ANN optimization in all its
components including structure and parameters. dods an automatic feature selec-
tion. FNT was conceptualized around a multi-layeemst-forward neural network to
build a tree based model, where network structacearameters were optimized by
using meta-heuristic optimization algorithms (thatune inspired stochastic algo-
rithms for function optimization).

An FNT can be defined as a set of function-nodektarminals, where the func-
tion-node indicates a computational node and tealwmimdicated a set of all input



features. The function instruction gétand terminal instruction sét for generating
an FNT model are described as follows:
S=F UT="{+,+3 4, +n} Ulxy,xy -, 2.}, 2)

where+; (i = 2,3,::-,n) indicates that a function-node can tdk@&rguments, where-
as, the leaf node (terminal node) receives no aegisn Figure 1 illustrates a func-
tion-node/computational-node of an FNT.
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Fig 1. A computational node of a flexible neural tree

In Figure 1, the computational node receives inputs through connection weights
(random real values) and two adjustable parametgtahentsy; andb;of the squash-
ing (transfer) function, that limits the total outmf the function-node within a certain
range. A transfer-function used at the functionaened
(netn—ai)>

f(ai' bilnetn) = e_( bi (3)

wherenet, is the net input to thé&h function-node also known as excitation of the
node computed as:

net, = 27]_1=1 wiX; , €I

wherej = 1,2,3 ... is the input to théth node. Therefore, the output of tie node is
given as:

_((netn—ai))
Outn = f(ai' bl" netn) = e b;

&

Figure 2 illustrates an example of a typical FNTieToot node of the FNT given
in Figure 2 indicates the output of the entire 4based model. The leaf nodes of the
tree are indicating the selected input feature tiededges of the tree indicate the
underlying parameters (or the weights) of the modét can chose various kinds of
activation-function at the function-nodes of an FBITd genetic evaluation give vari-
ous structure at various instances. So, FNTs wéterbgeneity in its function-nodes
and structure is now on, called, heterogeneousbflexeural trees (HFNTS). Fitness
of a HFNT is computed according to (1). The roadeof a HFENT returns the output
of the entire model.
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Figure2. A typical FNT with instruction sef = {+,,+3,} and T = {x, x5, x3}

Meta-heuristic framework for HFNT optimization: Wan classify HENT optimiza-
tion in two different parts:

1)

(2)

2.4

The optimization of the HFNT structure, in otherrd® the first approach is
to find a near optimum tree using genetic programgnthat works on a genet-
ic population and uses operators like crossover raathtion to evolve new

generation [26].

The optimization of the parameters of the tree, tlge optimization of the

edges and the arguments of the activation funatg®d at the function-nodes.
Swarm based meta-heuristic were used for optimiziagameters, where
swarm-based meta-heuristics are the algorithmsatteainspired from the for-

aging behavior of the swarm such as group of figlls, bees, etc. [27]

Ensemble of HFNT

A collective decision with consensus of many caat#d is better than decision of an
Individual. Hence, ensemble of many models (pred&tmay offer the most general
solution to a problem [20]. There are two composéntensemble system [21] [22]
construction:

(1) Construction of as diverse and as accurate modefossible. To construct

diverse and accurate models following techniqueg beaused: (a) training
models with different sets of data, like baggingoaithm [28]; (b) training
models with different set of input features, Rand8uob-space algorithm;
and (c) training models with different set of paetens.

(2) Combining the models using a combination rules.€Omany models con-

structed with high diversity and accuracy, thennged to combine them for
a collective decision. We used weighted mean coatinn method, where
the weights for the models were computed by usirgdarheuristic algo-
rithm.
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We conducted our experiment using a platform inddpat software tool that we
developed for realizing FNT. We used the develofiwaoe tool for processing of
PLGA dataset that has 300 features and 754 examesused training parameters

Experimental Set-up and Results

setting as mentioned in Table 2.

We conducted several experiments with the paranseténgs mentioned in Table
2. Since, the computation model mentioned is ststdhén nature, each instance of
experiment offer distinct results in terms of aemyr and future selection. The Accu-
racy, in other words, fithess of an approximatiosdel was measured in terms RMSE
given in (1). However, the correlation that telidationship between two variables (in
this case, the actual output, and the models' tutpueals the quality of the con-

structed model.

We have selected four highly accurate and diverdeatisofor making ensemble.

The obtained results is provided in Table 3.

Table 2. The parameters setting of the HFNT software tool.

# Parameter Name Parameter Utility Values

1 Tree Height Maximum number of level of FNT 5

2 Tree Arity Maximum number of siblings a node. 10

3 Tree Node Type Indicates the type of activationogles. Gaussian

4 GP Population Number of candidates in genetiaifadion. 30

5 Mutation probability The probability that a candidate will be mutat0.4
ed in a genetic programing.

6 Crossover probability The probability that caredés will take parf 0.5
in crossover operation.

7 elitism The probability that a candidate will pegate| 0.1
to next generation as it is.

8 Tournament Size It indicate the size of the post¢d for the| 15
selection of the candidates.

9 MH Algorithm Population The initial size of thevarm (population). 50

10 MH Algorithm Node Range It defines the searclacsp of the transfer; [0,1]
function arguments.

11 MH Algorithm Edge Range It defines the searclacspfor the edges$ [-1.0,1.0]
(weights) of tree.

13 Maximum Structure Iterat Maximum number of generation of geneticl00000

tion programing
14 Maximum Parameter lterg- Maximum number of evaluation of parameted 0000

tion

optimization

Table 3. RMSE andr of the constructed models and ensemble based oro&é validation.

Exp. Training Test Ensemble weights
RMSE r RMSE r

1 12.885 0.908 12.741 0.909 0.355686

2 12.907 0.908 13.248 0.903 0.319278

3 13.855 0.897 13.776 0.897 0.259922

4 14.599 0.881 14.374 0.884 0.085882

Ensemble | - - 11.541 0.928




We select model (second in Table 3) for compariith the results available in litera-
ture. Our second model selects fifteen features aifet a cross validation RMSE
13.248. A comprehensive list of models availabléterature for PLGA prediction is
given in Table 4.

Table 4. Best models constructed for PLGA prediction prob{eross validation results).

# RMSE Features Model Literature
1 13.248 15 HENT Current Work
2 13.34 15 REP Tree [24] Ojlenal. [12]
3 14.3 17 MLP [16] Szk et al. [3]
4 14.88 15 GP Regression [23] Opial. [12]
5 15.2 15 MLP [16] Ojhat al. [12]
6 15.4 11 MLP [16] Szk et al. [3]

Main focus of the present experiment as promisebleginning was to find-out the
significant features and the construction of acuraodel. In previous part of results
section, we have presented accurate model. Howaxenyere resistant to demon-
strate significant features. To obtain significéedtures, we repeated our experiment
20 times. We listed all the features selected loh éastant of experiment according
to their probability of selection. In Table 5, wavie provided a list of 15 such fea-
tures whose probability of selection were obtaihiggher than 0.2. Similarly, Table 6
was realized. In Table 6, we have presented arpictiioverall group probability. The
probability of feature selected from particular gpowas computed by averaging the
probabilities of all the features those were faltler that particular group.

Table 5. Most significant feature (according to probabilifiselection). Individual assessment.

# Feature Index Abbreviation Probability
1 Time Days 299 TD 0.94
2 Prod method 100 PM 0.83
3 PVA conc. inner phase 88 PVA 0.78
4 Ring atom count 110 RAC 0.61
5 Heteroaliphatic ring count 23 HIRC 0.50
6 Aliphatic bond count 104 ABC 0.44
7 Diss. add 98 DA 0.44
8 pH 11 msdon 195 PH11MD 0.39
9 pH 12 msacc 181 PH12MC 0.39
10 Ring count 23 RC 0.39
11 a(yy) 119 AYY 0.28
12 Chain bond count 213 CBC 0.28
13 Diss. add conc. 99 DAC 0.28
14 Fragment count 133 FC 0.28
15 Aromatic ring count 24 ARC 0.22




Table 6. Most significant feature (Group wise assessment)

Sl. Group name # featured Proba- Selected | # Most Significant Features

No. 7 bility Feature | # Name

1 Protein descriptors 85 0.15 17 3 HRC, RC, ARC

2 Formulation characteristics 17 0.28 10 4 PM, PUBA, DAC

3 Plasticizer 98 0.16 29 6 RAC, ABC, AYY,
FC, PH11MD,
PH12MC,

4 Emulsifier 99 0.1 38 1 CBC

5 Time in days 1 0.94 1 1 TD

4 Discussion

The aim of PLGA dissolution-rate prediction expegithwas to find the significant
variables that governs the prediction rate andramte a model for realizing the
PLGA prediction profile. The results obtained frohe experiment suggests signifi-
cant improvement over the earlier models develdpgfiL2]. Our current experiment
provides an insight of the PLGA dissolution ratediction. We have discovered a list
of most significant features by computing their ability of selection using our
model (higher the probability of selection, higliee significance on prediction). The
probability was computed by examining the featutese were repeatedly selected
by the distinct experiments. The results of ensenafldistinct predictors (models)
helped in achieving high accuracy, whereas, thévithaal models were using their
own set of features. Hence, the ensemble modebLgiag a union of all features sets
by all models. However, the second model (see Tapgave us a better result than
the earlier models reported in [3] [12]. The depeld tool was hence able to address
the problem related to the prediction modelingogdfitly.

5 Conclusion

Computational Intelligent tools are widely used data analysis in the industries such
pharmaceutical, medical, chemistry, etc. In thigcle, a function approximation and
feature-selection tool was used for the identifaratof the significant features that
govern the prediction of PLGA micro-nanoparticléfe computational intelligence
tool mentioned in this paper was a tree-based imgfe¢ation of neural network that
provides optimum network structure and paramei@ns. entire model was optimized
using meta-heuristic algorithms. Hence, it helpsriation of diverse (heterogeneous)
models in the ensemble system. The ensemble aflgeteeous models offered better
result than that of all the earlier models. Howetke size (complexity) of the tree
was a concern. A multi-objective approach may kefulsn dealing with the conflict-
ing objectives such as complexity and accuracy.
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