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Abstract. In this work, we used an adaptive feature-selection and function ap-
proximation model, called, flexible neural tree (FNT) for predicting Poly (lac-
tic-co-glycolic acid) (PLGA) micro- and nanoparticle's dissolution-rates that 
bears significant role in the pharmaceutical, medical, and drug manufacturing 
industries. Several factor influences PLGA nanoparticles dissolution-rate pre-
diction. FNT model enable us to deal with feature-selection and prediction sim-
ultaneously. However, a single FNT model may or may not offer a generalized 
solution. Hence, to build a generalized model, we used an ensemble of FNTs. In 
this work, we have provided a comprehensive study for examining the most 
significant (influencing) features that influences dissolution rate prediction.  

Keywords: poly (lactic-co-glycolic acid) (PLGA) micro- and nanoparticle, 
flexible neural tree, function approximation, feature selection. 

1 Introduction 

Application domains, such as chemical, pharmaceutical, medical, biology, etc., 
yields a large volume of data with a large number of features. Researchers often use 
computational intelligence tools for data analysis, primarily, for discovering the rela-
tionship between independent and dependent variables. Traditional data-driven com-
putational intelligence method are insufficient in dealing with such volume of data 
with high accuracy. Mostly, a single function-approximation model may not be able 
to offer the most general solution to a problem. In this work, we solve a pharmaceuti-
cal industry problem that sought for a computational model that can predict the disso-
lution-rate profile of poly (lactic-co-glycolic acid) (PLGA) micro-and nanoparticles. 
PLGA dissolution profile prediction is a complex problem in terms of the number of 
feature that governs its dissolution-rate profile. A thorough examination of the aca-
demic literature provides us 300 potential factors that may influence the dissolution-
rate of the PLGA protein particles [1] [3].  

In this work, our approach was to find the most significant features that will govern 
the dissolution profile and to construct an approximation model with high accuracy 
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without the loss of generality. The significance of the features selection is not limited 
only to finding most significant features, but it also reduces the computational com-
plexity of the problem and significantly contributes in improving model’s computa-
tional speed, predictability, and generalization ability. There are several techniques 
available for the pre-selection of the most probable features [2]. However, in this 
work, we presents a computational tool, namely, heterogeneous flexible neural tree-
(HFNT) that offers automatic features selection and function approximation. Interest-
ingly, HFNT also make sure diversity in the feature space that makes it an adaptive 
feature selector. In general, combined knowledge of many experts (predictors) offers 
better solution in terms of reliability and generality than that of a single expert. So, an 
ensemble of several HFNT would offer most general solution. 

We provides a comprehensive discussion on the drug release problem and dataset 
collection mechanisms that tells the significance of macro-and nanoparticle dissolu-
tion-rate profile prediction (section 2.1). In the following selection, we will offer a 
discussion on HFNT and ensemble methods. Finally, we discuss the experimental 
results followed by conclusion. 

2 Methodology 

2.1 The PLGA dissolution-rate prediction problem 

PLGA micro- and nanoparticles plays a significant role in the medical application and 
toxicity evaluation of PLGA-based multi-particulate dosages [13]. PLGA micro-
particles are important diluents used to produce drugs in their correct dosage form. 
Apart from playing the role as a filler, PLGA as an excipient, and alongside pharma-
ceutical APIs, plays other crucial roles in various ways. It helps in the dissolution of 
drugs, thus increasing the absorbability and solubility of drugs [14], [15]. It helps in 
pharmaceutical manufacturing processes by improving API powders’ flow ability and 
non-stickiness. 

The dataset collected from various academic literature contains 300 input features 
categorized into four groups, including protein descriptor, plasticizer, formulation 
characteristics, and emulsifier. Table 1 provides a detailed description of the dataset.  

Table 1. The PLGA dataset description 

# Group name # features Importance 
1 Protein descriptors 85 Describes the type of molecules and proteins used 
2 Formulation characteristics 17 Describe the molecular properties such as molec-

ular weight, particle size, etc. 
3 Plasticizer 98 Describe the properties such as fluidity of the 

material used 
4 Emulsifier 99 Describe the properties of stabilizing/increase the 

pharmaceutical product life 
5 Time in days 1 Time taken to dissolve 
6 % of molecules dissolved 1 PLGA micro-nanoparticle dissolution-rate 
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2.2 Background Study 

In the scope of this study, our focus was on PLGA dissolution properties and drug 
release rate. Szlęk et al. [3] and Fredenberg et al. [4] described two mechanisms: 
diffusion and degradation/erosion that is mainly governs the drug release from the 
PLGA matrix. Several factors influencing the diffusion and degradation rates of 
PLGAs described by Kang et al. [5], [6] Blanco and Alonso [7] and Mainardes and 
Evangelista [8] includes pore diameters, matrix active pharmaceutical ingredient 
(API) interactions, API-API interactions, and the formulation composition. Szlęk et 
al. [3] developed a predictive model to describe the underlying relationship between 
those influencing factors on the drug's release profile, they focused on feature selec-
tion, artificial neural network, and genetic programming approaches to come up with 
a suitable prediction model. In the past, several mathematical models, including the 
Monte Carlo and cellular automata microscopic models were proposed by Zygourakis 
and Markenscoff [9] and Gopferich [10]. A partial differential equation model was 
proposed by Siepmann et al. [11] to address the influence of underlying PLGA prop-
erties on the drug's release rate/protein dissolution. Ojha et al. [12] used a pool of 
several trained predictors and made an ensemble to get a model with high predictabil-
ity. However, they had to use separate techniques for the feature-selection beforehand 
to make approximation models, in contrast to that, in this work, we proposed a tool 
for function-approximation and feature-selection simultaneously.     

2.3 Flexible Neural Tree Approach 

For a dataset with � many independent variables � and a dependent variable �, an 
approximation model tries finds relationship between them. Moreover, it tries to find 
unknown parameter � such that root mean square error (RMSE) between models’ 
output �� and actual output � be zero. Therefore, we may write RMSE as: 

��	
 =  �

� ∑ (�� − ���)����
 ,     (1) 

where � is number of examples.  
A wide range application accepts artificial neural network (ANN) as most conven-

ient tool for the approximation [16]. Thus, makes it a universal approximator. ANN 
performance heavily relies on its structure, parameters, and activation-functions [16] 
optimization. Researchers have investigated various ways in the past to optimize the 
individual components of ANN using evolutionary procedure [17, 18]. Chen et al. 
[19] proposed flexible neural tree (FNT) that addressed ANN optimization in all its 
components including structure and parameters. And, does an automatic feature selec-
tion. FNT was conceptualized around a multi-layered feed-forward neural network to 
build a tree based model, where network structure and parameters were optimized by 
using meta-heuristic optimization algorithms (the nature inspired stochastic algo-
rithms for function optimization).  

An FNT can be defined as a set of function-nodes and terminals, where the func-
tion-node indicates a computational node and terminals indicated a set of all input 
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features. The function instruction set � and terminal instruction set � for generating 
an FNT model are described as follows: 

	 = � ∪  � = �+�, +�, +�, ⋯ , +�!  ∪ �"
, "�, ⋯ , "#!,   (2) 
where +% (% = 2,3, ⋯ , �) indicates that a function-node can take % arguments, where-
as, the leaf node (terminal node) receives no arguments. Figure 1 illustrates a func-
tion-node/computational-node of an FNT.  
 

 

Fig 1. A computational node of a flexible neural tree 

In Figure 1, the computational node +% receives % inputs through % connection weights 
(random real values) and two adjustable parameters/arguments '% and (%of the squash-
ing (transfer) function, that limits the total output of the function-node within a certain 
range. A transfer-function used at the function-node is: 

)('� , (� , �*+#) =  *,-(./0.123)
43 5,   (3) 

where �*+� is the net input to the %th function-node also known as excitation of the 
node computed as: 

�*+# =  ∑ 67"7#7�
   ,    (4) 
where 9 = 1,2,3 … is the input to the %th node. Therefore, the output of the %th node is 
given as: 

 <=+# =  )('� , (� , �*+#) =  *,-(./0.123)
43 5,    (5) 

Figure 2 illustrates an example of a typical FNT. The root node of the FNT given 
in Figure 2 indicates the output of the entire tree-based model. The leaf nodes of the 
tree are indicating the selected input feature and the edges of the tree indicate the 
underlying parameters (or the weights) of the model. We can chose various kinds of 
activation-function at the function-nodes of an FNT and genetic evaluation give vari-
ous structure at various instances. So, FNTs with heterogeneity in its function-nodes 
and structure is now on, called, heterogeneous flexible neural trees (HFNTs). Fitness 
of a HFNT is computed according to (1). The root node of a HFNT returns the output 
of the entire model.  
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Figure 2. A typical FNT with instruction set � = �+�, +�, ! and  � = �"
, "�, "�! 

Meta-heuristic framework for HFNT optimization: We can classify HFNT optimiza-
tion in two different parts: 

(1) The optimization of the HFNT structure, in other words, the first approach is 
to find a near optimum tree using genetic programming that works on a genet-
ic population and uses operators like crossover and mutation to evolve new 
generation [26]. 

(2) The optimization of the parameters of the tree, i.e., the optimization of the 
edges and the arguments of the activation function used at the function-nodes. 
Swarm based meta-heuristic were used for optimizing parameters, where 
swarm-based meta-heuristics are the algorithms that are inspired from the for-
aging behavior of the swarm such as group of fish, birds, bees, etc. [27] 

2.4 Ensemble of HFNT 

A collective decision with consensus of many candidates is better than decision of an 
Individual. Hence, ensemble of many models (predictors) may offer the most general 
solution to a problem [20]. There are two components in ensemble system [21] [22] 
construction:  

(1) Construction of as diverse and as accurate models as possible. To construct 
diverse and accurate models following techniques may be used: (a) training 
models with different sets of data, like bagging algorithm [28]; (b) training 
models with different set of input features, Random Sub-space algorithm; 
and (c) training models with different set of parameters. 

(2) Combining the models using a combination rules. Once many models con-
structed with high diversity and accuracy, then we need to combine them for 
a collective decision. We used weighted mean combination method, where 
the weights for the models were computed by using meta-heuristic algo-
rithm. 
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3 Experimental Set-up and Results 

We conducted our experiment using a platform independent software tool that we 
developed for realizing FNT. We used the develop software tool for processing of 
PLGA dataset that has 300 features and 754 examples. We used training parameters 
setting as mentioned in Table 2.  

We conducted several experiments with the parameter settings mentioned in Table 
2. Since, the computation model mentioned is stochastic in nature, each instance of 
experiment offer distinct results in terms of accuracy and future selection. The Accu-
racy, in other words, fitness of an approximation model was measured in terms RMSE 
given in (1). However, the correlation that tells relationship between two variables (in 
this case, the actual output, and the models' output) reveals the quality of the con-
structed model. 

We have selected four highly accurate and divers models for making ensemble. 
The obtained results is provided in Table 3. 

Table 2. The parameters setting of the HFNT software tool. 

# Parameter Name Parameter Utility Values 
1 Tree Height Maximum number of level of FNT  5 
2 Tree Arity Maximum number of siblings a node.  10 
3 Tree Node Type Indicates the type of activation at nodes.  Gaussian 
4 GP Population Number of candidates in genetic population. 30 
5 Mutation probability The probability that a candidate will be mutat-

ed in a genetic programing. 
0.4 

6 Crossover probability The probability that candidates will take part 
in crossover operation.  

0.5 

7 elitism The probability that a candidate will propagate 
to next generation as it is.  

0.1 

8 Tournament Size It indicate the size of the pool used for the 
selection of the candidates. 

15 

9 MH Algorithm Population The initial size of the swarm (population). 50 
10 MH Algorithm Node Range It defines the search space of the transfer-

function arguments. 
[0,1] 

11 MH Algorithm Edge Range It defines the search space for the edges 
(weights) of tree. 

[-1.0,1.0] 

13 Maximum Structure Itera-
tion 

Maximum number of generation of genetic 
programing 

100000 

14 Maximum Parameter Itera-
tion 

Maximum number of evaluation of parameter 
optimization 

10000 

Table 3. RMSE and ? of the constructed models and ensemble based on 10 cross validation. 

Exp. Training Test  Ensemble weights 

RMSE ? RMSE ? 

1 12.885 0.908 12.741 0.909 0.355686 

2 12.907 0.908 13.248 0.903 0.319278 

3 13.855 0.897 13.776 0.897 0.259922 

4 14.599 0.881 14.374 0.884 0.085882 

Ensemble  - - 11.541 0.928 - 
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We select model (second in Table 3) for comparing with the results available in litera-
ture. Our second model selects fifteen features and offer a cross validation RMSE 
13.248. A comprehensive list of models available in literature for PLGA prediction is 
given in Table 4. 

Table 4. Best models constructed for PLGA prediction problem (cross validation results). 

# RMSE Features Model Literature 

1 13.248 15 HFNT Current Work 

2 13.34 15 REP Tree [24] Ojha et al. [12] 

3 14.3 17 MLP [16] Szlęk et al. [3] 

4 14.88 15 GP Regression [23] Ojha et al. [12] 

5 15.2 15 MLP [16] Ojha et al. [12] 

6 15.4 11 MLP [16] Szlęk et al. [3] 

Main focus of the present experiment as promised at beginning was to find-out the 
significant features and the construction of accurate model. In previous part of results 
section, we have presented accurate model. However, we were resistant to demon-
strate significant features. To obtain significant features, we repeated our experiment 
20 times. We listed all the features selected by each instant of experiment according 
to their probability of selection. In Table 5, we have provided a list of 15 such fea-
tures whose probability of selection were obtained higher than 0.2. Similarly, Table 6 
was realized. In Table 6, we have presented a picture of overall group probability. The 
probability of feature selected from particular group was computed by averaging the 
probabilities of all the features those were fall under that particular group.     

Table 5. Most significant feature (according to probability of selection). Individual assessment. 

# Feature Index  Abbreviation   Probability 

1 Time Days 299 TD 0.94 

2 Prod method 100 PM 0.83 

3 PVA conc. inner phase 88 PVA 0.78 

4 Ring atom count 110 RAC 0.61 

5 Heteroaliphatic ring count 23 HIRC 0.50 

6 Aliphatic bond count 104 ABC 0.44 

7 Diss. add 98 DA 0.44 

8 pH 11 msdon 195 PH11MD 0.39 

9 pH 12 msacc 181 PH12MC 0.39 

10 Ring count 23 RC 0.39 

11 a(yy) 119 AYY 0.28 

12 Chain bond count 213 CBC 0.28 

13 Diss. add conc. 99 DAC 0.28 

14 Fragment count 133 FC 0.28 

15 Aromatic ring count 24 ARC 0.22 
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Table 6. Most significant feature (Group wise assessment) 

Sl. 
No. 

Group name # features 
Proba-
bility 

Selected 
Feature 

# Most Significant Features 
# Name 

1 Protein descriptors 85 0.15 17 3 HRC, RC, ARC 
2 Formulation characteristics 17 0.28 10 4 PM, PVA, DA, DAC 
3 Plasticizer 98 0.16 29 6 RAC, ABC, AYY, 

FC, PH11MD, 
PH12MC,  

4 Emulsifier 99 0.1 38 1 CBC 
5 Time in days 1 0.94 1 1 TD 

 

 

4 Discussion 

The aim of PLGA dissolution-rate prediction experiment was to find the significant 
variables that governs the prediction rate and to create a model for realizing the 
PLGA prediction profile. The results obtained from the experiment suggests signifi-
cant improvement over the earlier models developed [3] [12]. Our current experiment 
provides an insight of the PLGA dissolution rate prediction. We have discovered a list 
of most significant features by computing their probability of selection using our 
model (higher the probability of selection, higher the significance on prediction). The 
probability was computed by examining the features those were repeatedly selected 
by the distinct experiments. The results of ensemble of distinct predictors (models) 
helped in achieving high accuracy, whereas, the individual models were using their 
own set of features. Hence, the ensemble model was using a union of all features sets 
by all models. However, the second model (see Table 3) gave us a better result than 
the earlier models reported in [3] [12]. The developed tool was hence able to address 
the problem related to the prediction modeling efficiently. 

5 Conclusion  

Computational Intelligent tools are widely used for data analysis in the industries such 
pharmaceutical, medical, chemistry, etc. In this article, a function approximation and 
feature-selection tool was used for the identification of the significant features that 
govern the prediction of PLGA micro-nanoparticles. The computational intelligence 
tool mentioned in this paper was a tree-based implementation of neural network that 
provides optimum network structure and parameters. The entire model was optimized 
using meta-heuristic algorithms. Hence, it helps in creation of diverse (heterogeneous) 
models in the ensemble system. The ensemble of heterogeneous models offered better 
result than that of all the earlier models. However, the size (complexity) of the tree 
was a concern. A multi-objective approach may be useful in dealing with the conflict-
ing objectives such as complexity and accuracy. 
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