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Development of Frequency-Fixed All-Pass Filter
based Single-Phase Phase-Locked Loop

Samir Gautam, Student Member, IEEE, Weidong Xiao, Senior Member, IEEE, Dylan Dah-Chuan Lu, Senior
Member, IEEE, Hafiz Ahmed, Senior Member, IEEE, and Joseph M. Guerrero, Fellow, IEEE

Abstract—Phase-locked loops (PLL) are widely used in the
synchronization of grid interfaced power converters. One so-
lution is based on orthogonal signal generation (OSG), which
requires the grid frequency information for their appropriate
operation.This paper developed a new solution to achieve the
PLL function for single-phase grid interconnection but eradicate
additional frequency feedback loops in the traditional architec-
ture of all-pass filter PLL (APF-PLL). Four new topologies are
developed along with their small-signal modeling and dynamic
analysis. A thorough comparison among them on their dynamic
response, steady state accuracy, implementation, and disturbance
rejection capability are carried out. Finally, the best approach
of frequency-fixed APF-PLL is experimentally evaluated with
frequency adaptive APF-PLL and frequency-fixed PLLs belong-
ing to time-delay (TD), and second-order generalized intergrator
(SOGI) families.

Index Terms—Grid-synchronization, phase-locked loop, all-
Pass Filter, frequency-fixed orthogonal signal generation

I. INTRODUCTION

SYNCHRONIZATION unit is a key element in grid in-
terfaced converter (GIC) control systems [1]–[3]. Grid-

synchronization based on phase-locked loop has been widely
utilized to track the grid phase, frequency, and amplitude in
single-phase systems. The PLL is a closed-loop control system
constituting three parts, namely: phase detector (PD), loop
filter (LF), and voltage-controlled oscillator (VCO) [4]. In gen-
eral, all single-phase PLLs can be classified into either as (i)
power-based or (ii) quadrature based PLL, depending on how
the PD is implemented. The latter technique using OSG unit is
primarily preferred for its distinct advantages, specifically, the
absence of second harmonic oscillation and simplified ampli-
tude estimation [5]. The objective is to generate a quadrature
signal with the same magnitude as the fundamental component
(grid voltage) for applying the synchronous reference frame
(SRF) transformation. A wide variety of OSGs have been
recommended for PLL application in the literature, such as
TD [6], Hilbert transform (HT) [7], discrete fourier transform
(DFT) [8], SOGI [9], all-pass filter (APF) [10] and complex
coefficient filter (CCF) [11].
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The APF presents a straightforward solution yielding an
unity gain for all frequencies, while providing 90◦ phase shift
between the input and output signals at a specific (tuned)
frequency. The research on APF-PLL has focused mainly
on improving its disturbance rejection capability [12]–[14],
discretization approach impact [15], governing dynamic speed
[16] and small-signal modeling [10], [13]. The APF is adapted
to grid frequency variation via an additional frequency feed-
back loop. This adjustment preserves the orthogonality of the
output signal to the grid voltage, but creates an interdependent
loop, difficulties in linearization, variable transfer function,
and an intricate control problem [17]. To decouple OSG units
from the PLL control loop, the concept of nonadaptive OSG
has been introduced, where the OSG parameters are held
fixed and ensuing errors are negated using separate structure.
The additional compensator network can be designed either
using an analytical or numerical method. As each OSG has
different characteristics to generate an orthogonal signal set,
each warrants a distinct frequency fixed configuration and
requires separate design and analysis. Such frequency-fixed
(FF) OSG filter has been applied to TD-PLL [6], [18], [19],
SOGI-PLL [17], [20]–[22], CCF-PLL [11], [23], DFT-PLL
[8], [24], and HT-PLL [25]. In contrast, only a few works are
reported for frequency-fixed APF-PLL (FFAPF) but are found
inadequate in meeting one or the other performance criteria.

Three different approaches for implementing the nonfre-
quency dependent APF-PLL have been compared in [26].
The two-stage FFAPF configuration shows satisfactory perfor-
mance but only in limited frequency variation. Another two
techniques, based on a compensator network and modified
dq transformation eliminated the phase offset error, while the
second harmonic oscillation persisted. Furthermore, the small-
signal modelling was not developed and used for dynamic
analysis. Another approach for the FFAPF-PLL employs an
additional proportional resonant (PR) controller inside the
control loop to eliminate the double frequency oscillations
related to frequency variations [27]. However, it cannot elim-
inate the phase offset error and other details such as control
parameters tuning are not available. A solution utilizing an
additional SOGI frequency locked loop (FLL) (as a prefilter
structure) to tune the APF-PLL has been proposed in [28].
However, the dynamics of FLL impacts the PLL dynamics
and the paper lacks discussion on the FLL parameter design
which is foremost for stable operation. Moreover, none of
these techniques have examined the grid amplitude estimation
procedure. Additionally, a fair comparison between frequency
adaptive APF (FAAPF) and FFAPF is yet to be carried out
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to evaluate whether FFAPF offers any advantage in terms of
performance.

In light of the above discussion, this paper aims to address
the shortcomings in the reported FFAPF-PLL structures. Ac-
cordingly, four effective FFAPF-PLL are developed along with
their small-signal model, and a comprehensive comparison
among them is carried out along with the structures reported
in [26]. Finally, the most efficient FFAPF version is identified,
which is gauged experimentally (in different operating scenar-
ios) with its adaptive APF (FAAPF) counterpart and two other
frequency fixed PLLs using TD and SOGI as OSG units. In
short, the major contributions of this paper are:
• Double harmonic oscillations present in the compensator

based APF-PLL and modified transformation-based APF-
PLL are eliminated.

• A Notch filter-based FFAPF-PLL is proposed as an effec-
tive alternative to PR based FFAPF-PLL with improved
performance.

• The detailed small-signal model (SSM), parameter tuning
guidelines, and amplitude estimation approach are devel-
oped for dynamic analysis and controller synthesis.

• Comprehensive analysis of the four FFAPF PLL methods
are presented by considering several performance aspects.

• Experimentally evaluating the merits/demerits of FFAPF
and FAAPF.

The structure of this paper is organized as follows: The
following section introduces the nonadaptive APF-PLL and
derives the linearized dynamics of APF-PLL. Section III
presents an in-depth analysis of four newly developed FFAPF-
PLL, while their comprehensive comparison is carried out in
Section IV. The experimental evaluation of FFAPF, FAAPF,
and two other frequency fixed PLLs from TD and SOGI
families are carried out in Section V. Finally, Section VI
provides concluding remarks.

II. OVERVIEW OF NON-ADAPTIVE APF PLL
The structure of APF-PLL is shown in Fig.1(a), where

vg(t) is the input grid voltage showing the frequency of ωg .
Through the APF output, a quadrature signal set (vα, vβ) is
formed, on which the Park transformation is applied using the
estimated phase (θe) from the PLL itself. Proportional-integral
(PI) controller is used as the loop filter while an integrator acts
as the voltage-controlled oscillator. The tuning of APF can
either be fixed to the nominal frequency, ωn (FF), or adapted
through the estimated frequency, ωe (FA) from the PLL, as
reflected in the figure. The transfer function of APF tuned
to ωn is given in (1) while its implementation structure is
depicted in Fig. 1(b).

F (s) =
−s+ ωn
s+ ωn

(1)

At the nominal frequency, the output of APF (vβ) is exactly
−90◦ the phase shifted version of vα = vg(t). However, when
the grid frequency diverges from ωn, a phase offset error
occurs resulting in non-orthogonality of the (vα, vβ). For a
grid frequency ωg , the phase shift from APF-OSG becomes:

∠F (jωg) = tan−1
(
− 2ωnωg
ωn2 − ωg2

)
(2)

Fig. 1: Schematic of (a) APF PLL and (b) implementation of
all pass filter

which can further be written, using tan−1
(
1
x

)
= −π2 −

tan−1 (x), (for x < 0) as:

∠F (jωg) = −π
2
− tan−1

(
ωg

2 − ωn2

2ωgωn

)
(3)

The grid code limits the allowable range of frequency varia-
tion (for instance, EN51600 permits 47Hz ≤ fgrid ≤ 52Hz),
and thus the phase drift of β signal around −π/2 due to
frequency variation can be approximated as:

∆φ = −tan−1
(
ωg

2 − ωn2

2ωgωn

)
≈ −ωg

2 − ωn2

2ωgωn
(4)

A. Linearized model for APF Dynamics
In this section, the dynamics of the phase detector com-

prised of APF and dq transformation is carried out. Assuming
the APF-PLL is in a locked state, a sudden phase jump of
∆δ occurs in the input signal. The generalized expression for
grid voltage as a piecewise continuous signal can be written
as [29]:

vg(t) = Vm sin(ωgt) +u(t)[Vm sin(ωgt+ ∆δ)−Vm sin(ωgt)]
(5)

The first and second terms in the above equation are the signal
just before and after the phase perturbation. For the small value
of ∆δ, applying small angle sine and cosine approximation in
(5) can be reduced by:

vg(t) = vα(t) ≈ Vm sin(ωgt) + u(t)[∆δVmcos(ωgt)] (6)

The orthogonal signal vβ in s-domain (output from the APF)
can be written as:

Vβ(s) = Vg(s)F (s) (7)

Taking the inverse Laplace transform, the orthogonal signal in
time-domain is obtained as:

vβ(t) ≈ −Vm cos(ωgt) + ∆δVm[sin(ωgt)− e−ωnt]u(t) (8)
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where the first term is the steady-state output from the APF
just before the occurrence of the disturbance. The second term
contains the dynamics of the step phase jump. The Park (dq)
transformation is applied to this orthogonal component using
the transformation matrix T given by:[

vd
vq

]
=

[
sinωet − cosωet
cosωet sinωet

]
︸ ︷︷ ︸

T

[
vα(t)
vβ(t)

]
(9)

where ωet = θe is the estimated phase of the PLL. After
trigonometric simplification, the q component can be derived
as:

vq ≈ Vm sin(θg−θe)+∆δVm
[
cos(θg − θe)− sin(θe)e

−ωnt
]
u(t)

(10)
Again, the second term in (10) shows the dynamics associated
with the APF and SRF for the step phase jump after time
t = 0. Under θe → θg (quasi locked state), cos(∆θ) ≈ 1)
and assuming ωe ≈ ωn, Vm = 1, the Laplace transform of the
second term after simplification can be expressed as:

vq(s) ≈
∆δ

s

[
s2 + ωns+ 2ωn

2

s2 + 2ωns+ 2ωn2

]
(11)

For low frequency (ω < ωn), the above expression can further
be reduced to the following first-order approximation:

vq(s)

∆δ(s)
≈ s+ 2ωn

2(s+ ωn)
(12)

where ∆δ(s) = ∆δ/s is the small-signal phase step change.
The accuracy of the derived model is inspected in the next
section.

III. FREQUENCY FIXED APF-PLL

In general, two approaches can be applied to eliminate errors
originating from the FFAPF structure at offnominal frequency.
First, allowing the error to propagate through the loop and
compensating it either inside and/or outside of the loop. In
the second method, the phase detector is modified itself for
partial or complete elimination of the error component.

A. Error Quantification

This section identifies the error elements induced in the
estimated dq quantities because of grid frequency deviation.
Consider the steady-state input signal as vg(t)=Vmsin(ωgt),
the steady state orthogonal output signals from APF tuned at
ωn are:

vg(t) = vα(t) = Vm sin(θg)
vβ(t) = −Vm cos(θg + ∆φ)

(13)

Now applying the Park transformation in (9) to the orthogonal
signal set in (13):

vq(t) = Vm sin(θg).cos(θe)−Vmcos(θg +∆φ).sin(θe) (14)

Through trigonometric simplification and applying small-angle
approximation of sine and cosine for ∆φ� 1, sin(∆φ) ≈ ∆φ
and cos(∆φ) ≈ 1, the expression in (14) can be reduced to:

vq(t) = Vm

[
sin(θg − θe) +

(
1− cos(θg + θe)

2

)
∆φ

]
(15)

During the quasi-locked state, the effect of this drift culminates
in a phase offset error and a second harmonic oscillation in
the estimated quantities.

vq(t) ≈ Vm

∆θ +
∆φ

2
− ∆φ

2
cos(2θe + ∆θ)︸ ︷︷ ︸
error

 (16)

The error term in (16) depends on the grid voltage amplitude.
To discard this dependency, the vq signal can be normalized
with the estimated magnitude from vd. Using the orthogonal
signal set (vα, vβ) and transformation matrix in (9), the d
component is calculated as:

vd = Vm [sin(θe). sin(θg) + cos(θg + ∆φ). cos(θe)] (17)

Through trigonometric simplification and utilizing the small-
angle approximation, vd can be expressed as:

vd(t) ≈ Vm
[
1− ∆φ

2
sin 2θe

]
(18)

Consequently, the estimated amplitude also includes an
oscillatory error of twice the fundamental frequency when the
grid frequency diverges

B. Compensator Based FFAPF

If vq can be normalized with the magnitude Vm, and phase
lock condition arises (θe close to θg) both errors can be
eliminated with additional structure. The estimated d axis
component (vd) is first passed through two repeated delayed
signal cancellation (DSC) of delay length (Nd = (Tn/4)/Ts)
for attenuating 2ωe component with wide stretch around this
frequency to obtain vdf . Tn and Ts are the nominal grid period
and sampling frequency, respectively.

The phase offset error can be negated at the PLL output
(phase), by adding the estimated error in the opposite sign as
below:

θcorr ≈ θe −
∆φe

2
(19)

∆φe can be estimated using the expression in (4). The second
harmonic component is approximated (using the estimated
phase θe) and then injected (with opposite sign) into calculated
vq component before PI input:

vqcorr(t) ≈ vq(t) +
∆φe

2
cos (2θe) (20)

The detailed execution of this approach is shown in Fig. 2,
where ANM is the amplitude normalization module responsi-
ble for implementing (vq/vdf ). This PLL is hereafter referred
to as compensator and cancellation-based APF (CCAPF) PLL.

APF and PLL control loops are decoupled and hence APF
dynamics remains outside of the control loop. To account the
effect of phase error compensator, consider a small frequency
drift of ∆ωg = ωg − ωn and ωg close to ωn, then ∆φ in (4)
can be approximated as:

∆φ =

(
−∆ωg(ωg + ωn)

2ωgωn

)
≈ −

(
∆ωg
ωn

)
(21)
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Fig. 2: Compensator and cancellation network based frequency
fixed APF-PLL

Hence, the phase shift (∆φ) arising because of variation of
ωg , is linearly related to ∆ωg , which can be obtained from
output of the integrator. The SSM for the phase jump of ∆θg
on grid phase θg can then be derived as shown in Fig.3(a).

Fig. 3: (a)The SSM control block diagram of CCAPF-PLL (b)
Simulation results for verifying accuracy of derived SSM

The assessment of the derived small-signal model is pre-
sented in Fig. 3(b). A phase jump of +15◦ (at 0.1s) and
a frequency jump of +2Hz (at t = 0.22s) is applied to
both models (CCAPF-PLL and small) and with same control
parameters (Kp = 151,Ki = 11409,Kc = 1/2ωn). It
is visible that the linearized model predicts the estimation
behaviour of both phase and frequency with high precision.

From the linearized model, it is clear that APF and SRF-
PLL are isolated. The open-loop transfer function, while
neglecting the feedforward path, can be written as:

∆θe(s)

∆θp(s)−∆θe(s)
=

1

s
.
Kps+Ki

s
(22)

The final closed-loop transfer function can thus be expressed
as:

Fig. 4: NF and compensator based fixed frequency APF-PLL

∆θo(s)

∆θg(s)
=

0.5(s+ 2ωn)

s+ ωn

(Kp +KcKi)s+Ki

s2 +Kps+Ki
(23)

Comparing the denominator of the second multiplicative
term in (23) with the standard 2nd order characteristic equation
(s2 + 2ζωnf + ωnf

2), we can obtain (Kp = 2ζωnf ) and
(Ki = ω2

nf ), where ζ (damping factor) and ωnf (natural fre-
quency) determine the performance of the closed-loop system.
ζ is usually taken as 1/

√
2 for optimum damping performance,

while ωnf is another design parameter influencing crossover
frequency (settling time) and filtering capability. Ensuing
the tradeoff between bandwidth and filtering, a choice of
ωnf = 2π20 rad/s returns the controller parameters at Kp=178
and Ki=15791.

C. Notch Filter based FFAPF

The inclusion of a notch filter (NF) tuned to 2ωn is a
straightforward approach to deal with the oscillatory error
inside PLL control loop, as illustrated in Fig. 4. Meanwhile,
the dc phase error component is removed via the compensator
network exactly as the solution for CCAPF discussed in
section III-B. Thus, the resultant PLL is named as the notch
and compensator FFAPF (NCAPF)-PLL. The transfer function
of the nonadaptive NF is given as (24):

Gnf (s) =
s2 + (2ωn)

2

s2 + kn(2ωn)s+ (2ωn)
2 (24)

where, kn is the inverse of NF quality factor, which determines
the notch width as well as the phase lag it confers at low
frequency. It is chosen as

√
2 for optimum performance.

This selection also provides acceptable blockage of the dou-
ble frequency component even in grid frequency variation.
However, if higher accuracy is desired, an adaptive NF (fed
by the low pass filtered estimated frequency) maybe used to
tune the resonant frequency to the estimated frequency. Such
an additional feedback results in dual-loop systems with the
frequency loop residing internal to the phase feedback loop.
ANM can be integrated inside the control loop similarly as
in the CCAPF. An additional NF (2ωn) can be placed in
amplitude (vd) estimation path.
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The controller parameters are affected by the NF which
resides inside the loop. To simplify the controller design, a
first-order approximation of NF as given in (25) is used [30]:

Gnf (s) ≈ 1

(kn/2ωn)s+ 1
(25)

The small signal model for NCAPF can be obtained as

Fig. 5: (a)Small-signal model of FFAPF-PLL using NF (b)
accuracy assessment of the derived SSM

depicted in Fig. 5. The feedforward network is again identical
to that of CCAPF. The accuracy of the derived model is
verified by performance comparison with NCAPF through
simulation results. The same control parameters are used for
both, and the results (phase error and frequency estimation) in
Fig. 5(b) clearly indicate that the model provides an accurate
prediction of NCAPF-PLL behaviour. The open-loop transfer
function, θe(s)/(θe(s) − θp(s)) (ignoring the feedforward
correction) can be written as:

Go ln(s) ≈ 1

(kn/2ωn)︸ ︷︷ ︸
Td

s+ 1
.

(
Kps+Ki

s

)
.
1

s
(26)

For type II open loop transfer function as in (26), the symmet-
ric optimum method has been applied to design the controller
parameters [23], [31]. The proportional and integral gains are
a function of a design constant µ and Td. The value of µ is
related to the phase margin (φpm) and given as:

µ =
1 + sin (φpm)

cos (φpm)
&

{
Kp = 1

µTd
Ki = 1

µ3Td2
(27)

Usually PM in the range of 30◦ < φpm < 60◦ is desirable
and for a choice of 45◦, it yields Kp = 184 and Ki = 14111,
while, kcn is still 1/2ωn. Based on the analysis from the
previous section, the final closed-loop transfer function can
be derived as:

∆θo(s)

∆θg(s)
=

0.5(s+ 2ωn)

s+ ωn
.
Go ln(s)

1 +Go ln(s)
.
(Kp +KcnKi)s+Ki

(Kps+Ki)
(28)

D. Two Stage APF

Inspired from [32], the input signal is passed successively
through consecutive stages of APF to obtain vα signal as
shown in Fig. 6. The operation of this mechanism, two-stage
APF (TSAPF) is explained from a frequency domain point
of view in [26], while here the functioning is presented from
time domain perspective. Consider the input voltage signal
vg(t) = Vmsin(ωgt)), while its steady state vβ(t) signal is
given in (13). When (vg(t)) is again passed through another
APF, the resultant signal is obtained as:

vg
′(t) = −Vm sin(ωgt+ 2∆φ) (29)

Through small-angle approximation and simplification, the
new vα component can be approximated as:

vα = (vg(t)− vg ′(t)) /2 ≈ Vm sin(θg) + ∆φ cos(θg) (30)

Then, vq component is calculated by substituting orthogonal
signals (vα in (30), vβ in (13)) for the transformation in
(9). After some trigonometric simplification and small-angle
approximation, the final expression for vq becomes:

vq ≈ Vm sin(θg − θe) + ∆φcos(θg − θe) (31)

When the estimated phase (θe) is closer to the grid phase
(θg), the vq signal contains additional phase offset error of
∆φ. Compared to single-stage FFAPF, the double frequency
component is absent, hence only the phase error correction is
sufficient as reflected in Fig. 6. Here, the gain of the phase
error compensator is twice of the gain in CCAPF-PLL. It
should be pointed out that ∆φ is calculated using expression
(4), unlike in [26] where the small signal value (21) was used
in the actual PLL. This improves the reduction of phase offset
error in large frequency drifts.

For the amplitude estimation, consider the same orthogonal
signals and the transformation matrix (9). Substituting the α, β
signals, after some trigonometric simplification and applying
small-angle approximation, the following expression can be
obtained:

vd ≈ Vm (cos(θg − θe))−∆φ (sin(θg − θe)) (32)

When θe →θg , the signal vd converges to grid amplitude
Vm. Thus, no separate structure is required for correcting the
amplitude estimation.

Fig. 6: Two stage fixed frequency APF-PLL structure with
phase compensator

The small signal model of TSAPF can be obtained, as shown
in Fig. 7(a). It is similar to that of the single stage except
the inclusion of another APF stage before the PLL control
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loop and the gain of the phase compensator. The open-loop
transfer function is the same as for single-stage FFAPF when
the feedforward controller is neglected. The final closed-loop
transfer function (output phase to input phase) again can be
derived following the same procedure as for CCAPF-PLL as
below.

∆θo(s)

∆θg(s)
=

(
0.5(s+ 2ωn)

s+ ωn

)2
(Kp +KrKi)s+Ki

s2 +Kps+Ki
(33)

The verification of the derived model is carried out by
comparing the simulation results of TSAPF-PLL and its SSM
using the same control parameters. The results (estimated
phase and frequency) in Fig. 7(b), clearly exhibit that the
model accurately mimics the dynamic behaviour of TSAPF-
PLL.

Fig. 7: (a)SSM of TSAPF-PLL (b) Accuracy assessment of
SSM model

The control parameter design follows the same procedure as
that for CCAPF and for the sake of brevity, it is not repeated
here. For fair comparison, the same design criteria are used
giving the same control parameters (Kp=178 and Ki=15791).

E. Modified Transformation FFAPF

Consider again the vq calculation using fixed frequency APF
as below:

vq(t) = vα. cos(θe) + vα(θg − φωn).sin(θe) (34)

where, φωn is phase shift from APF tuned to ωn for β
component. At ωg 6= ωn, an error component occurs in the
second term of the above expression. The idea is to generate
an equal and opposite error in the first term by placing another
nonadaptive APF block for indirect generation of the cosine
of the estimated angle. This method is inspired from the
nonfrequency dependent time delay PLL (NTD-PLL) [33]
and here labelled as modified transformation APF (MTAPF).
Both the APFs are tuned to a nominal frequency of ωn such
that they provide same phase shift during quasi locked state

when ωe approaches ωg . The mathematical expression for such
realization is given below while the structural modification is
depicted in Fig. 8.

vq(t) = −vα(ωgt). sin(ωet− φωn2)︸ ︷︷ ︸
APF2

+ sin(ωet). vα(ωgt− φωn1)︸ ︷︷ ︸
APF1

(35)
where, φωnx is the phase shift obtained from APFx tuned at
ωn (50Hz) and ωe is the estimated frequency from PLL. Let
ωg 6= ωn and ∆φx be the phase displacement because of grid
frequency drift. Then, the above equation can be rewritten as:

= −
vα︷ ︸︸ ︷

Vg sin(θg) ·
APF2︷ ︸︸ ︷

cos(θe + ∆φ2)︸ ︷︷ ︸
Term−1

+ sin(θe) ·
(vβ)APF1︷ ︸︸ ︷

Vg cos(θgt+ ∆φ1)︸ ︷︷ ︸
Term−2

(36)
Equation (36) reveals irrespective of ωn, ωe = ωg is sufficient
for impelling ∆φ1 = ∆φ2 which results in the cancellation of
error components generated from each term. Thus, vq can be
regulated to zero. This is contrary to the reported work in [26],
where APF was employed in the second term of expression
in the right hand side to indirectly generate sin(ωet) and
hence could only eliminate the offset error while the second
harmonic oscillations still remained .

Fig. 8: Modified transformation APF-PLL to incorporate fre-
quency adaptive feature

Similarly, the ANM based on the modified DQ transforma-
tion can be integrated to avoid the dependence of the open
loop gain on the grid voltage amplitude. Modified DQ trans-
formation can also be applied for the estimation of grid voltage
magnitude. Applying a similar concept, the error present in the
second term of the expression (17) is reintroduced in its first
term. This is achieved by replacing sin(θe) with cos(θe) in
(17) which passes through another fixed frequency APF block
tuned at ωn.

vd = Vm

sin(θe + ∆φ)︸ ︷︷ ︸
APFout

. sin(θg)︸ ︷︷ ︸
vα

+ cos(θg + ∆φ)︸ ︷︷ ︸
vβ

.cos(θe)


(37)

Expanding the above expression and through some assump-
tions (θe closer to θg) and trigonometric processing, the
magnitude can be estimated as:

Vm ≈
vd

cos(∆φ)
(38)

For small grid frequency variation, cos(∆φ) → 1, and the
effect of division term is tiny in the estimated quantities and
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can be neglected. Alternately, the Taylor series approximation
of the cosine up to two terms can be used to retain high
accuracy without inflating implementation.:

cos (∆φ) ≈ 1−
(
(∆φ2)/2

)
(39)

In MTAPF-PLL, although there is an absence of frequency
feedback, an additional APF lies in the phase feedback path
instead. This consequently introduces the APF delay effect in
the PLL control loop. Hence, the small signal model of the
modified transformation-based APF-PLL is same as that of
the frequency adaptive APF (FAAPF) PLL and is shown in
Fig. 9 (a). This means, despite having a structurally different
implementation, from the small signal perspective, they are
equivalent.

Fig. 9: (b) Linearized model of modified dq transformation
based APF-PLL and (b) Accuracy verification of derived
model in phase and frequency jump

The correctness of the linearized model (MTAPF-PLL)
presented above is justified via simulation test. A phase jump
of +15◦ and a frequency jump of +2Hz are applied, and
the corresponding phase error and estimated frequency are
depicted in Fig. 9(b). The results clearly show that the de-
rived model provides an accurate approximation of the actual
MTAPF-PLL.

To eliminate the effect of grid voltage amplitude on the
controller parameter design, the vq can be normalized with vd
as discussed beforehand. If the proportional and integral gains
are Kp and Ki, the open-loop transfer function of MTAPF-
PLL with PI controller is given as:

Gol(s) =
∆θe(s)

∆θg(s)−∆θe(s)
=

(s+ 2ωn)

2(s+ ωn)︸ ︷︷ ︸
vq(s)

(
Kps+Ki

s

)
︸ ︷︷ ︸

Gpi(s)

.
1

s

(40)
where vq(s) is transfer function representing MTAPF-PD
dynamics and Gpi(s) is PI controller transfer function. The
transfer function of vq(s) is a lag filter filter and in low
frequency range, the effect of this filter can be overlooked

while maintaining reasonable accuracy [10]. This simplifies
the controller design procedure as the closed-loop transfer
function can be expressed in standard form below:

Gcl(s) =
∆θe(s)

∆θg(s)
=

Kps+Ki

s2 +Kps+Ki
(41)

Comparing the above closed-loop transfer function with the
standard second-order transfer function with zero, the con-
troller gains can be equated as Kp = 2ζω′n and Ki = ω′2n
respectively. The controller design follows the same approach
as discussed for CCAPF-PLL. For an impartial comparison
with other FFPLLs (ζ = 0.707, ω′n = 20π), the choice
of controller parameter must be consistent as Kp=178 and
Ki=15791.

IV. COMPARATIVE ANALYSIS OF FFAPF-PLL

In this section, the performances of the four FFAPF-PLL
are evaluated in four facets, namely, dynamics, accuracy,
implementation, and disturbance rejection. The controller pa-
rameters used are as designed in the aforementioned section
using the standard stability criterion for a fair comparison. The
bode plot of the compensated loop gain for the four approaches
along with their phase margin (PM) and crossover frequency
is illustrated in Fig. 10. For MTAPF, the obtained PM is lower
as the phase contribution from APF was omitted during the
controller design. Although small, in reality, it does present
some amount of phase lag at around the frequency of concern
(ωc).

Fig. 10: Bode plot of compensated loop gain of four FFAPF-
PLL

A. Dynamic Performance

The dynamic responses of four FFAPF-PLLs are evaluated
under a phase jump of (+30◦) and a frequency step change
of (+2Hz). The 2% settling time , percentage overshoot,
and peak phase/frequency error are appraised as performance
metrics. Moreover, the maximum amplitude variation without
saturation unit is also noted. The summary of the measurement
is presented in Table I while simulation figures are omitted to
save space. The results reflect the fast dynamic performance
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TABLE I: Dynamic performance assessment of four FFAPF-
PLLs

Disturbance CCAPF NCAPF TSAPF MTAPF
Phase jump (+30◦)
2% settling time (ms) 41.34 35.146 42.47 34.378
Phase overshoot (%) 26.08 42.03 32.53 32.13
Peak Freq. error (Hz) 4.48 4.832 4.28 4.93
Peak Amp. error(p.u) 0.22 0.464 0.4509 0.4845
Freq. step (+2Hz)
2% settling time (ms) 48.52 27.228 50.48 40.965
Freq. overshoot (%) 4.25 1.316 4.35 3.95
Peak phase error (deg) 3.41 4.327 4.10 3.51
Peak Amp. error(p.u) 0.004 0.006 0.006 0.013
-3dB, θo(s)/θg(s) (Hz) 39.1 45.8 37.4 42.8

Fig. 11: Variation of the estimated quantities around the final
steady state value

of NCAPF and MTAPF. While, CCAPF and TSAPF both
have comparable dynamics, with CCAPF having slightly better
transient speed and lower overshoot. The measured bandwidth
of closed-loop transfer function (θo(s)/θg(s)) are also reported
in table I. CCAPF meanwhile, shows the least variation of
amplitude during phase/frequency disturbance.

B. Steady State Performance

The steady-state accuracies of the four FFAPF methods
are analysed by measuring the steady state deviation of the
estimated quantities at off-nominal frequency (52Hz). The
measurements of peak-to-peak oscillations are shown in Fig
11. From the results, it can be concluded that MTAPF pro-
vides the best steady state performance, free of oscillation.
Meanwhile, CCAPF and TSAPF provide a similar level of
precision. The NCAPF has the largest oscillation because of
its weakened rejection capacity at off-nominal frequency. As
discussed, if desired, this can be sorted out by adapting the
notch frequency to the estimated frequency.

The improvement in SSA at off-nominal frequency brought
out by the proposed MTAPF, TSAPF, and CCAPF from its

TABLE II: Number of additional operations required for
implementation of each FFAPF-PLL

Method Additional
structure

Trig.
functions */* +/-

CCAPF DSC(2) 1 3 2
TSAPF APF (1) 0 2 2
NCAPF NF (2) 0 2 2
MTAPF APF(2) 0 4 2

conventional version can be better visualized in the compar-
ative simulation result depicted in Fig.12. As noted, even at
ωg=52 Hz, the proposed MTAPF and CCAPF considerably
lessen the oscillatory error in estimated phase contrary to
previously recommended methods in [26]. This improvement
is achieved without compromise to the dynamic performance
which remains the same. Meanwhile, the proposed TSAPF
gets rid of the small phase offset error with respect to
the previous version in [26]. It should be pointed out that
the previous studies also did not delve into measuring the
amplitude estimation accuracy.

Fig. 12: Simulation results(phase error) for conventional and
proposed version of FFAPF at the off-nominal frequency (52
Hz); ([R]= [26])

C. Computational Requirements

The additional mathematical calculations involved in imple-
menting the four FFAPF-PLLs are presented in Table II. The
common mathematical operations such as controller, OSG and
transformation, and amplitude normalization are excluded in
the table. However, the supplementary structures involved in
the magnitude estimation process are taken into account. The
constants are lumped on one side and for MTAPF, the cosine
term in (39) is replaced with its low cost implementation.
From the implementation point of view, the TSAPF attains
FF operation with the least additional computations

D. Disturbance Rejection Feature

The DC offset and harmonics appear as disturbance (dh(s))
input to LF after the phase detector section. DC offset in PLL
input signal converts to the fundamental frequency component
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Fig. 13: The disturbance rejection capability of four FFAPF
for input signal containing dc offset and low order harmonics

while the lowest harmonic, i.e, 3rd order transforms into
2nd and 4th harmonic component in dq frame. All PLLs
are affected by these disturbances, albeit differently because
of their different attenuation strengths at these frequencies.
These are clarified in Fig.13 by observing the oscillatory
error in the estimated quantities in the presence of dc offset
(0.02p.u, for t > 0.24s) and harmonics (3rd of 0.04p.u,
5th of 0.03 7th of 0.02 p.u for t < 0.24s) respectively.
As the phase and frequency are estimated from the same
control loop, they show similar estimation behaviour. To be
precise, NCAPF as anticipated provides the best harmonic
rejection and TSAPF better rejects the dc offset than rest of the
PLLs as evidenced by lower peak-to-peak oscillatory errors.
Meanwhile, the amplitude which is estimated separately (vd
signal) is also affected because of distortion and dc offset in
grid voltage. Among these PLLs, CCAPF has the smallest
peak-to-peak amplitude errors in both types (dc offset and
harmonics) of disturbances as shown in Fig.13 (c). This is
because it has a pair of DSCs tuned to 100Hz placed in d
rotating frame.

It is noted that, in both cases (dc offset and distortion)
TSAPF offers better rejection performance than CCAPF. This
is because these disturbance components, when converted to
a rotating frame, are reduced in magnitude in TSAPF because
of the employed structure.

V. EXPERIMENTAL ANALYSIS

The dynamic analysis showed that among FFAPF, the
MTAPF fares overall better in dynamic response for the phase
and frequency estimation. It possesses the best SSA, while
not being too computational intensive. The performance of
MTAPF-PLL is appraised experimentally in this section using
the dSPACE (DS1104) platform with frequency adaptive APF-
PLL (FAAPF) presented in [10]. As MTAPF and FAAPF have
the same SSM, it is useful to observe the difference in their

TABLE III: Control Parameters used for experimental study

Method Kp Ki k Td
FAAPF 178 15791 - -
FFSOGI 178 15791 1.41 -
NTD 165 11431 - Tn/4
MTAPF 178 15791 - -

performance. Two other FF-PLLs from different OSG (TD
SOGI) classes are also selected to study the competitiveness
of the MTAPF with other PLL types. Among the reported
FFPLLs for TD and SOGI, nonfrequency dependent TD-
PLL (NTD-PLL) [33] and frequency fixed SOGI (FFSOGI)
in [20] are the best performing ones. The relevant control
parameters for these four PLL types maintaining the standard
stability criterion are listed in Table III. Three of them have the
same control parameters as they have identical characteristics
equations of closed-loop transfer function. While, for NTD-
PLL, which has different transfer functions, the suggested
control parameters in the paper provide the best response. The
grid voltage signals are programmed internally and generated
using dSPACE itself. The sampling frequency is chosen as
10KHz throughout. The estimated frequency is fed back in
FFSOGI to adjust the beta signal gain, while in FAAPF, for
adapting the APF block. To avoid the algebraic loop, the
frequency is first passed through LPF or a unit sample delay.
Six test cases are conducted with different disturbances of the
input voltage signal as listed below:

• Case I: Phase jump of +30◦

• Case II: Frequency step of +2Hz
• Case III: Input voltage sag of 0.1p.u
• Case IV: Presence of dc offset (0.02p.u)
• Case V: Distorted with odd order harmonics.
• Case VI: Frequency variation with distorted grid voltage.

Fig. 14 illustrates the dynamic response of four PLLs for
case I, when the input grid voltage has a sudden phase jump
of +30◦. The tracking of the grid phase by MTAPF-PLL is
the fastest, followed by NTD-PLL. The dynamics of frequency
and amplitude estimation for MTAPF and FAAPF are similar
with both exhibiting high overshoot, while FFSOGI has the
lowest variation (peak error). Similarly, the dynamics and
steady state performance for case II during grid frequency
variation is depicted in Fig. 15. The NTD followed by MTAPF
takes the minimum time to settle to the target frequency of
52Hz. MTAPF and FAAPF both demonstrate similar amounts
of peak phase and magnitude estimation error during transients
and lower than FFSOGI and NTD. The zoomed in version
of the steady state value at off-nominal frequency (52Hz)
clearly reveals the superior accuracy obtained from MTAPF
and NTD-PLL. FFSOGI has the largest phase and amplitude
tracking error. Although tiny, FAAPF also possess fundamental
frequency oscillatory components in the estimated quantities.
In case III, a voltage sag of −0.1p.u is considered and the
corresponding response is shown in Fig. 16. FAAPF tracks
the new amplitude rapidly, followed by MTAPF. However,
MTAPF settles out the transient phase/frequency error the
fastest. NTD-PLL presents an identical response as that of
MTAPF, and FFSOGI exhibits the slowest dynamic speed and
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higher peak errors in phase and frequency.

Fig. 14: Dynamic performance in event of phase jump (case
I)

Fig. 15: Dynamic and SS performance in event of frequency
change (case II)

The experimental evaluation of the dc offset and harmonic
rejection capability of these PLL algorithms are demonstrated
in Fig.17. A dc offset of 0.02 p.u is included in the input signal
for test case IV and the estimated grid quantities are shown in
Fig. 17 (a). All four demonstrate a similar level of dc offset
rejection capability, with FAAPF having slightly lower peak-
to-peak oscillations. Similarly, for test case V, the grid voltage
signal is polluted with 3rd, 5th and 7th harmonics each with

Fig. 16: Dynamic performance in event of amplitude jump
(case III)

0.05, 0.04 and 0.03 p.u resulting in THD at 7% (EN50160
standard allows 8% [23]). The corresponding phase error,
estimated frequency, and amplitude are sketched in Fig.17(b).
The estimated grid parameters from the FFSOGI are more
filtered with lower fluctuation levels. FAAPF and MTAPF both
show higher amount of peak-to-peak oscillation in amplitude
estimation. Unlike SOGI, the harmonic component output
from APF are not attenuated but passed with unity gain while
calculating vd component.

Case VI evaluates the responses of PLLs in grid frequency
drift (−2Hz) in the presence of harmonic distortion (with
THD 7.3%) and illustrated in Fig.18. All four PLLs are able to
track the grid quantities albeit different oscillatory errors. As
expected FFSOGI has better harmonic rejection ability, while
MTAPF and FAAPF display equivalent response with higher
oscillations. However, MTAPF boasts of lower average phase
error because of symmetricity around 0◦.

Finally, the execution times of these four PLL algorithms
in dSPACE platform are portrayed in Fig. 19 to evaluate their
implementation complexity. MTAPF has marginally higher
(0.3µs) processing time than FAAPF-PLL and lower to the
rest of the methods. The results indicate MTAPF is computa-
tionally competitive with FAAPF and other FF-PLLs.

VI. CONCLUSION

This paper explored four approaches to achieve the fre-
quency fixed APF-PLL. A comprehensive comparison among
them is conducted considering four predefined performance
indices. The best among these (MTAPF) was then compared
with the FAAPF-PLL and two other frequency-fixed PLLs:
FFSOGI and NTD. The experimental results demonstrated that
the MTAPF yields faster transient response than FFSOGI and
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Fig. 17: Steady state performance of estimated quantities for
(a) case IV (b) case V

Fig. 18: Experimental result of PLL responses for case VI

Fig. 19: Execution times of PLL algorithms in dSPACE

FAAPF, and comparable transient time with NTD-PLL, while
also maintaining high accuracy in the estimated quantities.
The solution based on the FAAPF has the most straightfor-
ward digital implementation, although it is complicated in

the control system perspective. The MTAPF achieves the FF
feature with only 13% increase in computational load with
respect to FAAPF. The dc offset and harmonics rejection
capability of MTAPF and FAAPF are almost identical with
minor differences quantitatively. Integrating harmonics and dc
offset rejection capability in MTAPF, will be the focus of our
future work.
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