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Abstract
Background: Transcranial	alternating	current	stimulation	(tACS)	and	transcranial	ran-
dom	noise	stimulation	(tRNS)	have	been	shown	to	have	physiological	and	functional	
effects	on	brain	excitability	and	motor	behavior.	Yet,	 little	 is	known	about	their	ef-
fects in the swallowing system.
Aim: To	examine	the	effects	and	optimal	stimulation	parameters	of	tACS	and	tRNS	for	
modulating excitability of human pharyngeal motor cortex.
Methods: 10	Hz	(alpha),	20	Hz	(beta),	70	Hz	(gamma)	tACS,	0.1–	640	Hz	(full-	spectrum)	
tRNS,	and	sham	were	applied	over	pharyngeal	motor	cortices	at	1.5	mA	current	in-
tensity	for	10	min	 in	15	healthy	participants.	Pharyngeal	motor–	evoked	and	thenar	
motor–	evoked	potentials	 (PMEPs	and	TMEPs)	were	assessed	before	and	up	 to	2	h	
after	stimulation	with	single-	pulse	transcranial	magnetic	stimulation.	Averaged	MEP	
amplitude	 and	 latency	 changes	 were	 analyzed	 using	 repeated	 measures	 ANOVA	
(rmANOVA).
Key Results: Two-	way	rmANOVA	across	all	active	interventions	demonstrated	a	sig-
nificant	MEP	interaction	both	in	the	stimulated	pharyngeal	cortex	(F	(4,	56)	=	1.731,	
p =	0.038)	and	in	the	ipsilateral	thenar	cortex	(F	(4,	56)	=	1.506,	p =	0.048).	Compared	
to sham, subsequent post hoc	tests	showed	site-	specific	and	sustained	(60–	120	min)	
increases	in	PMEPs	with	gamma	tACS	and	tRNS	(p =	0.005,	p =	0.027,	respectively)	
and	for	TMEPs	with	beta	tACS	(p =	0.006).
Conclusions and Inferences: Our	findings	suggest	that	the	effects	of	tACS	and	tRNS	
are	frequency-	dependent	and	cortical	(representation)	site-	specific	with	both	gamma	
tACS	and	full-	spectrum	tRNS	enhancing	human	pharyngeal	cortical	excitability.	These	
techniques hold promise as potential treatments for neurological dysphagia.
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1  |  INTRODUC TION

Transcranial	alternating	current	stimulation	(tACS)	and	transcranial	
random	noise	stimulation	 (tRNS)	are	two	novel,	non-	invasive	brain	
stimulation	 (NIBS)	 techniques	 that	 deliver	 low-	intensity	 sinusoidal	
alternating	current	(AC)	continuously	over	the	cerebral	cortex.1 Both 
techniques	at	low	stimulation	intensities	are	safe	and	well-	tolerated	
in healthy adults and patients2 and directly alter excitability within 
the brain for periods outlasting the duration of stimulation.2 When 
used to modulate excitability within the primary motor cortex 
(M1),	 tACS	 and	 tRNS	have	 been	 shown	 to	 have	 physiological	 and	
functional effects on both hand motor excitability and behavior.3-	5 
Compared	 to	 transcranial	 direct	 current	 stimulation	 (tDCS),	 tACS	
and	tRNS	have	similar	effects	on	cortical	excitability	but	appear	to	
produce less unpleasant sensations when applied to the scalp,5-	7 
thus conferring a potential advantage to clinical utilization.

Recent studies suggest that brain stimulation leads to swal-
lowing recovery.8,9	As	we	know,	swallowing	is	a	complex	and	well-	
coordinated process which is associated with activation of several 
areas	of	the	central	nervous	system	(CNS)	for	its	safe	deployment.	
Moreover,	swallowing	problems	(dysphagia)	commonly	occur	follow-
ing neurological disorders such as stroke and/or among the elderly 
population.10 Complications include pneumonia, dehydration, mal-
nutrition, or even increased mortality.10	Although	growing	numbers	
of studies have demonstrated that both repetitive transcranial mag-
netic	stimulation	(rTMS)8	and	tDCS9 can be used to modulate both 
excitability of pharyngeal motor cortex and swallowing behavior, 
there remains limited evidence for the efficacy of such treatments 
on health measures such as pneumonia and mortality. Therefore, 
any new therapy that has the potential to make a significant differ-
ence to the quality of life for these patients would be welcomed.

Transcranial alternating current stimulation allows manipula-
tion of neural oscillations in the cortical region being stimulated.1,11 
Brainwaves	 or	 neural	 oscillations	 (frequency	 bands:	 delta	 1–	4	Hz,	
theta	4–	7	Hz,	alpha	8–	12	Hz,	beta	13–	30	Hz,	gamma	30–	200	Hz)	have	
been shown to play important roles in motor, perceptual, and cogni-
tive functions.12,13 For instance, oscillatory activity at the beta range 
might mediate the control of more complex movements in M1,14 
whereas gamma oscillations were found to be stronger for larger 
movements.15	By	applying	AC	through	two	electrodes	attached	to	a	
subject's scalp, it is possible to entrain the intrinsic oscillation of the 
cortex directly under one electrode to a specific frequency.16 For the 
motor cortex, alpha, beta, and gamma frequencies are the main os-
cillations.17	Previous	studies	have	demonstrated	that	applying	tACS	
over hand M1 resulted in measurable changes of hand movement 
velocity and force at beta and gamma band frequencies.18	TACS	at	
80	Hz	over	M1	and	cranial	vertex	was	also	reported	to	improve	the	
performance of a visuomotor tracking task.18 Furthermore, multiple 
sessions	of	 tACS	can	be	used	to	 induce	neuroplastic	changes	 that	
outlast the duration of stimulation.19 For example, Kasten et al.20 
found	the	tACS	physiological	after-	effect	could	last	up	to	70	min.

By	 comparison,	 tRNS	 is	 a	 variant	 form	 of	 tACS	 where	 AC	 is	
applied while both intensity and frequency of the current vary in 

a randomized manner. Terney et al.5	 demonstrated	 that	 tRNS	 ap-
plied over M1 is capable of changing both cortical excitability 
and behavior in healthy participants. In most of the studies using 
tRNS,	a	frequency	spectrum	between	0.1	Hz	and	640	Hz	(full	spec-
trum)	 or	 101–	640	 Hz	 (high-	frequency	 stimulation)	 were	 used.7,21 
Interestingly,	 the	 after-	effect	 of	 tRNS	 was	 intensity-	dependent.	
High-	intensity	stimulation,	for	example,	1	mA,	resulted	in	facilitatory	
after-	effects	of	up	to	1.5	h	in	M1.22

Based	on	these	somatic	studies,	we	hypothesized	that	tACS	at	
alpha,	beta,	and	gamma	frequencies	and	at	full-	spectrum	frequency	
tRNS	would	selectively	modulate	pharyngeal	motor	cortex	excitabil-
ity and induce sustained after effects. Thus, our aims were to ex-
amine	the	effects	of	different	frequencies	of	tACS	(at	10	Hz,	20	Hz,	
70	Hz)	and	 tRNS	 (at	0.1–	640	Hz)	 to	determine	 the	optimal	 stimu-
lation parameters for modulating the excitability of the pharyngeal 
motor cortex, as a prelude to studying the therapeutic effects of 
tACS	or	tRNS	in	patients	with	(neurological)	dysphagia.

2  |  METHODS

2.1  |  Subjects

Following	 estimates	 of	 pharyngeal	 cortex	 effects	 with	 tDCS,23 a 
sample	 size	 of	 12	was	 calculated	 to	 achieve	 a	 power	 of	 80%	 and	
statistical	 significance	of	5%	with	G*Power	Statistics	 (version	3.1).	
We therefore chose to recruit a minimum of 14 subjects to allow 
for dropouts and incomplete data acquisition, based on the results 
of previous studies within our department.10,23	Seventeen	healthy	
volunteers	were	recruited	and	15	(six	males,	age	range	18–	50	years,	
mean	 (±SEM)	 24	 ±	 8	 years)	 completed	 the	 entire	 study.	 Fourteen	
were	right-	handed.	All	subjects	were	in	good	health	and	able	to	give	
written, informed consent. Exclusion criteria, based on a standard 
pre-	screening	questionnaire,2 included the following: history of bi-
polar disorder, depression, epilepsy, cardiac pacemaker, implanted 
metal, skin problems, brain surgery, head trauma, swallowing prob-
lems, and use of medication which acts on the central nervous sys-
tem or pregnancy. The study was conducted in accordance with 
the	World	Medical	Association	Declaration	of	Helsinki.	Ethical	ap-
proval was obtained from local Research Ethics Committee of the 
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University	 of	 Manchester	 (Approval	 No:	 2019-	5932-	10164;	 Date:	
17	April	2019),	United	Kingdom.	Written	informed	consent	was	ob-
tained from each participant prior to the experiment.

2.2  |  Pharyngeal motor– evoked and thenar motor– 
evoked potentials measurements

Pharyngeal	motor–	evoked	potentials	(PMEPs)	were	recorded	from	
a pair of bipolar platinum ring electrodes built into a 3.2 mm diam-
eter	 intraluminal	catheter	 (Gaeltec	Ltd,).	Participants	were	asked	
to swallow the catheter, passed either transnasally or transorally 
according to their preference such that the electrodes were in 
contact with the pharyngeal musculature, approximately 2 cm 
above	the	upper	esophageal	sphincter.	An	earth	electrode	(H69P,	
Tyco	Healthcare)	was	connected	 to	a	 skin	electrode	placed	over	
the upper portion of one of the sternocleidomastoid muscles in 
the	neck.	As	a	 control,	 thenar	motor–	evoked	potentials	 (TMEPs)	
from	 the	 abductor	 pollicis	 brevis	 (APB)	 muscle	 were	 recorded	
using two surface electrodes, sited 1 cm apart on the thenar emi-
nence muscle, contralateral to the stimulated pharyngeal motor 
cortex	(see	below).	An	additional	earth	electrode	was	connected	
to a skin electrode positioned over a bony prominence on the 
wrist.	All	the	electrodes	were	connected	via	a	preamplifier	 (CED	
1902;	Cambridge	Electronic	Design)	with	high-		and	low-	pass	filter	
settings	 of	 200	Hz	 and	 2	 kHz.	 Response	 signals	 were	 collected	
through	a	laboratory	interface	(CED	micro	1401)	at	a	sampling	rate	
of	5	kHz	and	recorded	using	software	Signal	Application	Program	
v.4.11	 (Cambridge	Electronic	Design	 Ltd,)	 running	 on	 a	 personal	
computer. To remove any unwanted electrical interference, the 
signals	 were	 additionally	 processed	 through	 a	 50/60	 Hz	 noise	
eliminator	(“HumBug”;	Quest	Scientific).	These	techniques	for	re-
cording PMEPs and TMEPs are well established and have shown 
stability of measurements in previous studies.8,9,23

2.3  |  Single- pulse transcranial magnetic stimulation

Single-	pulse	TMS	was	delivered	over	the	regions	of	interest	on	the	
scalp	using	a	figure-	of-	eight	coil	with	a	70	mm	outer	diameter.	The	
coil was connected to a stimulator (Magstim 200; The Magstim 
Company)	with	a	maximum	output	of	2.2	Tesla.	The	coil	handle	was	
held	in	an	anteroposterior	position	at	an	angle	of	45	degree	tangen-
tial to the midsagittal line of the scalp as previously described.24

2.4  |  Sensory side effects questionnaire

During	the	experimental	procedures,	non-	serious	adverse	reactions	
were recorded by a researcher on a standard questionnaire of sensa-
tions	 ([Appendix	S1],2 which contains detailed questions regarding 
a	 list	of	 known	adverse	events	 [eg,	phosphenes	 [illusory	 flash-	like	
visual	percepts],	burning	sensation,	pain,	itching,	and	headache]).

2.5  |  Transcranial alternating current 
stimulation and transcranial random noise stimulation

TACS	and	tRNS	were	delivered	through	a	CE	(European	Conformity,	
which indicates conformity with health, safety, and environmen-
tal protection standards for products sold within the European 
Economic	Area)	marked	battery-	driven	 constant	 current	 stimula-
tor	(DC	Stimulator	Plus,	NeuroConn,	Ilmenau,	Germany)	connected	
to	 a	 pair	 of	 rectangular	 electrodes	 (5	 ×	 7	 cm,	 current	 density	
0.043	mA/cm2).	The	center	of	stimulating	electrode	was	positioned	
on	the	scalp	over	the	“pharyngeal”	area	of	the	motor	cortex	pro-
ducing the largest MEPs and the reference electrode overlying the 
contralateral supraorbital ridge to minimize any unintended effect 
of the other cortex.25 To ensure optimal contact with the scalp, 
a	saline-	soaked	sponge	was	placed	beneath	both	electrodes,	and	
the electrodes were then held in place by adjustable rubber straps. 
Since	initial	studies	of	the	M1	hand	area	applied	different	tACS	fre-
quency paradigms18-	22 that demonstrated significant enhancement 
in cortical excitability, our initial investigation duplicated these 
parameters in the pharyngeal motor system. Moreover, the inten-
sity and duration of stimulation in this experiment were identical 
to	 the	parameters	 used	 in	 a	 previous	 tDCS	dose-	response	 study	
at	1.5	mA	for	10	min	where	an	increase	in	pharyngeal	cortical	ex-
citability was reported.23 For active intervention, the current was 
slowly	 ramped	up	 to	1.5	mA	 (peak-	to-	peak)	 over	 10	 s	 and	main-
tained for 10 min, before being slowly ramped down over 10 s.7,23 
For the sham condition, the current was turned off after 10 s of 
20	 Hz-	tACS	 stimulation	 with	 the	 electrodes	 being	 left	 in	 place	
for a further 10 min, thus producing a similar sensation as the ac-
tive treatment but without significantly stimulating the cortex.26 
Impedance was monitored while stimulation and kept below 10 kΩ 
for	all	studies.	All	 tACS	and	tRNS	applications	 in	this	study	com-
plied with published safety guidelines.2

2.6  |  Experimental protocol

Participants (n	=	17)	were	seated	in	a	comfortable	chair	with	arm-
rests and wore disposable surgical caps for the marking of stimula-
tion	“hot-	spots.”	The	pharyngeal	catheter	was	then	sited,	guided	by	
online raw EMG analysis to determine where the upper esophageal 
sphincter was located, and electrodes retracted aborally 2 cm so 
they	sat	in	the	mid-	pharynx.	Thenar	electrodes	were	also	attached	
to the participant. Motor hot spots and thresholds for pharynx and 
hand	were	determined	per	the	TMS	methods	outlined	above.	The	
hot spot is defined as the location which has the lowest resting 
motor	threshold	(rMT)	with	the	largest	MEP27 from the target mus-
cle	 elicited	by	 single-	pulse	TMS.	RMT	 is	 defined	 as	 the	minimum	
stimulation	intensity	that	can	produce	MEPs	of	at	 least	20	µV	for	
the	pharynx	and	50	µV	for	the	thenar	muscle	in	50%	of	10	consecu-
tive trials in the resting state.27 The three hot spots were deter-
mined over both hemispheres for pharyngeal cortex and over the 
hemisphere with the largest PMEP for the hand motor cortex. The 
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hemisphere	evoking	the	largest	PMEPs	was	defined	as	the	tRNS-		or	
tACS-	stimulated	(dominant)	hemisphere.	Baseline	responses	were	
recorded	as	2	sets	of	10	single-	pulse	TMS	stimuli	over	both	hemi-
spheres for the pharynx and over the stimulated hemisphere for 
thenar	muscles,	applied	to	each	site	at	rMT	+20%	stimulator	output.	
An	interval	of	five	seconds	was	left	in	between	each	TMS	stimulus	
during MEP assessment. Following baseline measurements, each 
participant received all of the different frequency paradigms of 
tACS	(10	Hz,	20	Hz,	and	70	Hz)	and	tRNS	(0.1–	640	Hz)	and	sham	
over	 different	 days	 (see	 below),	with	 one	 stimulation/sham	para-
digm	being	delivered	per	visit.	Volunteers	received	the	active	tACS	
and	tRNS	interventions	over	pharyngeal	motor	cortex	with	the	low-
est	 rMT	at	1.5	mA	current	 intensity	 for	10	min;	 sham	stimulation	
was given as described in the methods above. Cortical excitability 
of	each	hot	spot	was	then	assessed	by	a	set	of	10	single-	pulse	TMS	
per	hot	spot	at	rMT	+20%	stimulator	output,	immediately	and	then	
repeated	every	15	min	for	2	h	post-	intervention.	Each	study	took	
place on separate days, at least 4 days apart, and the order of the 
studies was pseudorandomized for each participant using a random 
number generator. The interventions were given by an independent 
researcher	and	single-	blinded	such	that	participants	were	blinded	
to group allocation. The primary study endpoints were the percent-
age changes of MEPs amplitudes and latencies (normalized to base-
line)	over	time.

2.7  |  Data analysis

The	amplitude	was	defined	as	 the	maximum	peak-	to-	peak	voltage	
of each MEP, and the latency was the duration measured in milli-
seconds	 from	 time	 zero	 (time	of	TMS	 stimulation)	 to	 the	onset	of	
each MEP signal. The amplitudes and latencies of individual PMEPs 
and TMEPs were determined from each group of 10 EMG traces (for 
each	site	and	intensity)	and	then	averaged.	In	order	to	minimize	vari-
ability, these data were then normalized to baseline (taken as the av-
erage	of	2	×	10	pulses	for	each	site)	and	expressed	in	the	results	as	a	
percentage change from baseline.

2.8  |  Statistical methods

All	 statistical	 analyses	were	performed	using	SPSS	23	 (SPSS	 Inc,).	
Changes in excitability over time between the different groups 
and	sham	were	compared	using	a	general	linear	model	two-	way	re-
peated	measures	analysis	of	variance	(two-	way	rmANOVA).	When	
significant effects were present, these were followed up with 
post hoc analysis including adjustment for multiple comparisons 
(Bonferroni	correction)	to	explore	the	strength	of	the	main	effects.	
Non-	sphericity	 was	 corrected	 using	 Greenhouse-	Geisser	 where	
necessary. The above analyses were performed for the MEP ampli-
tude and latency data using the percentage changes from baseline 
which	 displayed	 a	 normal	 distribution.	 Statistical	 significance	was	
taken as p	<	0.05.

3  |  RESULTS

Two	participants	 (of	 the	 initial	 17	 recruited)	 did	 not	 complete	 the	
experiment due to pharyngeal catheter intolerance or study with-
drawal.	Hence,	15	healthy	volunteers	completed	 the	 full	protocol;	
TMS,	tACS,	and	tRNS	were	tolerated	well	without	any	serious	ad-
verse events.

3.1  |  Sensations questionnaire

The main participant side effects were phosphenes and mild 
unpleasant	 scalp	 sensations	 (eg,	 itching	 and	 tingling).	 Scalp	 sen-
sations	and	phosphenes	were	most	prominent	with	 tACS	at	 fre-
quencies	of	10	and	20	Hz	and	diminished	at	the	higher	frequency	
(70	Hz).	Phosphenes	were	reported	by	all	fifteen	subjects	during	
10	Hz	 and	 20	Hz	 tACS	 interventions	 (Figure	 1).	 It	 was	 rated	 as	
weaker	and	was	less	frequently	reported	at	70	Hz	tACS	and	with	
tRNS.	Reported	scalp	sensations	were	described	in	up	to	60%	of	
participants across all the interventions. Of relevance, in the sham 
group,	80%	of	subjects	reported	phosphenes	and	40%	had	scalp	
sensations. Evaluation of the blinding procedure showed that no 
subjects could identify whether they were receiving active or 
sham stimulation.

3.2  |  Cortical hot spot mapping and resting 
motor thresholds

Average	 pharyngeal	 motor	 threshold	 to	 TMS	 was	 67%	 (±8%)	 of	
stimulator	 output	 over	 the	 stimulated	 (dominant)	 hemisphere	
(range	53–	82%)	and	75%	(±9%)	for	the	unstimulated	(non-	dominant)	
hemisphere	 (range	 56–	90%).	Mean	 rMT	 for	 thenar	 motor	 cortex	

F I G U R E  1 Sensory	side	effects	of	tACS	and	tRNS	elicited	by	
different	stimulation	set-	ups;	phosphenes	were	reported	by	all	
subjects	at	both	10	Hz	and	20	Hz	tACS	condition	but	diminished	
with	70	Hz	tACS	and	tRNS.	Reports	of	scalp	sensations	were	
ranged	from	40%	to	60%	among	all	the	set-	ups.	Sham	group	also	
reported	effects,	with	80%	of	subjects	reported	phosphenes	and	
40%	scalp	sensations
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was	 44%	 (±10%)	 stimulator	 output	 (range	 32–	65%).	 The	 average	
distance from the cranial vertex to motor hot spots was: right 
pharyngeal	hemisphere	4.0	±	0.6	cm	 lateral	and	3.2	±	0.8	cm	an-
terior	and	the	left	pharyngeal	hemisphere	4.1	±	0.9	cm	lateral	and	
3.1	±	0.4	cm	anterior;	and	right	thenar	(left	M1)	6.2	±	0.7	cm	lateral	
and	1.3	±	0.8	cm	anterior	and	 left	 thenar	 (right	M1)	5.0	±	0.6	cm	
lateral	and	1.9	±	0.9	cm	anterior.	Baseline	MEP	amplitudes	and	la-
tencies for all interventions are shown in Table 1. Figure 2 shows 
representative PMEPs and TMEPs data from one participant during 
their evaluation.

3.3  |  The effects of tACS and tRNS on cortico- 
pharyngeal motor excitability

The mean response amplitudes at baseline and each time point 
for	PMEPs	in	the	stimulated	hemisphere	following	tACS	and	tRNS	
are	 shown	 in	Figure	3A.	Compared	with	 sham,	both	70	Hz	 tACS	
and	full-	spectrum	tRNS	at	1.5	mA	for	10	min	produced	increases	
in cortical excitability for the pharynx in the conditioned (stimu-
lated)	hemisphere	[F(1,14)	=	9.065,	p	=	0.005	and	F(1,14)	=	5.394,	
p	=	0.027,	 respectively],	with	 increases	 in	PMEP	amplitude	of	up	
to	 +77	 ±	 24%	 and	 +59	 ±	 30%,	 respectively.	 By	 contrast,	 10	 Hz	
tACS	 appeared	 to	 slightly	 suppress	 pharyngeal	 cortical	 excit-
ability,	with	a	trend	to	decreased	PMEP	amplitudes	of	−30	±	7%.	
Moreover,	20	Hz	 tACS	elicited	no	obvious	changes	 in	 the	ampli-
tude	of	PMEPs.	Two-	way	repeated	measures	ANOVA	on	normal-
ized	MEP	data	with	 factors	of	 interventions	 (10	Hz	 tACS,	20	Hz	
tACS,	 70	Hz	 tACS,	 tRNS,	 and	 sham),	 and	 time	 (immediately	 and	
every	 15	 min	 post-	intervention)	 revealed	 a	 significant	 stimula-
tion	×	time	interaction	(F(4,56)	=	1.731,	p =	0.038)	only	in	the	first	
60	 min	 after	 stimulation.	 Post hoc analysis revealed significant 
increases	in	PMEP	amplitudes	for	overall	70	Hz	tACS	(p	=	0.005)	
(at	immediately	post-	stimulation	(p =	0.019),	at	45	(p =	0.004)	and	
60	min	(p =	0.011))	and	overall	tRNS	conditions	(p =	0.027)	(at	15	
(p =	0.023)	and	45	min	(p =	0.025),	compared	to	sham.	PMEP	ampli-
tudes	over	the	unstimulated	hemisphere	(F(4,56)	=	0.896,	p >	0.05)	
and latencies of all MEPs did not reveal significant intervention in-
teractions	(Figures	3	and	4).

3.4  |  The effects of tACS and tRNS on cortico- 
thenar motor excitability

By	comparison,	two-	way	repeated	measures	ANOVA	revealed	that	
there	 was	 also	 a	 significant	 stimulation	 ×	 time	 interaction	 (F	 (4,	
56)	=	1.506,	p =	0.048)	on	TMEP	amplitudes	 (Figure	3C).	Post hoc 
tests	 revealed	a	significant	 increase	 in	TMEPs	for	 the	20	Hz	tACS	
condition immediately after stimulation, sustained to 120 min, com-
pared to sham (p =	0.006).	No	 significant	 effects	on	TMEPs	were	
found	 after	 tRNS	 and	 10	Hz	 or	 70	Hz	 tACS	 (Figure	 3C).	 As	with	
PMEPs, there was no interaction for the thenar latencies with any 
intervention	(Figure	4).

4  |  DISCUSSION

The	present	study	aimed	to	examine	the	effects	 (and	side	effects)	
of	10,	20,	70	Hz	tACS,	and	tRNS	on	excitability	of	the	pharyngeal	
motor	 cortex	 in	 humans.	 We	 found	 that	 gamma	 tACS	 and	 full-	
spectrum	tRNS	increased	the	excitability	of	pharyngeal	motor	cor-
tex	 while	 beta	 tACS	 only	 induced	 excitatory	 effects	 in	 ipsilateral	
hand	motor	cortex.	While	we	did	not	use	neuro-	navigated	TMS	for	
cortical motor mapping, the latencies were stable from both hand 
and	pharynx	hot	spots	which	suggest	stability	of	the	TMS	coil	loca-
tion.	Moreover,	these	facilitated	changes	were	sustained	for	60	to	
120	min	following	stimulation.	The	differences	in	NIBS	after-	affects	
between	the	2	motor	systems	 (hand/thenar,	pharynx)	 indicate	dif-
ferent neuroplasticity mechanisms that appear to depend on the 
frequency and target site of alternating current electricity. These 
findings are of interest and therefore merit further discussion.

4.1  |  Neurophysiological effects of tACS and tRNS 
on pharyngeal motor cortex

In	the	present	study,	both	gamma	band	tACS	and	full-	spectrum	tRNS	
provoked excitatory effects in the stimulated pharyngeal motor 
cortex.	 These	 findings	 suggest	 that	 the	AC	effects	 on	 swallowing	
cortex	 are	 frequency-	dependent,	 similar	 to	 the	 effects	 in	 other	

TA B L E  1 Mean	baseline	(±SD)	motor-	evoked	potential	(MEP)	amplitudes	and	latencies	for	all	interventions

10 Hz tACS 20 Hz tACS 70 Hz tACS tRNS sham

Amplitude	(μV)

Stimulated	pharyngeal 94.3	±	53.5 88.7	±	36.7 89.1	±	46.6 83.6	±	40.7 107.0	±	64.3

Unstimulated pharyngeal 93.1	±	72.1 87.4	±	56.8 97.5	±	41.5 90.8	±	52.6 95.9	±	59.2

Thenar 979.1	±	873.6 969.0	±	586.3 973.7	±	770.4 934.1	±	681.6 905.5	±	455.9

Latency	(ms)

Stimulated	pharyngeal 8.8	±	1.3 8.3	±	0.8 8.4	±	1.1 8.7	±	0.9 8.8	±	1.1

Unstimulated pharyngeal 8.7	±	0.9 8.3	±	0.7 8.4	±	0.8 8.5	±	0.8 8.7	±	1.1

Thenar 20.9	±	1.7 21.0	±	1.6 21.1	±	1.5 21.1 ± 1.7 20.7	±	1.8
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regions	of	M1.	For	example,	Laczó	et	al.28	found	that	high-	frequency	
tRNS	applied	over	leg	M1	increases	human	leg	motor	cortex	excit-
ability.	 Moveover,	 behaviorally,	 gamma	 tACS	 has	 been	 shown	 to	
improve both velocity and acceleration of visually triggered move-
ments,	compared	with	beta	tACS	and	sham	stimulation	over	M1.18 
Comparing theta, alpha, and beta frequencies, it was reported that 
gamma stimulation was the most effective frequency band for facili-
tating motor performance.29,30	Hashimoto	et	al.31 showed that the 
intrinsic gamma oscillation is focal and specific to swallowing func-
tion. Thus, a possible reason for the best effect on pharyngeal motor 
cortex	excitability	of	gamma	tACS	could	be	related	to	the	entrain-
ment	of	ongoing	gamma	oscillations.	By	comparison,	full-	spectrum	
(0.1–	640	Hz)	 and	high-	frequency	 (100–	640	Hz)	 tRNS	have	 similar	

effects on increasing cortical excitability.5	While	NIBS	modes	of	ac-
tion	might	differ,	 full-	spectrum	 tRNS	had	an	effect	 comparable	 to	
that	of	anodal	tDCS	and	intermittent	theta	burst	stimulation	(iTBS),	
which are both normally excitatory, on MEP development over M1.32 
With regard to pharyngeal motor cortex stimulation, the efficacy 
of	tDCS	and	rTMS	for	post-	stroke	dysphagia	has	shown	promising	
results.33,34 While the effects of pharyngeal electrical stimulation 
(PES)	 and	 5	 Hz	 rTMS	 were	 not	 evaluated	 in	 this	 experiment,	 we	
found that the degree of increased excitability of pharyngeal motor 
cortex	 by	 gamma	 tACS	 and	 full-	spectrum	 tRNS	 is	 comparable	 to	
5	Hz	rTMS	although	appears	slightly	weaker	than	the	size	of	effect	
reported	 for	 PES	 in	 previous	 studies.8,9,23,35 Moreover, Doeltgen 
et al.36 demonstrated that similar PMEP amplitude changes by an-
odal	tDCS	were	able	to	improve	swallowing	function	with	increased	
bolus admittance across the upper esophageal sphincter. Our docu-
mented changes, therefore, have the potential to be translated into 
behavioral improvements and make the motor cortical application of 
gamma	tACS	and	full-	spectrum	tRNS	a	promising	adjunct	to	swal-
lowing rehabilitation practice. Of interest to bilateral brain effects 
of	NIBS,	while	the	pharynx	has	bilateral	cortical	representation	and	
transcallosal interactions between the two pharyngeal cortical areas 
are most likely synergistic, we found no change in excitability of the 
contralateral pharyngeal motor cortex. This is in accordance with 
a	 previous	 tDCS	 study,	which	 also	 failed	 to	 demonstrate	 bilateral	
effects	of	 tDCS	to	pharyngeal	motor	cortex.23 We thus presumed 
that	any	effects	on	the	non-	stimulated	hemisphere	may	be	stimulus	
intensity-	dependent	with	higher	intensities	of	tACS	and	tRNS	more	
likely to influence excitability transcallosally.

Alpha	 tACS	at	1.5	mA	has	been	noted	 to	 increase	 the	cortical	
excitability of hand M1 in both young and elderly adults.37 Wach 
et al.4	reported	that	alpha	tACS	over	M1	at	1	mA	was	significantly	
associated with shortening of the cortical silent period, causing re-
duced	 cortical	 inhibition.	However,	 they	 did	 not	 find	 a	 significant	
effect	on	MEP	amplitudes	following	10	Hz	tACS.	This	supports	the	
idea	that	alpha	tACS	may	interfere	with	inhibitory	pathways	or	re-
quire greater stimulation. Therefore, we might propose that further 
increasing both intensity and duration of alpha stimulation would 
lead	to	greater	(inhibitory)	changes	of	excitability	within	the	pharyn-
geal motor cortex.

Unlike	the	effects	of	tDCS	which	are	driven	by	polarity-	specific	
shifts of the resting membrane potential,38	 an	 advantage	of	 tACS	
is that it permits physiological entrainment through frequency 
stimulation at nearly imperceptible current strengths. Frohlich and 
McCormick	applied	 such	AC	 fields	 to	cortical	 slices	of	 ferrets	and	
found	 that	 current	 fields	 as	 low	 as	0.5	mV/mm	were	 sufficient	 to	
modulate ongoing neural activity.39	TACS	was	shown	to	manipulate	
the amplitudes of intrinsic oscillations as determined by EEG analy-
sis,16 and the changes of EEG oscillations were shown to have behav-
ioral relevance.40	Moreover,	if	the	frequency	of	tACS	is	very	close	to	
the frequency of intrinsic brain oscillations, even very low currents 
can influence the oscillations amplitude, phase, and frequency.1 Of 
relevance, changes in alpha, beta, and gamma frequency oscillations 
have been detected in the brain network of swallowing activities, 

F I G U R E  2 Representative	PMEP	and	TMEP	data	traces	from	
an	individual	participant	for	all	stimulation	parameters.	(A)	70	Hz	
(gamma)	tACS	and	tRNS	increase	PMEP	amplitudes	over	60	min	
in	the	stimulated	hemisphere.	(B)	20	Hz	(beta)	tACS	increased	
ipsilateral	TMEP	amplitudes	over	30–	90	min.	For	display	purposes,	
responses	from	the	intermediate	time	points	15,	45,	75,	and	
105	min	post-	stimulation	have	been	removed
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such	as	consuming	thicker	fluids	and	swallowing	in	the	chin-	tuck	po-
sition.41 The swallowing process requires an appropriate interaction 
between	several	CNS	regions.	It	has	been	reported	that	alpha	band	
oscillation is related more to sensory processes17 and inhibition con-
trol,42 whereas the beta rhythm is more closely tied to motor func-
tions43 and gamma oscillations play a role in a relatively late stage 
of motor control.12 Therefore, our assumption is that the applied 
gamma band oscillations may be able to entrain the biological oscil-
lations in swallowing networks and are potent enough to increase 
the excitability of neuronal populations in pharyngeal motor cor-
tex.	Although	 the	 current	 state	of	 knowledge	of	 the	physiological	
mechanisms of how transcranial electric stimulation affects brain 

activity	remains	limited,	a	combined	tACS-	fMRI	study	demonstrated	
that	gamma	tACS	induced	motor	performance	enhancements	which	
correlated	with	BOLD	activity	in	the	stimulated	M1.18 Furthermore, 
Guerra et al.44	 have	 reported	 indirect	 evidence	 that	 gamma	 tACS	
can	reverse	long-	term	depression	(LTD)-	like	plasticity	of	the	human	
primary motor cortex. It therefore seems plausible that a similar phe-
nomenon occurs in different substrates of M1, including pharyngeal 
regions.	 From	 an	 intensity	 perspective,	 a	 recent	meta-	analysis	 re-
ported	 that	 tACS	enhances	perceptual	and	cognitive	performance	
in	healthy	volunteers,	with	>1	mA	 intensity	displaying	 the	highest	
probability of improving behaviors.45 While we did not assess inten-
sity	specifically,	 the	applied	current	 intensity	 (1.5	mA)	used	 in	our	

F I G U R E  3 (A)	Effects	of	different	
frequencies	of	tACS	and	tRNS	on	
cortico-	pharyngeal	excitability	in	
the	stimulated	hemisphere.	70	Hz	
tACS	and	tRNS	increased	pharyngeal	
cortical excitability compared to sham 
(*p =	0.005,	*p =	0.027,	respectively)	
which	was	sustained	for	60	min;	(B)	
there were no effects of interventions 
on	cortico-	pharyngeal	excitability	in	the	
unstimulated hemisphere (p >	0.05);	(C)	
effects	of	different	frequencies	tACS	
and	tRNS	on	cortico-	thenar	excitability	
in	the	stimulated	hemisphere.	20	Hz	
tACS	induced	excitatory	effects	on	
TMEP immediately which lasted for 2 h 
(*p	=	0.006)
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study was able to facilitate the pharyngeal motor cortex, implying 
that higher intensities may be more preferential in this system.

Like	tACS,	the	mechanisms	underlying	the	effect	of	tRNS	remain	
unclear with little or no animal studies to support insights into mech-
anism.	However,	tRNS	over	M1	has	been	shown	to	be	comparable	
with	the	effects	of	anodal	tDCS	and	tACS	in	altering	human	corti-
cal excitability32,46 and modifying performance.22 Interestingly, the 
partial	NMDA	receptor	antagonist	D-	cycloserine	which	blocks	the	
effect	of	anodal	tDCS	had	no	significant	effect	on	the	excitability	in-
creases	seen	with	tRNS.47 Other studies, by contrast, have revealed 
that modulation of cortical excitability may be related to repeated 
opening	 of	 Na+ channels48 or stochastic resonance.49 Our results 
have	clearly	found	an	effect	of	tRNS	over	pharyngeal	M1,	 indicat-
ing these mechanisms may also happen in the swallowing network 
under certain conditions.

In transcranial stimulation studies, typically hand M1 is used as 
the main model for studying neuroplasticity or as target for treating 
neurological disorders, for example, after stroke.9,23,50 This motor 
system was used as a control in our study, but intriguingly an in-
crease	of	hand	M1	excitability	was	found	at	beta	tACS	applied	over	
pharyngeal hot spot, which differed from the frequencies that were 
effective in the pharyngeal motor cortex. In contrast, no changes of 
M1	hand	area	have	been	found	in	earlier	tDCS	studies	in	the	swal-
lowing	system,	using	the	same	size	electrodes	(7	cm	×	5	cm,	35	cm2)	
and	same	hot	spots	(pharynx	and	thenar)	to	the	present	study.9,23	A	
possible reason for the changes in thenar cortical excitability after 
tACS	over	the	pharyngeal	motor	cortex	could	be	the	cortico-	cortical	
links between the pharynx and hand motor areas. Previous studies 
suggest that the effects of transcranial electrical stimulation are not 
limited to the targeted brain region, and some therapeutic effects 

are	probably	mediated	by	distant	brain	areas.	However,	one	feature	
argues against this possibility. If the effects on hand MEPs were due 
to	 cortico-	cortical	 connectivity,	we	would	have	 expected	 them	 to	
be modulated synchronously; by contrast, PMEPs and TMEPs were 
facilitated	 by	 different	 frequency	 settings	 and	 time	 durations.	 As	
such, given the electrode montage and the electrode size, we can-
not exclude that current spread over to hand motor regions given 
their	close	proximity.	Unlike	tDCS,	the	electrical	field	reaching	the	
cortex	produced	by	tACS	is	typically	less	than	1	V/m	which	may	be	
too weak to directly modulate the membrane potential and cause di-
rectly neural entrainment.51,52	However,	there	is	certainly	evidence	
that	beta	tACS	has	differing	properties	to	other	frequencies.	Indeed,	
a	meta-	analysis	confirmed	that	beta	tACS	significantly	increases	M1	
excitability53 and these effects were completely abolished when an 
NMDAR	 antagonist	was	 administered.54 Therefore, future studies 
should	 explore	 the	 reasons	 for	 these	 site-		 and	 frequency-	specific	
effects	of	tACS	with	a	high-	density	montage.

4.2  |  Sensory side effects of tACS and tRNS

In line with previous studies, our findings have shown that phos-
phenes and skin/scalp sensations are the two primary side effects 
and	mainly	occurred	during	alpha	and	beta	 tACS.55,56 Current un-
derstanding about phosphenes indicates that they are generated in 
the retina by electricity spreading from the electrode locations near 
the eyes, since the retina is highly sensitive to current.57,58	Although	
these	 side	 effects	 are	 generally	 less	 intense	with	 tACS	 and	 tRNS	
than	with	tDCS,59 it has the potential to affect the blinding proce-
dure if the noticeable sensations are obviously different with active 

F I G U R E  4 Percentage	changes	in	
PMEP and TMEP latencies. There were no 
effects of interventions on MEP latencies
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stimulations. In our study, subjects seemed unable to distinguish 
between them, with sham having comparable sensory side effects 
to	the	active.	Additionally,	non-	significant	pre-	post	effects	of	sham	
electrical stimulation on corticospinal excitability have been identi-
fied.26	As	such,	our	data	concur	with	previous	studies,	 supporting	
the	assertion	that	both	tACS	and	tRNS	appear	to	be	safe	and	well-	
tolerated, with good blinding outcomes.

Our study does have some limitations. One deficiency of the 
study is that we only measured cortical excitability assessed with 
MEPs, whereas intracortical facilitation/inhibition, EEG monitoring, 
and fMRI may have helped further clarify the mechanism of oscil-
lation	entrainments.	Secondly,	our	study	did	not	look	at	behavioral	
measures of swallowing before and after stimulation to explore if the 
excitability changes translated into functional changes in swallowing 
performance.	Additional	 research	 is	 needed	 to	 further	 investigate	
how	tACS	and	tRNS	affect	swallowing	behaviors	and	their	effects	as	
a treatment for patients with dysphagia.

In	conclusion,	gamma	tACS	and	full-	spectrum	tRNS	are	able	to	
enhance excitability within the areas of primary motor cortex con-
trolling	 the	 pharynx	 in	 a	 frequency-	dependent	 and	 site-	specific	
manner. These techniques hold promise as potential treatments for 
neurological dysphagia.
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