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Abstract

KCNT2 variants resulting in substitutions affecting the Arg190 residue have been

shown to cause epileptic encephalopathy and a recognizable facial gestalt. We report

two additional individuals with intellectual disability, dysmorphic features, hyper-

trichosis, macrocephaly and the same de novo KCNT2 missense variants affecting the

Arg190 residue as previously described. Notably, neither patient has epilepsy.

Homology modeling of these missense variants revealed that they are likely to dis-

rupt the stabilization of a closed channel conformation of KCNT2 resulting in a con-

stitutively open state. This is the first report of pathogenic variants in KCNT2 causing

a developmental phenotype without epilepsy.
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1 | INTRODUCTION

Potassium (K+) channels are a large family of pore-forming membrane

proteins. They represent a heterogeneous group of voltage and

ligand-gated ion channels with wide-ranging effects on many

physiological processes including cell excitability (Jeevaratnam

et al., 2018), hormone secretion (Ashcroft & Rorsman, 2013), and apo-

ptosis (Szabò et al., 2010). In neurons, K+ channels are essential for

maintaining the inward-negative resting membrane potential. Their

opening, which occurs in response to a range of signals, leads to K+
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efflux from the cell, resulting in the membrane potential becoming

more negative and hence repolarization. The ability of K+ channels to

repolarize and hyperpolarize nerve and muscle cells helps to control

action potential frequency and duration (Humphries & Dart, 2015). K+

channels can be categorized by the stimulus to which they are acti-

vated and include voltage-gated (KV), calcium-activated (KCa), inwardly

rectifying (KIR), ATP-sensitive (KATP), and sodium-activated (KNa)

channels. A recent systematic review identified 19 potassium

channelopathies implicated in a variety of neurodevelopmental disor-

ders (Kessi et al., 2020).

Humans have two K(Na) channel subunits, Slack and Slick,

encoded by KCNT1 (OMIM 608167) and KCNT2 (OMIM 610044),

respectively, that rectify outwardly. KCNT1 and KCNT2 share �74%

sequence identity (Bhattacharjee et al., 2003), show similar single-

channel conductance, modulate the hyperpolarization that occurs fol-

lowing repetitive firing and form hetero-tetrameric channels in several

brain regions such as the oculomotor nucleus and the medial nucleus

of the trapezoid body (Chen, Kronengold, et al., 2009). A key differ-

ence between KCNT1 and KCNT2 is that KCNT1 channels have an

absolute requirement for Na+ for channel opening, whereas KCNT2

channels maintain a basal level of activity in the absence of Na+

(Bhattacharjee et al., 2003).

Pathogenic variants in KCNT1 have been recently identified to

cause autosomal dominant nocturnal frontal lobe epilepsy (OMIM

#615005) and epilepsy of infancy with migrating focal seizures (Barcia

et al., 2019), as well as, early infantile epileptic encephalopathy with

severe dystonia (OMIM #614959) (Gertler et al., 2019; Martin

et al., 2014). The majority of cases are caused by gain-of-function

variants, however, a single missense variant resulting in loss-of-

function (p.Phe932Ile) has been described in a patient with epilepsy

and leukoencephalopathy (Evely et al., 2017).

KCNT2 has recently been described as a human disorder gene

(OMIM #617771) with only eight patients in total reported so far.

Mao et al. reported two patients with epilepsy of infancy with

migrating focal seizures and de novo truncating variants in KCNT2

(p.Lys564* and p.Leu48Glufs*43) (Mao et al., 2020). Gururaj et al.

reported a patient with a de novo p.Phe240Leu missense variant

and epileptic encephalopathy with no dysmorphic features (Gururaj

et al., 2017). The p.Phe240 residue is situated in the channel pore

helix and the authors concluded that this particular variant causes a

“change-in-function” by altering a K+ channel that is usually

upregulated by Cl� to become a Na+ channel down-regulated by

Cl�. Inuzuka et al. (2020) reported another patient with a de novo

p.Thr242Asn variant, which lies in the same transmembrane

domain, with a non-dysmorphic epileptic encephalopathy phenotype

(Inuzuka et al., 2020). Alagoz et al. (2020) also reported two patients

with de novo missense variants (p.Asn182Ile and p.Leu880Met,

located in the S4 helical and C-terminal cytoplasmic domains,

respectively) in KCNT2 and epileptic encephalopathy without dys-

morphic features.

Ambrosino et al. described two individuals with de novo missense

variants in KCNT2, both affecting the arginine residue at position

190 (p.Arg190His and p.Arg190Pro) (Ambrosino et al., 2018).

The probands had epilepsy, intellectual disability, hypertrichosis, and

coarse facial features. Electrophysiological studies revealed a gain-of-

function and constitutive activation for both variants. The gain-of-

function effect was more pronounced with the substitution of

positively charged arginine with neutral proline than with histidine.

This suggested that substitution with partially protonated histidine

may allow for the maintenance of some, but not all, charge inter-

actions necessary for channel function. Prior to reports of pathogenic

variants in KCNT2 in humans, the mechanism of closure of the KCNT2

channel had been investigated by Dai et al. (2010) who performed

electrophysiological studies on cRNA-transduced Xenopus oocytes.

p.Arg190 was identified as an important candidate residue for channel

gating due to its location in a transmembrane linker region. Mutation

of p.Arg190 to Glu, Gln, and Ala showed that charge reversal

or neutralization led to constitutive activation of the channel

(Dai et al., 2010). Of note, substitution of p.Arg190 for another posi-

tively charged amino acid, lysine, resulted in channels with wild-type

properties (i.e., normal function).

Given so few cases are reported, the mutational spectrum, clinical

features, and the genotype–phenotype relations in KCNT2-related

disorders remain undefined. We report two new individuals with

a recognizable neurodevelopmental disorder without epilepsy and

recurrent de novo KCNT2 variants affecting the Arg190 residue. Using

homology modeling, we advance the inferences made by Ambrosino

et al. on models of the wild-type KCNT2 by showing that substitution

of p.Arg190 with uncharged amino acids results in a likely constitu-

tively open conformation.

2 | METHODS

2.1 | Case ascertainment

The index case was identified through a local re-analysis project of

genome data from the 100,000 Genomes project via a previously

described pipeline (Faundes et al., 2018; Vaz et al., 2019). A second

unreported case was identified through a search of the DECIPHER

database (DECIPHER 408952). Clinical features were compiled and

compared with previously reported cases. Informed consent was

obtained from the families of both individuals.

2.2 | Homology modeling

Human KCNT2 was modeled on chicken KCNT1 in open (PDB

5u70) and closed (PDB 5u76) conformations. Clustal Omega v1.2.3

(Sievers et al., 2011) was used to align the sequence of the chicken

KCNT1 template PDB files (PDB 5u70 and PDB 5u76) to the

human KCNT2 FASTA sequence. Homology models were subse-

quently generated using Modeler 9.24 (Eswar et al., 2006). Twenty

models were built in each case and the model with the lowest Dis-

crete Optimized Protein Energy score was chosen for visualization

and analysis in KiNG 2.23 (Chen, Davis, & Richardson, 2009).
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Mutant channels seen in patients (p.Arg190His and p.Arg190Pro), or

created by Dai et al (p.Arg190Ala, p.Arg190Glu, p.Arg190Gln, and p.

Arg190Lys) or present in the gnomAD database (Karczewski

et al., 2020) (p.Arg190Cys) were created by amending the FASTA

sequence for KCNT2 in the alignment file and running through

Modeller9.24 separately.

3 | RESULTS

3.1 | Case reports

3.1.1 | Individual 1

The proband is the second child born to non-consanguineous Cauca-

sian parents. Pregnancy was uncomplicated and she was born at term

by normal vaginal delivery weighing 3.3 kg (+0.15 SD). Concerns

regarding hypotonia and delay in her general development were

raised during early infancy. She sat unsupported at 1 year of age and

was walking unsteadily at the age of 2 years. She started using single

words at the age of 2 years and three-word phrases at the age of

4 years 2 months. She attended school with a statement of educa-

tional needs due to severe learning difficulties. Currently, at the age

of 32 years, she lives in residential care. She has never suffered from

seizures.

She developed pubic and axillary hair at the age of 8 years before

menarche aged 14 years. Her periods were irregular and a pelvic ultra-

sound scan which revealed polycystic ovaries. She had impaired

fasting glucose at the age of 18 years and was treated with metformin

until 21 years, when her fasting glucose had normalized. At 14 years,

her height was 170 cm (+1.46 SD), her weight was 50.6 kg (+0.13

SD), and occipitofrontal circumference (OFC) was 58 cm (+3.35 SD).

At her last clinic review, aged 27 years, her OFC was 60.5 cm (+5.12

SD). She has mild synophrys, epicanthic folds, large palpebral fissures,

thick hair, long eyelashes, and diastema (Figure 1a). Her facial features

have coarsened with time.

A CT brain aged 2 years was reported as normal. Her urine muco-

polysaccharides, amino acids and organic acids profile, and plasma

very long chain fatty acids were all within normal limits. Her thyroid

function was also normal. Fragile X testing, karyotyping, and chromo-

somal microarray showed normal results.

The proband and her parents were recruited to the 100,000

Genomes Project (Caulfield et al., 2019) and analysis using Intellectual

disability (v1.066), Mucopolysaccharidosis (v1.2), and Undiagnosed

metabolic disorder (v1.397) panels did not reveal any pathogenic vari-

ants. Panel-agnostic re-analysis of the trio genome data (Faundes

et al., 2018) (Vaz et al., 2019) revealed a de novo KCNT2

NM_198503.3:c.569G > C (p.Arg190Pro) missense variant. The vari-

ant was classified as pathogenic according to the American College of

Medical Genetics (ACMG) guidelines (PS2, PM2, PM5, PP3, PP2)

(Richards et al., 2015). No other plausible candidates were identified

during this re-analysis.

3.1.2 | Individual 2

The proband was born to non-consanguineous Caucasian parents.

She has an older maternal half-sister and a younger brother. Preg-

nancy had been unremarkable except for an iron transfusion at

32 weeks for anemia. She was born at 41 weeks, weighing 4.88 kg

(+3.15 SD) with birth OFC 38 cm (+3.48 SD).

She first sat unsupported aged 6 months but delay in motor

development was noted at 17 months as she was falling frequently

and appeared to have poor leg coordination. She was walking inde-

pendently by age 22 months. Her speech and language development

was significantly delayed. Currently, aged 5 years 7 months, she

speaks a few single words but also uses non-verbal gestures. She has

moderate intellectual disability and with autistic traits. Her behavior

has been described as hyperactive with a tendency for aggressive out-

bursts and she has difficulties with sleep requiring melatonin. She has

never had seizures. She has slightly reduced tone in her legs but oth-

erwise normal neurological examination. She suffers with constipation

which has required regular Movicol and is also prone to wheezing epi-

sodes, for which she takes preventative inhalers.

At 4 years 8 months, her height was 108 cm (+0.57 SD) and OFC

54.4 cm (+3.00 SD). She has prominent eyebrows and long lashes, big

ears, small square teeth, widely spaced teeth and hypertrichosis,

mainly affecting her arms and back (Figure 1b). Her brain MRI scan at

18 months of age was reported to be normal. Gene-agnostic trio

exome sequencing in the clinical setting revealed a de novo

NM_198503.3:c.569G > A (p.Arg190His) missense variant. This vari-

ant was also classified as Pathogenic according to the American Col-

lege of Medical Genetics (ACMG) guidelines (PS2, PM2, PM5, PP3,

PP2) (Richards et al., 2015). No other likely causative rare de novo or

biallelic variants were identified through the exome sequencing

analysis.

3.2 | Homology modeling

KNa channels resemble Kv channels in topography with six hydropho-

bic, transmembrane segments (S1-S6) along with a pore-lining loop

found between S5 and S6 (Kaczmarek, 2013). Subunits assemble as

tetramers to form a functional channel. The KCNT2 p.Arg190 residue

is located within the S4 and S5 linker region and is evolutionary con-

served among species (Ambrosino et al., 2018). p.Arg190 creates a

constriction between the cytoplasmic domains immediately before

(S5) and after (S6) the pore-forming domain. This constriction likely

stabilizes the channel in closed state (Figure 1b). To understand the

mechanistic basis of the condition in the cases presented here, we

performed homology modeling. Modeling of the human wild-type

KCNT2 revealed a network of charge interactions that we postulate

to stabilize the channel in the closed state. These interactions occur

between p.Arg190 and three other charged residues: p.Lys366, p.

Asp369, and p.Arg372 (Figure 1c). These charge interactions are

predicted to be lost in the open conformation (Figure 1c).

JACKSON ET AL. 3



Modeling showed that the patient variants (p.Arg190His and p.

Arg190Pro) abrogate the charge interactions and the channel is

predicted to remain in a constitutively open conformation (Figure 1c).

The distances between residue 190 and the other charged residues

are increased in all mutated forms, including the p.Arg190Cys variant,

which is present in 1/125,050 heterozygotes in gnomAD and compa-

rable to the wild-type open conformation, with the exception of the

p.Arg190Lys variant (Supplementary Table 1). The only mutant to

retain wild-type electrophysiological properties, as reported by Dai

et al., is the p.Arg190Lys substitution. Modeling this variant shows

maintenance of the network of charge interactions with p.Lys366, p.

Asp36,9 and p.Arg372 (Figure 1c) and the distances between these

residues appear to be closer to the wild-type closed conformation.

4 | DISCUSSION

We describe two individuals with de novo missense KCNT2 variants

affecting the same residue at p.Arg190, which has been implicated in

epileptic encephalopathy previously. Individual #1 presented with

F IGURE 1 (a) Facial gestalt of cases
with de novo KCNT2 variants. Individual
#1 (left) and individual 2 (right). Note
prominent eyebrows, thick hair, and
diastema. (b) Schematic of KCNT2
(domains taken from Uniprot Q6UVM3).
(c) Model of KCNT2 in open and closed
state. Mutant models on the closed state
show a reversion to an open state

conformation
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hypotonia, developmental delay, severe intellectual disability, and

macrocephaly. Individual #2 presented with developmental delay,

moderate intellectual disability, and autistic traits. Both individuals

share hirsutism, prominent eyebrows, long eyelashes, and diastema,

all of which were also seen in the two previously reported p.Arg190

cases (Ambrosino et al., 2018). Their previous occurrence in affected

individuals and absence of these variants from population databases

lends weight to their pathogenicity.

Comparison of the clinical features of the two individuals

described here with the eight previously described cases showed that

all individuals were affected by intellectual disability. Epilepsy was

seen in all mutation types although our two p.Arg190 cases did not

have seizures, those reported by Ambrosino et al. did. Notably, intel-

lectual disability, neonatal hypotonia, hirsutism, thick hair, prominent

eyebrows, long eyelashes, and diastema were present in all cases with

variants affecting p.Arg190 (Table 1). Both our cases had

macrocephaly, which was not reported previously. Interestingly, the

individuals with truncating variants reported by Mao et al and

the individuals with other missense variants reported by Gururaj et al.,

Inuzuka et al., and Alagoz et al. all shared epilepsy and intellectual dis-

ability but no dysmorphic features nor macrocephaly (Table 1).

KCNT2-associated neurodevelopmental disorders appear to show a

genotype–phenotype correlation with missense variants affecting p.

Arg190 causing a syndromic disorder with a recognizable facial

gestalt. In these two cases, however, epilepsy was absent and we

describe a new association with macrocephaly.

The occurrence of macrocephaly in these two individuals is note-

worthy as constitutive activity of other ion channels, such as KCNB1,

leading to cytoplasmic K+ loss have been linked with excessive neu-

ronal apoptosis (Kondratskyi et al., 2015), although a decrease in cyto-

plasmic K+ is not obligatory for apoptosis (Börjesson et al., 2011).

Interestingly, KCNT2 expression, unlike that of KCNT1, has been

found to be predominantly under control of NF-κβ, which is released

during stressful stimuli such as hypoxia and injury (Tomasello

et al., 2015). As a putative neuroprotective channel, constitutive acti-

vation of KCNT2 may not have the same effect on neuronal apoptosis

as other previously studied ion channels.

The basis of the phenotypic differences between KCNT2 p.

Arg190 variants and other mutations is likely due to the effect of the

variants on the channel function. Patch-clamp experiments on

the missense variant (p.Pro240Leu) described by Gururaj et al.

showed a change in function, which was suggested to be the patho-

genic mechanism. The missense variants reported by Inuzuka et al. (p.

Thr242Asn) and Alagoz et al. (p.Asn182Ile and p.Leu880Met) were

not investigated for their effect on channel function. In the case of

the loss-of-function variants (p.Lys564* and p.Leu48Glufs*43)

reported by Mao et al., whole-cell patch-clamp experiments showed a

decrease in global current density in heteromeric mutant channels.

Given that KCNT2 appears to be tolerant of loss-of-function variants

(pLi 0.04, pLEOUF 0.37), haploinsufficiency would appear unlikely to

be the mechanism. mRNA or protein studies were not performed to

prove these variants were truly loss-of-function and indeed, cells co-

transfected with wild-type KCNT1, wild-type KCNT2 and also

KCNT2p.Leu48Glufs*43 showed currents similar to cells expressing

KCNT1 alone, which may indicate a dominant negative effect for this

variant.

Using homology modeling, we have shown that p.Arg190 partici-

pates in key interactions with neighboring charged residues in order

to stabilize the closed channel state. Substitution of the charged argi-

nine residue with uncharged amino acids results in a constitutive open

state and recapitulates the gain-of-function effects seen in previous

electrophysiological studies.

KCNT2 is highly expressed in the hippocampus and amygdala,

where KCNT1 is relatively less highly expressed (Human Protein Atlas

available from http://www.proteinatlas.org) (Pontén et al., 2008;

Uhlen et al., 2017). This difference in expression may suggest then

KCNT2 functions independently from KCNT1 in these regions

(Bhattacharjee et al., 2005). KCNT2 also has a consensus ATP binding

site (amino acids 1032–1038), which, when occupied by ATP, inhibits

activity of the channel. A unique attribute of KCNT2 is the require-

ment for ATP to dissociate from a site near the C-terminus, in the

presence of elevated intracellular Na+, to allow channel activation.

During times of metabolic stress, such as hypoxia or even epileptiform

activity, which both cause a reduction in ATP and elevation in intracel-

lular Na+, it is postulated that KCNT2 channels play a neuroprotective

role by limiting excitability and maintaining a hyperpolarized mem-

brane potential (Bhattacharjee et al., 2003). How a gain-of-function

variant could bring about the phenotype observed in our cases is not

currently understood. The occurrence of both loss-of-function and

gain-of-function variants in the spectrum of KCNT2-associated devel-

opmental disorders indicates a delicate balance in maintaining mem-

brane potential, which is disturbed in these conditions.

The occurrence of hypertrichosis in several K+ channelopathies is

also notable. The opening of intracellular K+ channels has been

suggested as a mechanism regulating hair growth. Several anti-

hypertensive compounds, most notably minoxidil and diazoxide, have

the known side effect of excessive hair growth (Suchonwanit

et al., 2019; Uno et al., 1990). These have been found to induce

hypertrichosis by enhancing the flux of potassium ions (Buhl

et al., 1992). It is interesting that in the cases described here, and by

Ambrosino et al., with gain-of-function variants, hypertrichosis is a

common finding, whereas this was not reported by Gururaj et al. nor

Mao et al. for those individuals with change-of-function or loss-of-

function variants. In mice, KCNT2 channels are expressed in the dor-

sal root ganglia, specifically in Calcitonin gene-related peptide

(CGRP)-containing neurons (Tomasello et al., 2017), which is interest-

ing, given that CGRP, along with other neuropeptides such as

substance P, is known to regulate hair growth (Samuelov et al., 2012).

In a similar manner, gain-of-function variants in ABCC9, which contrib-

utes a subunit to SUR2, a KATP channel, cause Cantu syndrome

(OMIM #239850). Cantu syndrome is another developmental disorder

sharing phenotypic overlap, particularly hypertrichosis, with the

KCNT2 p.Arg190Arg/His phenotype. SUR2 is also a known pharma-

cological target of minoxidil (Ohko et al., 2020).

Notably, the American College of Medical Genetics consensus

guidelines (Richards et al., 2015) on variant interpretation place the
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identification of a variant affecting the same amino acid residue as a

known pathogenic variant in the “moderate” category as evidence for

pathogenicity (PM5). It could be surmised that consideration should

be given to the precise amino acid substitution and the effect this

may have on macromolecular structure as we would strongly suspect

that other uncharged substitutions affecting p.Arg190 in KCNT2

would be pathogenic. Our homology modeling of p.Arg190Cys seen

in gnomAD would predict this to result in the same gain-of-function

seen with the other charge-neutralizing substitutions, however, the

distance between the charged residues is less affected than the other

variants. In this case, most distances are shorter than those seen in

the p.Arg190Ala substitution, which has the shortest distances for all

experimentally proven gain-of-function variants (Supplementary

Table 1). Of note, this variant does not occur in the gnomAD control

group but rather the “non-cancer” group and hence some variants at

this position may be either benign or have reduced penetrance.

In conclusion, we report two new cases of variants affecting the p.

Arg190 residue in KCNT2 causing a recognizable neurodevelopmental

disorder. In our cases, epilepsy was not a feature and we also expand

this phenotype to include macrocephaly. Differential diagnosis included

metabolic storage disorders. We show that p.Arg190 is a critical

charged residue and reversal or neutralization of this charge is

predicted to result in constitutive channel activation.
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