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SUMMARY

Unlocking the true potential of the new persistent memories (PMEMs) requires elim-

inating traditional persistent I/O abstractions altogether, by introducing persistent seman-

tics directly into main memory programming. Such a programming model elevates fail-

ure atomicity to a first-class application property in addition to in-memory data layout,

concurrency-control, and fault tolerance, and therefore requires redesign of programming

abstractions for both program correctness and maximum performance gains. To address

these challenges, this thesis proposes a set of system software designs that integrate persis-

tence with main memory programming, and makes the following contributions.

First, this thesis proposes a PMEM-aware I/O runtime, NVStream, that supports fast

durable streaming I/O. NVStream uses a memory-based I/O interface that integrates with

existing I/O data movement operations of an application to accelerate persistent data writes.

NVStream carefully designs its persistent data storage layout and crash-consistent seman-

tics to match both application and PMEM characteristics. Specifically, we leverage the

streaming nature of I/O in HPC workflows, to benefit from using a log-structured PMEM

storage engine design, that uses relaxed write orderings and append-only failure-atomic se-

mantics to form strongly consistent application checkpoints. Furthermore, we identify that

optimizing the I/O software stack exposes the PMEM bandwidth limitations as a bottleneck

during parallel HPC I/O writes, and propose a novel data movement design – PHX. PHX

uses alternative network data movement paths available in datacenters to ease up the band-

width pressure on the PMEM memory interconnects, all while maintaining the correctness

of the persistent data.

Next, the thesis explores the challenges and opportunities of using PMEM for true main

memory persistent programming – a single data domain for both runtime and persistent ap-

plication state. Such a programming model includes maintaining ACID properties during

xii



each and every update to application’s persistent structures. ACID-qualified persistent pro-

gramming for multi-threaded applications is hard, as the programmer has to reason about

both crash-consistency and synchronization – crash-sync – semantics for programming cor-

rectness. The thesis contributes new understanding of the correctness requirements for mix-

ing different crash-consistent and synchronization protocols, characterizes the performance

of different crash-sync realizations for different applications and hardware architectures,

and draws actionable insights for future designs of PMEM systems.

Finally, the application state stored on node-local persistent memory is still vulnerable

to catastrophic node failures. The thesis proposes a replicated persistent memory run-

time, Blizzard, that supports truly fault tolerant, concurrent and persistent data-structure

programming. Blizzard carefully integrates userspace networking with byte addressable

PMEM for a fast, persistent memory replication runtime. The design also incorporates a

replication-aware crash-sync protocol that supports consistent and concurrent updates on

persistent data-structures. Blizzard offers applications the flexibility to use the data struc-

tures that best match their functional requirements, while offering better performance, and

providing crucial reliability guarantees lacking from existing persistent memory runtimes.
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CHAPTER I

INTRODUCTION

Emerging, byte-addressable persistent memory (PMEM) hardware technologies such as

phase-change memory and STT-RAM have made significant progress in the last decade.

Recently, the first large-capacity commercial products believed to be based on phase-

change memory [1, 2] were released, targeting the server market. These new memories sup-

port byte-addressability via CPU load/store instructions, much like main memory (DRAM),

but differ from the latter, as they hold the data state across node-restarts, similar to a per-

sistent disk device. While the exact numbers depend on the PMEM hardware technology

itself, the PMEMs in general, support high capacity memory modules because of their high

density, have high access latencies, e.g., writes are up to 4× slower than DRAM, and have

limited device bandwidth, e.g., up to 8× lower than the DRAM. However, poor capacity

scaling of DRAM main memory, combined with modern applications’ demand for fast,

volatile and persistent storage, drive the integration of the PMEMs in compute platforms

in datacenters [3, 4, 5] and in HPC exascale systems [6]. In these systems, PMEMs can

be integrated in two main ways. In the first one, PMEM is placed “behind” DRAM, in a

configuration where the system DRAM represents a hardware-managed cache for a much

larger memory capacity provided by the PMEM device; this configuration does not exploit

the persistent properties of PMEM. In the second, PMEM is placed “side-by-side” with

DRAM, as illustrated in Figure 1. In this, more interesting, configuration, both the addi-

tional capacity and the persistence provided by the PMEM device are directly exposed to

applications and software stacks. This thesis is primarily concerned with systems incorpo-

rating DRAM and PMEM in this “side-by-side” configuration, referred to as App Direct

mode in the context of the Intel Optane DC Persistent Memory [1].
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Figure 1: DRAM and PMEM memory configuration

Augmenting the memory hierarchy with PMEMs and leveraging the full benefits that

PMEMs offer, presents both opportunities and challenges to system software designers.

This is because the existing persistent system software stacks such as file systems and

database management systems (DBMS) are built and optimized upon fundamentally dif-

ferent hardware abstraction – persistent block devices. On the other end of the spectrum,

we have volatile memory programming abstractions – data-structures such as hashmaps,

B-trees, etc., that permit direct manipulation of the memory words using load/store instruc-

tions. Main memory programming semantics on PMEM are shown to yield the maximum

performance benefits [7] since it minimizes the imposed software instructions in the critical

path of the PMEM accesses, however at the cost of program correctness. This is because,

unlike DRAM memory, PMEM resident data survives across node restarts. An unplanned

node restart is likely to terminate an ongoing sequence of PMEM updates midway, resulting

in an inconsistent persistent program state. Furthermore, most main memory programming

platforms integrate transient CPU caches for performance, that in turn delay and/or reorder

memory updates back to the memory device, making it impossible to guarantee the cor-

rectness of the persistent data in the event of a crash. Solving this involves integrating

crash-consistent semantics in to application programs as a first class citizen.

The system software research community has made significant progress in addressing

both of these challenges, by redesigning PMEM optimized file-systems [8, 9], DBMSs [10]
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and programming libraries [11] and data structures [12]. Still a number of important ques-

tions remain open. In the context of PMEM and modern applications, are the existing I/O

runtimes and abstractions good enough for fast, durable data movements? How to sup-

port fast, main memory like persistent programming abstractions without compromising

the program correctness? How such new abstractions interplay with concurrency control

of the applications? Further, how to support truly fault tolerant persistent memory pro-

gramming? We next discuss these questions in detail.

1.1 Statement of problems

• Memory speed persistent I/O: Persistent disk storage hardware, accessed using the

I/O subsystem is incredibly slow compared to volatile main memory. Furthermore,

applications often use software I/O intermediaries like file-systems and DBMSs to

manage their persistent state. These system software stacks are very useful with disk

storage as they accelerate data movements using buffering, manage concurrent ac-

cesses to data, provide consistent data semantics, etc. Most of the existing software

falls in to this class of applications and thus it is important to accelerate their persis-

tent data usage model with new PMEM hardware. The recent PMEM aware persis-

tent I/O proposals [8, 9] address the above by redesigning system software internals

while keeping the abstraction unchanged. However, the generic system design and

the abstractions themselves are likely to limit further potential performance gains.

One reason is that these traditional file system abstractions imply functionality (e.g.,

in terms of metadata management) or semantics (in terms of visibility of file system

updates) that form significant portions of the I/O costs when used with fast PMEM

devices; yet, they are not even necessary for important classes of I/O behaviors (such

as for checkpoint generation and for streaming I/O in application workflows).

• Reason about synchronization and crash-consistency in persistent programming:

Multi-threaded shared memory programming uses concurrency-control primitives
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such as locking and transactional-memory (software/hardware) for program correct-

ness. They provide atomicity, consistency and isolation (ACI) guarantees for multi-

threaded programs. Crash-consistent persistent memory updates in the form of stor-

age transactions, independently, also provide the same guarantees, plus durability

(ACID). One way to simplify the development of PMEM applications is to use a

single abstraction that provides guarantees on both crash consistency and correct

synchronization. To this end, prior work has proposed numerous systems to simul-

taneously guarantee both these properties [11, 13, 14, 15, 16, 17, 18]. While these

systems provide transactions with the desirable ACID properties that permit their

use for both crash-consistency and synchronization, they do so in a myriad

of ways, some implemented completely in software while some rely on hardware

support, some use undo logging, while others use redo logging. So, developers are

faced with a bewildering array of choices, with varied performance characteristics

that change with applications and the system used. For a platform with given hard-

ware features and consistency and synchronization requirements, is it possible to

streamline the design space and quickly arrive at a correct and performant imple-

mentation of a transactional system?

• Truly fault tolerant persistent memory: Commodity servers which integrate PMEM

provide data reliability by means of hardware (erasure-codes) and software (RAID)

mechanisms, but they do not tolerate full node failures. A truly fault tolerant per-

sistent memory programming requires some form of data redundancy across nodes.

However, it is not straight forward to add fault-tolerant semantics to persistent data

structures while supporting concurrent, crash-consistent updates. This is because,

each of these semantics have their unique and often conflicting system software trade-

offs between each other. For an example, replication stacks are often designed with

serial log commits for correctness while persistent data-structures use concurrent up-

dates for maximum throughput.
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Summarizing, simply using memory-based interfaces and programming models to max-

imize the performance of PMEM-based applications and software stacks in not trivial, and

presents a number of challenges that must be addressed, and tradeoffs that must be fully

evaluated in order to be leveraged.

1.2 Thesis statement

It is possible to make existing application-level memory data-structures and programming

interfaces persistent and to thereby deliver better functionality and performance, compared

to efforts optimizing I/O storage abstractions for PMEM.

To support the hypothesis, this dissertation makes the contributions outlined below.

1.3 Contributions

• Memory speed persistent I/O: This thesis proposes a memory centric object-based

abstraction for persistent I/O. The supporting system – NVStream – comprises an

I/O library and runtime system, and its design is specialized for data movement in

analytics workflows and checkpoint I/O, such as what is used in HPC. The design

of NVStream combines a streaming, versioned object-store, with efficient log-based

memory management, and hardware-accelerated persistence for consumer-producer

patterns. The memory friendly persistent I/O API supports data movement and per-

sist optimizations that uses both hardware and domain specific application character-

istics.

• PMEM bandwidth aware persistent I/O: Removing the software overheads from

the PMEM access paths, exposes new bottlenecks. For memory-based checkpoint

I/O in HPC applications, where many threads concurrently issue coordinated check-

point operations, the limited PMEM bandwidth poses a significant challenge in real-

izing the expected benefits from using PMEMs.
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We propose a PMEM bandwidth aware persistent I/O library (PHX) for HPC check-

point I/O. PHX deals with the limited PMEM bandwidth through simultaneous use

of PMEM and local/ peer nodes’ DRAM devices, thus increasing the effective data

movement bandwidth. PHX’s memory-centric object interface and PMEM-bandwidth-

aware design lead to reduction in the time length of I/O operations in the critical path,

associated with the slow PMEM device. To continue guaranteeing adequate relia-

bility and persistence, DRAM-resident object state is replicated across peer nodes’

memory, which is accessible through high-bandwidth interconnects. The use of a

memory-based I/O both exposes the problem (since it would not be an issue if ap-

plications used “longer” block-device based I/O paths) and enables the solution (by

making it possible to realize a low-cost replication so that the additional data move-

ment introduced by PHX is outweight by substantial gains in application perfor-

mance and system efficiency).

• Building persistent memory systems with crash-sync-safety: We characterize dif-

ferent transaction systems to identify the design space of ACID transactions. The

candidates are chosen based on crash-sync-safety property, that guarantee 1) proper

synchronization, 2) crash-consistency semantics, and 3) correct composibility of (1)

and (2). This new characterization of transaction systems provides a basis to com-

pare different implementations and to identify the right set of crash-consistency and

synchronization mechanisms for particular applications and hardware platforms.

• Fault-tolerant persistent memory: This thesis proposes a system software solution

– Blizzard – that supports highly performant and fault-tolerant (replicated) persistent

memory programming. The key idea in Blizzard is to exploit direct accesses to per-

sistent memory from both CPU and the commodity NIC to provide efficient zero

copy replication of RPC calls. We build on this by providing a library of persistent

data-structures with a recipe for concurrency that works well with the replication.
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1.4 Organization

The remainder of this dissertation is organized as follows. In Chapter 2 (§2) we give a brief

introduction to byte-addressable persistent memory (PMEM). We discuss the properties of

PMEM hardware, usage models and introduce the importance of ACID qualified PMEM

programming.

Chapter 3 (§3) details NVStream, a PMEM aware system software stack for streaming

I/O use cases in high performance computing application workflows. Also, the chapter

includes an evaluation of NVStream against three real-world HPC applications, GTC, CM1,

and S3D.

Chapter 4 (§4) presents PHX, that leverages alternate interconnects and memory re-

sources to alleviate PMEM bandwidth bottleneck during HPC checkpoint I/O. The chapter

also includes PHX evaluations against three HPC applications, GTC, CM1, and miniAMR.

Chapter 5 (§5) characterizes properly synchronized and crash-consistent, transactional

programming on PMEM on platforms with different hardware properties and with different

application use-cases. We detail the lessons learned and draw insights for future PMEM

transactional programming system selection and designs.

In Chapter 6 (§6), we detail Blizzard, a runtime for highly available PMEM program-

ming. We model and evaluate durable enterprise application backends using Blizzard’s

memory native persistent data-structures.

In Chapter 7 (§7), we discuss the other significant research work related to this thesis

and put our work in context. And finally, in Chapter 8 (§8) we discuss and conclude this

dissertation with ideas for possible future research opportunities.
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CHAPTER II

BACKGROUND

In this chapter, we introduce byte-addressable persistent memory (PMEM) hardware and

put it in the context by comparing it against other related memory and persistent media

device characteristics. PMEM hardware supports multiple usage models when integrating

with applications.

2.1 Background on persistent memory

The well-known DRAM main memory realizes binary states using capacitor stored tempo-

rary electrical energy. DRAM main memory therefore is volatile and notorious for weak

capacity scaling, as the device energy consumption is proportional to memory capacity.

Byte-addressable persistent memory or simply persistent memory (PMEM), on the other

hand realizes binary state using changing the material resistance using an electrical charge.

The persistent memory updates are slow and consume more energy due to this technical

difference. However, they have excellent capacity scaling, as the device does not need en-

ergy refresh cycles. More importantly, for the same reason the written data is persistent and

survives across machine restarts. Table 1 compares [19] device properties of PM against

DRAM main memory and SSD/HDD storage.

Table 1: Comparison of PCM based PMEM with DRAM and other storage devices. Data
derived from [19] and experiments on Intel Optance DC PMEM

DRAM PCM SSD HDD

Capacity per CPU 100s of GBs Terabytes Terabytes Terabytes
latency 60 ns 300 ns 300 µs 10 ms

bandwidth 1× 1
4
× to

1
8
× - -

Addressability Byte Byte Block Block
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2.1.1 Persistent memory usage models

While it is possible to fully replace DRAM main memory with the new persistent memory

modules, thus dual-purposing PMEM for both volatile and persistent memory use-case, we

are likely to have both of these memory options available in the future hardware config-

urations. PMEM accesses are still costly relative to ∼ 60ns DRAM access latencies and

therefore having DRAM capacity benefits applications with high frequency, but volatile

runtime state maintenance. Confirming our observation, the current generation commer-

cial PMEM offerings, specifically based on Intel Optane DC integrates both DRAM and

PMEM support in their hardware design. They integrate PMEM by attaching it to the

memory bus using a separate memory controller, in a way that makes it appear as a non-

uniform memory access (NUMA) memory node. Furthermore, the hardware comes with

two major DRAM/PMEM configuration options – Memory Mode and App-Direct Mode.

The former, treats PMEM as a volatile memory device front-ended by a hardware managed

DRAM cache. The latter, configures DRAM and PMEM in a side-by-side setting, where

applications have total control over the PMEM address space. This thesis assumes PMEM

equipped machines configured in the App-Direct Mode, as the configuration supports both

persistent PMEM usage and PMEM system software design. In App-Direct Mode, a file

system manages the PMEM address space and the approach is consistent with the Linux’s

use of file names as resource handles. Applications can perform file I/O or direct memory

load/stores on app-direct configured PMEM device.

Legacy applications using block I/O (e.g., file I/O, DBMSs, key-value stores) for their

persistent data storage can use the same APIs to store data on a PMEM device without any

additional program changes. Instead, PMEM-aware block I/O system software stacks [8, 9,

20, 10] optimize their system software internals to deliver PMEM performance advantage

to end-user applications. These systems take advantage of byte-addressable persistence

by removing outdated system components [8], re-designing internal data-structures and

protocols to match the capabilities of new hardware, etc.
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In direct memory PMEM programming, applications bypass the file-system software al-

together and make direct changes to the data on PMEM using load/store CPU instructions.

Applications map PMEM memory region as a file mapping using regular mmap system call

and direct-memory-access (DAX) supporting PMEM aware file systems route load/store to

the PMEM device without software intervention. PMDK [21] like programming tool-kits

Programming toolkits such as Intel’s Persistent Memory Development Kit (PMDK) pro-

vide convenience library support to handle common PMEM programming tasks, including

PMEM memory region management, offset based persistent pointers and failure-atomic

PMEM programming semantics (PMEM transactions).

2.1.2 Crash-consistent persistent memory programming

PMEM is directly accessible by CPU instructions (e.g. load/store), and direct programming

of persistent state without software intermediaries such as file-systems is one of the most

desirable properties of this new type of devices. However, direct programming persistent

memory involves maintaining consistent persistent data state at all times using careful data-

update sequences – crash-consistent update protocols. Crash-consistent protocols enforce

atomic, consistent, isolated and durable (ACID) data updates on PMEM and protect data

corruption during unplanned node shutdowns.

Intel x86 architecture CPUs only support 8 byte (memory aligned and contiguous)

atomic memory updates. Therefore, PMEM atomic updates involving multiple 8 byte

blocks are not natively supported for atomicity in hardware. PMEM optimized software

crash-consistency protocols extend the basic hardware primitives to support more sophisti-

cated PMEM update sequences. Crash-consistency protocols optimized for PMEM that use

write-ahead-logging protocols (e.g., undo/redo logging) [11] and copy-on-write (COW) [10]

are widely used for this purpose.
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2.1.3 Commercial availability of PMEM

The earliest realization of PMEM hardware was to combine volatile DRAM memory mod-

ule with an on-device emergency power source – battery-backed DRAM. In an unplanned

node shutdown (e.g., power failure), these PMEM devices use the limited emergency power

to write out DRAM memory resident data on to a block device(e.g., SSD). Battery-backed

DRAMs offer byte addressable persistence at DRAM memory speeds but has very poor ca-

pacity scaling. In addition to memory refresh cycles, battery-backed DRAM based PMEMs

have to support sufficient amount of emergency power to safely backup all the volatile

memory content. Additionally, battery-backed DRAM configured PMEMs often backs-up

all the volatile memory state including CPU caches (persistent CPU caches).

More recently, Intel debuted their 3DXPoint [22] based PMEM hardware and the device

characteristics matches the PCM based PMEM numbers we quote in Table 1. These are

high-capacity memory devices and each PMEM memory module can support up to 256GB.

However, L1-L3 CPU caches remain transient/volatile as the persistence domain starts at

the memory controller. Transient CPU caches with write-back caching policies compli-

cate PMEM programming, as these caches both buffer and re-order the PMEM stores be-

fore they reach the memory controller/persistent domain. PMEM aware crash-consistency

protocols solve this problem by carefully ordering the PMEM writes and explicitly flush-

ing CPU cachelines. New generation x86 CPU hardware introduces optimized cache-line

flushing instructions clflushopt, clwb to offset some of the overheads associated with

crash-consistent PMEM updates.

2.2 Chapter summary

Byte-addressable persistence makes new PMEM hardware attractive for integration with

memory-based interfaces for application programming and even I/O, but the significant

differences among PMEM and DRAM and across PMEM technologies in terms of their

performance, capacity, access and failure models, make this a non-trivial process. The next
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four chapters further illustrate the specific nuances of how PMEM is used and operates, and

presents the system solutions needed to best leverage the opportunities provided by PMEM

while avoiding or reducing the impact of the inherent limitations of these technologies.
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CHAPTER III

MEMORY ACCELERATED PERSISTENT I/O

Recent systems research has explored ways of improving the traditional application I/O

stacks with new PMEM device capabilities. These efforts include PMEM optimized file-

system implementations [8, 9, 23] with shortened I/O path distances (e.g., page cache re-

moval), memory-optimized indexing and memory-optimized crash-consistency protocols.

Still, these PMEM optimized storage stacks perform poorly for high-performance comput-

ing (HPC) I/O use-cases. In this chapter, we discuss software limitations during HPC-I/O

in detail and present a system software solution to address them.

3.1 Introduction

Long-running scientific computations, such as material combustion, fusion and climate

modeling, periodically produce the program outputs of the simulation state. These periodic

program outputs serve multiple purposes. First, they are used as an application check-

points, which are used for recovery in the event of simulation or system failure. Second,

they are increasingly being used to provide online insights into the simulation state, and are

directly consumed by co-running coupled analytics programs, performing output visualiza-

tion, verification, uncertainty analysis, or other data analysis tasks [24, 25]. This producer-

consumer relationship among application components establishes a streaming workflow

and HPC technologies supporting streaming workflows are becoming an integral part of

HPC systems [26, 27, 28].

Although at a high-level, streaming workflows provide an opportunity for analytics

application to quickly consume simulation data, the performance of the streaming infras-

tructure is highly dependent on the performance and capacity of the available memory and

storage resources. This is because, in streaming workflows, in-memory buffers are used
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to temporarily stage simulation outputs that must be written to storage (e.g., for check-

pointing), or for a co-running workflow component to consume the data. However, due to

significantly large data volumes and the limited amount of DRAM capacity, the volume,

and frequency of data that can be generated and passed through the workflow components

is restricted. To overcome these challenges, production-level systems, such as ADIOS [26]

use persistent storage (flash, hard-disk) devices and OS-level file systems for temporarily

staging data, thereby overcoming the DRAM capacity limitations. Because the data move-

ment across workflows is used for both reliability (i.e., checkpointing) and for coupled

analytics, it must be carried out without sacrificing reliability or consistency properties. As

a result, these systems typically rely on the underlying file system crash-consistency and

durability mechanisms such as journaling and logging.

However, using slower storage devices such as flash or hard disk to stage data as a

replacement for DRAM can significantly increase data exchange cost in streaming work-

flow due to significantly higher latency and lower bandwidth compared to using DRAMs.

Emerging non-volatile memory technologies such as 3D-Xpoint DIMMs [22] provide 100×

faster read/writes and up to 10× higher bandwidth compared to flash memory, and can ac-

celerate the data exchange performance. Unfortunately, naive use of PMEM underneath

file system stacks can substantially limit PMEMs hardware benefits provided to streaming

workflows. This is because the traditional file system based solutions incur overheads in

several ways, including high serialization (memory to block conversion) overheads, de-

serialization overheads, and POSIX-based system call and journaling/logging costs in the

data movement path, which is not necessary given the byte-addressable interface exposed

by PMEM. Even file systems designed explicitly for PMEM [8] continue to impose these

undue software overheads. Furthermore, adherence to full file system semantics prevents

software from taking advantage of new PMEM-centric architectural features, such as sup-

port for streaming, non-temporal writes [29], which are particularly useful for streaming
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workflows. Note that using memory copy-based operations with PMEM [30] is also in-

adequate: First, staged data poses requirements for temporal durability (i.e., to provide

guaranteed delivery). Second, for correctness, the persistent nature of PMEM requires

transactional mechanisms so that partial updates are not persisted and delivered to down-

stream consumers.

Based on these observations, we design and implement NVStream, a user-level transport

for workflow coupling and high-performance data streaming via PMEM. NVStream accel-

erates HPC streaming I/O by leveraging the memory-based nature of PMEM, the streaming

semantics and temporal durability requirements of scientific workflow systems, and the new

architectural capabilities in modern processor architectures. Its design combines stream-

ing, versioned object-store, with efficient log-based memory management, and hardware-

accelerated persistence for consumer-producer patterns. Additional optimizations in the

data movement path for applications exhibiting temporal locality in their data access be-

havior is realized through the use of delta encoding [31].

In this chapter;

1. We provide an in-depth analysis of the characteristics of using PMEM-based trans-

port channels in streaming workflows.

2. We design a novel solution for streaming persistence which accelerates PMEM-based

producer-consumer data exchanges.

3. We design and develop NVStream, a new PMEM-specific system for coupling in-situ

analytics in HPC systems based on streaming persistence.

The current NVStream implementation focuses on a single-node, multi-core, shared

memory platform and we evaluate NVStream with several data-intensive benchmarks and

HPC applications that are running on emulated PMEM.

15



NVS
daemon

simulation

NVS client

analytics

NVS client

meta
server

compute node

NVS in-memory object store

log-structured
persistent heap

crash-consistent streaming stores

DRAM PMEM

versioned 
object write

consistent 
snapshot read

remote 
requests

Figure 2: The high level component design of NVStream.

3.2 NVStream Overview

We design NVStream, a PMEM-aware data transport for HPC workflow I/O. The main

goals of the NVStream are:

• HPC data transport for node-local and cross-node workflow interactions;

• persistent and consistent simulation output state maintenance;

• PMEM device-aware data transport design; and

• exploiting HPC application I/O awareness for high performant transport design.

We first briefly describe a high-level usage of the proposed system in the context of

HPC workflow I/O, followed by a deep dive into each of the components of the system.

HPC workflow components, i.e., data producers and consumers, interact with the NVStream

runtime using a set of I/O APIs. These APIs are modeled after familiar memory like API

calls. We determined that the effort of porting a traditional file I/O-based application to

NVStream is minimal. For an example, we ported the GTC and CM1 applications to

NVStream with ∼ 15 and ∼ 85 number of source code line updates.

Figure 2 shows the control and data path interactions between workflow producers and

consumers with the NVStream runtime. The application that generates data, such as the
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1 n v s _ i n i t ( s t o r e _ i d ) ; /∗ r u n t i m e i n i t ∗ /
2 /∗ o b j e c t a l l o c a t i o n wi th t h e key = " z e t a " ∗ /
3 vo id ∗ o b j = n v s _ c r e a t e _ o b j ( "zeta" , s i z e o f ( i n t ) ∗1000) ;
4 i n t ∗ a r r a y = ( i n t ∗ ) o b j ; /∗ c a s t i n g t o our own t y p e ∗ /
5 /∗
6 ∗ pe r fo rm c o m p u t a t i o n s t e p s on t h i s o b j e c t
7 ∗ /
8 n v s _ p u t ( "zeta" ) ; /∗ o u t p u t w r i t e ∗ /
9 n v s _ f r e e _ o b j {"zeta" } ;

10 n v s _ f i n a l i z e ( ) ; /∗ r u n t i m e shutdown ∗ /

Figure 3: Science simulation producers producing program snapshots using NVStream API

simulation code, first declares the output variables by allocating them using NVStream API

call nvs_create_obj, as shown in Figure 3. The call registers the allocation metadata with

the NVStream runtime and returns a contiguous volatile memory block similar to malloc.

Later, the producer outputs a versioned snapshot of the object using nvs_put, which stores

the snapshot durably on the underlying PMEM-based shared memory layer. The consumer

application in the workflow uses similar calls to retrieve consistent snapshot versions from

the NVStream transport channel.

The major components in the NVStream runtime which support these interactions are:

Log-structured heap is a PMEM-aware shared heap implementation, responsible for allo-

cating space on the shared PMEM memory and providing for crash-consistent data writes

and reads. §3.3

Object-store is the application-facing component of NVStream. It exposes a set of APIs to

both producers and consumers for workflow interaction. §3.4

NVStream daemon is responsible for background services such as garbage collection of

old NVStream objects and support for remote/cross-node data transfers. §3.5

17



3.3 Log-structured Memory Heap
3.3.1 Persistent Smart Pointers

NVStream I/O transport uses persistent shared memory to move data between producers

and consumers in a coupled workflow. We manage persistent shared memory regions as

named mappings (mmap call) supported by the OS. Each mapping is uniquely identified

as a file name – we identify it as map_id. A process independent unique shared memory

address is constructed using <map_id :offset> where offset denotes the number of byte

offset value from the beginning of mapped segment’s start address. Given a shared mem-

ory address, a process accessing persistent shared memory data, first maps the memory

segment identified by map_id into its own address space and then records the starting vir-

tual memory address of the mapped segment – map_start. Next, the process local virtual

address is obtained by {map_start + offset}.

We need a similar addressing mechanism for structures placed on the volatile shared

memory as well. We use boost [32] interprocess primitives for the same.

3.3.2 Shared Persistent Heap

NVStream stores the producer generated data and metadata on PMEM before they are

streamed to the workflow consumer/s. For efficient data updates/lookup, the data writes

on persistent devices follows a pre-determined data storage layout/format. The system

software stack operating on the persistence device often determines the specifics of the

data layout. For example, pmfs formats the PMEM device space with a B-tree index struc-

ture for efficient file-data traversal. While complex data layouts such as inodes and B-tree

indexes improve on-device data organization and data traversal speeds, they often come at

a cost in the form of excessive metadata overheads, costly crash-consistency routines, etc.

We learn that the simulation program snapshots, placed on the NVStream persistent

memory regions are versioned/immutable objects. These immutable objects are consumed

by one or more downstream analytics applications – often in a monotonically increasing
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Figure 4: NVStream stores data in a shared memory log-structured heap formatted on
PMEM device and maintains volatile state of the runtime, in DRAM. The indexing struc-
tures are placed in shared volatile memory for multi-process accessibility

object version order. The immutable objects exchanged between producers and consumers

form a streaming data pattern and is well-supported by the FIFO data structure.

The above observation motivates us to format (see §4) the NVStream persistent shared

memory as a log-structured append-only storage heap (heap-log). The new data gets ap-

pended to the tail of the log (marked by log_tail) while old data gets taken out from

the log-head (marked by log_head. The heap-log is generic enough that it does not en-

force any layout on its append entries. The high-level software abstractions, such as the

NVStream object-store, defines the specific entry format that describes the stored data.

In addition, we acknowledge the fact that almost all HPC applications follow single-

program multiple-data compute pattern influenced by MPI parallelization framework and

thus perform parallel I/O. We optimize the NVStream persistent heap for the same by main-

taining per-process heap-log – supporting efficient parallel data writes. A root persistent

object act as the entry point to the NVStream’s storage hierarchy and is uniquely identified

by a store_name. It keeps track of the heap-logs – identified by their rank id.

Our design choice of formatting PMEM device as a log-structured heap greatly sim-

plifies the crash-consistent data updates on PMEM and more importantly, enables high

throughput persistent data writes on to the PMEM device.
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3.3.3 Crash-Consistent Data Streaming

Although, the data stored on PMEM device survives application and node restarts, main-

taining metadata and data consistency of the stored data in the wake of unplanned crashes

is a challenging problem. Current crash-consistent update techniques solve the problem

by either atomically updating data or encoding enough information so that during recov-

ery, one can reason about the consistent state. For designing crash consistent updates for

NVStream’s persistent heap-log, we make the following observations:

Observation-1 - the versioned objects and the append-only log-structured heap do not

mutate existing data/metadata during output writes.

Observation-2 - data producing HPC applications do not read-back the written out data in

the fast path – happens only during a restart.

Observation-1 leads us to incorporate a logging-based crash-consistent updates – a nat-

ural design choice for our log-structured heap. To that end, crash-consistent and durable

log appends to the heap-log includes following steps: 1 acquire the write lock of the heap-

log, 2 issue writes that comprise of the appending data, 3 ensure all the writes have been

committed to PMEM, 4 issue commit flag append to the heap-log, 5 ensure that commit

flag write has also been committed to the PMEM device.

The regular temporal-store instructions provided by x86 processors operate on write-

back(WB) mapped memory segments. They are optimized for temporal data access pat-

terns and are buffered in the processor cache hierarchy before being evicted to the backing

memory (write-back operation). Therefore, temporal-stores, when used for heap-log ap-

pends, requires explicit cacheline flushing (using clflush, clflushopt) to move cached

temporal stores into the backing memory device. Cacheline flushing is expensive and sig-

nificantly reduces the memory parallelism and bandwidth usage due to the ordered execu-

tion of flush instructions. In contrast, x86 streaming stores operate on write-through(WT)

mapped memory segments, and these writes bypass the processor cache altogether. In ad-

dition, the streaming stores enjoy a relaxed memory consistency semantics in contrast to
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total-store-ordering(TSO) memory consistency enforced on temporal-stores by the proces-

sor. Further, the absence of TSO and write-combining buffer support of CPU (batching)

allows streaming stores to move data fast into the backing memory device. Interestingly

enough, Observation-2 suggests that temporal stores are of little use to HPC applications,

and importantly, temporal store-based I/O may negatively contribute to the producers com-

pute performance as they are likely to evict the actual application’s (simulation’s) working-

set from the cache.

Based on these observations, we use streaming stores for NVStream’s heap-log appends.

We use store (sfence) instruction to enforce explicit ordering between streaming stores

(e.g., steps 3 and 5 in the heap log append).

3.4 NVStream Object Store
3.4.1 Object Allocation

Application code allocates objects using nvs_create_obj API call. The API call is simi-

lar to malloc memory allocation call, but accepts additional object_key parameter. The

object_key serves two purposes, 1) allow subsequent NVStream APIs to use it as a volatile

handle for the allocated object (e.g., nvs_put and nvs_free), 2) provide analytics appli-

cations a persistent object handle to retrieve PMEM stored objects (e.g., nvs_get). The

NVStream runtime in its internal representation maintains a fully qualified object han-

dle in the form of [store_id : object_key] using the store_id given in nvs_init.

Our prototype currently supports hierarchical store_id’s up to two levels– usually in

the form of [store_name/rank]. For an example, an object with key, ’zeta’ that be-

longs to the MPI rank 1 of a coupled simulation named gtc-analyze is represented as

[gtc-analyze/1:zeta].

NVStream object allocation involves allocating a memory chunk from the DRAM main

memory (Linux glibc allocator) and updating the volatile index structure that maps the

object_key to a memory address along with other metadata that includes object’s size
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and the current version. The compute kernel uses the returned object for regular/volatile

reads and writes. During program snapshots, the NVStream runtime generates a versioned

copy of this object on the persistent memory. We describe this operation next.

3.4.2 Object Write

nvs_put call creates a versioned persistent snapshot of the volatile object identified by

the object_key. The call implements the following control sequence. First, NVStream

runtime scans its internal structures to find the object address for a given key which was

mapped and recorded during the object allocation request. Next, it makes a snapshot of

the DRAM resident object on persistent memory by appending/copying object data into

the process local heap-log (see Figure 4) along with name, version, and other metadata

information of the object. Finally, we update the DRAM resident indexing structures with

the newly written object information.

Batched appends. Most HPC applications perform I/O in batches; after a certain number

of iterations, an application writes out all the intermediate objects/variables in a batch. We

exploit this characteristic of HPC applications and introduce a batched object write API

– nvs_snapshot. The nvs_snapshot call converts multi-object writes into one single

append operation on the PMEM based heap-log. Batching the writes eliminates multi-

ple crash-consistent write sequences that involve costly store ordering, and increases the

memory bus bandwidth usage during data movement.

Delta-compression. Matrix-related arithmetic is a norm in HPC applications, and check-

point/analytics output state mostly comprise of these matrix variable states. However, we

learn that some HPC applications do not modify all the data points in their application ma-

trices/grids across iterations. This observation opens up an opportunity to selectively store

the data that has been changed since the previous I/O step – storing only the delta from

the previous state. This optimization is called delta-compression and the NVStream flavor

that integrates the optimization is NVSD.
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The proposed NVSD uses memory page-based write protection support available in

the memory management unit (MMU) and the OS exposed system call interfaces to cre-

ate lightweight deltas in the userspace. The NVSD approach calculates deltas at object

granularity and we page-align the object allocations. During each compute iteration af-

ter nvs_put operation, the NVSD runtime write-protects all the pages of one or more

DRAM resident objects. As a consequence, any subsequent write to the memory protected

object raises a page protection signal (SIGSEG_FAULT) leading to the following control se-

quences: 1) NVSD registered signal handler gets invoked, 2) the runtime determines the

memory page and the object that belongs to the faulting memory address, and finally, 3) the

modified/written pages are recorded in a bit vector and the write protection on the faulted

memory page is removed. We use the modified page bit vector to calculate the delta of

that particular object and only store the modified memory pages in heap-log. We store

additional metadata information such as the relative position of the modified pages within

an object; this information is used for reconstructing the exact object sate at the analytics

application (the consumer) as if there were no delta-compression on the stored data.

3.4.3 Object Read

The nvs_get call retrieves a PMEM-resident persistent object and is internally imple-

mented as follows. We first find the heap-log corresponding to the given [store_id

: object_key] using the rank value in the store_id; if the rank belongs to local store,

the requested object version is available on one of the heap-logs available on the local

node/persistent device, else it has to be retrieved from a remote node. We look at each of

those scenarios next.

Scenario1: object is local. We walk the rest of the volatile index structure in-search

for [object_key : version] mapping. A successful search returns a persistent shared

memory address [map_id : offset] of the heap-log stored object. The address uniquely

identifies a persistent memory location in which the object resides using which we map the
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corresponding log-heap into our own address space and read the object data/metadata at

offset.

Scenario2: object is remote. The NVStream daemon process is responsible for retriev-

ing remote objects over the network. We place a remote object retrieval request on the

NVStream daemon’s §3.5 shared memory request queue and synchronously wait for the

response.

3.5 NVStream Daemon
3.5.1 Remote Data

The NVStream daemon component is responsible for 1) serving requests for local objects

from remote nodes across the network, 2) fetching the objects located in remote nodes for

local analytics processes, and finally, 3) for services such as garbage collection of stale

objects.

Remote requests. The NVStream daemon receives object requests from remote peer

nodes through a TCP server socket. Similarly, it looks-up the requested object by scanning

the shared memory volatile index structure similar to that of the nvs_get. After an object

is located, the daemon process serves it to the remote peer.

Remote objects. The NVStream daemon receives the remote object retrieval requests from

local analytics processes through a shared memory queue structure. First, it finds the remote

peer node that hosts the requested object; note that the object-to-remote host mapping is

done via a metadata server hosted at a known address and the metadata server lookup

maps the store_id:rank portion of a object_key to a hosting server address. Next, we

synchronously request the object/s from the remote host. Finally, we serve the retrieved

object to the local analytics process. It is important to note that the ‘remoteness’ of the

requested object is transparent to the analytics application and is completely handled by the

NVStream library/runtime. We cache the store_name:rank to host-address mappings

for future interactions.
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3.5.2 Garbage Collection

NVStream garbage-collection (GC) service cleans up the old versions of the objects from

the heap-log. NVStream implements a simple GC algorithm called max_version_gc; the

max_version_gc garbage collector purges all the stale object versions except most recent

version (object with MAX version number). The GC service monitors the head and tail

values of the heap-log and triggers garbage collection routine if the log space is filled up to

a threshold value, which is a configurable parameter.

The NVStream’s garbage collection routine steps include 1) calculating the new head

offset of persistent log heap that constitutes the most recent MAX versions of objects, and 2)

truncating the persistent log up to the new log offset.

The integration of delta-compressed objects into NVStream increases the complexity of

log truncation operation; this is because the recent delta-based object versions may depend

on the older versions of the same object for valid reconstruction of their complete object

state. Thus simply truncating heap-log may result in losing some of the data parts which

are critical for reconstructing more recent object versions out from their deltas. During

NVSD heap-log truncation, we create a full program checkpoint that includes the objects

of version MAX, thereby effectively truncating the dependency list of object deltas at the

MAX object version. We maintain the MAX versioned program checkpoint separate from the

heap-log. We only have to maintain one program snapshot version (the most recent one)

per heap-log for guaranteeing correct reconstruction of full object state.

3.5.3 Failure Recovery

Recovering from failure includes restoring consistent runtime/volatile and persistent state

of the system. During recovery, the NVStream daemon §3.5 re-initializes the shared volatile

memory structures that include synchronization structures and metadata indexes. Populat-

ing volatile indexes for persistent objects involves walking the heap-log from log_head to
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log_tail and updating volatile indexes corresponding to objects details found on the heap-

log. Because of log-structured persistent heap design, the recovery steps of NVStream is

almost trivial in contrast to WAL based crash-consistency designs, that involves replaying

the undo/redo log for restoring the consistent persistent state.

3.6 Evaluation

We evaluate NVStream against several real-world and proxy HPC applications, 1) GTC, 2)

CM1, and 3) miniAMR. Our experiments are designed to answer the following questions:

• How NVStream compares to state-of-the-art PMEM storage stacks for streaming data

writes and reads?

• What is the effectiveness of NVStream’s delta compression technique and its contri-

bution to fast data movement?

• Does NVStream reduces overall application execution time in the context of work-

flows with analytics or checkpoint I/O?

3.6.1 Methodology and Benchmarks

Table 2: Node configuration of the in-house Aries cluster

Interconnect Mellanox Infiniband
CPU core Intel XeonE5 1.8GHz
CPU cores per node 80 cores over 4 dies
Main memory per node 500GB over 4 NUMA nodes

We emulate persistent PMEM using memory regions mapped over a DAX-enabled file

system (pmfs) similar to [33]. DAX-enabled file systems allow direct load/store access to

the underlying mapped memory (DRAM in this case), thus emulating the load/store inter-

face of PMEM. Next, write-through memory mappings are not available in userspace as

the Linux OS always maps the memory segments as write-back memory; therefore we use

streaming stores over WB memory similar to [34]. Further, PMEM devices are expected

to have low device bandwidth compared to DRAM main memory; thus the NVStream data
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movement time depends on the PMEM device properties. Our current PMEM emulation

platform assumes the device to have latency and bandwidth parameters similar to that of

DRAM, and differentiate them only based on their data persistence support. We leave

detailed sensitivity analysis of NVStream against different PMEM latency and bandwidth

parameters for future work. Finally, all our experiments are performed on a local machine,

Aries (see Table 2); a local testbed provides us with greater flexibility of software stack

configurations (e.g., installing pmfs). Next, we briefly describe each of the main simula-

tion applications – GTC, CM1, and miniAMR.

Gyrokinetic Toroidal Code (GTC) is a three-dimensional particle-in-cell application [35]

used in micro-turbulence fusion device studies. The checkpoint data constitutes of 2D/3D

arrays. We change the original input parameters ’npartdom’, ’micell’ and ’mecell’ in con-

stant factors to weak scale the workload size of the benchmark.

CM1 is a three-dimensional, non-hydrostatic, non-linear, time-dependent numerical model

designed for idealized studies of atmospheric phenomena [36]. It is designed for studies

of relatively small-scale processes in the Earth’s atmosphere, such as thunderstorms. We

change the input parameters nx, ny and nz to vary the workload size of the benchmark.

miniAMR applies a seven-point stencil calculation on a unit cube computational domain,

which is divided into blocks. The blocks all have the same number of cells in each direction

and communicate ghost values with neighboring blocks. With adaptive mesh refinement,

the blocks can represent different levels of refinement in the larger mesh.

We use several alternative I/O mechanisms as comparison points for NVStream. We

describe each of those I/O techniques next:

nvs: is the proposed NVStream implementation that uses persistent streaming writes for

data movement.

nvs+delta: is the NVSD implementation that incorporates the delta compression technique

into NVStream.

memcpy: is a best case user-space data movement mechanism for PMEM which does not
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support crash-consistent data movements. We use the default memcpy routines supported

by glibc.

tmpfs: is a volatile main memory-based file system which lacks crash-consistent data stor-

age. The file system uses a ram-disk – a pseudo disk that uses main memory, as its backing

device. tmpfs serves as a metric for the overheads involved in traditional file-system-based

data movements, even in the absence of costly crash-consistency semantics. We store each

of the variable states in a new file at the program checkpoint where the versioning informa-

tion is encoded into the file name.

pmfs: is PMEM aware file system that supports crash-consistent data storage. pmfs [8]

internally treats PMEM as a memory device underneath its POSIX file-system interface,

thereby eliminating the page-cache and device driver layers. We emulate an PMEM device

for PMFS by reserving a portion of DRAM at the OS start-up [37]. We use the PMFS

implementation [38] ported for a newer Linux 4.x based kernel. Program snapshots are

encoded into files similarly to tmpfs.

nocheckpoint: represents the application execution time without any checkpoint-related

data movements representing the best case execution time.

3.6.2 Data Movement Latency

First, we evaluate NVStream against a home-brewed microbenchmark named NVSB. NVSB

emulates an I/O dominant MPI-based compute kernel that periodically checkpoints its ma-

trices after every configured number of iterations. We use NVSB to evaluate the sensitivity

of each I/O strategy towards data movement granularity. To this end, we vary the variable

sizes used in NVSB in each run, while keeping the total checkpoint data size constant. We

run a single-threaded (one rank) benchmark instance with 400MB iteration checkpoint data

size and plot the results in §5.

NVStream outperforms file system-based I/O for all data granularities. The NVStream

I/O is 2.6× faster compared to tmpfs and as much as 31× faster than pmfs I/O at 32KB
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Figure 5: Checkpoint/analytics data write time against different storage stack transports,
namely tmpfs, memcpy, pmfs and nvs. y-axis uses log-scale

variable size. It is important to note that pmfs performs as well as NVStream for large

variable sizes (5M, 10M). However the I/O performance decreases exponentially as the

variable sizes get smaller. We attribute this behavior to the crash-consistency overhead of

pmfs. Smaller variable sizes increases the number of new file creation, therefore increase

the file-system metadata manipulations. Metadata updates involve executing costly undo-

logging based crash-consistency routines thus lowering the I/O throughput of pmfs at small

I/O granularity. NVStream I/O performs equally well at every I/O data granularity. This is

because NVStream uses data batching during checkpoints, effectively converting multiple

I/O calls into one large I/O operation. NVStream performs as well as, or even slightly better

than memcpy based I/O. This is because a memcpy call for every small variable prevents

memcpy from utilizing the full memory bus bandwidth due to serialization. However for

larger I/O sizes (e.g., 10MB), memcpy outperforms NVStream I/O by as much as 2×.

Next, we evaluate NVStream with the three HPC applications, GTC, CM1, and mini-

AMR. We configure the GTC test setup such that each rank outputs ∼ 210MB of I/O data

per iteration. We run the benchmark for increasing number of MPI ranks(N value) while

keeping the per rank output data size more or less the same (weak scaling). We report in

Figure 6 the average data I/O time for each I/O mechanism, normalized to memcpy I/O time.

NVStream I/O is 24% faster than pmfs when ’N=4’, whereas pmfs I/O performance drops

drastically with the number of MPI ranks. As a result at ’N=64’ NVStream I/O is 10×

faster than pmfs. NVSD moves ∼ 50% less I/O data compared to other I/O techniques and

is 33% faster compared to NVStream I/O and memcpy.
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Figure 6: GTC and CM1 snapshot time for each of the I/O techniques. We normalize the
times to best case data movement time – memcpy. We run each benchmark with increasing
number of MPI ranks.
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Figure 7: Program snapshot time of miniAMR plotted against checkpoint iteration number.
y-axis uses log-scale

Similarly, we configure the CM1 application to output∼ 45MB of I/O data per-iteration/per-

rank. Unlike GTC, CM1 is a compute heavy HPC kernel, thus increasing the I/O data size

leading to more time spent in the compute portions of the benchmark. We report in Fig-

ure 6 the average data I/O time for each I/O mechanism normalized to memcpy I/O time.

NVStream I/O is 7× faster than pmfs and NVSD I/O performs the same. It is important to

note that the performance of NVStream I/O is as fast as memcpy based I/O in most occa-

sions, which confirms the lightweight crash-consistency semantics of NVStream.

miniAMR [39] does not have an inbuilt checkpoint routine, and therefore, we imple-

ment it by saving the current mesh/blocks after each compute iteration. We use the appli-

cation supplied sample workload Two moving spheres as our benchmark run. However the
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Figure 8: Data read time of the analytics kernel with different data transports

default max block size of 4000 results in a large number of variables and drives our pmfs

setup to a non-responding state. We use 400 as the max number of blocks parameter and

run the application with 4 ranks (see Figure 7). The pmfs based file I/O is 500× slower

compared to memcpy at its worst-case data point. NVStream I/O performs within 11% mar-

gin of memcpy – the best case I/O mechanism, and NVSD outperforms the best case by

27%.

Next, we couple the GTC simulation output with a data compression analytics ker-

nel [40] and evaluate the NVStream data read performance. Each rank of the analytics

kernel reads the GTC variables in a monotonically increasing version order – the most

common data read pattern found in the coupling workflows. We record the time spent on

data reads in the analytics kernel under each of the I/O mechanisms and report the results

(see Figure 8) normalized to memcpy based I/O reads. The analytics kernel runs with 16

MPI ranks where each rank consumes a GTC application output belonging to a single rank,

thereby creating a one-to-one coupling testbed. We observe that NVStream reads are 43%

faster compared to pmfs.

3.6.3 Delta-compression

Next we evaluate the ability of NVSD– the delta compression enabled NVStream– to re-

duce the total program snapshot size over simulation runs. The data size reduction will

directly contribute to reduction in system interconnect bandwidth usage during data move-

ments, data read time at the analytics application endpoints, and data movement across the

compute nodes. In these experiments, we record the total program checkpointing size of

each application with and without delta compression, shown in Figure 9.
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Figure 9: I/O data size reduction using delta-compression. We normalize the data size to
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In both GTC and CM1, we observe that the data access pattern across the iterations

stays the same, keeping the output data amount at a fairly constant level across iterations

and ranks. We report the average I/O reduction across compute ranks. NVSD reduces

GTC program snapshots by as much as 47%. The biggest data reduction contributions

are from variables that get conditionally activated during execution. The original GTC

code selectively checkpoints objects based on the static configuration options, thus the

checkpoint routine has complex conditional structures. NVStream eliminates the need for

this application specific logic from the checkpoint routines, and delivers the same or better

level of checkpoint performance without developer intervention. In contrast, CM1 allocates

around ∼80 variables per MPI rank, with a high modification factor among most of the

variables. Therefore, NVSD yields only a marginal data reduction of 7% over NVStream.

miniAMR [39] differs from both GTC and CM1 as it refines the initial mesh during

simulation (e.g., sphere moving through 3-dimensional mesh). The visual inspection of the

application code reveals that it allocates its global mesh data structures during the applica-

tion initialization, similarly to most other HPC applications. Our initial memory profiling

on the application shows that the modification factor among large variables is very low.

Our experiments further confirms our hypothesis. As a result, NVSD yields in data size

reduction as much as 99% in some ranks.

3.6.4 Impact on Simulation Time

The ability of NVSD to compress output data comes at the cost of page-protecting and sig-

nal handling, which introduces additional compute overheads. To quantify this, we measure
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the effects of NVSD on application execution time. We highlight NVSD in this section be-

cause it alters the compute kernel’s running time and tracks the data updates during the

compute operation. The remaining I/O mechanisms, including NVStream, only get acti-

vated during the data write/read routines of the application. We measure the iteration time

of each of the application and report the execution overhead against nocheckpoint I/O

representing the best case execution time of the application.
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Figure 10: Iteration time cross section of the miniAMR against different snapshot schemes.
Please note that y-axis uses log-scale

The bandwidth of our emulated PMEM device is same as the DRAM bandwidth of

our testbed as we do not throttle the bandwidth of the emulated device. In addition, the

compute requirements of GTC and CM1 are such that for smaller evaluation scale of the

experiments, the data movement overhead of all PMEM-based I/O mechanisms remains

small in comparison to their compute phase. The pmfs based program snapshots incur 2%

of execution overhead for GTC at ’N=64’. NVStream I/O contributes to similar overhead

and NVSD increases the iteration time of GTC and CM1 by 2% and 0.5% respectively.

In contrast, the checkpoint routines of miniAMR are executed frequently enough to

make the I/O overhead significant enough at the program scale used in our evaluation. With

miniAMR, the pmfs based file I/O costs increase drastically (see Figure 10), incurring

iteration overheads as much as 66× over nocheckpoint time. This is because, as we

highlighted in §3.6.2, pmfs suffers high performance degradation due to frequent meta-data

updates. However, NVStream checkpoints only incurs 47% overhead over nocheckpoint

iteration time. Finally, NVSD increases the iteration miniAMR iteration time by as much
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as 20× at the benefit of significant reduction in checkpoint size as shown in §9.

3.7 Chapter summary

In this chapter, we explore the ways of accelerating node local HPC I/O using new per-

sistent memory hardware, while keeping the changes to the original block based persistent

I/O APIs, minimal. We discuss NVStream, a PMEM aware persistent I/O stack supporting

a memory friendly object API. The memory APIs of NVStream support meta-data tagging

including object versioning and are flexible enough to emulate block I/O based check-

pointing routines in legacy HPC applications. NVStream avoids costly overheads of OS

I/O subsystem by implementing these APIs as a userspace library runtime. Furthermore,

NVStream leverages byte-addressability of PMEM, streaming memory writes in modern

CPUs and insights on application workloads to design and implement a fast storage engine

with optimized durability semantics. NVStream also supports delta compression on I/O

data, which further reduces I/O cost for workflows with higher write locality. The eval-

uation of NVStream using I/O benchmarks and scientific applications demonstrates 10×

reduction in I/O compared to PMEM-optimized file systems.
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CHAPTER IV

BANDWIDTH AWARE I/O WITH PERSISTENT MEMORY

The previous chapter focuses on designing a PMEM optimized I/O stack for existing block

I/O applications. The work enables low latency I/O data movement from applications onto

PMEM storage. However, application I/O can still suffer from the limited bandwidth of

the data movement channel among applications and the PMEM storage media. The limi-

tation becomes even more prominent when application data movement volumes are large

- a common use case in HPC applications. In this chapter we discuss a system software

technique to overcome this problem.

4.1 Introduction

HPC applications frequently output their application state (local checkpoints) on to node

local durable media. Fast local checkpointing is important for accelerating in-situ analyt-

ics pipelines [41] that consume the checkpoints for further scientific insight generation,

and multi-level checkpoint-restart (C/R) facilities [42] that uses local checkpoint state to

recover from frequent soft failures in HPC engines. PMEMs integrated in future exascale

HPC engines [43] is an ideal storage media for these use-cases as they provide both low la-

tency read/writes and high capacity storage. However, current HPC system software stacks

supporting I/O cannot fully exploit the technological advantages of PMEM resulting in an

inefficient PMEM use and significantly lower performance benefits.

For use of PMEM in C/R, prior work [44, 45, 46] has proposed methods to incorporate

newer and faster storage technologies like Flash/SSD and PMEMs as stable storage. These

studies have shown that Flash-based storage is not sufficient to address the increase in per-

node core count and the data-to-core ratio. Recent work on C/R uses byte-addressable

PMEM as stable storage that can significantly improve storage performance compared to
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block-based SSDs [47, 48]. Although PMEMs are expected to deliver 100x faster access

compared to SSDs, current PMEM technologies are limited by (i) relatively low per-node

socket bandwidth (1-2 GB/sec die bandwidth compared to >10 GB/sec for DRAM), and

(ii) high write latency (3-5x slower than DRAM). Concerning large volumes of checkpoint

data transfer across DRAM and PMEM (a norm in HPC applications), and high core count

(64-128 cores/nodes in exascale) will severely limit the benefits of PMEM.

Chapter §3 of this thesis, introduces NVStream– a PMEM aware userspace I/O library

runtime. NVStream’s memory friendly I/O APIs and PMEM optimized storage engine

remove critical path data movement overheads of HPC I/O using a userspace I/O stacks,

PMEM and application friendly data layouts and optimized crash-consistency protocol.

However, NVStream and similar prior work [48, 49] are limited by the properties of the

PMEM technology as the checkpoint I/O time is only governed by the device bandwidth.

In this chapter we present Phoenix (PHX) – an PMEM-bandwidth aware library for

checkpoint I/O, as the key technical contribution. Similar to NVStream, PHX uses memory-

centric interfaces supporting object versioning, but solves the limited PMEM bandwidth

through simultaneous use of PMEM and local/ peer nodes’ DRAM devices, thus increas-

ing the effective data movement bandwidth. PHX’s memory-centric object interface and

PMEM-bandwidth-aware design lead to reduction in the time length of I/O operations in

the critical path, associated with the slow PMEM device. To continue guaranteeing ad-

equate reliability and persistence, DRAM-resident object state is replicated across peer

nodes’ memory, which is accessible through high-bandwidth interconnects. PHX is im-

plemented and evaluated with several representative HPC applications – 3D Gyrokinetic

Toroidal Code (GTC), CM1 and S3D

4.2 PMEM Limited Bandwidth

Recent work [50] identifies the slow reads/writes of PMEM as a major limitation during

computational memory accesses (e.g., PMEM as the main memory for HPC applications).
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However, unlike the use of PMEM as computational memory, where frequent but fine-

grained data accesses are the norm, HPC I/O results in occasional but large data movements

in/out of the storage medium. We attribute the aforementioned HPC I/O behavior to the

iterative nature of the HPC applications, where analytics or checkpoint data is output after

a certain number of compute iterations. Thus, when used solely as an HPC I/O storage

medium, it is likely that the limited device bandwidth of the PMEM will become the major

bottleneck during I/O data movements. Therefore in this work, we mainly focus on the

limited device bandwidth of the PMEM. To that end, we identify two broad classes of

techniques that minimize the time spent during I/O data transfer with PMEM.
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Figure 11: Access patterns of GTC variables between checkpoint iterations. Apart from
variable ’phi’ all the other variables are viable candidates for pre-copy.

Reduce the critical path bound I/O data. Speculative data movement is a well-known

mechanism to alleviate device bandwidth limitations. The technique, pre-copy the I/O data

into target device, thus shifting some of the data movement costs out of the critical path of

the application execution. Similarly, incremental checkpoint techniques avoid redundant

writes and hence save the precious device bandwidth. Figure 11 shows a trace map of GTC

showing the last access time of each of the checkpoint variables. The trace map shows that

many of the variables (e.g., phisave, zelectron) are last accessed at the very beginning of the

iteration, and few others are accessed at the halfway point between checkpoints, making

all of them viable candidates for pre-copying. However, speculative I/O and incremental
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checkpoints heavily depend on the application’s variable access patterns. Some applica-

tions (e.g., CM1 and S3D) may modify checkpoint variables up until the checkpoint time,

and often enough, thus denying either of these optimizations.

Use of alternative interconnects in the system. Today’s systems are not isolated com-

puting resources. With deep memory hierarchies and fast inter-node communication links

such as InfiniBand, there is more than one way to move data into storage mediums. For an

instance, the proposed Summit [51] machine is equipped with 23GBps point to point inter-

connects and the number is expected to go up to 50GBps [52] in the near future. Coupled

with RDMA, they put remote DRAM memory on par with PMEM in terms of per-core

bandwidth scaling. Figure 12 shows the data movement times, plotted against the fraction

of data that gets written to remote storage over the interconnect. The two plots correspond

to different bandwidth ratios between local and remote storage. It is clear that use of the

aggregate-bandwidth of both local and remote storage lead to the best data movement per-

formance.
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Figure 12: Data transfer time plot against the fraction of data being copied over intercon-
nect. The use of aggregate bandwidth gives us faster I/O times. The legend represents the
bandwidth ratio between the two storage devices

4.3 Phoenix Overview

PHX presents the concept of persistent objects. All types of HPC I/O are modeled as op-

erations on memory objects accessed via memory-based APIs. Applications declare the
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expected object characteristics (persistence, reliability, versioning) during the initial object

allocation. At the heart of the Phoenix is an object tracking runtime that provides object

versioning, reliability, and persistence.

The base APIs of Phoenix runtime are as follows:

• init() - initialize the Phoenix library runtime.

• create_obj(key, size, unit_size, properties) - allocate an object from main mem-

ory and sets its property (persistence, versioning, etc) details; return a the memory

pointer to the caller.

• destroy_obj(key) - de-allocate the memory space of a given object key.

• finalize() - clean-up library resources.

PHX also introduces a checkpoint-specific operation ‘checkpoint_commit()’ that moves

data residing in volatile memory into the stable storage (PMEM). During the memory

allocation programmer explicitly specify checkpoint objects via the property, ’CHECK-

POINT=true’, and by default, ‘checkpoint_commit()’ operate on all such checkpoint ob-

jects. Figure 13 shows a simple template for implementing coordinated checkpoints with

PHX APIs. The same object APIs can be used (see Figure 14) to load previously check-

pointed data into newly allocated memory with ’LOAD_DATA=true’ property with appro-

priate version details.

4.4 Design and Implementation
4.4.1 Hiding PMEM Read/write Latencies

Most of the current HPC applications use file-system APIs to read/write data from their

stable storage medium. This is because current HPC engines use block-based devices such

as disk arrays and SSDs as the underlying stable storage. However, PMEMs are byte

addressable storage which motivates us to treat them as a slow memory instead and also
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1 c h a r key [ ] = "foo" ;
2 /∗ c r e a t e c h e c k p o i n t a b l e o b j e c t i n s t a n c e ∗ /
3 s t r u c t p r o p e r t i e s prop = { . c h e c k p o i n t = t r u e , . . . } ;
4 vo id ∗ p t r = c r e a t e _ o b j ( key , SIZE , prop ) ;
5 .
6 /∗ do c o m p u t a t i o n u s i n g d a t a _ p t r ∗ /
7 .
8 ch eck po i n t_ com mi t ( ) ;

Figure 13: Using PHX-C/R to carry out coordinated checkpoints

1 c h a r key [ ] = "foo" ;
2 /∗ Thi s i s a r e s t a r t run . Load a l l o c a t i o n s wi th
3 ∗ c h e c k p o i n t d a t a ∗ /
4 s t r u c t p r o p e r t i e s prop = { . c h e c k p o i n t = t r u e , . r e s t a r t = t r u e , . . . } ;
5 vo id ∗ p t r = c r e a t e _ o b j ( key , SIZE , prop ) ;
6 .
7 /∗ resume c o m p u t a t i o n ∗ /
8 .

Figure 14: How to load previously checkpointed data in to object allocations, during a
restart run

use the same virtual memory APIs to access them. Treating PMEM as memory allows

PHX (1) to operate on page level granularity while moving data in/out, and (2) to make use

of hardware support for memory read/write protection on data portions on PMEM. HPC

workloads are long running applications with significant memory accesses. Hence, due to

high PMEM write latencies, running applications directly (execute-in-place) from PMEM

is not feasible. As a result, we allocate application object from DRAM as usual and move

data in/out from PMEM storage structures during reads/writes.

The use of a memory like programming abstraction over PMEM allow system software

developers to use proven functionalities of OS VM subsystem and enable fast I/O by elimi-

nating application to kernel crossings of file I/O by using specialized data serialization on

the PMEM.
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4.4.2 Overcoming the Limited PMEM Bandwidth

PMEM devices are expected to have 4-8× lower per-channel bandwidth compared to

DRAM, and as explained in §4.2, it is likely to become the most bottlenecked resource

during I/O data movements. PHX uses DRAM bandwidth to alleviate the limited PMEM

bandwidth during data output. The key idea is to use aggregate device bandwidth of both

DRAM and PMEM during I/O data movement, thus shortening the critical path data move-

ment time. Towards that end, first Phoenix splits the total critical path I/O data into two

parts: DRAM-bound data (Ddata) and PMEM-bound data (Pdata), while taking device

bandwidth ratios and DRAM capacity budget into consideration. During a bulk I/O data

movement, PHX moves a copy of Ddata into a DRAM buffer, and in parallel moves Pdata

over to PMEM (see Figure 15). However, the DRAM is volatile and hence saved Ddata

has to be quickly moved from DRAM to PMEM and committed – a critical property for

achieving the data persistent property for written I/O data. We refer to this operation as I/O

de-staging, and the DRAM-resident temporary buffers as staging buffers.

Log Structured PMEM Memory

DRAM 

de-stage
Aggregate
 
DRAM/PMEM
 
Bandwidth 
 
 

Figure 15: I/O data gets written to both local PMEM and DRAM to exploit aggregate
bandwidth of the devices. Data de-staging from DRAM to PMEM ensures the bounded
DRAM memory usage.

Next, moving all of the output data to persistent storage, involves de-staging of Ddata

on to the PMEM, where data movement costs are overlapped with application execution.

With the presence of many (including cheap) cores on current and future exascale plat-

forms, the de-staging can be performed using dedicated CPUs in the background, and the
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commensurate gain compensates the CPU time used for de-staging in the application exe-

cution time.

buddy node

local
node

checkpoint 1 checkpoint 2

C2C1
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C21

C21C11

DRAM

PMEM

Figure 16: Contents of the PMEM/DRAM, as the checkpointing progresses. Total check-
point data is split up and written to both DRAM (staging buffer) and PMEM checkpoint
log

However, the Ddata de-staging phase is vulnerable to soft/hard node failures, as such

failure would wipe out the staged data in the DRAM buffers. PHX recognizes the fact that

not all HPC output operations expect the same levels of data persistence during their I/O and

exploit it for I/O acceleration. PHX also provides strict output data persistence guarantees

and we describe the details in the next section.

Poor bandwidth scaling of PMEM will become the bottleneck during bulk data output,

which is the norm in HPC I/O. PHX overcomes the limited PMEM bandwidth by using much

superior DRAM bandwidth. Volatility and poor capacity scaling of DRAM deny us from

using it as the sole storage device. Thus we use DRAM and PMEM’s aggregate bandwidth

for fast data movement and also ensure that the data in DRAM is made persistent by de-

staging.

4.4.3 Reliability requirements of HPC I/O

The naive use of the aggregate bandwidth approach falls short of providing the required

data reliability guarantees for I/O, because part of the output data remain in DRAM be-

fore being de-staged to PMEM, making it vulnerable to data loss in the event of node
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failure. However, in current supercomputers [53], the network interconnects offer point to

point bandwidths up to 56 Gbps and these numbers expected to be 100-400Gb/s [52] in

future HPC machines. The fast interconnect bandwidth and remote direct memory access

(RDMA) stacks make the cost of writing/reading remote DRAM memory cheaper than that

of with local PMEM memory. Hence, it is viable to achieve local DRAM fault tolerance by

using remote replication and achieve data transfer times on par or faster than local PMEMs.

Replicating data to N nodes, i.e., an N-node replication scheme, will enable recovery from

up to N-1 simultaneous node failures.

Phoenix uses N=2 replication scheme for its DRAM staged data (Ddata). For each

of compute node, we assign a buddy node to act as the remote DRAM node. During the

aggregate bandwidth copy, we write Ddata to both local DRAM and to the buddy node’s

DRAM (using RDMA). Figure 16 shows the checkpoint data placement in PMEM, DRAM

and the buddy’s DRAM under an N=2 replication scheme. §4.4.6 shows that an N=2

replication scheme would bring down the failure probability of staged data to a significantly

lower level, even at the projected exascale failure rates.

In this manner, Phoenix enables applications to use the aggregate bandwidth of both

DRAM and PMEM while meeting the necessary reliability guarantees of application data.

To that end, PHX creates a software defined storage layer with sufficient reliability guaran-

tees by combining two storage mediums with heterogeneous data persistence guarantees.

4.4.4 Move Data Copy Out of Critical Path

Data pre-copying is a well-known mechanism used in HPC I/O where we speculatively

copy the data into output buffers/storage, thus reducing the critical path data movement

time at the I/O commit. Recent studies have explored the technique, in the context of

PMEM based HPC I/O as well [49, 54]. PHX complements its aggregate bandwidth based

checkpointing mechanism with data pre-copying to further improve the C/R performance.

PHX learns the application data access patterns, during the initial checkpoint iterations
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and records the checkpoint object’s last access time since the previous checkpoint (referred

as time-offset from here onward). In subsequent iterations, PHX predicts the time-offset

based on its learning phase and starts speculatively copying the I/O data into PMEM at

the end of predicted time-offset. However, PHX may mispredict the time-offset, as the pro-

cessor power levels, OS scheduling, etc., affects the application execution time between

checkpoint iterations. Miss predictions fall into two groups: (i) the predicted time-offset

is earlier than the actual time-offset thus we have pre-copied stale data, or (ii) the pre-

dicted time-offset has a significant overshoot value from the actual value, making the pre-

copying less efficient. We write-protect the application object memory locations prior to

pre-copying (a similar mechanism used in [49]), to detect the former miss-prediction type.

Write protection allows detection of changes to the original application object after it has

been pre-copied to the output buffers/storage. We adjust the pre-copy time offset dynami-

cally during the subsequent iterations using a technique similar to TCP bandwidth search.

We correct the predicted time-offset due to type-(i) miss-predictions by increasing the

value (adding δ .t), and type-(ii) by decreasing the same (subtracting δ .t), but only after

M(configured) number of iterations. It is important to note that the pre-copy mechanism

does not affect the correctness of the output data, that is miss predicting a pre-copy only

results in wasted bandwidth during the early copy. In summary, application access patterns

may allow pre-copy optimization on the output I/O and provide opportunity to minimize

the PMEM data copying in the critical path. PHX implements a pre-copy mechanism that

augments the effective aggregate bandwidth for C/R. Some applications are immune to this

optimization because of their late data access behaviour.

4.4.5 Phoenix Heap Manager

PHX identifies two types of memory resident data and allocations. First, there are DRAM

resident application memory objects for in-place execution. The second type are memory

locations for storing checkpoint state in the form of local DRAM buffers, local PMEM
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and remote DRAM allocations (storage memory). Applications make the object allocation

requests for the first type of memory. The APIs (see Figure 13) are similar to a traditional

user space memory allocation, and only differ from the input metadata it permits. The PHX

object allocator allows programmers to tag requested memory with additional properties

such as object handle, versioning, and persistence. The given properties decide, how the

memory resident objects should be handled by each of the PHX services and core runtime

during application I/O.

Next, PHX manages memory used for I/O data storage (storage allocator). PHX uses

local DRAM, local PMEM and remote DRAM for placing persistent I/O data (check-

points) during aggregate bandwidth checkpoints, thus the storage allocator allocates and

manages memory from all of the above physical memory locations. Local DRAM and

remote DRAM allocated memory are significantly smaller (and bounded by the explicit

memory budget) than local PMEM allocation as they are only used for temporary I/O stag-

ing during the aggregate bandwidth I/O. PHX stores the I/O data over the allocated storage

memory by serializing the I/O data into log structured memory. PHX maintains a meta-

data index of log-structured data in a separate ring buffer structure at a well known PMEM

storage location (start of the PMEM storage memory). The meta-data structure only oc-

cupies 64B per object, where HPC objects on average occupy hundreds of thousands of

megabytes, therefore by separating the metadata from actual data we enable fast cache

friendly object lookups and traversals and less lock contention during data copy. Each of

the meta-data entry records, object handle, version, pointers to their actual data (may point

to local PMEM, local DRAM, or remote DRAM).

4.4.6 Failure Analysis of Staged I/O

Next, we consider the failure probability during I/O data staging and evaluate the effective-

ness of our application run ahead strategy. Our calculations are based on a simple model

similar to [55]. Figure 17 shows the de-staging and the application run ahead mechanism
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of PHX.

C1

C2

PMEM

DRAM

destage

app running
C2

Є δc1

δc2

Figure 17: Application run ahead during de-stage time

Let the number of processors be n, and the failure rate of each processor be λ . if M

is the MTBF of each processor then λ = 1/M. For an HPC application with failure free

execution time of R, the failure probability of each processor is λ .R and the total system

failure probability is given by 1− (1−λ .R)n.

For Phoenix, we define an upper bound t on the de-staging time after each checkpoint

iteration.

For a stage buffer replication scheme of N=1, that is a stage buffer is only maintained

in local DRAM, the probability of Phoenix loosing the staged data (i.e., unrecoverable

failure) at any given processor system-wide, during the de-staging time interval t is given

by 1− (1−λ .t)n.

A stage buffer replication scheme with N=2 would consist of n/2 number of buddy

groups and therefore PHX aggregate bandwidth checkpoint fails only if both replicas fail

simultaneously. The probability of unrecoverable error in a processor, during time interval

t, given that its buddy has already failed, would be (λ .t)(λ .t). The system wide unre-

coverable failure probability p of the scheme (N=2 replicas) would be 1− (1−λ 2.t2)n/2.

Therefore the failure probability of m consecutive Phoenix checkpoints would be given by

1− (1− p)m.

Table 3 lists down the failure probabilities, calculated using our failure model. We

show the failure probabilities under different replication schemes and application execu-

tion times. As per the calculations, a no-checkpoint application with 24 hour running time
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Table 3: Unrecoverable failure probabilities of Phoenix C/R compared with a free run.
MTBF of each processor = 20 yrs, processor count n = 100,000, and m = 2880 (~48 hrs/60
s checkpoint iteration)

Scheme Execution
time

Checkpoint
interval

Max de-stage
interval

Failure
probability

Free run 24 hrs - - 0.99999887
PHX, N=1 48 hrs 60 s 10 s 0.98960270
PHX, N=2 48 hrs 60 s 10 s 0.00000003

Table 4: component values used in energy analytical model. Lowercase ’e’ denotes the unit
energy cost.

epmem PMEM data write
Eaggregate.bw aggregate bandwidth checkpoints
edram DRAM data write
eremote.dram remote DRAM data write
epmem.destage pmem data write during de-stage

Edata.mv.overhead
additional data movement during aggregate
bandwidth checkpoints

einterconnect data movement via network interconnect
eswitching data switching
elink data transfer in network links
einter f ace data transfer via network interface
Esaved saved energy due to fast checkpoints
Ecore.energy energy budget per core

has very high (if not certain) failure chance. The N=2 replication scheme of PHX would

bring down the unrecoverable failure probability of staged data to 3.2× 10−8 for an ex-

tended running time of 48 hours. That is, PHX can recover from all system wide soft-errors

for a period of 48 hours, with a probability of 0.99999997. An unrecoverable staged data

failure will force PHX to recover from its last PFS based remote checkpoint, thus a careful

selection of remote checkpoint frequency (48 hours in the above calculation is too pes-

simistic) will enable PHX to keep staged data failures at a negligible level. In summary,

PHX’s DRAM staged data, is vulnerable to data loss during node failures. With careful

selection of replication scheme and remote checkpoint frequencies, it is possible to bring

down the staged data loss probability to negligible/acceptable levels.
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4.4.7 Energy Model

While PHX C/R speeds up the checkpoint times, it incurs additional energy overheads com-

pared to naive PMEM checkpoints, due to extra data movements (de-staging/ buddy check-

points). Moving towards exascale computing, the HPC community puts a lot of emphasis

on energy efficient computing as they try to keep the operating energy budget of future

exascale machines under 20MW [56]. Thus it is important to understand the energy re-

quirements of proposed PHX C/Rs. In this section we build an abstract model to analyze

PHX’s energy overheads/ savings. Table 4 describes the notations used, in our energy model.

The total energy consumed by naive PMEM based checkpoint, for a data of size C given

by, C.epmem. The total energy consumed by aggregate bandwidth checkpoints (with N=2

replication scheme) for the same data size, given a fraction P of the checkpoint data, being

Ddata (staged) is given by,

Eaggregate.bw =C.(1−P).epmem +C.P.edram +C.P.eremote.dram +C.P.epmem.destage (1)

We approximate,

(1−P).epmem +P.epmem.destage = epmem

thus the energy overhead due to additional data movements of the aggregate bandwidth

checkpointing is given by,

Edata.mv.overhead =C.P.edram +C.P.eremote.dram (2)

Moreover, we express the eremote.dram in terms of interconnect energy and DRAM write

energy cost edram.

eremote.dram = einterconnect + edram (3)
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Hence the additional data movement energy cost of PHX aggregate bandwidth check-

points (with N=2 replication) over the naive PMEM checkpoints, is given by,

Edata.mv.overhead =C.2P.edram +C.P.einterconnect (4)

and,

einterconnect = einter f ace + eswitching + elinks (5)

Similar to [57] we assume the interface energy cost to be negligible compared to other

energy components.

Our proposed checkpoint mechanism incurs energy overheads due to additional data

movements. However, it reduces the checkpoint time while doing so, and the total simula-

tion time, thus resulting in energy savings from the simulation execution. If the reduction

of checkpoint time is t, the saved unit energy value is given by,

Esaved = ecore.energy.t (6)
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Figure 18: Curved plots (dark, medium and light shaded areas) show the energy savings of
PHX C/R over naive PMEM C/R, under different DRAM : PMEM bandwidth ratios, 2:1,
4:1 and 8:1 respectively. line plots refer to Omni-Path [58, 57] and expected exascale inter-
connect [57] energy costs, during N=2 replication scheme, while the buddy node distance
being single/ two switches away.
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Table 5: Energy values used for each of the technology component. [57]

checkpoint size 1024 MB
energy budget per core 0.2 J/s
Omni-Path energy 21 pJ/bit
exascale switch energy 6 pJ/bit
link energy 5 pJ/bit
DRAM write energy 4 pJ/bit

Figure 18 plots, both saved and extra energy overheads of PHX C/R, due to addi-

tional data movements, using the derived energy model, for a total checkpoint workload

of 1024MB per core. Table 5 lists the energy costs we used for our calculations. We plot

the saved energy under varying DRAM to PMEM bandwidth ratios and, it is clear that en-

ergy savings are increased as we increase the bandwidth ratios. Additionally, the energy

saving curves have a peak energy reduction point, and it corresponds to the most efficient

data split between DRAM and PMEM. The straight lines represent the data movement en-

ergy costs, and it is a linear function of the remotely copied data. Furthermore, the data

movement cost also depends on the network proximity (how far is the buddy node) and the

switching/interconnect technology. For an example, if the DRAM to PMEM bandwidth ra-

tio is 2:1, and the buddy node is one switch away (Omni-Path interconnect), PHX can stage

checkpoint data up to∼750MB without paying additional energy costs. In summary, based

on this analytical model the PHX C/R results in extra energy overheads, due to additional

data movements. However it also results in energy savings, in the form of total application

execution time reduction. Thus with careful selection of PHX configuration and runtime pa-

rameters it is possible to obtain fast checkpoints with energy savings, or at no extra energy

costs. Our future work will further explore opportunities for experimental evaluation of the

energy-efficiency related impacts of PHX.

4.4.8 Checkpoint Model

The PHX checkpoint service uses aggregate bandwidth I/O to speed up the local checkpoints

(more frequent) and uses remote PFS for global checkpoints (less frequent), thus creating

a multi-level checkpoint scheme. In our effort to derive an abstract model for PHX-C/R we
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Table 6: Notations used in C/R model

TS original computation time of a workload
pL percentage of local checkpoints
pG 1− pL, the percentage of global checkpoints
τ local checkpoint interval
δL local checkpoint time
δG global checkpoint time
δeq checkpoint overhead in general
RL local checkpoint recovery time
RG global checkpoint recovery time
Req checkpoint recovery time in general

qL
percentage of failure covered by local
checkpoints

qG
1−qL, the percentage of failure that
have to be covered by global checkpoints

MTTF
system mean time to failure, modeled as 5
year/number of nodes

Ttotal total execution time including all the overhead

identify that our local/global checkpoint strategy is similar to Dong et al.’s [48] model of

C/R. Hence we extend their model with our PHX checkpoint parameters. Dong et al. derive

(refer Table 6 for notations) the execution time of hybrid checkpoint, starting with,

Ttotal = TS +Tdump +Trollback,recovery +Textra−rollback

they derive,

Ttotal = TS +
TS

τ
(δeq)+(

1
2
(τ +δeq)+Req)

Ttotal

MT T F
+

pLqG

2pG
(τ +δL)

Ttotal

MT T F

where,

δeq = δL.pL +δG.pG (7)

Req = RL.qL +RG.qG (8)

PHX checkpoints differs from their model by defining local checkpoint time in terms of

local PMEM checkpoint time of Pdata (δLN), local DRAM checkpoint time of Ddata (δLD)

and remote DRAM (buddy) checkpoint time of Ddata (δRD);

δL = Max [δLN , δLD, δRD] (9)
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For a given checkpoint size C, and C = C1+C2 , where C1 and C2 are the Pdata and

Ddata checkpoint sizes, respectively, the time to complete the checkpoint under Phoenix

with N=2 replication would be,

δL = Max
[
δ

c1
LN , δ

c2
LD, δ

c2
RD

]
We use Equation 9 to calculate the saved energy (checkpoint time reduction), for Fig-

ure 18. Furthermore, δL corresponds to the PHX checkpoint time reported in the Figure 19

of §4.5.

4.5 Evaluation

Experimental Setup. Table 7 summarizes the characteristics of the experimental testbed

used in the evaluations of Phoenix. We emulate PMEM characteristics on our experimental

platform and run real-world HPC applications performing C/R. The file backed mmap()

system call allocates specific memory regions that get treated as PMEM during PHX oper-

ations. We host the memory mapped file in tmpfs (in-memory file system). The mapped

memory regions allow us to treat the emulated PMEM as virtual memory while the tmpfs-

hosted backed file guarantees the data persistent over application restarts. We emulate the

bandwidth characteristics of PMEM using software delays during the memory copy oper-

ations similar to [49]. The read/write data size (MB) divided by PMEM read/write band-

width constants (MB/s) gives us the delay in seconds. We verify and calibrate our software

delay mechanism by running the Stream benchmark [59] over our emulation code.

Table 7: Experimental setup details. We use Stampede compute nodes [53] for our experi-
mental testbed

Number of nodes 4
Interconnect InfiniBand Mellanox,56Gbit/s
CPU Intel Xeon E5 2.7 GHz
CPU cores per node 2 sockets, 8 cores/socket
Total Main memory 32 GB
Emulated PMEM 12GB
Effective Main memory 20GB
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Table 8: Variable size distribution percentages (%).

Application 500K-1MB 10-20MB 50-100MB above 100MB

CM1 40 0 54 4
GTC 45 9 0 45
S3D 50 25 0 25

Applications. We evaluate Phoenix with three real-world HPC applications and observe

the C/R performance. The applications consist of algorithms related to different scientific

fields, and each application shows different C/R characteristics such as compute to check-

point data ratios, variable access patterns, etc. The working-set size is selected based on our

computing resource capabilities.Figure 8 shows the checkpoint variable size distribution of

each of those applications.

1. Gyrokinetic toroidal code (GTC) is a three-dimensional particle-in-cell application [35]

used in micro-turbulence fusion device studies. The checkpoint data constitutes of

2D/3D arrays. We vary the mpsi value to obtain different checkpoint sizes.

2. CM1 [36] is a three-dimensional non-hydrostatic atmospheric model, used in studies

of atmospheric phenomena. CM1 application saves a large number of variables (∼

50) compared to other applications during its checkpoints.

3. S3D is a direct numerical simulation (DNS) solver [60] that simulates the microscales

of turbulent combustion. It solves the full compressible Navier-Stokes equations.

Experiment Overview. We run each of our HPC benchmarks against three different check-

point schemes, (i) pmem - indicates a naive method of copying all data at once during

checkpoints (ii) phx - indicates the proposed, bandwidth aware C/R method in this pa-

per and finally (iii) phx-ec - indicates ’phx’, with early-copy optimization. We record (i)

the checkpoint times of each benchmark application with varying per-core-bandwidth val-

ues, (ii) the time spent on de-staging, and (iii) the compute iteration time. The results are

presented in terms of per-core bandwidth. The metrics represent the effective bandwidth

seen by one processor core during parallel PMEM writes and thus we consider the parallel
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Figure 19: Checkpoint times of workloads, plot against varying per-core PMEM band-
widths (per-core NVRAM bandwdith in figure) and checkpoint schemes
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Figure 20: Total simulation time of GTC, with different checkpoint schemes, over ten
iterations. Normalized to checkpoint free execution time of the same. This figure shares
the legend-key with Figure 19
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writes on the PMEM device. In all experiments we use the N=2 replication scheme for PHX

checkpoints, and the buddy node is chosen to be one network switch away.

We run 12 MPI processes on each node. Each MPI process has a helper thread asso-

ciated with it. However, all helper threads within a node are pinned to a single processor

core. Thus, one core is dedicated for all the helper threads. We re-run the experiments with

increasing number of helper cores in an attempt to see if the pinned core bottlenecks the

performance, but it did not make any difference.

GTC Observations. GTC is a highly I/O (checkpoint) intensive application and therefore

a naive PMEM data copy time can be as high as 37% compared to computation iteration of

the application. In our experimental scale, the GTC benchmark workload writes 235 MB

of checkpoint data per core, spends ~18 seconds in each of its compute iterations before

executing a checkpoint at the cost of ~7 seconds for a per-core PMEM bandwidth of 64

MB/s (see Figure 19). Next, we run the same experiment with PHX C/R, while giving each

core a staging buffer size of 125MB (50% of checkpoint data). PHX cuts the checkpoint

time by half and measurements suggest that limited bandwidth of PMEM device still dom-

inates the data movement overhead. The GTC variable access patterns, suggests that there

is an opportunity for early copying of data. The resulting checkpointing scheme PHX-ec

improves the checkpoint time by as much as ~12x over naive PMEM checkpoints.

CM1 Observations. The CM1 benchmark represents a highly compute intensive class of

applications within our selection of benchmarks. Therefore, PMEM checkpoint time ac-

counts for ~7%, compared to the compute iteration. Similar to the previous experiment,

we start the experiment by allocating staging buffer budget of ~50% of the checkpoint data

size. The PHX checkpoint scheme delivers up to ~2x (see Figure 19) faster checkpoint

times over naive PMEM checkpoints. However, the PHX-ec scheme does not improve per-

formance further. We attribute this behavior to CM1’s data access patterns, where almost

all of the checkpoint data are in the critical path of checkpointing. Thus, in the absence of

early copy of variables, the PHX checkpoint speed up is loosely proportional to the allocated
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staging buffer envelope.

S3D Observations. S3D checkpoints relatively smaller number of variables, ‘yspecies’

being the largest of them all. Application traces reveal minimal opportunity in terms of

early copying of the variables – all the checkpoint data contributes to critical path check-

point times. Our selected workload configuration produced∼50MB of checkpoint data per

core. Assigning a staging buffer size of 10MB (20% of checkpoint data) was enough for

PHX to treat, all the variables except ’yspecies’ as Ddata. PHX performs ~1.2x better (see

Figure 19) than the naive PMEM checkpoint under this configuration. As PHX currently use

variable granularity during Ddata and Pdata splits, the selected staging buffer size gives the

most C/R performance for selected S3D checkpoint size.

Total Simulation Time. Next, we compare the total simulation time of GTC over ten

iterations (see Figure 20), with the same checkpoint schemes. We show that PHX reduces

the checkpoint time, thereby also reducing the overall simulation time. The execution

times are normalized to a checkpoint-free run of the same application. Results show that

PHX brings down the total checkpoint overhead up to ∼18% under 64MB per core PMEM

bandwidth. It is important to note that the improvement margins are impressive, as the

compute time dominates over the checkpoint times at the granularity of total simulation

time.

Interference to Compute Iterations. The main compute iterations of the HPC appli-

cations constantly access the volatile memory for both instruction fetch and load/store of

data. In addition, Phoenix moves large volumes of checkpoint data in and out of volatile

memory for the (i) local staging of checkpoint data, for (ii) copying locally staged data

to buddy DRAM, and for (iii) moving staged data into the PMEM (de-staging). There-

fore, it is important to gauge the effect of the volatile memory usage in PHX on the main

computation iterations of the HPC application.

We measure the compute iteration time between the checkpoints for each of our check-

point schemes (not shown for brevity) and compare it with the failure-free, checkpoint-free
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compute iteration time. The compute iteration times remain relatively constant across dif-

ferent checkpoint schemes for the failure-free and checkpoint-free execution.

4.6 Chapter summary

In this chapter we explore the bulk data movement challenges in HPC checkpoint I/O. Next

generation exascale HPC applications are expected to generate an order of magnitude more

data as application checkpoints. Solutions such as NVStream offer PMEM-aware memory

I/O runtimes that make it possible for checkpoint I/O to be handled efficiently, However

such solutions are still vulnerable to limited device bandwidth (a technology parameter)

of PMEM. We present Phoenix (PHX) – a PMEM-bandwidth aware library for checkpoint

I/O that deals with the limited PMEM bandwidth through simultaneous use of PMEM and

local/ peer nodes’ DRAM devices, thus increasing the effective data movement bandwidth.

PHX’s PMEM-bandwidth-aware design lead to reduction in the time length of I/O operations

in the critical path, associated with the slow PMEM device. Our PHX solution guarantees

adequate reliability and persistence for DRAM resident object state by replicating them

across peer nodes’ memory via high-bandwidth interconnects. Experimental analysis using

real-world HPC applications on emulated PMEM hardware shows that PHX’s controlled use

of node-local and remote-node memory bandwidth, delivers up to∼ 2× and∼ 12× speed-

up for checkpoint I/O for the CM1 and GTC HPC applications
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CHAPTER V

CONCURRENT APPLICATION PROGRAMMING ON

PERSISTENT MEMORY

The last two chapters focus on adopting PMEM into the existing persistent I/O abstrac-

tions with minimal application changes. There, we serialize/deserialize the applications’

runtime memory structures into a durable format in the form of object/files/etc. However,

with PMEM being both memory (byte-addressable) and persistent, we now can unify both

runtime and durable state of our applications. Durable application programming on PMEM

main memory is not easy. It further burdens the programmers with persistent data consis-

tency semantics, in addition to existing challenges, including proper concurrency control in

application design. We identify transactions as a suitable programming abstraction for

handling both concurrency control and failure-atomic PMEM programming. In this chap-

ter, we propose and evaluate different concurrency control and crash-consistency mecha-

nisms that conform to the transactional notion and evaluate them against different PMEM

configurations to draw valuable insights on the correct mix and match between them.

5.1 Introduction

One of the key appeals of persistent memory is that they allow applications to access stor-

age directly using processor load and store instructions rather than relying on software

intermediaries like file systems or a DBMSs [61]. However, ensuring that data stored in

PMEM is always in a safe and recoverable state (i.e., the data is crash-consistent) is both

hard and incurs performance overheads [62, 11, 13, 61]. To ensure crash consistency, ap-

plication developers have to carefully orchestrate the movement of data from the volatile

to non-volatile components in the memory hierarchy subject to recoverability constraints.
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To exacerbate the challenge of ensuring crash consistency, different systems provide

different guarantees on when data may be considered persistent. For example, Intel and

Micron guarantee that data becomes persistent only when it reaches the memory controller

of the PMEM device, i.e., the system’s persistent domain includes the memory controller

and the PMEM devices [63]. We refer to such systems as having transient caches. How-

ever, HPE’s PMEM [64] guarantees that the entire cache hierarchy is persistent, i.e., the

system’s persistent domain includes the entire memory hierarchy. We refer to such systems

as having persistent caches. Based on the systems’ persistent domain, developers have

to tailor their applications to achieve crash consistency. The diversity of PMEM appli-

cations [38] further complicates achieving crash consistency. Multi-threaded applications

require developers to ensure correct synchronization on top of crash consistency.

One way to simplify the development of PMEM applications is to use a single abstrac-

tion that guarantees both crash consistency and correct synchronization. The transactional

programming interface is particularly well suited for this approach. We have been us-

ing transactions to independently achieve crash consistency (e.g., database transactions) or

proper synchronization (e.g., transactional memory systems). To this end, prior work has

proposed numerous systems to simultaneously guarantee both these properties [11, 13, 14,

15, 16, 17, 18]. While these systems provide transactions with the desirable ACID prop-

erties that permit their use for both crash-consistency and synchronization, they do

so in a myriad of ways; some implemented completely in software while some rely on

hardware support, some use undo logging, while others use redo logging. So, developers

are faced with a bewildering array of choices, with varied performance characteristics that

change with applications and the system used. For a platform with given hardware features

and consistency and synchronization requirements, is it possible to streamline the design

space and quickly arrive at a correct and performant implementation of a transactional sys-

tem?

To efficiently describe the properties of a system providing both crash-consistency
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and correct synchronization simultaneously for the same program data, we coin the

term crash-sync-safety (§5.3). We use crash-sync-safety to characterize transac-

tion systems with respect to their crash-consistency requirements, impacted by the per-

sistence domain, and synchronization requirements, determined by the support for and

use of concurrency. We perform a detailed study of systems with different characteris-

tics under various operating scenarios and provide an understanding of the relationship of

crash-sync-safety and the best implementation of a transactional programming model

for a given PMEM system.

We implement and evaluate various methods for realizing the transactional program-

ming model, by following closely the best designs presented in prior work: hardware trans-

actional memory (HTM) [17], software transactional memory (STM) [11], and undo/redo

logging with locks [21, 11]. Through emulation and simulation, we consider both tran-

sient and persistent caches and vary the latency characteristics of the PMEM. Finally, we

perform our characterization study on real hardware using the recently released Intel’s DC

Optane Persistent Memory [65].

Overall, in this chapter;

• We introduce the notion of crash-sync-safety and discuss how different sys-

tem features (e.g., persistence domain, HTM support) and requirements (e.g., multi-

vs. single-threaded use) impacts the implementation of this property.

• We compare the performance of various systems guaranteeing crash-sync-safety

on systems with different persistent domains and different concurrency support and

requirements.

• We show that there is no one best way to ensure adequate transactional support in

PMEM-based systems and in fact, the best way changes with the crash-sync-safety

property of the system, impacted by its persistence domain, the presence and effi-

ciency of hardware support for transactional concurrency control, and the application
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requirements.

5.2 Crash-consistency and synchronization

In order to illustrate the complexity of the design space, we briefly survey different imple-

mentations for crash-consistency (§5.2.1), for transaction synchronization (§5.2.3), and the

impact of the hardware persistence domain on the relationship between the two (§5.2.2).

5.2.1 Crash-consistent transactions

Crash-consistent (failure-atomic) transactions ensure that a group of updates to PMEM

locations performed by an application persist atomically, i.e., either all of them are ob-

servable or none of them are observable after a failure. Transactions are specified using

tx_begin() and tx_end() calls. All the updates to PMEM between those two succes-

sive calls are guaranteed to persist atomically. For example, in Table 9, the updates to pA

and pB are crash-consistent. Crash-consistency is generally achieved using undo or redo

logging.

undo logging is a crash consistency technique that provides failure atomicity by undo-ing

(or rolling back) changes from an aborted failure-atomic transaction. To be able to roll back

changes, undo logging systems create an undo log entry prior to every update performed

within the transaction. The undo log entry contains the current value of the memory lo-

cation/variable that is being updated. Once the log entry had been created and persisted,

only then is the actual memory location/variable updated. If a transaction succeeds, all the

memory locations modified within the transaction are persisted and then a commit message

is atomically persisted to the log to invalidate the log entries belonging to the transaction.

If a transaction fails, during the recovery process, all valid log entries are used to roll back

partial changes from a transaction. As shown in Table 10, undo logging systems must

ensure that: (1) within a transaction, log entries must be created and persisted prior to ev-

ery update and (2) at the end of the transaction, all memory locations modified within the

transaction must be persisted before transaction commit.
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redo logging is a crash-consistency technique that provides failure atomicity by redo-ing

(or rolling forward) changes from committed failure-atomic transactions. To be able to roll

forward changes, redo logging systems create a redo log entry for every update within

the transaction. The redo log entries contain the latest updates while the actual data is

maintained at a prior crash-consistent state. All the read requests for the memory locations

updated within the transaction are serviced from the redo log. If a transaction succeeds,

a commit log entry is created and persisted in the redo log, marking the commit of the

transaction. In the event of a failure, the redo log entries of committed transactions are

used to roll forward the application’s data to its most recent crash consistent state. The log

entries of uncommitted transactions are simply discarded. Periodically, the redo log can be

truncated to reduce read indirections and to reduce the number of redo log entries that have

to be applied during recovery. As shown in Table 10, redo logging systems must ensure

that: (1) within a transaction, a redo log entry must be created for every update within the

transaction and read requests to these locations must be re-directed to the log, and (2) at the

end of the transaction, all the redo log entries and a commit log entry must be persisted.

5.2.2 Persistent and transient caches

There is much diversity among the types of PMEM technologies that are available on the

market, as different vendors provide different performance characteristics and persistence

guarantees. For example, HPE offers a battery-backed DRAM solution [66]. As this de-

sign is based on DRAM, the exposed PMEM’s latency and bandwidth are as good as for

DRAM. In addition, the battery can extend the persistency domain to the entire memory hi-

erarchy, including CPU caches. Persistent caches ensure that all modified cache lines are

effectively persistent. On the other hand, Intel and Micron’s proposed 3D XPoint technol-

ogy [22] has higher latency and lower bandwidth than DRAM, while the persistent domain

includes only the memory controller, but not the CPU caches [63]. In case of a power

failure, transient caches will lose modified data not already written back to the memory
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Table 9: Threads executing dependent transactions. Correct implementations ensure that
pA persists before pD, crash consistency might be violated otherwise.

THREAD-1 THREAD-2
tx_begin();

pA = x; tx_begin();
pB = y; if (pA == x)

tx_end(); pD = z;
pC = w;

tx_end();

controller. So, the transaction system developer must use the appropriate instruction se-

quences to ensure that data becomes persistent on different hardware platforms.

5.2.3 Transactional memory

Transactional memory [67, 68] is used to synchronize the access of multiple threads to

shared program data. Programmers enclose the critical code blocks with tx_begin()

and tx_end() calls. Transactional memory guarantees the atomic execution of a trans-

action, using speculation. If the runtime detects a conflict with another transaction, it

aborts one of the transactions, discards its speculative state and rolls back its execution

to the tx_begin() call. Software transactional memory (STM) [68] is implemented using

fine grained locking and write set logging in software. Hardware transactional memory

(HTM) [67] is implemented using the L1 cache to buffer speculative writes and the cache-

coherency protocol to detect conflicts with other threads. Current HTM implementations,

such as Intel Transactional Synchronization Extensions (TSX), are best effort – transactions

could abort for any reason, such as exceeding the L1 cache capacity, using unsupported in-

structions, or due to interrupts. Therefore, HTMs require a fallback mechanism to ensure

progress, usually implemented using locking.

Table 10: Undo vs Redo logging; Undo logging suffers from frequent cacheline flushes
and sfences while redo logging suffers from read-indirection overheads.

Baseline Tx Undo Tx Redo Tx
1 tx_begin(); tx_begin(); tx_begin();
2 pA = x; log[&pA] = pA; clwb(log[&pA]); sfence; pA = x; log[pA] = x;
3 y = pA; y = pA; y = (log[pA] || pA);
4 pB = z; log[&pB] = pB; clwb(log[&pB]); sfence; pB = z; log[pB] = z;
5 tx_end(); persist_write-set(); commit_log(); clwb(log[pA]); clwb(log[pB]); sfence; commit_log();
6 tx_end(); replay_log(); persist_write-set();
7 tx_end();

63



5.3 Crash-sync-safety

In this work, we focus on applications that use a transactional programming model to get

ACID guarantees. For example, in Table 9, updates within each transaction need to provide

all or nothing semantics when the data gets to PMEM. Providing ACID guarantees requires

that the transactional system correctly implement three components: (1) crash consistency,

(2) synchronization, and (3) composability. undo and redo logging can be used to im-

plement crash-consistent transactions for single-thread applications, but do not ensure the

correct synchronization of multi-threaded applications, as shown in Table 11. Conversely,

transactional memory or locking can be used to implement transactions that provide cor-

rect synchronization for multi-threaded applications, but cannot ensure crash-consistency

for these transactions in case of a failure, as shown in Table 11. Simply guaranteeing these

two properties is not sufficient to provide ACID guarantees. A transactional system guar-

anteeing to also ensure that these techniques compose by tracking dependencies between

updates made by different threads and to persist the updates in the correct (execution) or-

der. A correct implementation of the above three properties ensures ACID guarantees and

we call such implementations crash-sync-safe (Table 11).

Table 11: Crash-sync-safety combines both crash-consistency and synchronization.

Failures Multi-threading
Crash-consistency 3 7

Synchronization 7 3

Crash-sync-safety 3 3

Programmers identify regions of code within their applications as transactions using

tx_begin() and tx_end(), and are assured of the failure-atomicity of the updates within

any transaction. Furthermore, all the updates within the transaction become atomically

visible to any other thread in the system once persisted, and conflicting transactions (trans-

actions accessing common memory locations with at least one of the accesses being a write)
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execute in isolation. So, each transaction behaves as both a traditional transactional mem-

ory transaction and also a failure-atomic transaction. crash-sync-safety guarantees the

following properties:

• Property-1: All the updates within a transaction are guaranteed to become visible

atomically to other threads.

• Property-2: All the updates to PMEM locations within a transactions are guaranteed

to be failure-atomic.

• Property-3: Conflicting transactions execute in isolation and updates to PMEM

within conflicting transactions persist in respective transaction commit order.

5.4 Achieving crash-sync-safety

This section describes different implementations of a transactional library that ensures

crash-sync-safety in detail. First, to achieve proper synchronization, transactions may

be implemented using one of three broad approaches: (1) Hardware Transactional Memory

(HTM), (2) Software Transactional Memory (STM), or (3) global locking. Each of these

approaches can further be extended to additionally provide crash-sync-safety for transac-

tions. Depending on whether the system has transient or persistent caches, the implemen-

tation details will vary. Next, we describe these different implementations (Table 12).

5.4.1 Crash-sync-safe HTM

Hardware Transactional Memory (HTM) offers atomicity and isolated transactions for

volatile memory. With persistent memory systems, HTM implementations can be extended

to ensure that they become crash-sync-safe. Designing crash consistent HTM (ccHTM)

requires augmenting HTM with a separate undo/redo log in persistent memory [14] and

logging data modifications within a transaction. It is important to note that the software

fallback path must also be made crash consistent through appropriate logging. In the event

of a failure, the ccHTM logs can be used to restore the application’s persistent data to the
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Table 12: Crash-consistency and crash-sync-safety implementations for single- and multi-
threaded applications. ST: Single-threaded, MT: Multi-threaded, CC: Crash-consistent,
Sync: Synchronization, CSS: Crash-sync-safety, TC: Transient caches and PT: Persistent
caches. Techniques evaluated for single-threaded applications need to provide only crash
consistency. Techniques evaluated for multi-threaded applications provide synchronization
too, by using a spinlock where necessary. We note that the HTM+undo/redo implementa-
tions for transient caches are only approximating a crash-sync-safe solution.

ST – CC MT – Sync. MT – CSS
TC PC TC PC

seq 7 7 7 7 7

HTM+seq
7 7 3 7 7(+spinlock)

undo/redo
3 3 3 3 3(+spinlock)

HTM+undo/redo approx. 3 3 approx. 3(+spinlock)
ccHTM+undo/redo

3 N/A 3 3 N/A(+spinlock)
STM 7 3 3 7 3

ccSTM 3 N/A 3 3 N/A

most recent consistent state. While many different ccHTM implementations have been pro-

posed recently [14, 15, 16, 17, 18], to the first order, they are all similar. In this work, we

developed and implemented our own ccHTM design (see Figure 21), as a representation of

the prior proposals.

Transient caches. For transient caches our ccHTM implementation augments a regular

HTM [69] with support for failure-atomicity when modifying data in PMEM. Apart from

the usual read/write set tracking employed in HTM designs, ccHTMs employ a separate

write-set log in PMEM to maintain failure-atomicity. To update the PMEM log, we extend

the hardware to issue write-combined, non-temporal stores (those that bypass the cache

hierarchy, like x86’s movnt [70]) for every write within a transaction. These writes are

non-transactional operations [71], so they do not become part of the transaction’s write set.

Note that reads and writes that are part of the transaction use the regular temporal load/s-

tore instructions and are served from the CPU caches. We use redo logging in our ccHTM

implementation, but undo logging would be similar. When used inside a hardware transac-

tion, the redo log does not suffer from read indirection, because the values can be found as
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speculative values in the L1 cache. At commit time, we first ensure that the log writes are

persistent, then atomically persist a log commit message in the PMEM log, then make the

transaction’s updates visible to other cores in the system. Overall, transactions first attempt

an execution as a failure-atomic hardware transaction. However, if a hardware transaction

aborts, the fallback path involves acquiring a global lock and executing pessimistically us-

ing a software undo/redo log. Next, we describe in detail the various aspects of our ccHTM

implementation.

log 
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log 
buffer

CPU CPU

private L1

shared LLC

memory 
controller

PMEM DRAM

memory 
controller

private L1

volatile
load/store

persistent
load/store

ccHTM
h/w logging

Figure 21: Design of ccHTM

Persistent write-set logging. HTM runtimes keep track of the read/write sets of the execut-

ing transaction. Writes executing inside a transaction are held in the L1 cache in speculative

state, isolated from the rest of the memory hierarchy until the successful completion and

commit of the transaction. Similar to HTMs, ccHTM issues writes in the transaction to the

L1 cache. In addition, ccHTM intercepts each write and augments it with a hardware based

non-temporal log-write request into a thread-local PMEM log. So, every write within a

transaction results in a temporal write to the L1 cache and a non-temporal log write. The

PMEM log write is asynchronous to the intercepted transactional write, thus has minimal

impact on the transaction’s critical path. The ccHTM log is durable and atomic updates do

not suffer from inherent read indirection overheads of logging, as incoming read requests

are being served directly from the L1 cache.
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Transaction commit. An ccHTM transaction comprises both volatile state (the cache lines

held speculatively in the L1 cache) and persistent state (the ccHTM-log). Thus, the ccHTM

transaction commit sequence differs from a traditional HTM commit. The ccHTM commit

sequence includes: (1) updating the book-keeping structures of speculative cache-lines, (2)

failure-atomic write-set log commit on PMEM, and (3) atomically releasing the speculative

cache-lines to the rest of the memory hierarchy. It is important to note that ccHTM com-

mit operation combines two commit phases – a persistent memory commit, in the form of

ccHTM-log commit, and a volatile memory commit, in the form of speculative cache-line

unlocking. A ccHTM log commit involves two sfence instructions. The initial sfence

drains the buffered asynchronous log writes to the ccHTM-log. Next we atomically per-

sist/update the ccHTM-log’s tail-index with the latest log-entry index value, followed by

another sfence. The ccHTM-log’s tail-index update doubles as a commit-flag entry and en-

ables fast log truncation. Once the transaction has been committed in PMEM, the volatile

commit is performed by atomically moving the affected cache-lines out of the speculative

state. Once the volatile commit is performed, the transaction has successfully completed.

Transaction abort. Similar to HTM aborts, ccHTM aborts may be triggered due to (but

not limited to) a load/store on another thread that conflicts with the current transactions’

write/read set, OS interactions like system calls or context switches, L1 cache capacity

overflow. In addition to all of the HTM abort causes, ccHTM transactions abort if the runtime

runs out of ccHTM-log space during hardware logging. We introduce a new abort flag called

NO_LOG_SPACE to capture this abort cause. A transaction abort includes (1) discarding

speculative L1 cache-lines, and (2) invalidating ccHTM-log appends. We rely on existing

HTM capabilities to achieve (1). We do not explicitly invalidate ccHTM-log entries as they

remain invalid till ccHTM-log’s tail-index update.

Fallback path. Similarly to hardware transactions, ccHTM transactions are best effort – the

transactions are not guaranteed to complete. ccHTM transactions use regular write-ahead-

logging (WAL) on the fallback path to ensure persistence. The fallback path transactions
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use either undo or redo logging while HTM transactions use redo logging. In addition, a

global lock ensures the synchronization between the fallback path software transactions and

ccHTM hardware transactions. To ensure isolation, the hardware transactions read the global

lock as soon as they start executing, which makes them abort if another thread acquires the

lock.

Log truncation. We truncate the transaction logs (both ccHTM and fallback path) at the

end of each transaction – eager log truncation. With redo logging, log truncation involves

first persisting the cache-lines modified as part of the transaction and then invalidating the

transaction’s log entries. We truncate the ccHTM transaction logs as part of the transaction

commit step, i.e., once the PMEM log of the transaction is committed, we perform the

following steps: (1) issue clwb requests to all the cache-lines in the write-set, (2) issue an

sfence to ensure their writeback, (3) issue a non-temporal update request to atomically

reset the ccHTM-log’s tail-index to truncate/invalidate all the previously written log entries,

and (4) issue another sfence to ensure that the update request has been persisted. Once

these four steps are performed, the volatile commit of the transaction is carried out. We

also truncate the logs for the transactions executed in the fallback (software) path as soon

as they commit. It is important to note that since both the fast path and slow fallback path

employ log truncation, it is feasible to employ different logging techniques in the different

paths. For example, it is possible to use redo logging in the fast path and undo logging

on the fallback path. This design approach allows us to evaluate crash-consistency

mechanisms that use different logging techniques on the different paths. Furthermore, this

eager log truncation approach, relives our ccHTM implementation of the burden of tracking

the execution order of different transactions in their respective PMEM logs, as is necessary

in other prior approaches [16].

Persistent caches. In systems with persistent caches, speculatively updated ccHTM cache-

lines are persistent as soon as they are atomically released. (when they made visible in L1

cache). However, transactions executing in fallback path still need atomic updates in the
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form of undo/redo logging. So, regular HTM implementations can be augmented with a

fallback path log and can ensure crash-sync-safety with no additional changes to the HTM.

5.4.2 Crash-sync-safe STM

Software Transactional Memory (STM) offers atomicity and isolated transactions for volatile

memory. All the data modifications made within the transaction are made visible to other

threads atomically when the transaction commits. If the transaction aborts, none of the data

modifications made within the transaction become visible. STM implementations track the

read and write sets of individual transactions to ensure transaction atomicity. Further more,

they provide transaction isolation by detecting conflicting transactions that modify at least

one common memory location and aborting some of them as necessary.

With persistent memory systems, STM implementations can be extended to ensure that

they become crash-sync-safe, i.e., data modifications within a transaction will persist atom-

ically and the dependencies are handled properly (§5.3). There are two broad approaches

to designing crash consistent STM (ccSTM): (1) augment STM with a separate undo/redo

log in persistent memory [11, 13] or (2) repurpose the write sets already maintained as part

of the STM implementation to also function as a undo/redo log. In the event of a failure,

the ccSTM logs can be used to restore the application’s persistent data to the most recent

consistent state. In this work, we concentrate on ccSTM designs that maintain a separate

undo/redo log, similarly to [11].

Transient caches. In systems with transient caches, in order to make sure their log entries

are persistent (undo or redo), ccSTM designs have to write back the log entries from the

processor caches to the memory controller. Furthermore, log entries have to be written

back as per the ordering constraints of the logging mechanism employed (as discussed in

§ 5.2.1) using carefully orchestrated clwb, sfence, and non-temporal store instructions

(e.g., movnt).

Persistent caches. However, in systems with persistent caches, ccSTM log entries are
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persistent as soon as they are created (when they reach the L1 cache). So, regular STM

implementations also ensure crash consistency with no additional changes in systems with

persistent caches.

5.4.3 Crash-sync-safe locking

This implementation of transactions acquires a global spinlock at the beginning of every

transaction and releases it at the end of every transaction. While this naive implementa-

tion suffers from frequent false conflicts for multi-threaded applications, it does offer one

advantage. It is a very light-weight approach when no concurrent transactions are exe-

cuted by an application, an extreme case of which is a single-threaded application. Mostly,

we use this design point for the sake of completeness in our crash-sync-safety de-

sign space analysis. While global locking achieves proper synchronization, to achieve

crash-sync-safety, transactions are usually extended with either undo or redo logging,

which we describe next.

Transient caches. In systems with transient caches, data can be considered persisted only

once it has been written back from the volatile cache hierarchy to the memory controller

using one of clflush, clflushopt, clwb instructions. Further more, some of these in-

structions are non-blocking, so applications need to issue a subsequent sfence to ensure

that the instructions have been fully executed and the associated data is actually persistent.

undo logging systems have to ensure that log entries are persistent before they can

allow actual memory locations to be modified within a transaction. As shown in Table 10,

undo logging systems use a combination of clwb and sfence instructions prior to every

data update, i.e., every store instruction. This frequent use of blocking sfence instructions

could result in severe performance degradation. redo logging systems have to ensure that

all the redo log entries and the commit log entry are persisted by the end of a transaction.

Further more, the commit log entry may persist only after all the redo log entries have been

persisted. As shown in Table 10, redo logging systems use a combination of clwb and
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sfence instructions within a transaction.

Persistent caches. However, in systems with persistent caches, data is considered persis-

tent as soon it has been written to the L1 data cache. So, no writeback of data to the memory

controller is necessary on such machines. On systems with persistent caches, undo logging

implementations need to ensure that log entries are created before the data update, while

redo logging implementations need to ensure that redo log entries are created for every

update within the transaction and that the commit log entry is created before the comple-

tion of the transaction. Since x86 systems guarantee TSO, the program order of stores

ensures that the stores belonging to the log entry creation and data update are performed

in order, without the need for any intervening sfence or clwb instructions. For example,

with persistent caches on an x86 machine, all the clwb and sfence instructions shown

in Table 10 become obsolete. However, for systems with a weaker memory model (e.g.,

ARM), an appropriate fence instruction is necessary to ensure that the stores are executed

in program order. Persistent caches significantly improve the performance of undo/redo

logging systems as they eliminate expensive clwb and sfence instructions.

5.5 Implementation and evaluation methodology

We want to understand the overheads of crash-consistency and crash-sync-safety, as well

as what is the best implementation of a transactional library that provides these properties,

given various PMEM characteristics, persistence domains, and workload characteristics.

To do so, we compare the performance of different transactional library implementations

along the following axes: (1) Persistence domains of the system. Specifically, we con-

sider systems with persistent and transient caches (§5.2.2). (2) Single-threaded vs multi-

threaded applications. Single-threaded applications just require crash consistency while

multi-threaded applications require crash-sync-safety (§5.3). (3) Evaluation platform –

real hardware with Intel Optane DC PMEM or an architectural simulator.

Real Hardware vs Architectural Simulation. To evaluate ccHTM, we use two different
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platforms: (1) bare-metal hardware with TSX and Intel Optane PMEM and (2) SESC, a

cycle-accurate simulator. While neither approach allows us to accurately evaluate ccHTM,

they complement each other and provide a comprehensive analysis of the competing mech-

anisms. For example, simulation accurately models the proposed hardware changes not

possible with TSX. However, real hardware more accurately factors in transaction abort

rates introduced due to system jitter (background activities, thread context switches, cache

capacity constraints) and the latency and bandwidth constraints of real PMEM DIMMs.

Intel Optane PMEM hardware testbed: We use a Intel Xeon server (Cascade Lake mi-

croarchitecture) with 96 cores over 2 NUMA sockets. We use Fedora Linux as the OS. The

Intel processor supports restricted transactional memory (rtm) and the cache-line-write-

back instruction (clwb). Each processor socket has access to 375 GB of DRAM and 756

GB of Intel Optane PMEM, configured in Direct Access Mode [1]. The PMEM memory

is managed by a DAX supporting file-system, hence applications have to explicitly map

PMEM memory into their process address space prior to using the PMEM. Therefore, we

modify our applications to explicitly allocate all memory dynamically from the PMEM

address space using the libvmem allocator from the Persistent Memory Development Kit

(PMDK) [21]. We allocate persistent memory (mmap) from the closest PMEM DIMM

(NUMA aware). We bind each of the application threads to a compute core. Thread bind-

ing prioritizes the compute cores within the same NUMA socket and assigns compute cores

from a different socket only when an application uses up all the cores in the current socket.

Out of five runs, we report the mean of the middle three runs.

Simulator: We implemented ccHTM as an extension to SESC-HTM [72], which emulates

the instruction behavior(commit, abort, etc.) within the HTM_begin() and HTM_end()

code regions and passes them to a back-end timing module for simulation. We augment

the writes happening within a HTM transaction with an asynchronous, non-temporal log-

write to the PMEM resident log, in addition to the temporal L1 cache write. Furthermore

we implement the clwb and sfence instructions necessary for the correct functioning of
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Table 13: Simulator config, adopted from [72]

Processor 16 cores 1 GHz
connected via bus-interconnect

L1 cache Ins & Data 64 KB per core / 64 B cacheline/
8-way set associative

L2 cache Ins/Data 256 KB per core/ 64 B cacheline/
8-way set associative/ hit-latency 18 cycles

L3 cache 16 MB shared/ 64 B cacheline/
16-way/ hit-latency 34

Coherence protocol MESI across L2 caches
PMEM log size 10 MB per core/thread

PMEM r/w latency 250/750 cycles

software-based crash-consistency mechanisms. Table 13 lists the configuration of the var-

ious hardware structures modeled in our simulator. Since SESC was designed for MIPS,

we cross compile the STAMP benchmarks and the ccHTM library into a MIPS binary.

Workloads. We use two benchmarks from the PMDK project [21], namely C-tree and

Hashmap. These two benchmarks implement a persistent crit-bit tree and a hashmap. We

port these two applications to use different persistent memory transactional mechanisms.

We run the pmembench workload generator provided with PMDK and use workload pa-

rameters from [38]. In addition, we use the transactional applications from STAMP [73],

a popular benchmark suite used by others to evaluate libraries for PMEM [38, 74, 75]. We

augment transactions with crash-consistency, on top of the atomicity, consistency, and iso-

lation guarantees already provided. To better understand these workloads, we instrumented

the simulator to count the load/stores for each transaction.

5.6 Evaluating crash-sync-safety

In this section, we seek to understand the cost of implementing crash-sync-safety (§5.3)

in various ways. To do so, we evaluate multi-threaded applications that provide both

crash-consistency and synchronization. We use the crash-consistency mechanisms

in Table 12. We use a spinlock to ensure correct synchronization for the undo/redo logs

and on the fallback path of the HTM. We want to answer the following questions: (1) What
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is the most efficient implementation of crash-sync-safe transactions? To answer this ques-

tion, we compare HTM-based crash-sync-safe transactions with STM-based crash-sync-

safe transactions and with undo/redo logging using a spinlock. (2) What is the overhead of

achieving crash-sync-safety? To answer this question, we compare to a sequential imple-

mentation baseline, with no crash-consistency and no synchronization. (3) What is

the overhead of crash-consistency for multi-threaded applications that are properly syn-

chronized? To answer this question, we compare with a non-crash-consistent baseline

(HTM+spinlock). (4) How does the persistence domain of the PMEM influence the results?

To answer this question, we consider two different PMEM devices: one with transient

caches (§5.6.1) and one with persistent caches (§5.6.2). Current HTM for systems with

transient caches ensure proper synchronization, but not crash-consistency, so our

real hardware evaluation on transient caches only approximates a crash-sync-safe imple-

mentation based on HTM. Therefore, we use simulation to properly evaluate the overheads

of the crash-sync-safe HTM.

Summary of crash-sync-safety results. We evaluate multiple transactional implementa-

tions on real hardware with the new PMEM devices, as well as using an architectural simu-

lator. Our results are summarized below. (1) We find that ccHTM consistently outperforms

other transactional implementations, by 0.06X-30X (at 8 threads) for transient caches, and

by 3X on average for persistent caches. The only exceptions are applications which are

known for being problematic for hardware transactions, i.e., with large read or write sets

that overflow the cache, or with unsupported instructions that always abort the hardware

transactions. Therefore, extending HTM with crash-consistency for transient caches is

the most promising solution to provide crash-sync-safe transactions. The simulation results

show that making the HTM crash-consistent does not add significant overhead compared to

a non-crash-consistent HTM (HTM+spinlock). For persistent caches, current HTMs (e.g.,

TSX) are already crash-sync-safe. (2) When using ccHTM to achieve crash-sync-safety,
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Figure 22: TSX-enabled hardware with real PMEM and transient caches by number of
threads (X axis). (P) crash-consistent; (NP) not crash-consistent; (P*) approximates crash-
consistent solution.

it comes almost for free. The overheads of crash-consistency are subsumed by synchro-

nization overheads and, as applications scale, performance increases compared to single-

thread execution. When the ccHTM implementation does not achieve scalability due to

aborts, the ccSTM still ensures this property. (3) If we disregard scalability improvements

given by running multiple threads, we can measure the cost of crash-consistency com-

pared to a non-crash-consistent solution that still ensures the synchronization. On average,

HTM+undo(redo) is 2.3X (2.4X) slower than HTM+spinlock (for 4 threads), for transient

caches. When caches are persistent, this cost becomes negligible. (4) In multi-threaded

applications, the persistence domain still plays a very important role, but the results are

not as dependent on it as they are for the single-threaded applications. The overhead of

crash-consistency is considerably lower when caches are persistent. In addition, HTM is

crash-consistency out of the box, so no changes are necessary.

5.6.1 Transient CPU caches

We use our real test-bed and architectural simulator to evaluate the cost of crash-sync for

transient caches.

Real. Figure 22 shows the scalability of the various approaches outlined above with

varying number of threads, on real hardware, using Intel TSX for the HTM. HTM+undo

(HTM+redo) outperforms undo (redo) for vacation, kmeans, ssca2, intruder and genome

by 3.6× (3.7×), 30.8× (18.3×), 13.3× (7.1×), 0.6× (0.6×) and 4.9× (4.8×), respec-

tively, at 4 threads. The only exception is labyrinth, where many transactions overflow
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the cache and abort, ending up executing on the fallback path (undo/redo), serialized by a

spinlock.

Compared to the ccSTM, HTM+undo (HTM+redo) is faster for vacation, kmeans, ssca2,

intruder and genome by 1× (1×), 3.5× (3.2×), 3.9× (4.0×), 1.7× (1.9×) and 1.6× (1.5×)

respectively and slower on labyrinth by 53.06% (53.10%) at 4 threads. Choosing between

software and hardware transactions largely depends on the workload, especially the size of

the transactions, conflict rate and usage of TSX-unsupported operations. ccSTM performs

better on workloads with larger transactions (e.g., labyrinth) or more contention and scales

better to a larger number of threads. We attribute this behavior to its better conflict resolu-

tion. However, for small transactions, the software conflict detection and resolution of the

ccSTM introduces too much overhead, which is greatly reduced by the simpler hardware-

based requester-wins policy of the HTM.

We approximate the cost of crash-consistency for multi-threaded applications by

comparing to HTM+spinlock, which suffers from the overheads of synchronization,

but not crash-consistency. HTM+undo and HTM+redo are, on average, 2.3× and 2.4×

slower than HTM+spinlock for all workloads (at 4 threads).

As in the single-thread applications, the choice between undo and redo logs greatly

depends on the workload characteristics. However, when we use HTM on the fast path, the

differences between undo and redo logs on the fallback path are significantly diminished

with HTM+undo and HTM+redo resulting in similar performance.

We compare the ccSTM with an STM to understand the cost of crash-consistency

for the STM. ccSTM is at most 8.2× slower than an STM with no crash-consistency for

1 thread and at most 7× slower for 8 threads. We see that while crash-consistency

definitely adds a noticeable overhead, it does not impact the scalability of the original STM.

Moreover, the difference between ccSTM and STM decreases with increasing the number

of threads, showing that the overhead of fences is amortized between multiple concurrent
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threads. Finally, the cost of crash-consistency does not tell the entire story, as we pro-

vide both crash-consistency and synchronization for multi-threaded applications.

Thus, we also measure the cost of crash-sync-safety by comparing with a baseline

with no crash-consistency and no synchronization (seq). While crash-consistency adds

overhead compared to volatile in-memory execution, efficient synchronization often im-

proves performance by enabling the application to scale to multiple threads. Therefore, the

cost of crash-sync-safety is much lower than the cost of crash-consistency when we

can pair efficiently synchronization and crash-consistency, using STM or HTM. How-

ever, when we use distinct methods for the two, the overheads compose and the cost of

crash-sync is much higher, as exemplified by undo/redo using spinlocks being .9×/1.4×

and 2.7×/2.9× expensive than ccHTM+undo/redo and ccSTM on-average.

As in §5.7.1, these numbers are an approximation of ccHTM results, as only the fall-

back path is crash-consistent. We evaluate a full-fledge ccHTM in the simulator in the next

section.

Simulated. Figure 23 shows ccHTM results using simulation. We use this to confirm that

adding crash-consistency on the HTM fast path does not hinder its performance. Once

again, the general trends from real hardware largely hold in the simulated environment as

well: (1) HTM+undo/HTM+redo comfortably outperform undo/redo. For example, for Va-

cation benchmark with 4 threads, the improvements are 3× and 6× respectively. The only

exception to these general trends are seen in the case Labyrinth, where undo and redo per-

form better than HTM based approaches due to the high transaction abort rates inherent to

the workload. (2) undo/redo exhibit the highest overheads and poor scalability due to the

spinlock. (3) All crash-consistency mechanisms increase execution time over the non-crash

consistent baseline, HTM+spinlock. However, on-average ccHTM+spinlock increases ex-

ecution time by only 8% compared to HTM+spinlock. The simulation results differ from

the real hardware results mainly in the scalability showed by ccHTM. This difference comes

from the system events that occur in the real systems, but are hard to model in a simulation
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Figure 23: Simulation, transient caches by number of threads (X axis). (P) crash-consistent;
(NP) not crash-consistent; (P*) approximates crash-consistent solution.
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Figure 24: TSX-enabled hardware with real PMEM and emulated persistent caches by
number of threads (X axis). (P) crash-consistent (NP) not crash-consistent.

environment.

5.6.2 Persistent CPU caches

We use our bare-metal test-bed to emulate persistent caches. TSX ensures crash-sync-safe.

We show the results in Figure 24. As expected, undo and redo perform the worst and

exhibit poor scalability because they serialize all transactions using a global spinlock.

HTM+undo (HTM+redo) is 2.4× (2.4×) faster than undo (redo) on average for all workloads

at 4 threads. The only exception is labyrinth, which causes frequent transaction aborts due

to overflows.

While STM incurs high overheads in low contention scenarios (1 or 2 threads) or when

transactions are small, it exhibits good scalability due to its fine-grained locking and gen-

erally performs the best at 8 threads and for large transactions. STM is 1.6× (2.0×), 6.9×

(6.9×) faster than HTM+undo (HTM+redo) for vacation and labyrinth at 8 threads.
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5.7 Evaluating crash-consistency

In this section, we seek to understand what is the cost of crash-consistency for single-

thread applications, i.e., when applications do not require synchronization. To do so, we

perform an exhaustive study using multiple hardware platforms, using simulation and em-

ulation when the actual hardware is not available. We evaluate both transient (§5.7.1) and

persistent caches (§5.7.2). We present the results relative to a sequential execution baseline

(seq) that does not provide crash-consistency nor synchronization. We evaluate the

crash-consistency mechanisms described in Table 12.

The goal of this evaluation is to understand the cost of crash-sync-safety relative

to only providing crash-consistency, and whether providing crash-sync-safety pro-

vides any performance benefits compared to simply providing crash-consistency. We

see that crash-sync-safety is a useful implementation property, as it can lower the cost

of crash-consistency by scaling applications to multiple threads. For example, in the

vacation benchmark achieving crash-sync-safety for 8 threads improves performance by

0.7× compared to non-crash consistent single-thread execution, despite the crash-sync-

safety property due to ccSTMs scalability. In contrast, the undo log causes a slowdown of

0.85× to achieve crash consistency only (for a single-thread execution). In this section, we

breakdown the costs of crash-consistency and characterize single-thread applications.

Summary of crash-consistency results. We find that the persistence domain plays a cru-

cial role in choosing the best crash-consistency method. The same mechanisms have

very different behavior and performance characteristics on systems with transient caches

versus systems with persistent caches. In particular, HTM is an interesting case-study. For

systems with persistent caches, HTM guarantees crash-consistency out of the box, with

no architectural changes, while for transient caches, HTM needs architectural changes to en-

sure crash-consistency. In both cases, HTM also provides correct synchronization,

and incurs the associated costs, although all applications we consider in this section are

single-threaded and do not require synchronization.
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From our empirical results, we can draw the following conclusions: (1a) In systems

with transient caches, HTM benefits crash-consistency, despite its synchronization

costs and required architectural changes. This is because, the HTM based crash-consistency

systems are able to reduce the number of expensive cache line flush and fence instructions

used in pure software undo/redo logging techniques. (1b) The choice between undo and

redo logging vastly depends on the application characteristics and the size of the read and

write sets of the transactions. (2a) In systems with persistent caches, the HTM benefit for

crash-consistency is reduced, as software logging mechanisms do not require expensive

flush and fence instructions anymore. In this case, the HTM’s synchronization overheads

become apparent. (2b) undo logging is the best choice for ensuring crash-consistency

when caches are persistent, since redo logs still suffer from read-indirection overheads.

Overall, persistent caches provide a significant performance benefit, as the overhead of

crash-consistency on average over seq is only 1% for the best method (undo), com-

pared to 6% for best method when caches are transient (HTM+redo).

5.7.1 Transient CPU caches

We compare the performance of the various crash-consistency mechanisms on systems

with transient CPU caches (§5.2.2), on both real hardware and our architectural simulator

(§5.5).

Real. In this experiment, we evaluate all crash-consistency mechanisms on the real hard-

ware using a server with support for TSX and we show the results in Figure 25. As

expected, all crash-consistency mechanisms increase execution time compared to a non-

crash-consistent baseline (seq). However, HTM+undo and HTM+redo significantly outper-

form their pure software counterparts (undo and redo), improving performance by as much

as 98× and 97×, respectively. This is due to the HTM reducing the number of fences and

read-indirection for the transactions that succeed. The only exception is Labyrinth, where
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HTM+undo and HTM+redo perform similar to their software counterpart, due to more fre-

quent aborts caused by large transaction sizes (Labyrinth). These results indicate the best

performance that we can expect from a ccHTM on real hardware, as we approximate the

performance using HTM+undo/redo that only provides crash-consistency on the fall-

back path, but not inside the hardware transaction. Therefore, these results measure the

upper limit of ccHTM. For a more conservative estimate of ccHTM performance, we also

evaluate it in the simulator (Fig. 26). The transaction success rate1 varies from from 49%

(Labyrinth) to 100% (Kmeans) - also shown in Figure 25.

HTM+undo and HTM+redo are on average 14% and 12%, respectively, of the ideal

baseline, seq, showing that crash-consistency can be ensured at a small performance

penalty using HTM. Although not needed for single-threaded applications, HTM also provides

synchronization. To understand this additional overhead, we also evaluated HTM+seq,

which ensures synchronization when transactions succeed, but not on the fallback path.

HTM+seq, incurs overheads, ranging from 2.5% (intruder) to 13% (genome), even when

no crash consistency guarantees are provided. These overheads are due to hardware book-

keeping to execute transactions and transaction aborts.

All pure software crash-consistency mechanisms (undo, redo and ccSTM) greatly in-

crease execution times – as much as 41×, 89× and 33× respectively (for Kmeans). redo

logging generally performs better or as well as undo logging for the workloads evalu-

ated, but the results highly depend on the number of reads and writes in the transaction.

undo suffers the overhead of flushing and fences for every write, while redo suffers the

overhead of read indirection, proportional to the number of reads and the size of the log.

ccSTM incurs the highest overhead across all workloads. We attribute this to the higher

synchronization overheads of the ccSTM, in addition to the software logging overheads

like undo and redo.

1TSX transactions are best-effort, so they might abort even for single-thread workloads, when there are
no conflicts.
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Simulated. In this experiment, we use the simulator to evaluate ccHTM for transient caches

with the proper architectural changes. Figure 26 shows the results. The trends from the

real hardware still largely hold here. ccHTM-undo and ccHTM-redo have lower overheads

than their software counterparts by as much as 3.2× and 2.7× (Kmeans) respectively.

And they both come within 1.2× of the ideal baseline, seq. Even with full support for

crash-consistency, ccHTM outperforms other methods. The only exception is Labyrinth,

where ccHTM suffers comparable overheads to its software counterparts due to frequent

transaction aborts. However, the transaction abort rate is less in the simulator than on real

hardware as the simulator models overflow and some unsupported instructions, but not all

events that would cause a transaction to abort on real hardware. We attribute these differ-

ences to inaccuracies between the hardware implementation details within the simulator

and proprietary commercial hardware. ccHTM-seq adds 28.62% overhead on average for

all benchmarks compared to seq, highlighting that the architectural changes made to the

HTM have fairly low impact.

5.7.2 Persistent CPU caches

In this experiment, we use our bare-metal testbed (§5.5) to emulate persistent caches (§5.2.2).

We show the results in Figure 27. Unlike for transient caches, here HTM+undo and HTM+redo

perform worse than undo and redo by at most 10%. When caches are persistent, undo
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and redo logging techniques no longer have to use expensive cache line flush and fence

instructions to ensure data consistency, while the HTM still has the overhead of ensuring

synchronization. To quantify the overhead of the HTM, we measure HTM+seq, which is

up to 40% slower than seq, while undo and redo are up to 40% and 37× slower. The

STM has even higher synchronization overhead on average, being up to 3.1× slower

than seq. Moreover, undo and redo perform similarly in most cases, except in the case

of hashmap and Kmeans, where undo performs better than redo. Although both methods

are faster because they don’t require fences and flushes, redo still has the overhead of read

indirection in certain workloads with many reads and writes. Moreover, an application can

be tuned to use one technique or the other, which we show with hashmap as an example.

Hashmap is tuned to use undo logging with PMDK library and thus perform better with

undo logging.
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5.8 Chapter summary

We introduced crash-sync-safety property which helps programmers with combining crash

consistency and synchronization protocols for achieving ACID qualified durable,multi-

threaded application programming on PMEM. we provide a comprehensive evaluation

of the impact of combining existing crash-consistency and synchronization methods for

achieving performant and correct PMEM transactional systems. We consider different

hardware characteristics, in terms of support for hardware transactional memory (HTM)

and the boundaries of the persistence domain (transient or persistent caches). By charac-

terizing persistent transactional systems in terms of their properties, we make it possible to

better understand the tradeoffs of different implementations and to arrive at better design

choices for providing ACID guarantees. We use both real hardware with Intel Optane DC

persistent memory and simulation to evaluate a persistent version of hardware transactional

memory, a persistent version of software transactional memory, and undo/redo logging.

Through our empirical study, we show two major factors that impact the cost of supporting

persistence in transactional systems: the persistence domain (transient or persistent caches)

and application characteristics, such as transaction size and parallelism.
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CHAPTER VI

SUPPORTING RELIABLE PERSISTENT MEMORY

PROGRAMMING

In this chapter, we further extend the discussion of memory native persistent programming

on PMEM. The crash-sync-safety transactional (discussed in the previous chapter) pro-

gramming primitive only offers failure-atomicity plus synchronization and lacks the relia-

bility guarantees – an important trait for most enterprise applications. Node local persistent

data is vulnerable to catastrophic media failures as we only maintain a single copy of the

data. Though data reliability is a well-studied system problem, it has often been done in

the context of either persistent block abstractions [76] or with volatile main memory [77]

as the storage device. PMEM, supporting native memory persistent programming, changes

traditional durable media programming abstractions and obvious trade-offs in providing re-

liable data storage. We discuss system software methods to support enterprise applications

with durable and reliable native memory backends.

6.1 Introduction

Byte addressable persistence of PMEM encourages the end-user applications to jettison

the traditional block I/O based system software intermediaries in favor of native memory

persistence. However, it still leaves the worrying question of availability (when persistent

media fails) and the right software interface to persistent memory that adequately hides the

complexities of failure atomic PM programming.

Combining the much faster new persistent devices with existing replication protocols [78]

shifts much of the end-to-end bottlenecks into the data transport and copying overheads of

the replication stack. It also raises the question of how to couple the execution of the
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persistence and replication engines, while providing for concurrent operations, needed for

performance, and maintaining order, required for correctness. This is non-trivial because of

the sequential nature of replicating a log of updates is at odds with the concurrent updates

needed to maximize the performance that can be achieved on the new persistent media.

In response to these challenges, we present Blizzard– a fault-tolerant, PMEM opti-

mized persistent programming runtime. Blizzard is a software stack that lets program-

mers build sophisticated, persistent applications as a service with only modest software

modification requirements. Persistent data structures are exposed to the client application

through an RPC interface, while Blizzard ensures the performance and correctness of the

data structures’ access, durability, and fault-tolerance operations.

In this chapter;

1. We design a PMEM-specialized replication stack that addresses the challenges of

integrating replication, persistence and concurrency when combining PMEM-based

persistence with high-speed networking.

2. We provide the implementation of the Blizzard system for commodity Ethernet

networks with DPDK high-speed packet delivery, and Intel Optane DC PMEM, the

first-generation of directly-attached persistent memories.

3. Experimental evaluation of Blizzard with different applications demonstrates its

generality and flexibility for creating different persistent and fault-tolerant data struc-

tures that can be further combined as needed by sophisticated applications, while

delivering to applications performance benefits and stronger availability guarantees.

6.2 Need for fault-tolerant, persistent memory

Persistent memory with correct system software primitives (§5) supports fast and durable

application state maintenance using direct CPU load/stores. However, PMEMs integrated

in commodity servers only provide limited reliability guarantees for persistent data in the
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form of software RAID among PMEM modules, erasure codes, etc., but fail to protect data

against catastrophic node or persistent media failures (hard-failures). Fault-tolerant per-

sistent application state that survives hard-failures is a must for highly available enterprise

applications.

The design of system software for truly fault-tolerant persistent memory programming

is not trivial. We identify two main components in such a design: Persistent memory

programming layer – that stores application specific persistent data, and Replication

layer – that supports fault-tolerance by synchronizing persistent data between multiple

server-replicas. Integrating these two components to form a high-throughput, fault-tolerant

PMEM programming runtime is challenging, as the system software techniques commonly

used to optimize each of these two components individually, often conflict with each other.

For example, state machine replication protocols such as Paxos and RAFT [79, 78] rely

on serial log-commits to preserve consistent replica state among distributed nodes, while

high throughput persistent programming involves concurrent data-updates to offset some

of the crash-consistent write-ahead-logging (WAL) costs (§5). Naive coupling of these two

components will compromise performance (e.g., turn-off concurrent updates), or, worse

yet, will lead to incorrect persistent data states.

This thesis presents Blizzard, a system service that supports truly fault-tolerant persis-

tent memory programming. Blizzard takes care of availability and provides the client with

access to the persistent state via an RPC interface. The approach is consistent with modern

microservice-based datacenter stacks. To demonstrate and evaluate Blizzard, we will pro-

vide a small (but growing) set of persistent implementations of popular data structures that

will allow performant implementations of a wide array of real-world applications.

The underlying innovation that makes Blizzard possible is exploiting direct access to

persistent memory from both the CPU and the (commodity) NIC to provide efficient zero-

copy replication of RPC calls. We build on this by providing a library of persistent data
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Figure 28: Blizzard consists of three main components. libds, liblogrep and Execu-
tion protocols that couple former two.

structures with a recipe for concurrency that works well with replication. Concretely, Bliz-

zard provides an arbitrary number of logical ”channels” to named data structures held in

persistent memory. Operations that do not commute go to the same channel while services

that commute go to different channels. Blizzard enforces sequential execution on the same

channel.

We next describe each of our design choices and their rationale in-detail.

6.3 Overview

We propose Blizzard– a fault-tolerant, persistent memory programming runtime with na-

tive support for in-memory durable data-structures. Blizzard achieves low-latency, high-

throughput replication of in-memory state through use of an PMEM-specialized user-level

replication stack. Performance in the replication path is further enabled by maximizing

concurrency, while continuing to maintain application-specific ordering and correctness

guarantees. The outcome is that Blizzard provides for reliable and persistent in-memory

data-structures, capable of replacing existing enterprise application backends while provid-

ing improved performance, reliability and additional functionality.

Blizzard has two key components, libds and liblogrep (see Figure 28). libds

implements a growing number of persistent memory data structures modeled after familiar

C++ STL library counterparts, and liblogrep handles their persistent state replication

89



among node replicas. Below, we briefly summarize libds, liblogrep and the coupling

protocols between them, and provide their detailed description in the subsequent sections

(§6.4-§6.6).

• We design and develop libds, the application developer facing component of Blizzard.

libds supports a rich set of commonly used reliable, persistent memory data-structures

(e.g. maps, queues, etc). We implement libds data-structures using PMDK [21] – a

popular persistent memory programming library. PMDK supports persistent memory

programming primitives such as persistent memory allocators and durable transac-

tions. The operations to create and manipulate each of the data-structures are exposed

as a network call and made available to client-side applications via associated data-

structure proxy. libds allows these data-structures to be combined to form complex

backend data models required by real enterprise applications. At the heart of libds

functionality, is the core Blizzard programming APIs supporting RPC style per-

sistent memory programming over a network. We discuss Blizzard core API in

§6.4.

• We design and develop liblogrep, an PMEM-aware, fast log-replication runtime

that extends the RAFT log-replication protocol. liblogrep log-replications are

durable and replicate libds’s operations across replica nodes. liblogrep care-

fully integrates userspace-networking and byte-addressabilty of PMEMs to realize

end-to-end data zero-copy and batching, and to achieve low latency/high-throughput

operation replication.

• libds and liblogrep are combined in the Blizzard execution layer in a manner

that retains the zero-copy benefits while ensuring correct end-to-end execution of

incoming data-structure operations, both within a single node (crash-consistency se-

mantics) and across node replicas (distributed data consistency). Furthermore, for

increased system throughput, the execution layer integrates operations scheduling
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protocols allow concurrent execution of operations on replica nodes without com-

promising distributed consistency.

6.4 Blizzard Interface

The core operational model in Blizzard is a client-server one: users write services that

receive remote procedure calls from clients, lookup and manipulate persistent state and

then return a response. In order to provide maximum flexibility to the user, we treat the

actual RPC call as a binary blob.

1 / / C l i e n t s i d e API
2 S t a t u s MakeUpdateRPC ( c o n s t s t r i n g& r e q u e s t , s t r i n g ∗ r e s p o n s e ) ;
3 S t a t u s MakeReadRPC ( c o n s t s t r i n g& r e q u e s t , s t r i n g ∗ r e s p o n s e ) ;
4

5 / / S e r v e r s i d e API
6 c l a s s Lock ( ) {
7 p u b l i c :
8 v i r t u a l vo id Re leaseLock ( ) = 0 ; / / O v e r r i d e t o r e l e a s e your

l o c k
9 }

10 vo id HandleRPC ( c o n s t s t r i n g& r e q u e s t , v e c t o r <Lock >∗
d e l a y e d _ l o c k s , s t r i n g ∗ r e s p o n s e ) ;

11 boo l Commutes ( c o n s t s t r i n g& reques tA , c o n s t s t r i n g& r e q u e s t B ) ;

Figure 29: Blizzard API

The listing above shows the Blizzard API available to programmers - we elide some

setup details for reasons of space and focus on the core APIs. On the client side, the

programmer can send an RPC call as a binary blob. Blizzard takes care of service discovery

(primarily, locating the RAFT leader) and sends the server the RPC call. It returns the

response as another binary blob and a Status object detailing whether the RPC call could

be made successfully. Application level errors, if any, are encoded in the return blob by

the application. We distinguish between read and update RPCs as separate calls. This is

because reads are not replicated but updates need to be.

The server side API encapsulated in HandleRPC is implemented by the programmer

91



and executed as a callback by Blizzard. It contains the received request blob and expects

a response blob to be returned after execution. For update RPC calls, Blizzard guarantees

that the HandleRPC call is executed after the call has been successfully replicated on the

RAFT log (Section 6.5). The HandleRPC call is executed in the context of a persistent

memory transaction (Section 6.6). Any updates to persistent memory are only committed

after HandleRPC returns to the Blizzard runtime.

We expect concurrent invocations of HandleRPC to access a shared (persistent) mem-

ory data structure and to do so in a thread-safe manner. The Blizzard libds provides some

thread-safe data structures along with their client side data-structure proxies, the program-

mer is also free to roll their own using the PMDK library. In all cases data race safety

enforcement is the responsibility of the programmer using their favorite lock implementa-

tion, which they are free to place in volatile memory. The only requirement is that they

wrap these locks in an object derived from Lock in the Blizzard API and do not release

them when executing the RPC callback. Instead, these must be returned in the vector ob-

ject provided in the API. Blizzard releases all the locks after updates to persistent memory

have been committed (we discuss the reasons for this in Section 6.6).

Finally, we expect the programmer to implement a callback to help determine the com-

mutativity of various RPC calls. A programmer declares two RPC calls as commutative if

either order of execution leads to the same result for both the calls and therefore, they do

not care if Blizzard executes them in different orders on different replicas - for example,

increments to a counter. Commutative RPC calls are executed concurrently by Blizzard

allowing better performance than simply following the sequential execution specified by

the replication log.

To make the server side API more concrete, the following listing provides an abbre-

viated benchmark from Lobsters [80] that we use in this paper. It maintains a hash table,

mapping news story identifiers to vote counts. The data structure is provided by Blizzard
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1 b l i z z a r d : : map< s t r i n g , i n t > v o t e s ;
2 p t h r e a d _ m u t e x _ l o c k b i g _ l o c k ; / / i n v o l a t i l e memory !
3

4 c l a s s MyLockWrapper : b l i z z a r d : : Lock {
5 p u b l i c :
6 MyLockWrapper ( p t h r e a d _ m u t e x _ l o c k ∗ l o c k )
7 : s a v e d _ l o c k _ ( l o c k ) {}
8 v i r t u a l vo id Re leaseLock ( ) {
9 p t h r e a d _ m u t e x _ u n l o c k ( s a v e d _ l o c k _ ) ;

10 }
11 p r i v a t e :
12 p t h r e a d _ m u t e x _ l o c k ∗ s a v e d _ l o c k _ ;
13 }
14

15 vo id HandleRPC ( c o n s t s t r i n g& r e q u e s t , v e c t o r <Lock >∗
d e l a y e d _ l o c k s , s t r i n g ∗ r e s p o n s e ) {

16 / / Lock e v e r y t h i n g and s t a s h away t h e l o c k f o r b l i z z a r d
17 p t h r e a d _ m u t e x _ l o c k (& b i g _ l o c k ) ;
18 d e l a y e d _ l o c k s −>push_back ( MyLockWrapper(& b i g _ l o c k ) ) ;
19 v o t e s [ S t o r y I d ( r e q u e s t ) ] + + ; / / B l i z z a r d au to−undo l o g s t h e

hash b u c k e t !
20 }
21

22 boo l Commutes ( c o n s t s t r i n g& reques tA , c o n s t s t r i n g& r e q u e s t B ) {
23 / / Allow v o t e i n c r e m e n t s f o r a s t o r y t o commute .
24 r e t u r n t r u e ;
25 }

Figure 30: Blizzard sample code for retrieving top K voted entries.

and for this example we assume it is not thread-safe, requiring the programmer to imple-

ment their own locking. The RPC call handler adds a vote to a story.

The most interesting aspect of this example is the decision (by the programmer) to

declare all vote increments to commute. Viewed from the perspective of a single story,

increments and reads of the vote count are serialized. From the perspective of multiple

stories however increments are not serialized as the updates to different stories are exe-

cuted in different orders on different replicas. This reflects the fact that Blizzard provides

strong consistency in terms of state machine replication in the underlying layers but allows

programmers to relax that ordering for better concurrency. As we show in the following
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sections, we address the performance of RAFT replication while maintaining the serial or-

der of log updates, thereby providing a strongly consistent and performant substrate for

programmers to build their persistent memory applications as they see fit.

6.5 Replication

Blizzard uses RAFT [78] to replicate a durable log of updates to persistent memory data

structures. Replication is a necessary in Blizzard - it is critical to ensure in-memory data

structures are truly available even when the underlying persistent memory fails or the ma-

chine goes down. However, log replication is a synchronous operation. The latency com-

ponents of accessing durable storage and network hops to replicas add to the latency of

operation completion. We note that although various pieces of work that have attempted

to improve network overheads for replication protocols [81, 77, 82] they have examined

replication without persisting any state. This is not an accident – flash storage comes at

a significant latency and throughput cost compared to network performance. In contrast,

Blizzard is designed ground up for persistent memory that is at least an order of magnitude

faster than flash. This therefore puts us in a position to focus on the network component of

a fully functional replication stack that includes persistence.

A key building block for Blizzard is userspace network access. RAFT (as well as most

other replication protocols) are already designed to work on unreliable networks. There-

fore, it makes sense to jettison stream oriented reliable delivery by the kernel TCP/IP stack

in return for significant gains in latency to the wire. We use the Data Plane Development

Kit (DPDK [83]) for fast access to the network from userspace. For our specific setup, this

leads to a 3X reduction in latency for a single hop on the network from 28us down to 8us.

Although this restricts Blizzard to operate in a single Data Center environment, where the

Ethernet header is sufficient for routing from source to destination and networks are largely

reliable, we believe that this is an acceptable tradeoff. We exploit the direct addressabil-

ity of persistent memory to build a high performance replication stack using two simple
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principles: zero copy and batching.

Copying log entries in various parts of the replication state machine - from receiving

the client request to sending out copies to replicas - is expensive. This is even more so

since persistent memory is still around an order of magnitude slower than volatile random

access memory. The fact that persistent memory allows one data structure to simply point

to another (rather than indirecting through a block address on flash) leads to an efficient

solution to this problem in Blizzard. Figure 31 shows how RAFT log entries are organized

in relation to DPDK’s memory buffers. A DPDK memory buffer holding an incoming

request (complete Ethernet frame) is placed in an aligned block of memory together with

external metadata pointing to the start and finish of the block - we remind the reader that

this is all persistent memory. We keep the client request in its DPDK memory buffer for its

lifetime - spanning replication and execution.

To start with, the leader prepends a RAFT control block (with information such as term

and index) to the buffer adjusting the external metadata to compensate. The leader is now

ready to replicate the request. We exploit the fact that DPDK allows multiple memory

buffers to be chained together. To do so it simply creates an Ethernet header for each

replica and chains the same log entry packet to each of them. It hands off all the head-

ers to DPDK. The NIC then does the heavy lifting of assembling the Ethernet frames and

sending them out. We underline that this is only possible because the logs are not in block

storage and persistent memory is accessible from all connected agents, including I/O de-

vices, in the system. In contrast, directly accessing block storage from the NIC involves

serious complications [84] and this design illustrates how persistent memory can simplify

the design of distributed system primitives that need persistence.

Although this design lifts most of the load off the CPU, the RAFT consensus protocol

still represents an overhead for each log entry. More pertinently, this overhead is sequential,

since each log entry needs to be processed before moving on to the next one. A simple

way to further improve performance under load was therefore to batch process log entries.
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Figure 31: RAFT log entry in Blizzard

DPDK already provides an efficient vector interface to receive multiple packets waiting

in the NIC queue. We chain these packet buffers together in userspace and treat them as

a single RAFT log entry. This effectively amortizes the CPU cost of running the RAFT

protocol state machine over multiple log entries.

Blizzard’s RPC layer, together with the totally ordered semantics of replication with

RAFT, means that we provide serializability in terms of the distributed consistency model,

if we execute RPC operations in the RAFT log order and read operations as soon as they

are received at the leader. Although, we do not replicate reads, the RPC layer always

directs reads to the leader replica and thus, we provide read your own writes consistency

in addition to serializability. We do not provide linearizability as that would require us to

replicate reads to ensure that a leader does not become partitioned without realizing it and

responds to reads without taking into account concurrent writes in the majority quorum.

We believe serializability with read your own writes consistency is an adequately strong

distributed consensus model for programmers to be largely oblivious to replication under

the hood.

6.6 Execution Layer

Blizzard’s execution layer aims to concurrently execute committed operations in RAFT’s

execution logs. We depend on the application programmer to specify commutativity be-

tween operations (Section 6.4). The execution layer couples to the replication layer via a

96



set of queues to receive operations on and uses flags in the RAFT log entries to track and

update the state of each operation – replicating, replicated (or replication failed), execut-

ing and complete. The most complex part of Blizzard’s execution layer is the scheduler

that aims to schedule ready operations as soon as possible, while respecting commutativity.

The actual execution leverages PMDK’s persistent memory transaction library to enforce

failure atomicity. We discuss each of these components below. Finally, we also discuss the

implications of declaring operations as commutative and how the programmer can control

departure from serial execution order for better performance.

6.6.1 Coupling

Figure 32 illustrates the overall design and interfaces between Blizzard’s replication and

execution layers. Every read and write operation received by the replication layer, is added

to to a queue (Q) of operations, implemented as a persistent circular log. Each entry in

the circular log is itself a pointer to the actual DPDK memory buffer holding the RAFT

log entry. Each of the RAFT log entries include a set of flags read from and written to

by both the execution and replication layers to allow them to communicate the state of the

operations. Most importantly, these flags are persistent and survive restarts, forming the

foundation for recovery.

All currently executing or ready to execute operations (a subset of Q) are a set (E),

maintained in volatile memory. A scheduler picks operations from Q and adds them to E

when ready to execute. Executor threads pick operations from E to execute and update

the flags in the RAFT log when execution is complete. As part of this post completion

operation, the execution thread marks the operation for garbage collection by setting the

gc_flag. The replication sub-system uses this information to decide when to garbage

collect the RAFT log and move the tail of the persistent circular log forward.
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Figure 32: Blizzard - Coupling replication to execution

6.6.2 Scheduling

The scheduler runs as part of the continuous event loop in Blizzard, executing the schedul-

ing algorithm shown below.

Algorithm 1: Blizzard operations scheduler algorithm.
input: 1. queue Q of updates and reads.

2. Set E of operations that are ready-to-execute/executing
1 repeat
2 if Q.head().state == FAILED_REPLICATION then
3 Q.dequeue()

4 else if Q.head().state != REPLICATING and Q.head() commutes with all ops
in E then

5 op = Q.dequeue()
6 E.insert(op)

7 until server-shutdown;

The scheduler considers for execution operations at the head of Q, either immediately –

for reads, or only once they are successfully replicated – for updates. The scheduler checks

each operation against all currently executing operations in the set E. If it commutes with

all operations in E, the operation is added to E for execution. Operations at the head of Q

that have failed replication (perhaps due to a RAFT leadership change after the operation

was received) are removed from consideration by the scheduler.

6.6.3 Execution

The execution of operations in Blizzard is done by dedicated executor threads. Each thread

repeatedly pick up (with appropriate synchronization) an operations from the set E, executes
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it, and after the execution is completed and any of its effects persisted to memory, it is

removed from E. The execution follows the steps detailed below:

Algorithm 2: Blizzard Execution algorithm.
input: o = operation to execute, E = set of executing/ready operations

1 if o.state != COMPLETED then
2 BEGIN FAILURE_ATOMIC_TX
3 remove o from E
4 lockset = []
5 HandleRPC(o.request, lockset, o.response)
6 o.state = COMPLETED
7 END FAILURE_ATOMIC_TX
8 foreach l in lockset do
9 l.ReleaseLock()

10 remove o from E
11 Send o.response to client

We note that although the scheduler ensures only commutative operations can exe-

cute simultaneously, that does not mean those operations will not conflict when accessing

memory. For example, increments to a counter are commutative but one still needs to syn-

chronize on access to the counter to avoid two updates reading the same initial value of

the counter. In addition, we require a total order on simultaneously executing concurrent

updates to make recovery possible. To see why this is so, consider two increments of the

same counter. These are commutative. Assume one increments the counter from 0 to 1

and releases the lock. The second now increments the counter from 1 to 2 and then com-

mits its changes to persistent memory. On a failure, we need to replay the first increment,

which now reads the value 2 from the counter (instead of 0). Therefore we need to en-

sure commutative operations serialize with each other as a whole when accessing the same

memory location. We enforce this via delayed release of locks – a fairly standard technique

borrowed from databases. The execution algorithm ensures that any locks acquired during

execution (by user code) are released only after execution and persistence are complete.

The replication and execution layers cooperate to ensure that the states for an operation

move as per the state machine diagram shown in Figure 33.
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Figure 33: State machine diagram of an operation in Blizzard

We draw particular attention to recovery. The persistent circular log and state flags in

the RAFT log entry form the foundation for recovery. We process all undo logs and then

start the scheduler. The delayed lock release ensures that any operation that had completed

does not see any change to its input data. If an operation begins execution but fails before

executing, its persistent state flag remains set at REPLICATED when the system restarts. Any

persistent changes made by the previous execution are automatically undone by PMDK. It

then proceeds as usual through the current attempt till completion. On the other hand, if an

operation finishes execution and manages to move its persistent state flag to COMPLETED,

we do not execute it again by checking for this condition, thereby ensuring that operations

are executed exactly once with respect to changes to persistent memory.

6.6.4 Commutativity

We now consider how commutativity impacts the distributed consistency model. The pre-

cise definition of commutativity that we provide to Blizzard programmers is: Two opera-

tions commute if the result returned by each of them, when executing one after the other,

does not depend on the order of execution. Note that this relation is transitive. When no two

operations are defined as commutative, execution occurs in RAFT log order and therefore

we provide serializability with read-after-write consistency with respect to the data struc-

ture operations. If two operations are declared to commute, Blizzard might execute them

in different orders on different replicas but - by definition - this cannot change their results.

Commutativity can be a powerful tool to extract parallelism from the sequential order

specified in the log. As an example of allowing some commutativity, consider a single
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container in persistent memory with a dictionary (implemented as a persistent hash table

or tree) interface. Most such APIs (e.g., in C++ STL containers) disallow operations to

multiple keys. Therefore a natural setting for commutativity is to allow operations (reads

or writes) to different keys to commute, since reads by clients cannot reveal out of order

application of operations to different keys at different replicas. In a such situation, the

programmer can set Commutes to return true if and only if the operations are made to

different keys. The result is also serializability with read your own writes consistency

when the data structure API is restricted to a single key.

As an example of a more complex commutativity specification consider an example of

a graph stored in persistent memory, as an adjacency list: a map of vertices to a list of

neighboring vertices. Adding or deleting edges can be tricky due to the need to update

both source and destination vertices. We need to ensure that reads see a consistent state

of the graph: reading attributes of an edge specified as (u,v) should succeed and return

the same result regardless of whether we lookup vertex u or v to retrieve edge information.

An intuitive setup here is to allow edge changes to commute if they do not touch the same

vertex: Commutes((u,v),(x,y)) should return true if and only if {u,v}∩{x,y}= /0.

We show in the evaluation that judicious settings of commutativity allows more con-

currency to be extracted from the single serial order in the RAFT log and therefore better

performance. We note that the assertion that APIs that allow more calls to commute lead

to more concurrency is in fact a general notion as shown in COMMUTER [85]. A future

direction of work for us is to use automated tools such as commuter to determine the com-

mutativity of API calls, rather than requiring programmers to specify it themselves. Manual

specification of commutativity exposes parallelism and better performance but also leaves

the potential for specification errors to lead to divergent replica states that can be hard to

debug.
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Table 14: Hardware/software configurations of the Blizzard testbed

Compute
Intel Xeon Cascadelake, 96 cores @ 1 GHz over
2 NUMA sockets. Running Fedora Linux.

Memory
375 GB of DRAM memory and 756 GB of direct
accessible PMEM memory side by side to each other

Flash 420 GB Intel 520 series

Network
Commodity Intel 10-Gigabit Ethernet network cards with
Intel DPDK userspace network stack.
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Figure 34: Blizzard’s performance characteristics for an echo workload.

6.7 Evaluation

Setup: We evaluate Blizzard on a cluster of three identical servers (Table 14) and a

set of client machines to issue RPC calls. The servers are connected to each other via a

10 GigE switch with jumbo frames enabled to facilitate maximum batching in Blizzard.

Clients talk to servers via the same Intel DPDK network transport. Each server node is

equipped with DRAM and PMEM memory modules that are accessible via load/store in-

structions. An ext4 DAX file-system configured to use 2 MB hugepages [86] manages

the PMEM address space. Unless otherwise mentioned, we allocate incoming/outgoing

messages (DPDK mbufs), and RAFT log entries, persistent data-structures and their undo

logs entries from PMEM. Additionally, we also equip the server nodes with a flash drive to

contrast performance with PMEM.
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Figure 35: Importance of Blizzard’s performance optimizations using zero-copy and
batching

6.7.1 Replication

We begin by evaluating Blizzard’s replication performance using a focused microbench-

mark where the execution of the log entry is a no-op: the leader returns a response to the

client as soon as the log entry has been replicated to a majority of the quorum of server

nodes. Blizzard is configured to batch 32 log entries into a single RAFT log entry for ef-

ficiency. To put the results in perspective, we also measure the same with a regular network

transport by replacing our userspace networking stack with TCP/IP. Furthermore, we also

plot the theoretical peak performance if we were to batch write 32 log entries at a time to

flash storage (32*1/flash latency throughput at flash latency).

As the results in Figure 34 demonstrate, the presence of PMEM removes storage bot-

tlenecks and allows replication to be unhindered by the cost of persistence. On the other

hand, this necessitates an optimized implementation to reduce network overheads so as to

prevent the network stack from, in turn, becoming a bottleneck. The result is a system that

is able to achieve a raw replication rate of ∼ 365K log entries a second (3 ways with full

persistence).

Next, we evaluate the performance gains and overheads of the proposed Blizzard’s

optimizations using the same no-op log entry replication (3 way replication with full per-

sistence) microbenchmark. We use two base line numbers, 1) Blizzard replication without
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batching optimization (no-batching), where we process one operation at a time during repli-

cation 2) Blizzard replication without zero-copy optimization (copy-buffers), where we

make copies of incoming RPC payload, both during RAFT log-appends and batch prepa-

ration during network multicast. We compare these baselines against a Blizzard instance

with both zero-copy and batching optimizations in Figure 35.

Fully optimized Blizzard handles 40% more traffic in comparison to Blizzard with-

out batching optimization. We attribute the performance gains of batching optimization to;

1) increased memory parallelism during RAFT log appends. – a batched raft log entry ap-

pend (for 32 ops) requires only a single store fence instruction after subsequent CPU cache

line flushes, whereas no-batching version requires 32 of them. 2) reduced network multi-

cast cost, as the RAFT metadata appends and control path operations are amortized over the

number of batched operations. Similarly, without zero-copy optimization Blizzard’s per

operation latency increases by, 7% upto 34.5 us, across the throughput range, due to extra

memory management steps – allocation,data-copy and free. Combined together, zero-copy

and batching optimizations push Blizzard’s maximum throughput to 365K ops/sec while

keeping the per operation latency down at 32 us.

While Blizzard’s zero-copy and batching optimizations have improved replication

throughput, they also have shifted the system bottleneck from the replication layer, back

in to the persistent data-structures. Therefore Blizzard supports a commute-scheduler

that enable concurrent operation execution on data-structures without compromising cor-

rectness. We use the microbenchmark to measure the overheads of our commutativity

respecting scheduler. We add in the scheduler but apply no constraints by allowing all

operations to commute with each other - thus not changing the behavior but adding the

overhead of the scheduling checks. The result is close to the the microbenchmark with no

scheduler, demonstrating that the dominant cost in checking commutativity is on the side

of the callback provided by the user, rather than the scheduler implementation.

Finally, we show how Blizzard handles replica failures to provide applications with
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Figure 36: Blizzard failover performance in a 3 node replica cluster.

crucial availability guarantees beyond raw performance improvements. In Figure 36 we

show the failover timeline of a Blizzard cluster with 3 nodes under echo/no-op workload,

where we kill the leader replica in the midway. After time out based failed leader detection,

Blizzard client probes the other replicas for new leader. For a failure detection timeout

of 12ms, Blizzard fails over to new leader within 24 ms in the worst case for a 3 node

replica cluster.

6.7.2 Key Value store

We now consider a general purpose application that is often used as a persistence layer

in more complex systems - a persistent key-value store. Traditional persistent KV stores

like RocksDB, often use complex data structures such as LSM trees [87] to compensate

for the fact that block storage does not allow for easy random access. Could we leverage

the simplicity of data structures in PMEM to build a performant replicated key value store?

The in-memory data-structure realization for the same abstraction is a simple hash-map.

Given the capabilities provided by Blizzard, we ask the following question; Is it feasible

to implement a truly- persistent hash-map using Blizzard âĂŹs programming model?

We implement a hashmap based key-value store that supports point queries. We port

PMDK’s concurrent hashmap implementation as a Blizzard data-structure by extending

the hashmap provided in PMDK with Blizzard’s crash-consistent update protocol and
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a commute handler that honors a serialized read-your-own writes consistency model, as

outlined in §6.6.4. Our implementation supports arbitrary strings of characters as both

keys and values. The porting required only an additional 96 lines of C++ code.

We select RocksDB backed by PMEM (to give it the advantage of faster persistent

media) as our baseline to compare Blizzard’s persistent hashmap against. We run write-

ahead-logging enabled (for crash-consistency) RocksDB on Blizzard with replication and

commutative scheduling turned off, thus Blizzard only serves as an RPC transport for

RocksDB. We use 8 byte key/value strings for both RocksDB and the Blizzard hashmap-

based key-value store, and use a Facebook-like [88, 89] workload with 50% writes. We

report the resulting latency and throughput numbers in Figure 37.

Blizzard’s replicated and crash-consistent concurrent hashmap-based key-value store

outperforms RocksDB’s (no-replication) peak throughput by an order of magnitude, merely

due to not being constrained to use block interfaces and LSM trees. The former’s through-

put further improves by a factor of two, upto a throughput of 270K ops/sec, once we mark

operations to different keys as commutable thereby removing the constraint of serial ex-

ecution imposed by the RAFT log. Furthermore, we did not see a significant increase

in operation latency of our hashmap, where it remained < 44 us across the throughput

range. This result therefore underlines that PMEM decouples persistence from the block

abstraction and Blizzard allows programmers to exploit this without being burdened by

implementing their own crash consistency or replication.

6.7.3 Graphs

Next, we evaluate Blizzard in the context of graph databases – an important class of appli-

cations that presents unique durable data management challenges. Real world interactions

between entities such as in friend-networks can be natively represented using graphs. The

most natural representation of graphs for search and traversal uses pointers – a source of

great difficulty with block interfaces such as those in front of disks and flash. This has
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Figure 37: Blizzard’s key-value map performance comparison (replicated and persistent)
against similar software stacks

spawned a whole genre of research into batch processing of graphs from secondary storage

[90, 91, 92].

PMEM, natively allows pointers and persistence to co-exist, thus presents a unique op-

portunity to solve this vexing problem. The key challenge is to do this without letting

persistence or replication add programming complexity or eating unduly into performance.

We examine whether Blizzard is up to this task. An adjacency-list is the natural data-

structure for representing graphs on memory. We first implement a persistent adjacency

list data-structure by putting together already available PMDK building blocks. Persistent

list structures contain neighbor lists and a hashmap structure maps a vertex’s node_id to

corresponding list_entry of the row. Next, we extend the implemented graph-structure

with Blizzard’s crash-consistency semantics. Finally, we implement the handler for par-

allelizing commutative operations. The implementation only took 110 lines of C++ code,

as the bulk of the building blocks were already available as open source libraries.

We compare our implementation with LLAMA [93] graph processing system. LLAMA [93]

models a graph using compressed sparse row (CSR) representation that supports good up-

date performance with block devices. LLAMA treats each update as an immutable ver-

sioned object and aggregates them to form a consistent graph view during reads. LLAMA’s

delta based updates are specifically designed to handle frequent/streaming updates to graphs

stored on durable storage. We run LLAMA on PMEM as a network service, using Blizzard’s
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Figure 38: Twitter benchmark. Persistent graph use case

RPC transport.

We use the Twitter data-set [94] as our streaming graph benchmark. The data-set in-

cludes a subset (up to 15M nodes, 46M edges) of Twitter social network in the form of

who-follows-who. We use half of the data-set to pre-load our graph database and use the

rest of the updates to form a read/write (50/50) streaming workload similar to [95]. We

read the out-degree for a given node, as our read operation in this workload. We report

latency/throughput numbers for each of the competing systems in Figure 38.

The Blizzard graph representation based on a persistent adjacency list can handle up

to 150Kops/sec, at <38 µs, all while providing full fault tolerance semantics. Our competing

system, durable-LLAMA performs poorly at a peak throughput of mere 5K ops/sec and

takes as much as 175 µs for the same workload. The poor LLAMA numbers surprised us,

as we expected LLAMA with 1) no-replication and 2) PMEM as main memory, to have

a performance ‘edge’ over the competing system. We learned that, LLAMA’s copy-on-

write (COW) updates are known to incur high overheads when the ingestion batch size is

<10K updates, thus negatively impacting the system performance under frequent updates

(we verified this with the LLAMA authors).

Finally, the parallalized adjacency-list representation by means of commutativity rules,

further improve our graph operation throughput to 291K ops/sec, a ∼ 2× improvement

over a strictly serial execution schedule without significant increase in operation latency.

Overall, our replicated and fault-tolerant adjacency-list based native graph representation
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Figure 39: Noria’s vote benchmark performance numbers against different storage back-
ends.

outperforms the LLAMA graph engine by an order of magnitude (∼ 58×), even without

exotic data-structure level optimizations.

6.7.4 Lobsters

Finally, we use Blizzard to implement and evaluate a persistent data storage backend for

a popular web-application, Lobsters [96]. Lobsters is a community based news aggrega-

tion site where users vote for submitted web-links. They display the top-K voted web-

links on their home page. The original site manages web-links and their vote counts using

a relational DB backend [80]. They model durable state using article(article_id,

web-link,...) and vote(article_id, vote_count) relations. An article submit in-

serts a new entry into article relation and an upvote/downvote updates the vote relation.

The top-K voted article list is maintained as application logic.

We use a persistent priority queue as the memory native data-structure to serve top-K

requests. Such a data-structure is both intuitive and removes auxiliary book keeping in

the form of application’s runtime state as the data-structure itself maintains ordering with

updates in logarithmic time. We use a max-heap to maintain the top-K voted stories and

a min heap for the remaining stories. An upvote potentially causes the most voted story

in the min-heap to move to the max-heap displacing the story with the minimum votes

in the current top-k. A downvote can cause the opposite to happen. The hashmap maps
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article_ids to min/max-heap entries as the incoming vote requests are indexed using

article_id. For parallelism, we use a sharding scheme with multiple min-max heap pairs

and shard the story keyspace across them. Determining the top-k becomes slightly more

expensive due to the need to combine the results of the union of the min-heaps. We combine

k entries from each sharded priority queue to form the final result.

We re-used a persistent hashmap implementation from [21] and implemented a per-

sistent top-k priority queue using newly written min/max-heap code. Implementing the

core persistent data-structure and operations took ∼ 600 lines of C++ code. We only allow

update operations to different shards to commute with each other.

We compare Blizzard’s fault tolerant priority-queue data-structure performance against

a RocksDB based Lobsters backend similar to [80], that is hosted on PMEM. Both article_id

to title and article_id to vote_count mappings are encoded as key-value strings. The

original Lobsters application backend of relational databases uses an additional relation

and updates (at the cost of redundant data updates) to compute top-K. For a key-value store

backend a top-K operation would be very costly as a join routine needs to be performed ex-

ternal to the data store (e.g. in application logic). Therefore, for the RocksDB backend we

convert top-K requests to simple read operations similar to [80], thus pushing the RocksDB

backend to its best case performance.

We run the Vote benchmark from [80]: a zipfian load generator that is modeled after

actual website traffic. We pre-load our data-stores with 1M articles and run the experiment

with 19/1, read/update traffic. The update operations consist of up-votes/down-votes of

articles. During a read, the RocksDB based Lobster backend simply returns the article

information for a given article_id, whereas the priority-queue based Blizzard backend

returns top-K articles at a given instance. Therefore a top-K read request with the Blizzard

implementation on average move k× more data than the RocksDB counterpart. We use

K=8 over a 4 way sharded priority queue and issue one write operation for every 20 request

in the experiment run. We record the throughput/latency numbers seen at the benchmark
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client and report them in Figure 39.

The RocksDB powered Lobsters backend serves up to 160K ops/seconds with opera-

tion latency of <30 µs on average. Our persistent priority queue based Blizzard backend

only incurs <55 µs on average, but manages only a peak throughput of∼ 200K ops/sec. It is

important to note that the RocksDB performance numbers benefit from the relatively sim-

ple read workloads (no top-K) and lack of fault tolerance (no-replication) over Blizzard in

this experiment setup. The sharded and parallalized version of the same data-structure man-

ages a maximum throughput of ∼ 257K ops/sec while keeping average operation latency

<45 µs. Data structure sharding along with proper parallelization of incoming operations

using commutativity helps Blizzard to handle 25% more traffic, while maintaining the

same user APIs.

6.8 Chapter summary

We design and implement Blizzard– a replicated persistent memory runtime that supports

fault tolerant, concurrent and persistent data-structure programming. Blizzard integrates

userspace networking with byte addressable PMEM for a fast, persistent memory replica-

tion runtime. End user applications consume Blizzard’s persistent data structures using

a familiar operations APIs, similar to C++ STL containers. Additionally Blizzard also

implements replication and PMEM aware, crash-consistency and synchronization protocol

enabling consistent and concurrent updates of persistent data-structures.
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CHAPTER VII

RELATED WORK

The work presented in this dissertation makes contributions along several dimensions:

high-performance streaming I/O, persistent memory programming, reliable distributed per-

sistent services. In this chapter, we summarize the research most closely related to our

work.

7.1 Applicaiton I/O in scientific computing
7.1.1 Application-driven multilevel checkpoints

application-driven checkpoints use explicit checkpoint interfaces to durably save applica-

tion state and thus require changes to application code. As a result, only the state required

to restart is checkpointed, and the application-specific knowledge provides flexibility to

optimize and minimize C/R overheads. Application-driven HPC C/R mechanisms tradi-

tionally use a remotely located parallel file system (PFS) for checkpoint storage. Multilevel

C/R [42] make use of locally available durable storage to perform frequent checkpoints, en-

abling the application to recover from soft/transient errors while alleviating the contention

on the remote storage. Both NVStream and PHX system designs target application-driven,

multilevel checkpoint use-cases.

7.1.2 I/O in HPC analytics pipelines

The main simulation scientific applications are often coupled with analytics applications,

forming data workflows [26, 30]. The high data movement costs and increasing node-local

processing power encourage in-situ analytics where simulation and analytics applications

are co-run on the same physical machine. ADIOS [26] couples transport across simulation
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and analytics by using files or volatile memory buffers. However, it lacks support for crash-

consistent updates. Next, MPI-IO supports parallel I/O API when a parallel file-system

backs destination files. While NVStream does not offer a file-system API, the thread-

local log-structured memory in NVStream maximizes parallel I/O performance. Finally,

TCASM [30] is a kernel-based system software component that supports streaming work-

flow data management based on a memory-mapped interface. It is designed for volatile

memory and lacks versioning support apart from immediate-next semantic.

7.1.3 Persistent memory and HPC I/O

File API based HPC checkpoint and analytics I/O directly benefits from the PMEM op-

timized file-system implementations. PMFS [8] is a direct-access file system (DAX) that

removes the page-cache layer between the persistent memory device and the file-system

API. It uses undo logging for maintaining metadata consistency and copy-on-write for data

consistency. BPFS [62], another file-system optimized for PMEM, uses copy-on-write to

maintain its B+-tree based metadata structures for crash-consistency. NOVA [9], another

PMEM-based file system, provides better performance over PMFS using a log-structured

design. However, NOVA also suffers from system-calls, metadata updates, and garbage

collection costs.

7.2 Crash-consistent persistent memory programming

New PMEM hardware with byte addressable loads/stores, can readily support pointer based

native memory application structures. However, extending the same structures with pointer-

based durability semantics is challenging as it involves handling crash-consistency seman-

tics.

7.2.1 Storage transactions

Mnemosyne [11] proposes a redo logging scheme that encodes extra information in log-

entries. The the protocol cuts back on the number of memory ordering instructions during
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transaction commits and thus increase the hardware level memory parallelism during write-

ahead-logging. DudeTM [97] works around the costly memory ordering and cache-line

flushes during PMEM storage transactions using a shadow copy of the PMEM data in

volatile memory. It keeps the PMEM’s gold copy consistent by replaying a redo-log using

a background task. Persistent, tree data-structures has the option of using copy-on-write

protocols for maintaining crash-consistency. These protocols buffer updates in a partial

copy of the tree structure before being atomically swapped into the original tree.

7.2.2 Synchronization and durabiliy

Synchronization protocols are fundamental to correct multi-threaded programming. Cor-

rectly synchronized, multi-threaded applications guarantee atomicity, consistency, and iso-

lation (ACI) during program execution. We identify two main flavors of concurrency-

control protocols, pessimistic and optimistic concurrency control (OCC). In pessimistic

concurrency control protocols, acquire program locks before accessing shared data/state.

The optimistic schemes use combination of sandbox data-execution environment and times-

tamp ordering to differ lock-handling until the end of critical section [69, 98, 99]. Multi-

version concurrency-control (MVCC) schemes further extend [100, 101] the parallelism by

supporting different isolation guarantees.

Supporting multi-threaded PMEM programming requires supporting durability in ad-

dition to atomicity, consistency, and isolation (ACID). Therefore it is natural to integrate

PMEM support for existing multi-threaded applications by extending their concurrency-

control protocols with PMEM aware crash-consistency semantics. However, the early ef-

forts [10, 102] of integrating synchronization and persistence were specific to some system

software domain. Atlas [103] formally defines and generalizes the mechanism for deriv-

ing a consistent program state using the synchronization semantics of application program

structure. NVThreads [104] learns from Atlas and designs drop-in support for PMEM

aware crash-consistency for multithreaded applications by extending Pthread locking.
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7.2.3 Transactional programming

Transactional APIs have already been used as synchronization (e.g., transactional-memory)

and crash-consistency (e.g., storage-transactions) primitives, therefore qualify as the unify-

ing programming abstraction for PMEM aware ACID programming. Mnemosyne [11] and

NV-Heaps[13] extend software transactional memory (STM) engines with transactional

APIs to support PMEM persistence. The ccSTM that we evaluate closely follows the design

proposed by Mnemosyne. PHTM [14] extends hardware transactional memory (HTM)

with persistence using non-transactional stores and transparent flush semantics to ensure

crash-consistency. PHTM was extended in PHyTM [15] by adding an STM in the fallback

path. Both PHTM and PHyTM emulate logging inside the HTM region using regular load-

/stores instead of their non-transactional stores and transparent flush support. Thus, their

design affects the read/write set and capacity aborts. Also, PHTM and PHyTM provide

only an approximation of their system performance using a TSX host, but no implementa-

tion of their proposed hardware extensions. NV-HTM [105] introduces HTM accelerated

persistent memory transactions without changing the existing HTM hardware protocols.

NV-HTM differs durable log-commit till HTM-end for correctness reasons, and thus misses

out on overlapped durable log-writes.

7.2.4 Hardware support for PMEM

Intel added new instructions clflushopt and clwb for efficient transient cache-line flush [70].

Using these semantics and extending them, researchers have proposed persistency mod-

els [38, 106, 107, 108, 109] to reason about crash-consistency for PMEM. The industry

trends suggest that persistent caches [110, 111, 112] may become prevalent. Recent work

uses logging with persistent caches to provide durability guarantees [113, 114].
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7.3 Reliable persistent memory

The work discussed in §7.2 enables efficient, convenient, and correct native memory pro-

gramming on PMEM. However, these programming techniques neither support PMEM

data reliability nor availability, as they are vulnerable to PMEM media failures.

7.3.1 Reliable systems design

Reliable and available systems are realized by replicating system state across machines

in different failure domains. Supporting adequate distributed consistency among repli-

cated data while maintaining excellent system performance is one of the key challenges

in reliable system software design. Paxos [79], Viewstamp [115] replication and related

family [116, 78] of protocols/services coordinate replica nodes to keep the replicated data

in-sync. These protocols additionally integrate steps to handle membership changes/fail-

ures of the replicas. Applications directly use these services or use programming abstrac-

tions [117, 118] that rely on the former for reliable system design. Paxos-like replication

services often follow strict ordering during data-replication and, therefore easily support

serializable reads/writes – a very useful system property when building distributed appli-

cations using these services.

Other systems, choose to relax replication ordering for improved system performance,

yet supports serializability by incorporating alternative system software ticks. CRDT like

system abstractions [119] guarantee strong distributed consistency using restrictive API

designs. CRDT commutative operations guarantee the convergence of distributed state

without explicitly ordering operations among replicas. Tapir [120] supports fast, serial-

izable, distributed transaction processing on inconsistently-replicated (IR) storage. Tapir

combines OCC based concurrency control and specific application-level conflict resolu-

tion steps to achieve a strongly consistent replica state. COPS [121] tracks dependencies

between data and introduce causal-consistency for scalable, replicated data-store design.

COPS uses the extra dependency information associated with data for convergent conflict
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handling among replicas.

Finally, systems such as Amazon Dynamo [122] further relax distributed consistency

guarantees in favor of performance and availability. Aurora allows inconsistent replica state

by design and resolves conflicts eventually by using application-specific conflict resolution

routines.

7.3.2 Deterministic concurrency control

Blizzard uses an operations log (also known as logical log) with Paxos/RAFT proto-

col for strongly consistent data replication. Execution threads then apply these replicated

operations on to the target data-structures. Concurrently executing a log of operations

on to a properly synchronized target data-structure only guarantees an arbitrary chosen

single serializable order among many such correct orderings. Such behavior is due to

non-deterministic thread scheduling policies/mechanisms of OS kernels [123, 124] during

operations execution. Blizzard replicas executing different serializable thread schedules

may result in inconsistent state among replicas. Deterministic concurrency-control (DCC)

protocols solve this challenge by explicitly controlling the thread schedules.

Data partitioning is the most straightforward DCC protocol. Partitioned data-structures

isolate each executing thread to single partition and therefore support concurrent execu-

tion without affecting the data-consistency. H-Store [125] uses this system technique and

partitions the database-store and assigns a single core for handling partition updates. How-

ever, cross-partition updates still need additional co-ordination in H-Store. Deterministic

lock ordering algorithms [126, 127] grant locks to executing operations in the order that

they appear in the operation log. However, the technique offers limited concurrency when

the lock orderings of the operations are not known before their execution. Other propos-

als [128, 129] model dependencies/races between operations as a dependency graph. They

then come up with partial thread schedules for concurrent executions while maintaining

consistency properties. The relative costs of graph-generation and analyzing steps of the
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generic thread scheduler are high in the context of Blizzard. Therefore we opted for

commute-scheduler – a specialized version of the former technique.

7.3.3 Reliable PMEM programming

Recent work on PMEM has explored the feasibility of supporting reliable PMEM program-

ming. Mojim [130] provides reliable, PM aware data storage by overloading mmap/msync

system calls with synchronous replication support. Mojim uses an external co-ordinator

and only supports strong replication up to two nodes (one mirror node) in its most common

deployment model. AsymNVM [131] has a client-server model for PMEM programming

similar to Blizzard. AsymNVM uses both value and operation logging for efficient log

replication and features an LRU cache in the client for fast reads. It also uses an external

co-ordinator for consistent state management. In contrast, Blizzard uses a unified replica-

tion log for both consensus and operations tracking – enabling a much simpler deployment

than prior work.

7.3.4 Distributed shared memory on PMEM

Distributed shared memory (DSM) systems [31, 132, 133] pool main memory capacity

across a machine cluster to form a one big (logical) shared memory compute engine.

DSM systems support familiar memory load/store programming APIs , and therefore it

is straight forward to port concurrent, shared-memory (node-local) applications into DSM.

However, most DSMs use memory pages (4096 bytes) as the underlying data sharing unit

between distributed nodes because of the hardware support (processor MMU) and data-

sharing tradeoffs. Therefore, DSM programming requires careful placement/accesses of

shared data to avoid negative impacts from false-sharing.

DSM stacks often have to maintain data-copies at different nodes for performance rea-

sons (e.g., readers on shared data) and therefore consistency semantics for shared data is
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crucial for DSM performance. Maintaining consistent data-copies at all times (e.g., snoop-

ing processor caches) is costly/not-scalable due to network data movement and coordina-

tion overheads. Therefore, modern DSM stacks often support acquire/release[134, 135]

consistency semantics capable of supporting sequential consistency for correctly synchro-

nized applications.

Supporting PMEM aware DSM involves extending current acquire/release synchro-

nization protocols with crash-consistency semantics. Hotpot [136] extends acquire/release

semantics with redo-logging and supports single-writer , multiple-reader transactions with

a two-phase commit like protocol. Hotpot evaluation is heavily biased towards applica-

tions designed for the block I/O APIs. Therefore, persistent DSMs for truly memory native

applications remains as an open research question.
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CHAPTER VIII

DISCUSSION, CONCLUSION AND FUTURE WORK

This dissertation addresses system software challenges associated with using new byte-

addressable persistent memory (PMEM) hardware in server platforms. In the first half of

this chapter we provide a discussion of the lessons learned in developing the solutions in our

work. In the second half, we summarize our contributions and suggest possible important

directions for future research.

8.1 Discussion

Our thesis work exploits the byte-addressability as the most important property of the new

PMEM device, allowing it to be accessed as a traditional memory device, while at the

same time providing persistence, like traditionally block-based storage devices. In our

initial research work (§4 and §3), we advocated for replacing common file system-based

I/O interfaces used in high-performance settings with memory-based APIs modeled after

main memory object stores as a feasible I/O programming abstraction to the new persistent

memory. Our evaluations prove that, extending memory-based I/O APIs with persistence

semantics leads to greater opportunities for achieving improvements in performance and

system efficiency than what can be afforded through new file system designs even when

they are specialized for PMEM.

In the process, we also realized that it is possible to move away from I/O APIs al-

together when designing applications for PMEM. This is because, PMEM being byte-

addressable memory, eliminates the need for I/O software abstractions and intermedi-

aries that were originally designed to bridge the impedance mismatch between applica-

tions’ volatile (byte) and persistent (blocks) data access granularities. We benefit from our
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PMEM programming experience in designing NVStream and PHX and introduce general-

ized, memory friendly programming primitives for PMEM native application programming

in NVMTSX and Blizzard. Our NVMTSX work, introduces crash-sync-safe programming

primitives for designing both single- and multi-threaded PMEM applications. Blizzard

extends crash-sync-safe PMEM programming with fault-tolerance semantics. Com-

bined together, NVMTSX and Blizzard, simplify application design, have positive impact

on system performance, and more importantly, support additional application features and

functionality with memory structures that are otherwise not feasible with block I/O pro-

gramming.

Furthermore, our proposal and lessons learned in NVMTSX and Blizzard are useful in

designing PMEM systems in a wide variety of application domains. Therefore, in hind-

sight, our PHX and NVStream work, in-turn could have benefited from being built upon

the NVMTSX and Blizzard systems. For an example, the PMEM indexes of NVStream are

likely to benefit from using persistent transactions developed with NVMTSX, and a fault-

tolerant version of the same would benefit from Blizzard.

8.2 Lessons learned

We next present a summary of the general lessons we learned during this dissertation work.

8.2.1 The importance of system design optimized for persistent memory

Replacing existing block storage with fast PMEM devices (emulating block I/O) can sig-

nificantly speedup traditional system storage software stacks. However, maximum perfor-

mance gains require re-designing system implementation details such as caching, indexing

or crash-consistency protocols with PMEM’s ‘memoryness’ in mind. NVStream and PHX

use PMEM optimized data-layouts, crash-consistent data updates and further improve sys-

tem performance by exposing memory-friendly system APIs.

Next, from the PMEM-specific system building experience while developing NVStream
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and PHX we gained important insights on how to provide generalized programming prim-

itives for PMEM main memory programming. With the PMEM-optimized programming

primitives provided through NVMTSX and Blizzard, persistent application state can be eas-

ily represented and manipulated using native PMEM structures. We learn that applica-

tion designs that use proper PMEM primitives are more performant, can efficiently support

system software properties such as high-availability, and, more importantly, enable feature-

rich native memory data models (e.g. priority-queues). The later cannot be directly mapped

to block-based storage abstractions, even when considering storage stack specialized for

PMEM.

8.2.2 The importance of re-visiting the established system trade-offs

The mere introduction of memory-speed persistence of PMEM disrupts the well established

assumptions in existing systems software. Porting only the storage software components

to PMEM, in isolation, relative to the rest of the system, leaves much of the PMEM perfor-

mance benefits untapped. Therefore, throughout this thesis work, we often had to step back

and re-design our new system software solutions from the first principals of the system

designs.

For an example, we had to revisit, how we do data replication in our effort to support

highly available PMEM data-structure programming in Blizzard. Naively combining fast

networking and fast PMEM libs did not produce necessary throughput due to network-

ing overheads in the replication layer – an unlikely bottleneck point with traditional slow

disk based replication. Removing the network bottleneck involved novel PMEM-aware

zero-copy message broadcasts and message logging in the system.

Similarly, our PMEM specific optimizations for streaming HPC data storage in NVStream,

opened up a seemingly new, PMEM specific bottleneck point – PMEM bandwidth. We

solve the limited PMEM bandwidth challenge in our next work PHX by carefully using al-

ternative system resources in HPC, namely the available interconnect bandwidth to peer
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nodes. Our PHX proposal opens up opportunities to exercise new trade-offs among energy,

interconnect bandwidths and DRAM capacity.

8.2.3 Benefits of optimizing across system abstractions

Separation of concerns is a best practice in software engineering. Grouping functionality

together into coherent software components and forming new system software abstractions,

encourages re-usability as the abstractions shield the developers from low-level complex-

ities. However, putting abstract components together can incur overheads due to data-

copying, serialization, redundant functionality and control path overheads.

In particular, optimizing across existing software abstractions is even more so important

in the context of PMEM, as the device capabilities span across existing system software ab-

stractions. For an example, the byte addressability of PMEM fits well under runtime and

memory programming abstractions such as network buffers or memory APIs. The dura-

bility of PMEM works well with block I/O abstractions. We identify two main instances

where we optimized system software for PMEM across standard abstraction boundaries

during this thesis work.

• In Blizzard, we integrate the RAFT log, a block I/O abstraction, with network op-

erations based on a memory abstraction, an eliminate the need for any extra data

copies. Allocated PMEM buffers are shared between among the consensus and net-

work system components using PMEM smart pointers.

• The NVStream and PHX designs introduce PMEM memory objects that are com-

patible with memory-based compute and checkpoint I/O (block-based) abstractions

in HPC workflows. Our memory APIs remove unnecessary serialization overheads

when moving data between compute and storage software components.
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8.3 Summary

In the first part of this thesis, we analyze the system software overheads during HPC I/O

data movements with PMEM as the backing storage medium. File I/O overheads of data se-

rialization, kernel crossings and crash-consistent updates are significant during HPC check-

points, even with PMEM optimized file-systems. We design and implement NVStream– a

PMEM-aware I/O runtime that supports durable streaming I/O associated with HPC appli-

cations. NVStream uses a memory-based I/O interface that integrates with existing HPC

I/O routines to accelerate persistent data writes. NVStream design leverage the streaming

nature of I/O in HPC workflows, to benefit from using a log-structured PMEM storage en-

gine design, that uses relaxed write orderings and append-only failure atomic semantics to

form strongly consistent application checkpoints. NVStream I/O improves data movement

time by up to 10× in real world scientific applications.

The second part of the thesis builds on the NVStream work to identify device bandwidth

bottlenecks of PMEM hardware during HPC checkpoint I/O. The bulk, simultaneous data

movements during application checkpoints stress out even the high-bandwidth memory in-

terconnects of PMEM. We propose PHX– a PMEM backed, bandwidth aware I/O stack for

application checkpoints. PHX uses alternative network data movement paths available in

modern data centers to ease up the bandwidth pressure on the PMEM memory intercon-

nects. We evaluate PHX against real world HPC application checkpoints. PHX improves

GTC’s checkpoint I/O times by up to 12× and cuts down the total simulation time by as

much as 18%.

PMEM main memory can support both volatile data and persistent data, thus appli-

cations can use a single native memory data domain for both runtime and persistent state.

However such a programming model includes maintaining ACID guarantees for the durable

data of the application at all times. ACID-qualified persistent programming for multi-

threaded applications is hard, as we have to reason about both crash-consistency and syn-

chronization – crash-sync – semantics for programming correctness. In the third part of
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the thesis we explore the design space of PMEM-aware durable transactional runtimes and

their performance characteristics. We contribute new understanding of the correctness re-

quirement for mixing different crash-consistent and synchronization protocols, characterize

the performance of different crash-sync realizations for different applications and hardware

architectures, and draw valuable insights for future system design choices.

In the fourth and final part of the thesis, we highlight the importance of reliable, highly-

available PMEM programming. The characteristics of PMEM device change the cur-

rently established trade-offs in reliable system design which often are derived in the con-

text of slow block I/O storage media. More importantly, PMEM changes the way we

model our durable state of our applications. We design and implement Blizzard– a repli-

cated persistent memory runtime that supports truly fault tolerant, concurrent and persis-

tent data-structure programming. Blizzard carefully integrates userspace networking with

byte addressable PMEM for a fast, persistent memory replication runtime. Additionally,

Blizzard’s replication-aware crash-sync protocol enables concurrent data-structure up-

dates all while maintaining consistent replica state.

8.4 Future work

The first generation commercial PMEM hardware has already hit the market [22], and an

enhanced second generation was recently announced [137]. Going forward PMEM is ex-

pected to become mainstream in commodity servers. Efficient use of PMEM hardware

will require further commitment from the systems research community. We present several

promising future research directions directly influenced by the insights of this thesis work.

Redesigning applications for persistent memory : In the first part of this thesis we show

how to accelerate HPC I/O with PMEM-aware I/O stacks. The technological advancements

in PMEM technologies and device integration techniques (e.g., hardware caches) will fur-

ther improve the access latencies of the PMEM device. Therefore, it is feasible to re-design
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HPC application to use PMEM as main memory for both compute and I/O interactions. The

scope of such work could exploring ideas such as:

• modeling simulation/analytic application data (volatile/durable) as PMEM main mem-

ory data-structures and exploring HPC-aware system software mechanisms for keep-

ing them consistent under various failure models;

• exploring novel, memory friendly software abstractions (e.g., based on shared-memory)

and optimizations for supporting cross-component interactions in HPC analytics pipelines.

Hardware support for next generation PMEM system software : Modern server sys-

tems integrate compute with I/O devices. One common example in high-end data cen-

ters is the presence of “smart”, programmable network interfaces (NICs). Other examples

are new, commercially available smart storage SSD devices integrating compute. These

device-side compute elements often interact with main memory and offer accelerated ser-

vices (e.g., hardware transactions, hardware packet stitching). With PMEM as main mem-

ory, we have to first, re-visit/re-design some of the existing hardware accelerated services

designs and second, explore opportunities to introduce new hardware accelerated services

that benefit from PMEM’s byte addressable persistency.

Scalable, fault-tolerant PMEM aware application programming : Emerging classes

of applications demand backend infrastructure services with fast access to massive storage

capacity. These application backends are likely to grow in size with new user subscribes,

products and services. Supporting these use cases with PMEM still has to be supplemented

with scalable system software designs as the application data sizes far exceeds the node-

local PMEM capacities. Promising research directions include:

• exploring distributed PMEM programming across data-shards (e.g., Blizzard shards)

using memory native programming abstractions;
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• exploring the feasibility of other distributed programming abstractions such as per-

sistent distributed shared memory over PMEM.

Many other exciting systems research opportunities around persistent memory await

at all levels of the system software stack and at the intersection of hardware-software.

We hope such future efforts will benefit from the insights and the already open-sourced

software-artifacts of this thesis work.
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