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Introduction

From milk in your morning coffee to the air around us, fluid mixing
happens everywhere in physical life yet is one of the most difficult
mathematical and physical concepts to understand and solve. The
basic equations for fluid mechanics are framed in terms of velocity
fields and are typically very complicated partial differential equations
that are remarkably difficult to solve. Since the formulas for fluid
motions are essentially nonexistent, we can employ mathematical tools
and algebraic structures in order to understand the mixing of fluids.

Mathematical structures appear in most disciplines and take form
in various facets. We can think of structure as something we apply
to a set; structure represents the additional information, restrictions,
and properties of a set. Furthermore, we can relate sets and structures
(groups) through different types of morphisms. To have a stronger
relation between groups, we can consider isomorphisms which is the
bijective version of morphisms. From a topological standpoint, to relate
topological spaces, we look at homeomorphisms and diffeomorphisms
as well as homotopy.

We can create a fluid map that describes the evolution of a fluid
as the permutation of particles up to a fixed, arbitrary time, T . The
complete evolution of this fluid is the entire family of maps, one for
each time [5]. We can describe two-dimensional flow complexity using
basic differential equations

(0.1)
dx

dt
= u(x, y, t),

dy

dt
= v(x, y, t)

where u and v satisfy sets of equations describing fluid motion. So,
first introduced by Boyland et al., we can introduce a sort of mathemat-
ical structure in order to understand basic kinematics of fluid behavior
[6].

Although it is interesting to investigate the overall flow of a fluid,
in this thesis, we will investigate stirring by employing mathematical
structure: braid and mapping class groups. We consider the region oc-
cupied by arbitrary viscous fluid as the two-dimensional disk, D2. By
introducing a “mixing device” consisting of independent, permutatble

vii



INTRODUCTION viii

rods as punctures on the disk, D2, (where each puncture is representa-
tive of a mixing or stirring rod) we can stir and therefore mix our fluid.
We suppose this mixing device to be a mechanical stirrer that after
you stir, the rod stops at the same point as it started or the positions
remain the same (i.e. the first may end in the third rod’s position but
the three have the same starting and ending places). These rods act as
topological obstacles that stretch the fluid elements.

Since mixing is extremely difficult to understand and study, many
have used braids and braid groups in order to simplify fluid problems.
The example of mixing milk in tea or coffee is a rather poor exam-
ple to use since mixing is achieved almost instantaneously with just a
simply flick of the wrist. Naturally, we can make this example more
complex. So first, let’s consider an arbitrary mixing device that con-
sists of movable mixing rods in a fluid which is contained within a disk
boundary.

The stirring and mixing of a fluid with moving rods is vital in many
physical applications in order to achieve homogeneity within the mix-
ture. These rods act as an obstacle whose motion stretches and folds
together fluid elements [18]. Over time, the permutation of these rods
comprise a mathematical braid whose properties dictate the topological
entropy, a number to describe the total disorder or chaos of a system.
A braid with topological entropy greater than one exhibits chaotic be-
havior which guarantees a good mixing of the fluid [18]. These rod
stirring braids have been previously studied on both the disk as well as
the two dimensional torus. Using integral laminations and the count-
ing of intersections, we can estimate the topological entropy of braids
on the torus and can therefore enforce chaos by choosing the braid
with the highest topological entropy [15, 9]. However, the trajectory
of fluid mixing on a sphere poses an intriguing starting inquiry to over-
all mixing on spherical surfaces like the ocean, stars, etc. We use a
recipe established by Yvon Verbern to create pseudo-Ansov maps on a
punctured sphere using Dehn twist in order to construct similar maps
on a 4-times punctured sphere, S0,4 [19]. Since a quotient of T 2 under
the hyperelliptic involution is the 2 sphere with 4 marked points, we
are able to use various methods to estimate the topological entropy of
a stirring protocol on a 4-times punctured sphere.

In this thesis, we will outline the necessary mathematical concepts
needed including braid groups and mapping class groups. From here,
we will give an introduction to how fluid stirring can be expressed as
a mathematical braid as well as how mapping class groups and topo-
logical structures have previously been utilized to estimate topological
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entropy. We will then introduce Verberne’s recipe and apply it to stir-
ring patterns on the sphere [19].



CHAPTER 1

Mathematical Preliminaries

1. Group Theory

This section is largely drawn from A Book of Abstract Algebra by
Charles C. Pinter [17]. For this thesis, we assume that the reader is
familiar basic group theory and the notion of “open” sets.

The basic principles behind group theory is the concept of adding
mathematical structure to sets and understanding how these structures
can be related. One of the fundamental structures that can be applied
to a set is the idea of a group.

Definition. Consider a set G. This set, G, together with a binary
operation ? becomes a group if it satisfies these three axioms:

(1) ? is associative
(2) There is an element e such that for every element g ∈ G, we

have g ? e = g and e ? g = g.
(3) For every element g ∈ G, there exists an element g−1 ∈ G such

that g ? g−1 = g−1 ? g = e.

Recall that we represent a group as 〈G, ?〉 which simply describes
the set and the operation applied such that G becomes a group. Pos-
sible operations include addition, multiplication, division, etc.

1.1. Subgroups. A normal subgroup, denoted H / G, is a group
for which ghg−1 ∈ H for all h ∈ H and g ∈ G given group G and
subgroup H. An important normal subgroup is the center of a group,
denoted Z(G). The center of a group, G, is the group of all elements
that commute. In other words, the center is described as

(1.1) Z(G) = {z ∈ G | zg = gz for all g ∈ G}.

Example 1. 〈Q∗, ·〉 is a subgroup of 〈R,+〉 where Q∗ is the group
of non zero rational numbers under multiplication.

1.2. Functions and morphisms. Recall that a function, f :
D → C, is injective (or one-to-one) if every element of C is the im-
age of no more than one element of D. In addition, this function f is
surjective (or onto) if each element of C is the image of at least one

1



3. EXACTNESS 2

element of D (the function covers the co-domain). Then, a function is
bijective if it is both injective and surjective.

Definition. Let 〈A, ?1〉 and 〈B, ?2〉 be groups and f : A → B be
a bijective function such that

f(a ?1 b) = f(a) ?2 f(b)

for elements a, b ∈ A and f(a), f(b) ∈ B is called an isomorphism
from A to B denoted A ' B. A homomorphism is an onto func-
tion rather than a bijective function with the same properties as an
isomorphism.

2. The Fundamental Homomorphism Theorem

Consider groups G and H. We know that H is a homomorphic
image of G if and only if H is a quotient group of G. Recall:

Definition. Let f : G → H be a homomorphism with kernel K.
Then

f(a) = f(b) if and only if Ka = Kb.

Then it follows:

Theorem 1.1. The Fundamental Homomorphism Theorem.
Let f : G → H be a homomorphism of G onto H. If K is the kernel
of f , then

H ∼= G/K.

3. Exactness

As a consequence of the fundamental homomorphism theorem, we
can understand the notion of exactness as well as introduce the short
exact sequence of groups.

Suppose G1 and G2 are groups with homorphism ϕ : G1 → G2.
Suppose that ϕ is surjective. Then there is also a map from the kernal
of ϕ to G1 through an inclusion map. In other words, we have that

1 Ker(ϕ) G1 G2 1
θ1 i ϕ θ

For exactness to occur at G1, our outputs from i must be the inputs
for ϕ. In otherwords, i(Ker(ϕ)) = Ker(ϕ). Furthermore, for exactness
at G2, ϕ(G1) = Ker(θ) and similarly for exactness at Ker(ϕ), θ1(1) =
1 = Ker(i).

In general, we call a short exact sequence of groups A,B,C to be
defined as
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1 A B C 1
θ1 i ϕ θ

such that B/A ' C and i is injective and ϕ is surjective.

4. Topology and Continuity

This section is largely drawn from Essential Topology by Martin D.
Crossley [8]. A topology is merely a structure, like a group, placed on
a set that is a collection of distinguished subsets called open sets. The
definition for an open set is rather ambiguous when not put within
context of a specific topological space; however, in most context, an
open set is defined as an allowable neighborhood of a point.

Definition. A topological space is a set, X, together with a collec-
tion, T , of subsets of X called “open” sets, which satisfy the following
rules:

1. The set X itself is “open”.
2. The empty set is “open”.
3. Arbitrary unions of “open” sets are “open”.
4. Finite intersections of “open” sets are “open”.

Analogous to continuous functions in calculus or multivariable cal-
culus, we can create continuous functions between two topological
spaces. A function g : X → Y where X, Y are topological spaces
is continuous if the preimage of every open set in Y is open in X.
Formally:

Definition. A function g : X → Y from one topological space to
another is continuous if the preimage, f−1(Q) of every open set Q ⊂ Y
is also an open set in X.

In the rest of this thesis, the word “map” and “continuous function”
will be used interchangeably.

5. Homeomorphisms

We can relate topological spaces using the notion of homeomor-
phisms. Concretely, we have:

Definition. Two topological spaces S and T are homeomorphic if
there are continuous maps f : S → T and f−1 : T → S such that

(f ◦ f−1) = idT and (f−1 ◦ f) = ids.

The individual maps f (and f−1) are homeomorphisms and the topo-
logical spaces are writen then as S ∼= T .
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6. Quotient Spaces

One important type of topological space is the quotient space.

Definition. If X is a topological space with A ⊂ X, then the
quotient space denote X/A is the set (X − A)

∐
{∗} where {∗} is a

distinguished point.

Subsets of the quotient space are open only if they are open sets in
(X − A) or unions of {∗} and the intersection with X − A of an open
set in X containing A [8].

Example 2. Consider the square defined by S = [0, 1] × [0, 1].
Identify opposite sides as

We can see that through this equivalence relation, S/ , we have

Therefore, the torus is a quotient space. We can also identify the
2 holed torus in a similar way but with an octagon (sides identified)
rather than a square.

7. Paths, Loops and Homotopy

7.1. Paths and Loops. A path is like a parametric curve as learn-
ing in multivariable calculus or linear algebra. An example of a path
is: consider the function given by γ : [0, 1]→ R2 given by γ(t) = (t, 0).
This produces a straight line from (0, 0) to (1, 0) as shown in Figure
1.1.

t = 0 t = 1

γ

Figure 1.1. The path of γ : [0, 1]→ R2 given by γ(t) = (t, 0)
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A loop is a path that connects at a “base point”. An example of a
loop is: consider γ(t) = (cos(2πt), sin(2πt)). This function forms the
unit circle as shown in Figure 1.2.

x

γ

Figure 1.2. This is an example of a loop described by
the equation γ(t) = (cos(2πt), sin(2πt)) with base point
x.

If every loop in a topological space X can be continuously shrunk
to a single point, then X is simply connected.

Now, consider two paths f and g. The “addition” of paths is similar
to function composition in that we first follow the path of f and then
g or vise versa. Formally, the composition of two paths, denoted f ◦ g
is defined as:

f ◦ g(t) =

{
g(2t) 0 ≤ t ≤ 1/2

f(2t− 1) 1/2 < t ≤ 1
.

We can see that in order to fit the definition of a path, we must “trace”
g and f twice as fast as before we composed the two functions.

7.2. Homotopy. Two maps of topological spaces are considered
“similar” if one can be continuously deformed into the other. In other
words, consider two fixed points x and y and paths f and g both with
endpoints of x and y all within some topological space X. We say
that there exists a “homotopy” of paths in X if there exists a family of
paths that can be described by ft : [0, 1]→ X for 0 ≤ t ≤ 1 such that
ft(0) = x and ft(1) = y. In a sense, this family of paths describes a
continuous deformation from some base path f to end path g keeping
endpoints fixed.

Formally, we say that spaces are “homotopy equivalent” or there
exists a “homotopy” between two topological spaces.

Definition. Two maps f, g : S → T are homotopic if there is a
continuous function

F : S × [0, 1]→ T

such that F (s, 0) = f(s) for all s ∈ S and F (s, 1) = g(s) for all s ∈ S.
In this case, F is a homotopy between f and g and we write f ' g.
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Like most things in abstract algebra and group theory, we can create
equivalence classes of homotopies. The homotopy equivalence class of
a curve is just the set of all curves that are homotopic to a chosen
representative. So, given path f , we say that [f ] is the equivalence
class of all paths g that are homotopic to f .

We can think of homotopies as a family of continuous functions
dependent on a parameter, typically t. If we restrict to homeomorphism
rather than simply continuous functions, we define what is called as an
isotopy.

7.3. The Fundamental Group, π1. Let x0 be some fixed base
point in topological space X. Consider two loops f and g based at x0
and the equivalence classes [f ] and [g]. Define the operation [f ][g] =
[f ◦g]. This operation is well defined and can be seen by choosing some
f ′ ∈ [f ] and g′ ∈ [g] and showing that [f ′][g′] = [f ][g].

x0

x1 x2 x3

l1

l2
l3

Figure 1.3. Here we consider a set of 3 points in the
unordered configuration space of UC3(R2). Then we fix
a base point x0. The loops, li, are the generators for the
fundamental group of π1(UC3(R2), x0).

Consider the constant map given by ci : [0, 1]→ [0, 1] and consider
the map f−1 = f(1− t). We can see that when composing f with f−1,
we return the constant map ci. We will take these to be our identity,
ci, and our inverse, f−1. We can also clearly see that associativity will
hold as f ◦(g◦h) ' (f ◦g)◦h. Therefore we have formed a group! This
group is called the fundamental group and is the group of homotopoy
classes where the endpoints are fixed throughout the homotopy with
operation of composition as seen earlier. Concretely, we define:

Definition. Let X be a topological space and x0 be some fixed
base point inX. Define the fundamental group to be the group π1(X, x0)
with respect to [f ][g] = [f ◦ g] for loops f, g based at x0.

Example 3. Consider π1(T
2, (x0, y0)). The torus is defined as S1×

S1, so we can write the fundamental group of the torus as π1(S
1 ×

S1, (x0, y0)) with some base point (x0, y0). Thus, π1(S
1×S1, (x0, y0)) ≈
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π1(S
1, x0) × π1(S

1, y0). Since the circle is isomorphic to the additive
group of integers, we have that

π1(T
2, (x0, y0)) ≈ Z× Z.

We can see this from the following drawing:

We can see that this fundamental group has two generators given
by the red circle (a1) and by the blue (b1) which have the relation of
a1b1a

−1
1 b−11 = 1.

Example 4. Consider the fundamental group of the 2-holed torus:
π1(T

2#T 2). Rather than the two loops as shown for the torus exam-
ple, this connected sum will have generators of a1, b1, a2, b2 with the
relation of a1b1a

−1
1 b−11 a2b2a

−1
2 b−12 = 1. This can be generalized to the

connected sum of n tori. For an n-holed torus, we have that the fun-
damental group is generated by a1, b1, . . . an, bn with the relation of
a1b1a

−1
1 b−11 . . . anbna

−1
n b−1n = 1



CHAPTER 2

Braid Groups

Physical braids can be seen everywhere in life from hair styles to
ropes. In the study of braids, mathematical braids become an abstrac-
tion of the familiar braided hair or rope. Rather than gathering all the
strands of the braid with a pony tail at the end as we do with hair,
the ends of the strands of a mathematical braid remain separate and
secured to a surface.

Figure 2.1. A 3-stand braid in the familiar braided
hair pattern.

To be more concrete, a braid is formed by the crossings of n many
number of strands or strings. For any fixed natural number n, the
set Bn consists of all n-strand braids with a group structure. So Bn

denotes our braid group. We know from group theory that each group
must have an identity element. For braid groups, the identity braid is
a braid with no crossings. For n = 3, the identity braid is shown in
Fig 2.2.

Figure 2.2. The identity braid for 3 strands.

The braid group Bn can be expressed in terms of generators and
relations in the following way:

8
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Theorem 2.1. A braid group, Bn, has a presentation give by

Bn = 〈σ1, . . . , σn−1|σiσj = σjσi for |i− j| > 1,

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2〉

1. Important Subgroups of Bn

1.1. The Pure Braids. Consider the map π : Bn →
∑

n where∑
n is the n-element permutation group. The pure braid group, denoted

PBn consists of all braids in Bn such that, after permutation of the
strings, they return to the original order as which they began, i.e. the
kernel of the map π : Bn →

∑
n. Formally, we say:

Definition. Let π : Bn →
∑

n be the map from the n-strand braid
group, Bn, to the n-element permutation group. The pure braid group,
denoted PBn, is given by:

PBn = Ker(π : Bn →
∑
n

).

If we consider B3, the a typical 3-strand pure braid group in B3 is
shown in Fig. 2.3

Figure 2.3. A 3-strand pure braid. As we can see, the
strands start and end in the same positions. In other
words, (1, 2, 3)→ (1, 2, 3).

The “standard” generating set was first described by Artin to be:

(2.1) Aij = (σj−1σj−2 . . . σi+1)σ
2
i (σj−1σj−2 . . . σi+1)

−1,

however each Aij can be usedto show commuting relationships [1].
For example, A23 comutes with A12A13.

1.2. The Full Twist, ∆2. If we consider a braid with n strands,
connected to two walls, then we rotated the right most wall by 2π or
360 degrees. The braid generated by this action is called a full twist,
denoted ∆2, and is shown in Fig 2.4 below.

In fact, the full twist, ∆2, generates the center of the braid group,
Bn. In other words, any braid that commutes with any other braid will
be some integer multiple of the full twist [1]. This fact implies that for
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Figure 2.4. The full twist, ∆2

Bm to be isomorphic to Bn the condition that m = n must be satisfied
[10].

As we can see, braids are incredibly geometric and visual mathe-
matical entities, but we can also express them as the permutation of a
set of points.

2. Configuration Spaces

Typically, we define a configuration space, also called state or pa-
rameter space, as the space that contains all possible states of a given
system.

If particles collectively confined to a given region undergo motions,
the resulting mapping of the motion over time forms a braid. The
starting position of these particles is referred to as the configuration of
n particles with the unordered set of all possible configurations as:

UCn(R2) = {{p1, . . . , pn} ⊂ R2 : pi 6= pj for i 6= j}.
If we think of a braid as attached to a wall or disk, as we slide

that disk along the braid, at each point in time we have a point in
the unordered configuration space. Furthermore, a braid can be de-
scribed by a function γ : [0, 1]→ UCn(R2). First, choose a base point
x0 ∈ UCn(M) where M is a connected manifold of dimension at least
2. Then choose an arbitrary element β ∈ π1(UCn(M), x0) in the fun-
damental group of the n particle unordered configuration space. In
essence, braids can be expressed as loops in the unordered configura-
tion space.

Theorem 2.2. [1] Let M be a connected manifold of dimension
≥ 2. Then, the fundamental group of UCn(M) is isomorphic to the
braid group Bn(M).

Consider the real plane, R2, and 4 points. Say these points lie on
the x − axis starting at (1, 0) and increasing by one along the axis
until (4, 0), for convenience. The generators of the corresponding fun-
damental group, π1(UC4(R2), q0) where q0 is our base point, are the
loops that are based at q0 and contain each individual point. There-
fore, there will be 4 generating loops. The isomorphism between this
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and a geometric braid arises by assigning a loop in the fundamental
group (or composition of loops) to a braid. Since at each point in time,
a braid is just comprised of points in an unordered configuration space,
we can understand this braid as a loop in this space. In other words,
rather than viewing a braid in a 3-dimensional sense, we can compress
the braid (put together the right and left walls) and see our loop.

1 2 3

x0

2 1 3

x0

Figure 2.5. Depiction of the action on the fundamen-
tal group with base point x0 where punctures 1 and 2
on the disk are exchanged in clockwise fashion. This is
isomorphic to the 3 strand braid of σ1.

Viewing braids in this way (see Figure 2.5) allows us to investigate
generalizations from a more topological perspective and relate different
groups, such as the mapping class group (this will be described in depth
in the next chapter).

3. Braid Groups on Different Surfaces

3.1. Braids on a Sphere, S2. The braid group on the 2-sphere
or S2 is very similar to the braid group on the disk except the points
permute on the 2-sphere rather than the disk. This causes the braid
group on the 2-sphere to have the same generators as those of the
disk but with an extra relation. We can depict the braids in a similar
fashion to that of the disk; however, we can also visualize the braids
geometrically between two concentric spheres where the outer most
sphere is at t = 0 and progresses inward with time (i.e. a continuum of
spheres). Consider the 2-sphere with n permutable punctures which are
also the ends of the n-braid. Similar to the construction of braids on the
disk or plane, we map the 2-sphere to itself allowing for the permutation
of punctures. This map creates a continuum of spheres and forms a
spherical braid and admits the presentation shown in Equation 2.2.



3. BRAID GROUPS ON DIFFERENT SURFACES 12

The braid group on the sphere or the spherical braid group has a
presentation of:

Bn(S2) = 〈δ1, . . . , δn−1 :δiδj = δjδi for |i− j| > 1,

δiδi+1δi = δi+1δiδi+1 for 1 ≤ i ≤ n− 2,

δ1δ2 . . . δn−1δn−1 . . . δ2δ1 = 1〉
(2.2)

The generators of the spherical braid group are the same as those
of the disk: σi denotes the clockwise interchange of the ith and the
i+ 1th puncture. For convenience, as we will refer motion on the disk
versus the sphere frequently in this chapter, we will denote the motion
of punctures on the disk as σi and the motion of punctures on the
sphere as δi although they represent the same type of motion.

Figure 2.6. Example of a non-trivial spherical braid
with three strands.

3.2. Torsion in Bn(S2). Upon first glance, the braid group of the
sphere and of the disk are almost identical except for the last extra rela-
tion of δ1δ2 . . . δn−1δn−1 . . . δ2δ1 = 1. This extra relation allows for this
group to have torsion as the element δ1δ2 . . . δn−1 has order 2 whereas
the braid group of the disk is torsion-free.

In the context of the 2-sphere, the full twist has finite order, order
2, within our spherical braid group. The spherical braid group is has
torsion, i.e. there exists elements of finite order [4].

This can be understood from the fact that (∆2) has roots of finite
order in the spherical braid group [1].
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Figure 2.7. Example of how a a seemingly non-trivial
spherical braid is, in fact, the identity braid.

3.3. Braids on a Torus, T 2. Braids on a torus are similar to
those on the surface of a sphere in that we have a lot more options
for how strands can cross. On a torus, we have the same generators,
σi, but we can also polodially and torodially permute the strands with
generators, ρj and τj respectively. While there are n − 1 number of
possible σi generators, there are n possible ρj and τj. In other words,
we have generators σi, ρj, τj for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n.

We can think of the torus as the space R/Z×R/Z [3]. This allows
us to clearly see and represent (using matrices) the configuration space.
Since a braid will exist in a continuum of nested tori, torus braids are
incredibly difficult to visualize geometrically as we’ve done previously
with the braids on a disk and sphere. Since the fundamental group of
the configuration space will be isomorphic to the corresponding braid
group, we often times investigate π1 when the braid is incredibly dif-
ficult to visualize and manipulate like the torus braids. Moreover, the
relationship between the fundamental group and mapping class groups
allows us to make important conclusions about these types of maps.



CHAPTER 3

Mapping Class Groups

Let Sg be a surface with genus g. Then the mapping class group is
defined as

(3.1) Mod(Sg) = π0(Homeo
+(Sg), ∂Sg),

where π0(X) is the set of path-connected components of topologi-
cal space X. In other words, the mapping class group of surface
Sg is considered to be the group of isotopy classes of elements of
Homeo+(Sg, ∂Sg), where isotopies fix the boundary pointwise [3]. El-
ements of Mod(Sg) are called mapping classes and may be denoted
MCG(S), Map(S), Γg,n, etc, but for the purposes of this thesis we
will use Mod(Sg) for the mapping class group of Sg. The notation of
Mod(Sg) is meant to be synonomous with “modular group” as it can
be viewed as a generalization of the classical modular group SL(2,Z)
[3].

In the context of motions on different surfaces, we consider Sg to
be an oriented topological manifold with genus g and possibly with
boundary ∂Sg. If S is a surface with punctures, then we will consider
theses punctures as marked points on S such that the mapping class
group of S leaves the set of marked points invariant modulo isotopy.
Note that the mapping class group allows permutation of punctures
and marked points but must pointwise fix the boundary. In other
words, isotopies must fix each boundary component pointwise, but can
rotate a neighborhood of a puncture [3]. Let Q be a finite subset
of the interior of our surface. Each isotopy class is defined by the
self-homeomorphisms of the pair (Sg, Q) such that homeomorphism
f : Sg → Sg fixes ∂Sg pointwise and Q setwise, but preserves the
orientation of Q, i.e. f(x) = x for all x ∈ ∂Sg and f(Q) = Q. Each
self-homeomorphism of the pair (Sg, Q) induces a permutation on Q
which, when filtered using isotopy, establishes our mapping class group.
Note that if Q = ∅, then Mod(Sg, Q) = Mod(Sg, ∅) = Mod(Sg).

14
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1. Examples of Mapping Classes

1.1. The disk and the once-punctured disk. Without punc-
tures, the mapping class group of the closed disk is trivial [3]. This is
called the Alexander lemma:

Lemma 3.1. The group Mod(D2) is trivial.

This lemma states that for any homeomorphism, ϕ, of the disk,
there exists an isotopy of ϕ to the identity through homeomorphisms
that are the identity on the boundary [3]. The proof for this lemma is
detailed in [3], but the idea is that D2 is contractible to a point through
what is called as the “Alexander Trick.” This same proof also holds for
the once punctured disk.

Lemma 3.2. The group Mod(D2, x0) is trivial.

1.2. The sphere and the punctured sphere. The other two
mapping class groups that are trivial are of the sphere, S2 or S0, and
the once-punctured sphere denoted S0,1, Mod(S2) and Mod(S0,1) re-
spectively. To prove that Mod(S0,1) is trivial, we can identify the
once-punctured sphere with the real plane, R2, using the stereographic
projection and then use the fact that all orientation-preserving home-
omorphisms of R2 is homotopic to the identity by the straight-line
homotopy [3]. This example can be modified by isotopy such that it
fixes a point in order to show that Mod(S2) is also trivial.

The mapping class group of the thrice-punctured sphere is more
complicated and computed using a fixed arc on the surface of S0,3. By
cutting along the arc, we create a new surface: the punctured disk.
This allows us to be able to apply the Alexander Lemma (Lemma 3.1)
and establish a procedure for computing the mapping class group of
surfaces [3]. First, it is important to note that any two essential simple
proper arcs in S0,3 with the same endpoints are isotopic and any two
essential arcs that both start and end at the same marked point of S0,3

are also isotopic [3].
Choose an arc α in S0,3 with distinct endpoints p and q. Let φ :

Mod(S0,3)→
∑

3 be a homomorphism that fixes three marked points,
p, q, r. Since φ fixes these marked points, the endpoints of φ(α) are also
p and q. Therefore, φ(α) is isotopic to α. By cutting along α, we can
obtain a disk with one marked point and the boundary is established
by α with marked point r. Thus, since φ preserves orientations of both
our thrice-punctured sphere and α, φ induces a homeomorphism, φ̄, of
this disk with one marked point which is the identity on the boundary.
Then, by Lemma 3.1, the mapping class group of the once-marked disk
is trivial and so the induced homeomorphism, φ̄, is homotopic to the
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identity. Thus, Mod(S0,3) is isomorphic to the symmetric group on
three letters,

∑
3. This description was based on the proof detailed by

Farb et al. [3].

Proposition 3.3. The natural map Mod(S0,3)→
∑

3 given by the
action of Mod(S0,3) on the set of marked points of S0,3 is an isomor-
phism [3].

An analogous method can be applied to the twice-punctured disk
to show that there is a homomorphism between Mod(S0,2) and Z2 or
Z/2Z.

1.2.1. The torus. The mapping class group of the torus is a well
studied and important example of mapping class groups. The impor-
tance of the mapping class group of the torus lies in its exhibition of
hints to the behavior of higher-genus surfaces [3].

Theorem 3.4. The homomorphism σ : Mod(T 2)→ SL(2,Z) given
by the action on H1(T ;Z) ≈ Z2 is an isomorphism [3].

1.2.2. The four-times-punctured sphere. Recall that we can think of
the torus as a square with opposite sides identified. In general, the hy-
perelliptic involution map is a map from a surface to itself that rotates
along an axis which then fixes specific marked points. By applying
the hyperelliptic involution map to T 2, ι, the square rotates by angle
π about the center of the square (see figure 3.1 and 3.2 for a visual
illustration of this map). This map has exactly four fixed points and
so the quotient has four distinguished points which is topologically the
same as the four-times-punctured sphere.

Therefore, there exists a strong relationship between the mapping
class groups of the torus and the four-times-punctured sphere. We
can obtain the mapping class group of the four-times-punctured sphere
using the hyperelliptic involution map. If a map of the torus commutes
with ι, every such element of the mapping class group of the torus
induces an element in the mapping class group of S0,4. This relationship
allows the computation of Mod(S0,4).

Proposition 3.5. Mod(S0,4) ≈ PSL(2,Z) n (Z/2Z× Z/2Z).

The computations of the mapping class groups of the above exam-
ples, S0,2, S0,3, S0,4, T

2, all follow the same general algorithm by finding
a collection of arcs that, when cut along, make the surface into disks
which allows the application of the Alexander Lemma (Lemma 3.1).
In other words, the mapping class groups is determined by the action
on isotopy classes of these curves and arcs [3].
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Figure 3.1. Depiction of a hyperelliptic involution
map. We can see that when the torus is rotated by 180
degrees along the dashed axis, we see 4 marked points
(shown in blue). Thus we established a relationship be-
tween the 2-sphere with 4 marked points and the torus
under a hyperelliptic involution map.

α1

α2

0 1

23

Figure 3.2. Another depiction of a hyperelliptic invo-
lution map starting with the torus, T 2, with sides iden-
tified and resulting in the four times punctured sphere,
S0,4.

1.3. Birman Exact Sequence. Let S be a compact surface with
n marked points in the interior, i.e. (S, {x1, . . . , xn} such that each
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xi ∈ S◦ = S−∂S. Define the forgetful map or forgetful homeomorphism
Forget : Mod(S, {x1, . . . , xn} → Mod(S) via “forgetting” that the
marked points are in fact marked. Now define Push : π1(UC(S, n) →
Mod(S, {x1, . . . , xn} by taking a curve in the fundamental group and
“pushing” it to an element in the mapping class group.

We can relate the mapping classes through the following theorem.

Theorem 3.6. (Birman Exact Sequence, Generalized). Let
S be a surface without marked points and with π1(Homeo

+(S, ∂S)) = 1.
The following sequence is exact:

1 π1(UC(S, n)) Mod(S, {x1, . . . , xn}) Mod(S) 1.
Push Forget

where the map Forget simply forgets that the marked points are marked,
Push is the map that takes a curve in the fundamental group and pushes
it to an element in the mapping class group, and Homeo+(S, ∂S) is the
group of orientation preserving homeomorphisms of S that pointwise
fix the boundary and preserve the set of marked points. In addition,
π1(UC(S, n)) is the fundamental group of the unordered configuration
space of the surface S with n marked points.

Upon inspection of the Birman exact sequence, we can see that
there might be a relationship between mapping class groups and braid
groups since a braid group can be expressed as the fundamental group
of an unordered configuration space. However, there is only an isomor-
phism between Bn and Mod(D2, {x1, . . . , xn}).

We can describe the braid group Bn(D2) as a mapping class group.

Proposition 3.7. Let D2
n be a closed disk with n marked points.

Then Bn(D2) ≈Mod(D2, n) = π0(Homeo
+(Dn, ∂Dn).

For an orientable surface S of genus g, we have a relationship of a
homomorphism between Bn(S)→Mod(Sg,n).

For an orientable surface S of genus g, we have a relationship of a
homomorphism between Bn(S) → Mod(Sg,n). Since braid groups on
surfaces that are not the sphere are extremely difficult to visual, this
relationship will be exploited later in this thesis in order to examine
maps on different surfaces and surfaces of higher genus.



CHAPTER 4

Fluid Flow and Braids on a Disk

1. Fluid Stirring Protocols and Braids

Fluid motion can be expressed as the collective motion of fluid parti-
cles. Since particles cannot split, fluid motion has a well-defined future
and remains distinguishable for all time. We can therefore introduce
a map that describes the overall evolution of a fluid that occupies a
given region over time. In general, this map is defined by f : B0 → BT

where B0 and BT are the regions occupied by the fluid after time 0
and T . This map is called the time-T fluid map. We can consider our
inputs to the time-T fluid map as vectors or points within the region
and denote this with p,q. So, if p,q are distinct then f(p) 6= f(q)
and thus f is an injective function. Then, by definition of fluid flow,
we have intuitively that f is also surjective (i.e. for every p′ ∈ BT ,
there exists a p ∈ B0 such that f(p) = p′). Thus, we can say that the
fluid map is a bijection based on the assumptions of fluids that pre-
serves the number of fluid points. Essentially, the assumptions when
modeling fluid motion is that a fluid map is a bijection that preserves
the cardinality or number of fluid points with an inverse map such that
f ◦ f−1 = f−1 ◦ f = id where f is a homeomorphism.

1 2 3

Figure 4.1. Generic stirring device with n = 3 rods.

1.1. Stirring Protocol as a Braid. Consider a container (like a
cylinder) filled with fluid in which a stirring device consistent of mobile

19
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rods is placed. If we take the overhead image of this system, we see a
disk with circles. Take this to be a disk with punctures, Dn, where n
denotes the number of punctures and therefore rods. In physical space,
these rods can move around in disk, but can never intersect each other.
If we then create a plot of the horizontal position of the rods over time,
we can obtain a plot of the movement of the rods. In a mathematical
sense, the resulting graph is a tangle of strands that cannot intersect
each other, and therefore this graph describes a braid.

In a more rigorous sense, consider the disk that is filled with fluid.
The domain is the disk with n punctures where each puncture repre-
sents a rod and the disk is filled with fluid. The stirring action is the
permutation of these punctures over time where the domain is mapped
to itself. We assume that this mapping is a bijection and the inverse is
differentiable, i.e. this map is a diffeomorphism [6]. During the inter-
change of the rods, each fluid particle moves from an initial position to
a final one causing the mixing or stirring of the fluid (the movement of
fluid particles).

Let f : Dn → Dn be the stirring motion corresponding to n rods.
We say that f is isotopic to the identity if there exists a parametrized
set of fixed rod diffeomorphisms, ψτ , 0 ≤ τ ≤ 1, such that ψ0 = id
and ψ1 = f [6]. For more that 3 rods, there exists maps that are not
isotopic to the identity. The important conclusion is that stirring mo-
tions that are not isotopic to the identity results in the effect called
“topological chaos,” which is essentially that the motions of the rods
become unreplicable and describes the overall complexity that can-
not be removed by continuous deformations of the shape of the region
[6]. Topological chaos is derived from the topological properties of the
stirring motion. This motion, as described previously, is simply the
permutation of rod positions and can thus define a physical braid of n
strands over time. Formally, pick n points on the disk. Then as time
progresses, we can think of the disk moving along a straight line with
respect to time allowing for the permutation of points on the disk and
fixing the boundary pointwise. Then after some time, a braid appears
as a collection of n non-intersecting strands that connect to each of the
specific points (see Figure 4.2).

Braids then specify isotopy classes on the n punctured disk, and in
general: a configuration space with n punctures [6]. The generators
of the braid group, as described in depth in Chapter 2, are σi where
i = 1, 2, . . . , n and each σi represents the interchange of the ith and
(i+ 1)th strands/rods with inverses σ−1i . In general, the group has the
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x3x2x1

x3x2x1

Figure 4.2. Depiction of how a mathematical braid
arises from a stirring protocol. In this figure, we show
the 3-strand braid word σ1σ

−1
2 .

presentation:

Bn = 〈σ1, . . . , σn−1|σiσj = σjσi for |i− j| > 1,

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2〉.
The braid group and the isotopy classes serves as a “label” for

equivalent stirring motions on a surface (in this previous explanation,
we consider the disk, but we will also investigate the implications on
different surfaces).

2. Boyland Matrix Representation of Braids

Consider the case of a 3-strand braid on the disk. Along with a
more pictorial depiction of braids, we can also represent 3-strand braids
using 2 × 2 matrices with integer entries. Another way to understand
braids is the deformation of material lines that connect each puncture
as shown in Figure 4.3. First, the particles are connected by material
lines and then are transformed into the second picture in Figure 4.3
under braid motion σ2.

Since line I is mapped to I ′ and in essence II to itself, we can
represent σ2 (shown in Figure 4.3) with the matrix

(4.1) Mσ2 =

(
1 0
1 1

)
where the rows of the matrix correspond to the original lines and the
columns are the transformed lines. Since I ′ is comprised of I and II,
we place a 1 in both entries of the first column whereas II ′ consists only
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I′

II′III

Figure 4.3. The transformation of lines connecting
punctures from initial position I and II to I ′ and II ′

up to homotopy ([6]).

of II so the first entry of the second column has a 0 and the second a
1. Similarly, the matrix representing σ1 is

(4.2) Mσ1 =

(
1 −1
0 1

)
Since σ−11 is the inverse of σ1, we can construct Mσ−1

1
by taking the

inverse of Mσ1 .

(4.3) Mσ−1
1

=

(
1 1
0 1

)
In summary, the generators σ1 and σ2 can be expressed in their

matrix representation as

(4.4) [σ1] =

(
1 −1
0 1

)
[σ2] =

(
1 0
1 1

)
.

Thus if we consider the braid β = σ−11 σ2, the matrix corresponding
to this braid is

(4.5) Mβ =

(
1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
.

3. Thurston-Nielsen Classification Theorem

Thurston-Nielsen theory categorizes diffeomorphisms in terms of
isotopy classes [6]. Each isotopy class contains a Thurston-Nielsen
representative which is the “simplest” in the isotopy class and once
understood, presents the topological complexity in each diffeomrophism
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of the isotopy class. Below is the classification theorem as given in
Boyland et al.’s paper in the precise mathematical language [6]:

Theorem 4.1. Thurston-Nielsen Classification Theorem:
if f is a homeomorphism of a compact surface, S, then f is isotopic to
a homeomorphism, ϕ, of one of the following types:

(i) Finite order: ϕn = id for some integer n > 0.
(ii) Pseudo-Anosov: ϕ preserves a pair of transverse, measured fo-

liations, Fu and Fs, and there is a λ > 1 such that ϕ stretches
Fu by a factor of λ and contracts Fs by 1/λ.

(iii) Reducible: ϕ fixes a family of reducing curves, and on the
complementary surfaces ϕ satisfies (i) or (ii).

This theorem states that the Thurston-Nielsen (TN) representa-
tive, ϕ, is either finite order, pseudo-Anosov, or reducible. Finite order
homeomorphisms are the simpliest as the composition of the TN repre-
sentative with itself a finite number of times is the identity. The second
type is the more interesting type and is much more complicated. In
brief, a pseudo-Anosov map is a generalization of linear maps from a
manifold to itself with marked local directions of expansion (with a
stretching factor of λ) and contractions. Since pseudo-Anosov maps
have these marked areas of contraction and expansion, it makes them
an appealing map to study when analyzing and optimizing stirring
protocols.

From a fluid stirring perspective, pseudo-Anosov diffeomorphisms
are particularly intriguing as they give area-preserving maps of these
regions of uniform stretching or contracting at each given point mean-
ing that there is no elliptic island where fluid gets trapped and not
mixed [6]. Boyland et al. found that there are more advantages to a
stirring protocol of three or more stirrers as topological chaos can be
built into the respective protocol. To do this, they employ braid groups
(as diffeomorphisms) and compute the topological entropy of the cor-
responding map (discussed in detail in Chapter 6). For the case of 3
or more strands or stirrers, the Thurston-Nielson classification theory
states that a diffeomorphism (a specific stirring protocol) will either
be isotopic to finite order, reducible, or pseudo-Anosov. Therefore, we
can choose the diffeomorphisms that are pseudo-Anosov to begin our
investigation. The stretching factor or dilitation of a pseudo-Anosov
map, λ, can be found by representing each diffeomrophism using ma-
trices with integer entries and finding the spectral radius. The natural
log of this factor, log λ, is the elusive topological entropy and describes
the overall complexity of the system and dictates how good a stirring
protocol can be.



CHAPTER 5

Topological Entropy

In thermodynamics, entropy is defined as the natural logarithm
of the number of possible microstates all multiplied by Boltzmann’s
constant. Furthermore, entropy describes the disorder of a system. In
the context of a dynamical system, topological entropy is the same: a
number to understand the total disorder of a system. For fluid motion,
we can understand the mixing capabilities of a set of rods using this
entity. Topological entropy, however useful a number to calculate, is
also extremely computationally expensive to actually compute.

In 2000, Boyland et al. described an approach to show how par-
ticular stirring protocols increase system complexity–topological chaos
[6]. This method classifies stirring protocols as braids diffeomorphisms
and utilizes the Thurston-Nielsen classification theorem (theorem 4.1)
in order to draw conclusions from pseudo-Anosov maps.

First, we will give a rigorous definition of topological entropy and
then in the following sections, will give a brief explanation of the various
strategies on how to estimate and understand topological entropy using
mathematical techniques. In order to do so, we must first define Anosov
and pseudo-Anosov (pA) maps.

1. Anosov and Pseudo-Anosov Maps

In brief, a pA map is simply a generalization of Anosov maps with
marked directions of expansion and contraction. In order to describe a
pA map, we must first discuss an Anosov map.

Linear Anosov diffeomorphisms are maps on the two-dimensional
torus T 2. The theory begins with a matrix with unit determinant and
trace strictly greater than 2, i.e.:

(5.1) M =

(
a b
c d

)
, where det(M) = 1 and Tr(M) > 2.

Furthermore, the matrix M ensures that it has two distinct real
eigenvalues of λ > 1 and 1/λ. These eigenvalues mark expansion and
contraction on the torus where the eigendirection corresponding to λ
is the unstable direction and the eigendirection corresponding to 1/λ

24
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is the stable. The collection of all the unstable directions establish the
unstable foliation. Thus, the collection of all stable directions defines
the stable foliation. If a diffeomorphism, f , is isotopic to an Anosov
map, then interating this diffeomorphism grows the lengths of loops at
least at the rate of λn [6]. There also exists periodic points and thus
the number of fixed points of fn grows again at a rate of at least λn.

The pseudo-Anosov case is similar to the Anosov case except defined
on different surfaces and cannot posses a non-vanishing vector field as
on the two-torus [6]. However, pA maps still contain uniform expansion
and contractions by factor λ. Formally, a homeomorphism ϕ : F →
F of a surface F of negative Euler characteristic is pseudo-Anosov if
there exists a transverse pair of measured foliations on the surface F
with stable (F s, µs)) and unstable (Fu, µu) foliations together with a
representative f of ϕ such that f(Fu) = λFu and f(F s) = F s/λ [16].
We call λ the dilitation or stretch factor of ϕ. The pA map, φ, still
shares most of the attributes of an Anosov map: the number of fixed
points of ϕn grows like λn, iterated loops converge to the unstable
foliation.

In terms of fluid stirring, pA diffeomorphisms give area-preserving
maps of a region with uniform expansion and contraction thus prohibit-
ing elliptic islands which impede mixing [6]. This consequence makes
pA stirring protocols especially attractive and the subject of investiga-
tion. A way of describing the complexity of a stirring protocol is by
calculating the topological entropy.

2. Topological Entropy of a Map

We can think of the topological entropy of a map as the measure
of the complexity of a dynamical system. The topological entropy of a
map f is given by htop(f) which is dependent on the growth rate of a
sequence (an) [7]. The growth rate of a sequence is defined as

(5.2) Growthn→∞an = max
{

1, lim
n→∞

sup |an|1/n
}
.

We say that if the growth rate of the sequence is strictly greater than 1
(i.e. when Growthn→∞an > 1), then the sequence grows exponentially
which yields the desired result of topological chaos [12]. Typically, if
a sequence grows exponentially with growth rate λ, then the sequence
will grow like λn as n tends to infinity [7]. We now define topological
entropy as:

(5.3) htop(f) = lim
n→∞

1

n
log(an).
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2.1. Strict Definition of Topological Entropy. If a sequence
grows exponentially, say by log(λ), will grow iteratively by λn as n
tends to infinity. So we can also define topological entropy of a map by
Fix∞(f) = growth(#(Fix(fn)). If Fix(fn)) is infinite, then our entropy
definition is not computable. Therefore, we can replace Fix(fn) with
the Nielsen number.

2.2. Nielsen Equivalence. Recall that given a compact space X
and mapping f : X → X, the number of fixed points is the cardinality
of the set Fixf = {x ∈ X : f(x) = x}. Given a map f : X → X such
that Fixf 6= ∅, we say that two fixed points x, y ∈ Fixf are Nielsen
equivalent if there exists a path P : [0, 1] → X such that P (0) = x
and P (1) = y where f ◦ P ∼ P relative to endpoints x, y. In other
words, the path P can be continuously deformed to f(C) keeping x
and y fixed.

The Nielsen number of f is defined as N(f) = #{F : I(f,F ) 6= 0},
where I(f,F ) is the fixed point index of f at the fixed point class F .
We can say that the Nielsen number is the number of essential (fixed
point index is not equal to zero) Nielsen classes. This number is defined
to be a non-negative integer and as it contains at least one fixed point
of f , the inequality 0 ≤ N(f) ≤ #Fixf is true.

2.3. Definition Topological Entropy using Nielsen Classes.
In other words, topological entropy is the exponential growth rate of
period orbits. Since Fix(fn) is not always finite, we can consider the
growth rate of period Nielsen classes, pnt(f, n). For each n ∈ N, we de-
fine period Nielsen classes as the number of distinct period n-periodic
Nielsen classes for f with pnt∞(f) = growth(pnt(f, n)) which will al-
ways be finite [7]. Since pnt∞(f) is finite, we can understand the
topological entropy using the period Nielson classes as a lower bound
for topological entropy of a map using Theorem 5.1 [7].

Theorem 5.1. Given a homeomorphism f : M →M , then htop(f) ≥
pnt∞(f).

We can also think as topological entropy as the total exponential
complexity of the orbit structure represented by a single number [11].

The definition of topological entropy is based on work by Katok and
Hasselblatt [11] and Boyland et al [7]. But before defining and under-
standing topological entropy, recall the definition of a metric space: a
metric space is a set equipped with a function, typically denoted d (the
metric) which takes every x, y pair satisfying:

1. d(x, y) = 0 if and only if x = y.
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2. d(x, y) = d(y, x)
3. d(x, y) + d(y, z) ≥ d(x, z) (the triangle inequality)

Then note that a compact metric space X is considered compact if
each open cover of our space has a finite subcover.

We begin our investigation into the topological entropy by consid-
ering a self continuous map between to compact metric spaces: so,
consider f : X → X with a distance function d. We can then define a
sequence dfn for n ∈ N by [11]:

(5.4) dfn(x, y) = max
0≤i≤n−1

d(f i(x), f i(y))

This increasing sequence of metrics measures the distance between
{x, . . . fn−1x} and {y, . . . , fn−1y}. If we consider the growth rate of
the minimal number of initial conditions whose behavior up to time
n approximates the behavior of any initial condition up to ε, we can
define this growth as

(5.5) hd(f, ε) = lim sup
n→∞

1

n
log(Sd(f, ε, n))

where Sd(f, ε, n) is the sequence of initial conditions that approx-
imate the behavior of f , to time n, up to ε. Formally, we can write
an (n, ε)-spanning set (we can denote this set E ⊂ X) as the union of
open sets or open balls in X. In other words, E =

⋃
x∈E Bf (x, ε, n)

where the open ball in X is Bf (x, ε, n) = {x ∈ X|dfn(x, y) < ε}. Then
Sd(f, ε, n) is just the minimal cardinality of the spanning set. Since
equation 5.5 does not decrease with ε, we can finally formally define
topological entropy of a map as

(5.6) htop(f) = lim
ε→0

hd(f, ε).

2.4. Surface Diffeomorphisms. [15], [16]
A homeomorphism ϕ : F → F of a surface F of negative Eu-

ler characteristic is pseudo-Anosov if there exists a transverse pair of
measured foliations on the surface F with stable (F s, µs)) and unsta-
ble (F u, µu) foliations together with a representative f of ϕ such that
f(F u) = λF u and f(F s) = F s/λ [16]. We call λ the dilitation or
stretch factor of ϕ.

Consider M to be a compact oriented surface and denote J (M) as
the homotopy class of closed and simply connected paths not homotopic
to zero or the boundary. If α ∈J and (F , µ) is a measured foliation
of M , we can say then that J (F , µ, α) = infγ∈α

∫
γ
|µ|. For any two

α, β ∈ J (M), we can denote the minimum number of intersections
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by c(α, β). The following proposition suggests a method to beginning
the computation of topological entropy of a pseudo-Anosov map of a
compact oriented surface M [15]:

Proposition 5.2. Let ϕ be a pseudo-Anosov map with stable and
unstable foliations (F s, µs)) and (F u, µu). Let λ be a real number,
λ > 1, be such that ϕ(F s) = (1/λ)F s and ϕ(F u) = λF u. Then:

(1) limn→∞
c(ϕnα,β)

λn
= J (F s, µs, α)J (F u, µu, α),

(2) htop(ϕ) = log λ

(3) htop(ϕ) = inf{htop(ψ), ψ ∈ Diff(M), ψ ∼ ϕ}.

2.5. Method One: Counting Intersections. Following Propo-
sition 5.2, pick α, β ∈J (M) and find the logarithm of the minimum
number of intersections between the m-iterate homeomorphism map of
α (i.e. ϕmα) and β:

(5.7) lim
m→∞

1

m
log c(ϕmα, β)

Furthermore, if we only consider surfaces that are homeomorphic to
the sphere with finite n discs removed represented with a stereographic
projection with respect to one of the removed discs as the pole, we can
count the intersections of two sets of curves up to homotopy. The first
set L is consistent of n-disjoint simple closed curves whereas the second
set R is comprised of n simple closed curves on a sphere with n open
discs removed [15].

Proposition 5.3. Let M be a sphere with n ≥ 3 discs removed,
let ϕ be a diffeomorphism of M and let L and R be the two subsets of
J (M). Then

htop(ϕ) = lim
m→∞

1
m

log c(ϕmL,R).

See [15] for the proof of the above proposition.

3. Topological Entropy of a Braid

As seen in Chapter 1, the braid group of n strands has the group
presentation of

Bn = 〈σ1, . . . , σn−1|σiσj = σjσi for |i− j| > 1,

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2〉.
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However, there are many ways to represent the braid group. One
useful definition is using the connection between the braid group and
surface diffeomorphisms. We can simply think of a braid as a smooth
mapping of the permutations of n-distinct points on the disk. In other
words, we can represent the braid groups with a diffeomorphism of
these points over time with the union of the boundaries of the disk up
to homotopy

(5.8) Bn = Diff(D2, relΓn, ∂D
2)/ ∼ .

where D2 represents the unit disc with n disjoint open discs re-
moved, Γn the union of their boundaries, ∂D2 [15].

Consider the configuration space of m distinct points d1, . . . , dm on
a disk with base point c = {d1, . . . , d2}. We denote this configuration
spaces as Cn,m(D2). Then, the braid groups on the n-punctured disk
is defined as [12]:

(5.9) Bn = π1(UC(D2), n).

Considering β ∈ Bn to be an n-strand braid, the topological entropy
of β is defined as:

(5.10) h(β) = inf
ϕ∈β

htop(ϕ).

As described earlier, one way of estimating topological entropy of a
map is by counting the number of intersections between the m-iterate
homeomorphism map of α (i.e. ϕmα) and β as done in Proposition 5.3.
We can extend this idea of counting intersections of closed and simply
connected paths to integral laminations. An integral lamination is a
set of disjoint non homotopic simple closed curves of a compact and
oriented surface [15] which are considered up to homotopy. We will
denote the set of integral laminations of a surface M as L (M).

Proposition 5.4. [15] Let n be an integer, n ≥ 2, L ∈ L (Mn)
and c(L) denote the minimum number of intersections between L and
the real axis. if ρ(L) = (a1, b1, . . . , an, bn), then

c(L) =
n∑
i=1

|bi|+
n−1∑
i=1

|ai+1 − ai|+ |a1|+ |an|+ ν1/2 + νn/2.

This leads to the method for estimation of a braid’s entropy [15]:

• Choose ε > 0, let n be an integer greater than or equal to 1
and β ∈ Bn(D2).
• First, write the braid using the standard generators, σi.



3. TOPOLOGICAL ENTROPY OF A BRAID 30

• Compute ρ(βmLn0 ) for m = 1, 2, 3 . . . and cn = 1
m

log c(βmLn0 )
using Dynnikov’s formulae, Proposition 5.4 omitting ν1/2 +
νn/2 as they do not change
• Stop when |cm+1 − cm| < ε.

Conjecture 5.5. [15] Let n be an integer, n ≥ 2. There exists
a positive constant Cn ∈ R such that for any braid β ∈ Bn and its
corresponding sequence (cm)m≥0,

|cm − htop(β)| ≤ Cn
logm

m
.

Conjecture 5.6. [15] Braids of maximal entropy belong to B3 or
B4.

3.1. Triangulation and Integral Laminations. Moussafir ([15])
described a method for estimating the topological entropy of pseudo-
Anosov braids based on counting the crossings of integral laminations.
In work done by Finn and Thiffeault, Moussafir’s method is extended
to compute a precise estimate for the topological entropy of braids on
the torus using a triangulation of the surface using the evolution of
integral laminations [9].

A torus braid is a braid with generators {σi, ρi, τi} where σi rep-
resents the clockwise interchange of the i-th and (i + 1)th puncture
in the typical braid generation, ρi is the i-th puncture making a full
2π rotation poloidally (vertical periodic direction), and τi is the i-th
puncture making a full 2π rotation toroidally (horizontal period direc-
tion). An integral lamination is simply an equivalence class of simple
closed curves that are not isotopic to the boundary or any section of the
boundary. Finn and Thiffeault describe how these integral laminations
are encoded by the triangulation of the flow’s domain and describe the
details of the evolution of flow under braiding motions [9]. The braid’s
topological entropy is derived from this evolution of integral lamina-
tions. By using a specific triangulation of the domain and assuming
that the closed curves are pulled tight, counting the number of cross-
ings of the loop and edge of the triangulation is made easier which
ultimately gives rise to an estimation for topological entropy given by
[9]:

(5.11) htop = logS(n)− logS(n− 1)

where S(n) is defined as the total number of crossings after n iterations
of the braid. Provided that the braid has a pseudo-Anosov component
from the Thurston-Nielsen Classification Theorem, the topological en-
tropy estimate described in equation 5.11 requires very few iterations
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of the braid applications to acquire a precise estimation of the actual
topological entropy [9]. The natural logarithm of the dilitation (i.e.
log λ) will always produce a lower bound for the topological entropy;
however, the approach described by Finn and Thiffeault provides an
accurate and precise estimate of the entropy of a braid described as
the permutation of a set of points which can represent the evolution of
fluid flow under certain stirring protocols [9].



CHAPTER 6

Fluid Stirring on the Sphere, S2

1. The Sphere, S2

In mathematics, the term “sphere” can refer to a verity of surfaces.
The 0-sphere refers to two points in space, the 1-sphere is the unit
circle, and the 2-sphere, the subject of this chapter, refers to the unit
ball in three dimensional space. In general, the n-sphere consists of
a set of points that are some distance r from a designated point in
n + 1 Euclidean dimensional space. Since topologically, an n-sphere
with some arbitrary radius is homeomorphic (topologically the same
as) the unit n-sphere, we can just consider the definition of the unit
n-sphere. So, the unit circle is the 1-sphere and the globe is the 2-
sphere. A sphere that exists in higher dimensional space is called a
“hypersphere.” For this thesis, we consider the 2-sphere defined as

(6.1) S2 =
{

(x, y, z) ∈ R2 : |x|2 + |y|2 + |z|2 = 1
}
.

2. Fluid on a Sphere and the Disk

In previous sections, we have described fluid motion as it occurs on
the disk; however, in this section, we will extend the methods used for
computing and estimating topological etropy for stirring protocols on
the disk to those on the sphere.

2.1. Braids on the Sphere, Bn(S2). Consider the 2-sphere with
n punctures. Recall that the group presentation for braids on the
sphere is:

Bn(S2) = 〈δ1, . . . , δn−1 :δiδj = δjδi for |i− j| > 1,

δiδi+1δi = δi+1δiδi+1 for 1 ≤ i ≤ n− 2,

δ1δ2 . . . δn−1δn−1 . . . δ2δ1 = 1〉
(6.2)

The last extra relation of δ1δ2 . . . δn−1δn−1 . . . δ2δ1 allows for this
group to have elements with finite order. This fundamental difference
between spherical braids and braids on a disk prohibits a natural trans-
lation of fluid stirring on the disk to that of the sphere; however there

32
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does still exist a natural homomorphism ϕ : Bn(D2) → Bn(S2) such
that ϕ(σi) = δi.

Although spherical braids have group presentation and are rela-
tively well known entities, they are extremely difficult to visualize.
Mapping class groups offer a better avenue of exploration as we can
use the Birman short exact sequence in order to relate groups as well
as create more pseudo-Anosov maps.

2.1.1. Mapping Class Group of the Sphere. Mapping class groups
allow us to draw connections and relate groups for ease of computation.
Recall that a braid group can be thought of as the fundamental group of
the unordered configuration space and that punctures can be thought
of as “marked points.”

Let S0,n be the sphere with n = |{x0, x1, . . . , xn−1}| marked points.
Consider the fundamental group π1(UC(S0, n)) ≈ Bn(S2). We have a
point-pushing map π1(UC(S0, n))→Mod(S0, {x0, x1, . . . , xn−1}) whose
kernel is isomorphic to the image of π1(Homeo

+(S0)) in π1(UC(S0, n))
[3]. However, we also know that the group π1(Homeo

+(S0)) ≈ Z/2Z
and thus when n ≥ 2 this group maps nontrivially into π1(UC(S0, n)).
Furthermore, since Mod(S0) = 1, we have the short exact sequence
given in equation 6.3 [3].

(6.3) 1→ Z/2Z→ π1(UC(S0, n))→Mod(S0,n)→ 1.

This short exact sequence provides an explanation as to why there
exist trivial elements in the spherical braid group. If we consider the
image of some element, α ∈ Mod(S0,n), we can see that this image
is in fact a Dehn Twist about a simple closed cure that encloses the
entirety of all the punctures, which is in fact a trivial mapping class
[3]. Moreover, by rotating the n marked points by a 4π twist, we can
see that the spherical braid α2 can be unraveled and shown to be the
identity [3].

3. Creating pseudo-Anosov maps on punctured spheres.

Using a recipe created by Yvon Verberne, we can establish the con-
struction of pseudo-Anosov maps on n-times punctured spheres using
Dehn Twists and positive half twists [19]. Let S0,n be the n-times punc-
tured sphere and Mod(S0,n) be the corresponding mapping class group.
By the Thurston-Nielsen classification theorem, we know that these
elements of Mod(S0,n) will either be periodic, reducible, or pseudo-
Anosov.
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3.1. Dehn Twists. In order to continue and use Verberne’s con-
struction of pseudo-Anosov maps, we will first explain in brief a Dehn
Twist.

First consider the annulus: A = S1×[0, 1] and a simple closed curve
γ. We say that the Dehn twist about γ is cutting along γ twisting
one side of the annulus 2π and then gluing the annulus back together
along γ. This method is also called “Dehn twist surgery.” In order to
perform this surgery on other surfaces S, we define the same region A
and define a homeomorphism τ : A→ A via (θ, t) 7→ (θ+ 2πt, t). Then
we can define another homeomorphism ϕ : A → T where T ⊂ S is a
cylindrical neighborhood of our smiple closed curve γ. Then, the Dehn
Twist about γ is defined as follows:

Definition. Let D2
γ : S → S define the Dehn twist about closed

curve γ via

x 7→

{
ϕ ◦ τ ◦ ϕ−1(x) x ∈ T
x x /∈ T

.

We can illustrate a basic example in Figure 6.1:

γ γ

Figure 6.1. Dehn Twist about red curve γ. The blue
curve is the resulting image after preforming the twist.
The above drawing can also be seen as the T neighbor-
hood on surface S.

3.2. Verberne’s Recipe. This recipe is based from both Ver-
berne’s thesis (see [19]) and the paper published from the thesis (see
[20]). Let αj be a simple closed curve that separates punctures j and
j − 1 modulo n. We will define the full Dehn twist around αj as D2

j .
The corresponding “half twist” is the clockwise interchange of punc-
tures around the corresponding closed curve αj, denoted Dj. Two
half-twists around αj becomes a full Dehn twist, D2

j .
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The punctures of our sphere are partitioned into sets of evenly
spaced punctures. The idea of evenly spaced comes from the map
ρ : Zn → Zn defined via j 7→ j + 1 (mod n). A subset of our par-
tition, µi, will consist of evenly space punctures if ρ(µi) = µi+1 for
1 ≤ i ≤ k. For example, for the 4-times punctured sphere an example
partition set would be µ = {{0, 2}, {1, 3}} = {µ1, µ2}. We now have
all the ingredients in order to create our pseudo-Anosov map using
Verberne’s theorem:

Theorem 6.1. Consider the surface S0,n. Let {µi}ki=1 for 1 < k < n
be an evenly spaced partition of the punctures of S0,n. Then

φ =
k∏
i=1

Dqi
µj

= Dqk
µk
. . . Dq2

µ2
Dq1
µ1
,

where qj = {qj1 , . . . qj1} are tuples of integers greater than one, is a
pseudo-Anosov mapping class.

Example 5. Consider the 4-times punctured sphere, S0,4 and the
partition µ = {{0, 2}, {1, 3}} = {µ1, µ2}. Notice that Theorem 6.1
explains that the map φ = D2

3D
2
1D

2
2D

2
0 is a pseudo-Anosov mapping

class.

α1

α3

α2

α4

0 1

23

α1

α2

0 1

3 2

Figure 6.2. Depiction of Dehn Twist D2
1.

4. Hyperelliptic Involution Map, q : T 2 → S0,4.

We can relate the actions on the torus to those on the 4-times
punctured sphere using the hyperelliptic involution map. We begin by
recalling that the quotient of the torus via equating points through
reflection is homeomorphic to the sphere with four singularities [13].
We can regard the torus as R2/Z2 and associate points through the
mapping S(x, y) = (2x0 − x, 2y0 − y) for (x, y) ∈ R2. The set of
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singularities becomes {(x0, y0), (x0+ 1
2
, y0), (x0, y0+ 1

2
), (x0+ 1

2
, y0+ 1

2
)}.

We can regard these singularities as punctures and create S0,4. Visually,
this mapping is the same as considering the torus as a square with sides
identified. Folding the square in half is the same as equating points
through reflection and S. We can then zip together the identified sides
to return the 4-times punctured sphere. This procedure creates the
map q : T 2 → S0,4 otherwise known as the hyperelliptic involution
map.

4.1. Dehn Twists and the Hyperelliptic Involution Map.
Using q as described above, we can create a commutative diagram of
mappings as shown in Figure 6.3.

T 2 T 2

S0,4S0,4

D̃

q

D

q

Figure 6.3. Commutative diagram up to homotopy of
functions between the torus, T 2 and the 4-times punc-
tured sphere S0,4.

If we consider a map D : S0,4 → S0,4 given by Dehn twist D2
1, we can

lift this map to the torus to give the map D̃ : T 2 → T 2. Composing q

withD will yield the same map as composing D̃ with q, i.e. D̃◦q = q◦D.
Since we can express orientation preserving self homeomorphisms the
torus in terms of 2× 2 matrices in the special linear group with integer
matrices, SL(2,Z), we can explicitly calculate the topological entropy
of these pseudo-Anosov maps on the 4-times punctured sphere using
such matrices. In fact, every pseudo-Anosov map on S0,4 can be lifted
to an Anosov map on the torus [13].

We can show commutative pictorally by the following. First con-

sider q ◦ D̃ as

q ◦ D̃

α′1

α′2

0 1

3 2
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Now consider D ◦ q as

D ◦ q
α1

α2

0 1

23

α′1

α′2

0 1

3 2

Thus, we can see that the above are equal as D ◦ q = q ◦ D̃.

4.2. Topological entropy of a pseudo-Anosov map on S0,4.
The Dehn twist depicted in Figure 6.1 can be described as the matrix

M1 =

(
1 1
0 1

)
and the other generator matrix is M2 =

(
1 0
1 1

)
. We

can see that D2
1 is isotopic to D2

3 and D2
0 is isotopic to D2

2. Similarly,

D̃2
1 is isotopic to D̃2

3 and D̃2
0 is isotopic to D̃2

2. Therefore we can use
the same matrix to express similar maps, i.e. matrix M1 can express

both D̃2
1 and D̃2

3 whereas M2 represents D̃2
0 and D̃2

2.
Given a pseudo-Anosov map f : S0,4 → S0,4, the topological entropy

is htop = log(λ) where λ is the spectral radius of the lifted map f̃ : T 2 →
T 2 [13]. This yields an upper bound for the minimal entropy in the
isotopy class of the pseudo-Anosov map f [7].

Example 6. We return to the same set up as in Example 5: the
4-times punctured sphere. Recall that our pseudo-Anosov map was
φ = D2

3D
2
1D

2
2D

2
0. Using the hyperelliptic involution map, we can lift φ

to φ̃. This map is also pseudo-Anosov [13]. Since D̃2
0 is homotopic to

D̃2
2 and D̃2

1 is homotopic to D̃2
3, we can write

(6.4) φ̃ =
(
D̃2

1

)2 (
D̃2

0

)2
.
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Furthermore, since the above equation corresponds to matrices, we
finally arrive at

(6.5) φ̃ = M2
1M

2
2 =

(
1 1
0 1

)2(
1 0
1 1

)2

=

(
5 2
2 1

)
.

The spectral radius of φ̃ is 3 + 2
√

2. The topological entropy of φ̃

is given by htop(φ̃) = log(3 + 2
√

2) = 1.76275. This gives us an upper

bound for the minimal entropy of the isotopy classes of φ̃.

Example 7. Consider the same partition of µ = {{0, 2}, {1, 3}}.
We can have another pseudo-Anosov map of

φ2 = D4
3D

4
1D

2
2D

2
0 '

(
D2

1

)4 (
D2

0

)2 'M4
1M

2
2 =

(
9 4
2 1

)
.

The above has a spectral radius of 5+2
√

6. Therefore, we can compute
the topological entropy by htop(φ2) = log(5 + 2

√
6) = 2.2924.. This is

in fact an upper bound for the minimal entropy of the isotopy class of
φ2.

We can see that in both examples, we can produce a pseudo-Anosov
map that will have chaotic behavior and have optimal stirring.



CHAPTER 7

Future Work

The main focus of this thesis was to investigate what stirring proto-
cols would look like on the surface of the sphere and how to compute or
estimate the topological entropy of these types of maps. One question

that still remains if this lifted map of the Dehn twist, D̃, pseudo-Anosov
in general and if not, what are the algebraic conditions which restrict
our number of maps.

The homological criterion can described as a condition that gives
rise to pseudo-Anosov maps. As worded by Margalit and Spallone in
[14], the homological criterion is as follows:

Proposition 7.1. (Homological criterion). Let S be a closed sur-
face of genus at least 2. Let f ∈ Mod(S), define Ψ : Mod(S) →
Sp(2g,Z), and let qf (x) be the characteristic polynomial for Ψ(f). If
qf (x) is symplectically irreducible, is not a cyclotomic polynomial, and
is not a polynomial in xk for k > 1, then f is pseudo-Anosov.

Using a hyperelliptic involution, we can create a similar commuta-
tive diagram between T 2#T 2 and S0,6. This relationship might require
probing the homological criterion in order to use a matrix representa-
tion of lifted Dehn twists. An interesting inquiry is whether or not the
homological criterion is satisfied for these lifted maps and if not, this
would give rise to pseudo-Anosov maps that are not detected by this
criterion.

In addition, many have used fixed point theory in order to inves-
tigate and estimate topological entropy. Given a homeomorphism (or
pseudo-Anosov map as in this thesis) on a surface with negative euler
characteristic, we can form the mapping torus. Kawashima was able to
investigate the fundmental group of the mapping torus, Γ, and define
a trace like quantity that takes values in the free ZΓ-module group
modulo the set of conjugacy classes [12]. Using concepts from Nielsen
equivalence classes, the fundamental group of the mapping torus, and
this trace like quantity, Kawashima was able to compute the dilatation
with some trace like elements using certain representations of the braid
groups.

39
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Fixed point theory offers an avenue of investigation to explore
optimal estimations of topological entropy as seen in work down by
Kawashima [12]. This, in addition to the homological representation,
offers an additional path to examine.
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