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ABSTRACT 

 Seismocardiography (SCG) is the measured chest surface vibrations resulting from 

cardiac activity. Although SCG can contain information that correlate with cardiac health, 

its utility may be limited by lack of understanding of the signal genesis and a variability 

that can mask subtle SCG changes. The current research utilized medical imaging 

reconstruction and finite element method (FEM) to simulate SCG by modeling the 

propagation of myocardial movements to the chest surface. FEM analysis provided a link 

between myocardial movements and the SCG signals measured at the chest surface and 

suggested that myocardial movement is a primary source of SCG. Increased understanding 

of the sources and propagation of SCG may help increase the utility of SCG as a cardiac 

monitoring tool.  

To reduce the variability of SCG measured in human subjects, unsupervised 

machine learning (ML) was implemented to group SCG beats into clusters with minimal 

intra-cluster heterogeneity. The clustering helped reduce the SCG variability and unveiled 

consistent relations with the respiratory phases and SCG morphology. This clustering 

reduced noise in calculating signal features and provided additional useful features. The 

study also analyzed longitudinal SCG from heart failure (HF) patients in order to predict 

HF readmission. Here, many time- and frequency-domain SCG features were extracted. 

Certain features showed good correlations with readmission. Using supervised ML 

algorithms, high classification accuracies (up to 100%) were achieved suggesting high 

SCG utility for monitoring HF patients and possibly other heart conditions. Effective 
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monitoring followed by timely intervention can lead to improved patient management and 

reduced mortality. 
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CHAPTER 1 - INTRODUCTION 

Seismocardiography (SCG) is the process of measuring the chest surface 

vibrations resulting from cardiac activity. These vibrations are typically measured by 

an accelerometer and believed to be primarily caused by valve closure and opening, 

blood momentum changes and myocardial movements (Gurev et al., 2012; 

Korzeniowska-Kubacka et al., 2006; Amirtahà Taebi, Solar, Bomar, Sandler, & Mansy, 

2019). The method was initially introduced in 1957 by Eliot et al (Mounsey, 1957) and 

the term “Seismocardiography” was used by Bozhenko (Bozhenko, 1961) in 1961 who 

studied the use of SCG in space flights. Although, SCG is a promising method for the 

detection of important cardiac information such as cardiac timing intervals and cardiac 

contractility, its use was initially limited by the heavy accelerometers available at the 

time, while more rapid advancement were made in electrocardiography (ECG) and 

other medical imaging methods (Inan et al., 2015; Wilson, Bamrah, Lindsay Jr, 

Schwaiger, & Morganroth, 1993). Later, the progress in MEMS technology produced 

much lighter, highly sensitive and low-cost accelerometers, which has promoted the 

use of SCG as a feasible method for cardiac monitoring systems (Di Rienzo et al., 

2011).  

SCG provides information about the mechanical cardiac activity and, when 

combined with ECG which is indicative of the electrical activity, can provide a more 

complete picture of the cardiac health. This includes determining electromechanical 

time intervals such as pre-ejection period (PEP) which was found to correlate with 

cardiac health (Sahoo, Thakkar, Lin, Chang, & Lee, 2018). Results from several other 

studies have also suggested correlations between SCG signal features and different 

cardiac pathologies (Wick et al., 2012) including heart failure (Krishnan, Mansy, 
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Berson, Mentz, & Sandler, 2018; Amirtaha Taebi & Mansy, 2017a).  Hence, SCG has 

high potential utility for diagnosis and monitoring of cardiac conditions. In addition, 

SCG has many advantages including being non-invasive, inexpensive, compatible with 

telemedicine, and not requiring highly trained operators. 

Analysis of SCG waveforms usually focuses on both time and frequency 

features to gain better understanding of heart function and for classification of SCG 

under different heart conditions (Amirtaha Taebi, 2018; Amirtaha Taebi & Mansy, 

2017b). In addition, SCG can provide information about the interactions between 

cardiovascular and pulmonary systems (Amirtaha Taebi & Mansy, 2017a; Amirtaha 

Taebi, Solar, & Mansy, 2018). Some studies have also employed SCG to monitor sleep 

apnea (Morillo, Ojeda, Foix, & Jiménez, 2010) and for estimating respiratory rate 

(Reinvuo, Hannula, Sorvoja, Alasaarela, & Myllyla, 2006). 

The proposed research work is focused on three areas of SCG research not 

adequately presented in previous studies. 

Reducing the Variability of Seismocardiographic (SCG) Signals 

As SCG signals are associated with the mechanical movement (rather than 

electrical activity) measured over chest surface, SCG signal morphology is affected by 

different factors such as respiration (e.g., changes in lung volume), heart rate and 

cardiac contractility(Inan et al., 2015; Tavakolian et al., 2012). These factors may cause 

signal variabilities that mask subtle SCG changes that may be of diagnostic value. To 

reduce these variabilities, SCG waveforms can be separated into different groups (with 

each group having similar waveform morphology).  This can help provide more 

accurate signal features, which may increase the diagnostic value of SCG. 
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Machine learning (ML) is a convenient tool to classify SCG events based on 

their morphological features without a need to have full understanding of the underlying 

mechanisms. Better classification may provide more insights into the effect of cardio-

pulmonary interaction on SCG morphology. After SCG events are clustered into 

different groups, the phase of respiration (i.e., lung volume, inspiration, or expiration) 

of each event is examined to give insights into the effect of respiratory phases on SCG 

morphology thereby improving the utility of SCG monitoring for cardiac conditions 

(such as heart failure deterioration). 

Numerical Modeling of SCG 

Accurate understanding of how the movement of the heart is related to the 

morphology of the SCG signal measured on the chest surface will help to improve the 

usage of SCG as a reliable diagnostic tool to detect heart conditions. Certain studies 

have used electrocardiography to describe different peaks observed in a SCG heart 

cycle (Crow, Hannan, Jacobs, Hedquist, & Salerno, 1994; Giorgis et al., 2008), but 

these conclusions remain debatable (Akhbardeh et al., 2009). Relating the cardiac 

movements to SCG morphology is a challenging task, considering the complex 

movements of heart walls where certain cardiac events may superimpose on each other 

where they will amplify or nullify their effect on corresponding SCG morphology. 

However, the use of 4D (i.e., 3D+time) cardiac Cine-MRI imaging and image 

processing techniques to capture heart movements and relating them with SCG will 

help to unveil the origins of SCG signal. Furthermore, accurate capturing of 3D heart 

movements can provide boundary conditions for developing a computational model to 

study the propagation of heart movements to the chest surface.. The current study is 
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focused on developing a computational model to simulate the propagation of cardiac 

movements to the chest surface to accurately simulate the SCG signal. Such 

computational model can provide a platform to study the link between the SCG and 

cardiac movements and help enhance the understanding of SCG genesis. 

Prediction of Heart Failure (HF) patient readmission using SCG 

 More than 20% of patients admitted for HF are readmitted within 30 days and 

up to 50% by 6 months (O’Connor, 2017). Accurate prediction of HF readmission will 

help doctors to pay close attention to HF patients who are likely to be readmitted and 

improve their quality of life. Extracting relevant SCG features from HF patients and the 

application of  machine learning algorithms can be used to predict which HF patients 

are likely to be readmitted (ex:- within 30 days or within 60 days). The current study is 

focused on the use of SCG in predicting the readmission of reduced ejection fraction 

HF patients after their initial discharge. 
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CHAPTER 2 – REDUCING SCG MORPHOLOGICAL 

VARIABILITY  

Fiducial points (i.e. certain SCG peaks) can be defined for SCG and can contain 

useful diagnostic information (Akhbardeh et al., 2009). For instance, several studies 

showed the consistent use of SCG to find the cardiac events (shown in Fig. 1) such as 

Mitral valve closing (MC), Aortic valve opening (AO), etc. (Akhbardeh et al., 2009; J. 

Zanetti, Poliac, & Crow, 1991; J. M. Zanetti & Tavakolian, 2013). However, some 

studies have reported inconsistencies in the location of the certain fiducial points 

(Akhbardeh et al., 2009; Khosrow-Khavar et al., 2015). The inconsistency and 

uncertainty of the correlation between fiducial points and cardiac events have posed 

limitations on the clinical application of SCG (Sørensen, Schmidt, Jensen, Søgaard, & 

Struijk, 2018). This may be mainly due to the low time resolution in medical imaging 

modalities (Akhbardeh et al., 2009; Crow et al., 1994) that are usually used to establish 

the above correlation and also possibly due to the high variability of the SCG signal. 

 

 

 

 

 

 

 

 

Figure 1- The cardiac events identified in the SCG signal as proposed by Crow et 

al(1994).The abbreviations are: AS-atrial systole, MC-mitral valve closure, IM-

isovolumic movement, AO-aortic valve opening, IC-isotonic contraction, RE- rapid 

ejection, AC- aortic valve closure, MO-mitral valve opening, RF- rapid filling 

ECG 
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SCG signals have a high inter and intra-subject variability. Signal morphology 

may also change among consecutive beats in the same data collection session of the 

same subject. Fig. 2 shows an example of two different SCG morphologies observed in 

measurements performed on a heathy subject during a single recording session. Unlike 

ECG, SCG signals are associated with the mechanical movement (rather than electrical 

activity) measured over chest surface. Consequently, SCG signal morphology can be 

largely affected by different factors such as respiration (which involves lung volume 

and intra thoracic pressure changes), heart rate, and cardiac contractility (Inan et al., 

2015; Tavakolian et al., 2012). Effects of respiration on SCG morphology have been 

reported. An earlier  study reported SCG waveform morphological changes for the  

inspiratory vs expiratory phases (Tavakolian, Vaseghi, & Kaminska, 2008). A recent 

study ( Taebi & Mansy, 2017a) calculated waveform dissimilarities between SCG 

events and concluded that SCG morphology appeared to change with lung volume 

(which may correlate with intra-thoracic pressure) more than respiratory flow direction 

(inspiration vs. expiration).  

 

Figure 2- Two different SCG morphologies observed in a heathy subject during a 

single recording session 

Interrelated mechanisms that may cause SCG changes with respiration include: 

1) Heart position changes: During breathing, the diaphragm and lungs move 

leading to changes in the heart position relative to the SCG sensor that has a fixed 
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location at the chest surface.  Lung and heart movements also change the structural 

composition of the thorax and consequently affect the properties of transmission path 

between the sensor and the sources of vibrations, which would affect the signal 

measured at the chest wall (Dai et al., 2014). For different subjects, this effect may vary 

based on their breathing pattern and tissue dimensions and properties. 

2) Intrathoracic pressure variation: This pressure affects filling and ejection of 

blood flow from the different heart chambers.  For example, the negative intrathoracic 

pressure induced during inspiration causes higher right heart filling and increases right 

heart output into the more compliant lungs (Cheuk & Sanderson, 1997) . Conversely, 

the positive expiratory intrathoracic pressure on the lungs inhibits the right heart filling 

and ejection during expiration. The resulting changes in blood flow would, in turn, 

cause morphological differences in the measured SCG signal. 

Other processes such as chest wall and diaphragm contraction and relaxation 

may further interact with these mechanisms leading to complex variation in the SCG 

morphology that can be of diagnostic value. It is to be noted, however, that increased 

variability in the SCG waveform would reduce the precision of estimating the mean 

SCG waveform, which may interfere with accurate determination of SCG features and 

reduce SCG diagnostic utility.   

To provide averages of SCG waveforms that would be optimally representative 

of SCG events, it is helpful to separate SCG waveforms into groups with minimum 

maximum intra- and inter-group dissimilarity, respectively. Hence, this study 

investigates the use of machine learning for optimal clustering of the SCG waveforms, 

which can help provide more accurate signal features and increase the diagnostic value 
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of SCG.  While the focus here will be on SCG time domain morphology, similar 

analysis can be performed in the frequency domain. 

Machine learning (ML) is a potential tool for grouping SCG events based on 

their temporal morphological features without a need to have full understanding of the 

underlying mechanisms of SCG variability (Gamage, Azad, Taebi, Sandler, & Mansy, 

2018). A few studies have used supervised machine learning methods, such as support 

vector machine (SVM) and random forest (RF) to classify SCG events into respiratory 

phases such as inspiration vs. expiration or high lung volume vs. low lung volume 

(Solar, Taebi, & Mansy, 2017;  Taebi et al., 2018; Zakeri et al., 2017). In these 

supervised classification studies, SCG morphology grouping is assumed a priori and 

the machine algorithm will iteratively try to minimize a loss function (using training 

and validating dataset) to optimize the accuracy of the classifier. Hence, the accuracy 

of these classifiers is not necessarily an indication of optimal grouping into classes with 

minimum and maximum intra- and inter-class variability, but rather indicates how well 

the algorithm can classify SCG events in to predefined groups (ex: Inspiratory 

/Expiratory groups). 

In contrast to supervised ML, unsupervised ML is capable of clustering the input 

data into groups without defining the grouping a priori.  Here, the unsupervised ML 

algorithms will optimize a function to separate the input data into clusters such that the 

data in a cluster are internally similar while dissimilarity between clusters are 

maximized. In this study, we employ an unsupervised machine learning approach to  

cluster SCG beats based on their temporal morphology. The main objectives of our 

study are: 
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• Clustering SCG events to minimize intra-cluster variability: Unsupervised ML 

is used for clustering SCG temporal waveforms in healthy subjects. The optimum 

number of clusters is decided by analyzing the variance (within and between) the 

clusters. 

• Finding relations between cluster boundaries and respiratory phases and heart 

rate: The timing of the clustered SCG waveforms are compared with their respiratory 

phases (i.e., inspiratory vs. expiratory and high vs. low lung volume phases). The timing 

when SCG beats switch from one cluster to another is compared with the respiratory 

phases and heart rate changes. 

• Calculating a representative SCG event for each cluster: After the clusters are 

defined, a beat that is a representative of the morphology of each cluster is calculated 

using an advanced shape averaging method. Ultimately, this representative SCG event 

may be used to define fiducial points for diagnostic purposes. 

Methods 

Fig. 3 summarizes the methodology employed in this study while more details 

are provided in following sections. 

 

 

Figure 3- Methodology workflow 
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Experimental measurements 

SCG signals were acquired from 17 healthy subjects after Institutional Review 

Board (IRB) approval. Subject characteristics are listed in table 1. 

Table 1- Subject characteristics 

Age (years) 23± 3.5 

Height (cm) 168.5 ± 9 

Weight (kg) 70 ± 13 

BMI 24.5 ± 3.9 

 

SCG was measured using a tri-axial accelerometer (Model: 356A32, PCB 

Piezotronics, Depew, NY) affixed to the chest surface using double sided medical-grade 

tape (B205-1, 3M, Minneapolis, MN) such that the measured z-component of the 

acceleration was normal to the chest surface (i.e., dorso-ventral component). The sensor 

was placed at the 4th intercostal space at the left lower sternal border. The signal from 

the accelerometer was amplified using a charge amplifier (Model: 482C, PCB 

Piezotronics, Depew NY) and then acquired using a data acquisition module (Model: 

IX-TA-220, iWorx Systems Inc, Dover, NH). The current SCG sensor is sensitive to 

chest wall movement due to respiration.  While this movement is an artifact that can 

corrupt SCG, that artifact has a much lower frequency.  This makes it easy to remove 

that artifact by low pass filtering, which is the approach implemented in this study.   

 Two other signals were simultaneously acquired.  These include ECG (in the 

lead two arrangement, Model: IX-B3G, iWorx Systems, Inc., Dover, NH) and 

respiratory flow rate (via a mouthpiece using a spirometer, Model: A-FH-300, iWorx 

Systems, Inc., Dover, NH). A sampling rate of 10 kHz was used for data acquisition. 

 Subjects rested comfortably on 45-degree inclined bed during data collection. 

A diagram of the experimental setup is shown in Fig. 4. 
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Figure 4- Experimental setup 

 

Preprocessing 

Filtering 

 The code for all signal processing steps was written in MATLAB (2017b. The 

MathWorks, Inc., MA).  SCG and ECG signals were forward-backward filtered using 

a 4th order Chebyshev 2 type band-pass filter (0.5-50 Hz) to reduce the background 

noise and baseline wondering (i.e., variation) due to respiration. In addition, a moving 

average filter of order 5 (low-pass with cut-off ~ 2kHz) was employed to further smooth 

the signal. For each subject, the original and the filtered signals were compared in time 

and frequency domains to make sure filtering had minimal distortion on the SCG event 

amplitudes. Fig. 5 shows an example of the original and filtered SCG data in the time 

and frequency domains. 
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Figure 5 – Original and filtered SCG signal in (a) time domain (b) zoomed in time 

domain (c) frequency domain (d) zoomed in frequency domain 

SCG segmentation 

The SCG signal was segmented into SCG beats (also called events in this 

manuscript) using the R peaks of the ECG signal, which were detected using Pan 

Tomkins algorithm (Tompkins, 1985). Each SCG beat was selected to start 0.1 seconds 

before the R peak of the corresponding ECG, while the end point of SCG beat was 

selected 0.1 seconds before the R peak of the following ECG complex. Since the R-R 

interval varies over time, this approach resulted in SCG beats with varying duration, 

which is different from SCG studies that fix the duration of SCG beats (Sørensen et al., 

2018; Amirtaha Taebi, 2018; Zakeri et al., 2017). Fig. 6 shows an example of the 

segmented SCG signal. 
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Figure 6 – Segmentation of the SCG signal using ECG beats 

Unsupervised machine learning 

Clustering SCG morphology 

The morphology of a SCG beat may be best described by the signal amplitudes (at each 

data point of the beat) and the dissimilarity between the SCG morphologies can be 

quantified by calculating the differences between the signal amplitudes (after signal 

alignment). Hence, the amplitude values of SCG beats are an appropriate first choice 

as the input feature vector for the clustering algorithm, which is also called raw-based 

method in time series clustering (Paparrizos & Gravano, 2017).  

The clustering algorithm will separate SCG beats into clusters by measuring the 

distance (i.e., dissimilarity) between the respective feature vectors using a distance 

measure. Traditional algorithms typically utilize Euclidean distance in these 

calculations (Fig. 9 (a)). When clustering, SCG beats need to be accurately aligned in 

time, otherwise errors in distance measurements will increase and beats with similar 

morphologies may be assigned to a different cluster. However, alignment of SCG beats 

become more complicated when signals have inherent morphologic variability. For 

example, SCG beat morphology may non-linearly stretch or compress due to heart rate 
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variability. This phenomenon can be seen in consecutive beats shown in Fig. 7(a) and 

(b). Even if a fiducial point is selected for the alignment of SCG beats, changes in the 

heart rate and associated intervals would cause misalignment of other fiducial points, 

which would lead to overestimating dissimilarity calculated by the Euclidean distance. 

Furthermore, dissimilarity calculated using the classic Euclidean distance assumes 

equal length of the SCG beats. However, beats have different lengths due to heart rate 

variability, and longer beats should be trimmed or compressed (to the length of the 

shortest beats, which corresponds to the highest heart rate) to have a constant length 

among all SCG beats. This process may remove valuable information contained in the 

part of beat that is removed. 

 

 

Figure 7-(a) Variations of the length of segmented SCG events due to heart rate (b) 

Zoomed view 
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Dynamic Time Warping (DTW) 

DTW is a widely used measure of the similarity between two time series. It was 

originally designed for automatic speech recognition (Sakoe & Chiba, 1978) to identify 

the same word spoken at different speeds. DTW determines the optimal “global 

alignment” between two-time sequences by exploiting the temporal distortions between 

them (Sakoe & Chiba, 1978; Silva & Batista, 2016). DTW non-linearly “warps” the 

two sequences in the time domain to determine a measure of their similarity (Sakoe & 

Chiba, 1978).This dissimilarity measure is often used in time series clustering 

(Paparrizos & Gravano, 2017). The steps for calculating the DTW distance between 

two time series with different lengths, 𝑋 and 𝑌, are as follows   

𝑋 = {𝑥1, 𝑥2, … 𝑥𝑖 , … . 𝑥𝑛}                    (1)                                        

𝑌 = {𝑦1 , 𝑦2, … 𝑦𝑗 , … . 𝑦𝑚}                      (2) 

where 𝑛 and 𝑚 are the lengths of the two signals.  A “distance matrix” for X 

and Y is then generated as shown in Fig. 8. 

 

Figure 8- Distance matrix and the optimum warping path for signals X and Y 

 

This distance matrix is recursively filled using following formula, 
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𝐷(𝑖, 𝑗) = 𝛿(𝑥𝑖 , 𝑦𝑗) + 𝑚𝑖𝑛 {

𝐷(𝑖, 𝑗 − 1)

𝐷(𝑖 − 1, 𝑗)

𝐷(𝑖 − 1, 𝑗 − 1)
   where  𝛿(𝑥𝑖 , 𝑦𝑗) = (𝑥𝑖 − 𝑦𝑗)

2
 𝑜𝑟 |𝑥𝑖 − 𝑦𝑗|               (3) 

An optimal alignment (warping path) 𝑊 = {𝑤1, 𝑤2, … . 𝑤𝑘 , … , 𝑤𝑁} is to be 

found where 𝑤𝑘 = (𝑖, 𝑗) represent the alignment between 𝑖𝑡ℎ point of 𝑋 and 𝑗𝑡ℎ point 

of 𝑌. 

The optimal warping path is found such that it minimizes, 

𝐷𝑇𝑊(𝑋, 𝑌) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐷(𝑤)𝑘=𝑁
𝑘=1                                                                                                     (4) 

where, the warping path should satisfy the following three conditions (Zhang, Tang, 

Huo, & Zhou, 2014).  

Boundary constraint: 𝑤1 = (1,1), 𝑤𝑁 = (𝑛,𝑚) 

Monotonicity constraint: 𝑤𝑘 = (𝑖, 𝑗), 𝑤𝑘+1 = (𝑖′, 𝑗′) where 𝑖′ ≥ 𝑖 and 𝑗′ ≥ 𝑗 

Continuity constraint:  𝑤𝑘 = (𝑖, 𝑗), 𝑤𝑘+1 = (𝑖′, 𝑗′) where 𝑖′  ≤ 𝑖 + 1 and 𝑗′  ≤ 𝑗 + 1 

The computed 𝐷𝑇𝑊(𝑋, 𝑌) reflects the dissimilarity between 𝑋 and 𝑌. Fig. 9 

shows the difference between using Euclidean distance and DTW as a dissimilarity 

measure.  As can be seen in Fig.9, associated points are concurrent for Euclidean 

distance. In DTW, associated points are related non-linearly in time.  

 

 

Figure 9- Associated points between signals X and Y  when the dissimilarity is 

measured with (a) Euclidean and (b) DTW measures (Zhang et al., 2014) 
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Hence, for accurate clustering of SCG morphology a distance measure that accounts 

for aforementioned distortions in SCG beats is needed. Previous studies of clustering 

time series data (based on their temporal morphology) have encountered similar issues 

and proposed the use of dynamic time warping (DTW), which is a similarity measure 

that delivers more superior accuracy than Euclidean distance (Paparrizos & Gravano, 

2015, 2017). 

Averaging SCG beats  

Averaging of SCG beats is performed in order to find a representative beat from 

each set of similar SCG beats. The representative beat is then used to derive features 

(e.g. determine fiducial points) for diagnostic purposes. Hence, the SCG beat should 

accurately represent the morphology of the set of SCG beats. In previous studies, fixed 

length SCG beats were averaged after aligning relative to a certain peak (such as R peak 

of ECG, maximum peak of the systolic portion of SCG, S1 or S2 peaks of the 

phonocardiography (PCG)) (Peshala T Gamage, Azad, Taebi, Sandler, & Mansy, 2018; 

Sørensen et al., 2018; Amirtaha Taebi, 2018). However, calculating an accurate average 

while conserving the original morphology (of the non-linearly stretched or truncated 

SCG beats) is not an easy task. For traditional averaging methods in Euclidean space, 

morphological features are more conserved close to the aligned location while features 

may be lost in other regions of the beat. For example, if the SCG beats are aligned with 

respect to R-peaks, morphological features may be conserved in the systolic region 

close to the R-peak while beat morphology may get smeared in the diastolic region due 

to decreased alignment accuracy. To overcome this issue, a recent study calculated two 

different averages by aligning the signals relative to R peaks in ECG and S2 peaks of 
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PCG and analyzed the fiducial points in systolic and diastolic regions, separately 

(Sørensen et al., 2018). Furthermore, if the average is calculated between SCG beats 

with different morphologies, the average beat may have a different morphology that 

may mask some important diagnostic features that are contained in original SCG beats. 

    In the current study, we propose the use of a shape-based averaging technique after 

SCG beats are optimally clustered into different groups.  When employing DTW, 

several shape-based averaging methods were suggested in literature including: 

Nonlinear Alignment and Averaging Filters (NLAAF), Prioritized Shape Averaging 

(PSA) and DTW barycenter averaging (DBA) (Petitjean et al., 2014; Petitjean, 

Ketterlin, & Gançarski, 2011). The first two methods use a pairwise averaging strategy 

that suffer from the growth of the length of the resulting average (to almost double) in 

each step and the process of reducing the length may lead to loss of information 

(Petitjean et al., 2014). The recently introduced DBA method eliminates these 

drawbacks and appears most accurate and efficient (Paparrizos & Gravano, 2017).  

Therefore, DBA will be employed in this study. 

DTW Barycenter Averaging (DBA) 

DBA tries to find an optimum average for a set of time sequences (e.g., SCG 

beats) in DTW space. This average is such that it has minimum DTW distance from the 

set of sequences. The method starts by selecting an arbitrary average and iteratively 

updating the average to minimize the sum (DTW) of distances from the set of sequences 

to the sequence average.  

When calculating the DTW distance between the average beat and the set beats, 

many points of the set of beats may be associated with the same point of the average 
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beat (and vice versa) as seen in Fig. 9. The higher the number of these points, the higher 

the DTW distance between the set of beats and the average beat (because these 

distances are added). To reduce the associated number of points, DBA suggests 

updating the point of the average beat by taking the barycenter average (barycenter is 

the center of mass of the points, assuming equal mass for the points) of the associated 

points. Iteratively, the same procedure is followed with the updated average till the sum 

of the DTW distances between the average and the set of beats converges within a 

predefined tolerance (Petitjean et al., 2014). Fig. 10 shows a DBA average calculated 

for a set of SCG beats. 

 

Figure 10- DBA average calculated for a set of SCG beats 

However, DBA has a time complexity of 𝛩(𝐼. 𝑁. 𝑙2), where 𝐼, 𝑁 and 𝑙 denote 

the number of iterations, number of sequences and the length of the sequences, 

respectively (Petitjean et al., 2014). In addition, in some cases DBA may not converge 

to a smooth signal (which was observed when DBA was calculated at sampling rate of 

500 Hz in our study) due to non-linear distortions in DTW calculations (Petitjean et al., 

2014). To avoid such limitations, the medoid can be also used as a possible alternative 

representative of the cluster the morphology. 
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Clustering algorithms 

Unsupervised machine learning is employed in the current study to cluster SCG 

morphology into clusters with highest intra-cluster similarity and highest inter-cluster 

dissimilarity. In time series clustering, three main types of clustering methods are used, 

namely, hierarchical, spectral and partitional clustering (Paparrizos & Gravano, 2015). 

Hierarchical clustering generates a cluster hierarchy by (a) combining most 

similar clusters pairwise (starting from the individual sequences) till all sequences (i.e., 

SCG beats) are merged in to a single cluster (agglomerative clustering) or (b) dividing 

the clusters in to pairs until each leaf cluster contains only one object (divisive 

clustering). However, hierarchical clustering performs clustering in a local level and no 

global objective function is directly minimized as in “partitional” based methods 

(discussed below). In addition, hierarchical clustering is very sensitive to outliers. 

Furthermore, during the clustering process, once two clusters are merged/split they 

cannot be undone in a later step for a more suitable merge or split (Rokach & Maimon, 

2005). Hence, hierarchical clustering may yield a suboptimal solution and the 

dendrogram may not necessarily represent the natural clusters in the data. 

Spectral based clustering is typically used in graphical applications such as 

image processing, computer vision and computational biology. This clustering is a 

graph-based approach where the sequences are treated as nodes in a graph that are 

mapped to a low dimensional space using the spectrum (Eigen values) of the input data 

similarity matrix (Von Luxburg, 2007; Zelnik-Manor & Perona, 2005). Spectral based 

clustering is very sensitive to the initial conditions.  In addition, it’s sensitive to the 

similarity parameters used to define the “connectedness” in the similarity graph which 
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are used in the Gaussian similarity function (Von Luxburg, 2007). Also, this method is 

computationally expensive for large datasets.  

In partitional clustering, each cluster is represented by the center of the cluster 

(e.g. k-means) or the member of the cluster with the minimum average dissimilarity to 

all other members (e.g. k-medoids). These algorithms work on assigning the sequences 

to the closest cluster representative (means or medoids), then updating the mean or 

medoid. Ideally, this process is repeated till no changes in cluster assignments are 

observed. The convergence of partitional clustering is usually monitored by the “sum 

of distances” (SOD), which is the total summation of the distances between each 

observation to its cluster medoid/center (see Eqn. 8). Partitional clustering may 

converge to a local minimum since the algorithms heavily depend on the initial 

conditions (e.g., initial medoids). However, this issue can be controlled by 

appropriately tuning the initial conditions by monitoring the convergence criteria for 

several randomly selected initial conditions where certain initial conditions may 

converge to a higher SOD values (local minima) and other will converge to a low SOD 

value (global minima). Furthermore, by monitoring the number of iterations for 

convergence, a good initial condition can be selected. In addition, the partitional 

clustering will yield a simple representation of the clustered results since each cluster 

is represented by the medoids or average. This study will use partitional clustering to 

cluster the SCG morphology. 

Partitional based methods have been extensively used in shape-based time series 

clustering with DTW as a distance measure where generally k-medoid method is 

preferred over k-means to avoid the effect of outliers. In addition, the k-means may 

require more computations since it requires computing an artificial average sequence 
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as the centroid for each iteration (Liao, 2005). The centroid is then computed by a 

shape-based averaging method such as DBA, which requires additional computational 

expense. In contrast, k-medoid will determine the medoid sequence, which can be easily 

implemented with DTW measure. A recent study (Paparrizos & Gravano, 2017) 

reported higher accuracy for k-medoid clustering when compared with other clustering 

methods for shape-based clustering of time series. The details of proposed algorithm 

are below. 

Inputs: Number of clusters= K. Set of sequences:  𝑆 = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑖 … . , 𝑋𝑁} where 

each sequence is defined by its feature vector (amplitude) as 𝑋𝑖 =

{𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑙𝑖
} 

Step 1: Initialize  𝐶1, … , 𝐶𝑗, … 𝐶𝑘 as the medoids for each cluster  

Step 2: For each 𝑋𝑖 find the nearest 𝐶𝑗  using DTW as the distance measure and assign 

𝑋𝑖 to cluster 𝑗  

Step 3: Update 𝐶𝑗 based on the clustered events from step 2 using Eqn. 7. 

𝐶𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦∈{𝑋1𝑗,𝑋2𝑗,…,𝑋𝑖𝑗,...,𝑋𝑛𝑗}
∑ 𝑑𝑡𝑤(𝑦, 𝑋𝑖𝑗)

𝑛𝑗

𝑖=1
                      (7) 

where, 𝑋𝑖𝑗 is the 𝑖𝑡ℎ sequence belongs to cluster 𝑗 and 𝑛𝑗 is the number of 

sequences belong to 𝐶𝑗 after step 2. 

Step 4: Repeat step 2 and 3 till none of the cluster assignments change. 

The time complexity of DTW is 𝛩(𝑙2) where 𝑙 denotes the length of a sequence 

and when DTW is calculated 𝑁 times, the complexity becomes 𝛩(𝑁. 𝑙2) (Petitjean et 

al., 2014).  

Hence, to reduce the time complexity of clustering in the current study, SCG 

beats were down sampled to 500 Hz (after filtering and segmentation). The SCG beats 
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were also normalized by their maximum amplitudes.  This is not expected to affect 

DTW measure of similarity. 

Results and Discussion 

In this section we discuss the clustering results in relation to respiratory phases 

and heart rate. Cluster switching timing and the variability are also discussed.  

Optimum number of clusters 

Optimum number of clusters were decided using the elbow method and analysis 

of the average silhouette value. Elbow method is commonly used for determination of 

the fewest number of clusters that optimizes intra-cluster variance. The variance (or 

heterogeneity) of the clustering is often measured by calculating the sum of distances 

(SOD) between the observation points (i.e., SCG beats) and their cluster medoids using 

Eqn. 8. 

𝑆𝑂𝐷 =
1

𝑁
∑ ∑ 𝑑𝑡𝑤(𝐶𝑗 , 𝑋𝑖𝑗)

𝑛𝑗

𝑖=1
𝑘
𝑗=1                                                                                                          (8) 

where, 𝑋𝑖𝑗 is the 𝑖𝑡ℎ sequence belongs to cluster medoid 𝐶𝑗 and 𝑛𝑗  is the number 

of sequences belong to 𝐶𝑗. 𝑁 is the total number of sequences used for clustering. With 

the increase number of clusters, the observation points get closer to their centroids and 

the SOD will decrease (e.g., for 𝑁 clusters, 𝑆𝑂𝐷 reaches zero). When SOD is plotted 

against the number of clusters, SOD will decline rapidly, and then at a slower rate 

creating an elbow shape in the plot. The number of clusters at the elbow point can then 

be selected as the optimum number of clusters. Fig. 11 shows the mean SOD of 17 

subjects for different number of clusters. The elbow shape can be seen around a cluster 

number of  2.  
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Figure 11- Average SOD for different number of clusters. Two clusters were chosen 

using the elbow method 

 

The average Silhouette value (Si) of the clustered data is another method to 

determine the optimum number of clusters. The Si value of an observation point (i.e., 

SCG beat) in the cluster is a relative measure of how well that observation point is 

placed within its own cluster. The Silhouette value (Si) of the point 𝑖 in the clustering 

can be expressed as, 

𝑆𝑖 = (𝑏𝑖 − 𝑎𝑖)/max (𝑎𝑖 , 𝑏𝑖)                                                                                                               (9) 

where 𝑎𝑖 denote the average distance measured from the 𝑖 th point to the other 

points in the same cluster (that point 𝑖 belongs to) and 𝑏𝑖 denotes the average of the 

minimum distances measured from 𝑖th point to all other points in other clusters. 𝑆𝑖 

values range from -1 to 1 where a positive 𝑆𝑖 value closer to 1 indicates a point is well 
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inside in its own cluster (away from the boundaries of other clusters) and a negative Si 

value closer to -1 indicates that the point is closer (to the boundaries) of other clusters. 

Fig. 12 shows the average Si values calculated for 17 number of subjects. The 

results indicated that the highest average Si value was observed when the data are 

clustered into two groups. With the increase  number of clusters, the average Si value 

decreased. Based on the results from the elbow method and average Si value, 2 clusters 

were selected for the study. 

 

Figure 12- Box-whiskers plot of average Silhouette value (calculated for all 17 

subjects) for different number of clusters 

Purity of clustering with labels HLV/LLV and INS/EXP 

Some previous studies categorized SCG signal into respiratory phases to 

minimize the variability of SCG beats prior to feature detection. While some studies 

have chosen to group SCG beats based on respiratory flow direction (inhale /exhale) 

(Amirtaha Taebi & Mansy, 2017a; Amirtaha Taebi et al., 2018), others grouped SCG 

beats according to the lung volume (Peshala T Gamage et al., 2018; Amirtaha Taebi, 

2018) or to the movement of the chest measured using a chest belt (Zakeri et al., 2017). 

To study the efficiency of these grouping criteria, purity values of the clustered data 
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were calculated for two labeling criteria. The labels were named inspiration/expiration 

(INS/EXP) and high/low lung volume (HLV/LLV). The positive/negative values of the 

flowrate signal (measured using a spirometer) indicated inspiration/expiration, 

respectively. The flowrate signal was integrated to get the lung volume signal and the 

positive/negative values of that signal were indicative of high /low lung volume, 

respectively. SCG beats were labeled based on the timing of the corresponding R peak 

on the respiratory signals as shown in Fig. 13. 

 

 

 

 

 

 

 

 

Figure 13- Labeling SCG beats, HLV=High lung volume, LLV=Low lung volume, 

EXP=expiration, INSP=Inspiration, Red trace=Lung volume, Blue trace=Respiratory 

flow rate 

The purity value indicates how well the labelling criteria fits with the cluster 

result and it is defined as, 

𝑃𝑢𝑟𝑖𝑡𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                                    (10) 

where, TP is the number of true positives and TN is the number of true negatives. 

FP and FN indicate the number of false positives and false negatives, respectively. For 

example, if the labeling criteria is INS/EXP and SCG beats are devided in to two 

clusters, TP indicates the number of correctly labeled SCG beats as INS and TN 
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indicates number of correctly labeled SCG beats as EXP. Similarly, FP and FN are the 

number of incorrectly labeled beats as INS and EXP, respectively. 

Fig. 14 shows the purity values for 17  subjects. The mean purity value for 

INS/EXP and HLV/LLV  were 0.66 and 0.77, respectively. The higher purity for 

HLV/LLV classification suggests that the clustering using HLV/LLV criterea would 

provide better separation of SCG beats than INS/EXP criteria (except for subject 5 and 

8 ).  

 

Figure 14 -Purity values for two labelling criteria; INS/EXP and HLV/LLV.  

HLV/LLV labeling provided higher purity levels. 

Further, the intra-group variance (as an indicative of group heterogeneity) before 

clustering was compared with flowrate direction (i.e., INS/EXP), lung volume (i.e., 

HLV/LLV), and k-medoid clustering. Here, SOD (Eqn. 8) was used as a measure of the 

variance (Paparrizos & Gravano, 2015). The mean SOD were 21.57 before clustering 

and 20.93, 20.22 and 18.24 for INS/EXP, HLV/LLV, and k-medoid, respectively. It 

can then be concluded that the highest variance existed before clustering and decreased 

by about 15% when k-medoid clustering was performed (Fig. 15).  The variance for the 

INS/EXP was slightly higher than HLV/LLV grouping, suggesting that HLV/LLV 

grouping may provide better homogeneity than INS/EXP. Fig. 15 shows higher 
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heterogeneity for the INSP/EXP compared with HLV/LLV grouping in most subjects 

(Fig. 15). 

 

Figure 15- SOD values before clustering and when the clusters were separated based 

on HLV/LLV, INS/EXP and k-medoid solution. K-mediod had least SOD in all 

subjects. 

Analyzing cluster distribution with respiratory phases 

To analyze the possible relations between the cluster distribution and the 

respiratory cycle, the timing of clustered SCG beats was located on the respiratory 

flowrate and lung volume waveforms. Here, the respiratory waveforms were 

normalized according to Eqn. 11.  

𝐹𝑛𝑜𝑟𝑚 =
𝐹

𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛
                                                                     (11) 

where, F is the respiratory waveform and 𝐹𝑚𝑎𝑥, 𝐹𝑚𝑖𝑛 are the maximum and 

minimum values of 𝐹. The locations of SCG beats are shown in Fig 16, where beats 

belongs to cluster 1 and cluster 2 are labeled as blue ‘o’ circles and red ‘∇’triangles, 

respectively. The shown locations of the SCG beats coincide with the timing of their 

respective R peaks. Fig. 16 (a) shows the cluster distribution (of one subject) on the 

normalized flowrate waveform and Fig. 16 (b) shows the cluster distribution on lung 
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volume waveform. Fig. 16 (c) shows the cluster distribution with both flowrate and 

lung volume in 3D. 

 

 

 

 

 

 

Figure 16- Cluster results (event locations) plotted on (a) Respiratory flowrate cycle 

(b) Lung volume cycle (c) both flowrate and lung volume cycles in 3D 

For a better analysis of the cluster distribution, the respiratory phases were 

divided into four groups, namely: HLV-INS, HLV-EXP, LLV-EXP and LLV-INS as 

shown in Fig. 17 (a). A recent study (Peshala T Gamage et al., 2018) used a variance 

minimization approach to analyze SCG clustering and observed similar trends.  The 

cluster distribution (of one subject) with corresponding respiratory flowrate and lung 

volume is presented in Fig. 17 (b) and the corresponding four respiratory phases are 

shown in Fig. 17 (a). 
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Figure 17-(a) Four respiratory phases identified in a simplified lung volume 

waveform (b) Cluster distribution in lung volume and flowrate space in a typical 

subject 

As shown in Fig. 17 (b), the clusters are well separated in LLV-EXP and HLV-

INS regions while clusters are mixed in LLV-INS and LLV-EXP regions where the 

cluster switching occurs. This trend was consistent among all subjects. 

Cluster switching  

The cut-off timing when SCG beat switches between the two clusters was 

determined by employing a linear support vector machine (SVM) theory (Cortes & 

Vapnik, 1995). Here, the SVM method was applied on a two-dimensional space using 

the values of respiratory flowrate and lung volume at the time of the R peak of SCG 

beats. The linear SVM method finds a hyperplane (i.e., a decision boundary) in the 

feature space of flowrate-lung volume such that the margin between two clusters is 

maximized.  Fig. 18 shows the decision boundary plotted on flowrate vs. lung volume 

for one subject. The equation of the decision boundary is a linear function of flowrate 

and lung volume, which we define as the cluster cut-off equation. 
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Figure 18: The cut-off function between the two clusters calculated from linear SVM 

theory in a typical subject 

Similarly, cluster cutoff equations were calculated for all the subjects and the 

results are shown in Fig. 19. These linear equations (in the form LV=m×FL+c) had a 

positive slope ‘m’ of -0.63 ±0.39 (mean± std) and an intercept ‘c’ of 0.05 ±0.05 (mean 

± std).  
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Figure 19- Cluster distributions and the cluster cut-off equations plotted in flowrate 

vs. lung volume space for all study subjects 
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Relation between heart rate and clustering 

To investigate the relation between heart rate and clustering, cluster distribution 

was plotted with the heart rate variation as function of breathing as shown in Fig. 20. 

 

Figure 20- (a) Defining respiratory phase angle (b) cluster distribution with heart rate 

as a function of respiratory phase angle (for one subject) 

 

As shown in Fig. 20 (b), the trend line of the heart rate showed patterns that are 

similar to previous studies that investigated the well-known phenomenon of respiratory 

sinus arrhythmia (RSA) (Angelone & Coulter JR, 1964). The data showed that the 

average heart rates for the two cluster were 76.95 and 73.36, respectively.  The heart 

rate for the cluster containing HLV-INS phase was 6.03 % ±  3.32%  (𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑), 

higher than the other cluster.  This change in heart rate was significant (p = 3.04×10-7). 

Intra-cluster variability 

In k-medoid clustering, the distance between the observation points and the 

medoids are measured then observation points (i.e., SCG beats) are assigned to the 

clusters with the closest medoid. Hence, within a single cluster, some points are closer 

to the medoid while others are far from the medoid. To demonstrate SCG beat variation 
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within clusters, Fig. 21 shows  SCG beats for cluster 1 and cluster 2 separately. Here, 

it can be seen that the clustered SCG beats contain dominant morphological features 

inherent to each cluster while having noticeable variability within the clusters. 

By analyzing the distance from the cluster medoid to each point belonging to 

that cluster, the variance of the cluster can be quantified. In our study, such analysis 

will help detect outliers as well as to locate SCG beats with the most similar 

morphologies. 

 

Figure 21- Clustered SCG beats plotted separately for cluster 1 and cluster 2 (for one 

subject) 
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Figure 22- Distance plotted from cluster medoids to beats in the same cluster in 

ascending order for (a) cluster 1 (b) cluster 2.  Closest (10%) of the beats to the 

medoid of (c) cluster 1 (d) cluster 2. Furthest (10%) of the beats from the medoid of 

(e) cluster 1 (f) cluster2 

Fig. 22 (a) and (b) show a plot of the normalized distance distribution from the 

medoid to the beats in the same cluster.  In Fig. 22, the distances are sorted from the 

closest to the farthest. The plot takes the form of a tangent like function, which was 

consistent among all subjects. The first point in the plot represents the medoid itself 

(distance is zero) followed by the point closest to the medoid (point A). As the points 

move away from the medoid, the distance gradually increases at an approximately 

constant rate (e.g., point B).  As the distance further increases, a steeper distance 

increase is seen.  This steep gradient appears to continue until (point C) where outliers 

may be found. This data suggests a relatively small number of outliers. 
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Fig. 22 (c) to (f) show the 10% of SCG beats that are closest and farthest from 

the medoids for both clusters. As expected, results show that the beats closest to the 

medoids have more homogenous morphology while beats farthest from the medoid 

appeared to have more heterogeneity. 

In this study, we proposed and used DBA as an averaging method for 

calculating a representative event of the SCG beats that are closest to the medoid. Here, 

DBA was calculated for the 10% of the closest beats to the medoid (including the 

medoid) using the medoid as the initial average. Fig. 23 shows the calculated DBA 

averages (for a sampling frequency of 10kHz using 10 iterations) of the two clusters for 

all subjects.  These results suggest significant inter-subject variability of SCG beats as 

well as varying effects of respiration.  The noticeable differences between the beats in 

the two clusters suggest that separation of SCG beats in two cluster would provide a 

more precise estimate of SCG waveforms.  

Although the number of participants was relatively small (a few hundred heart 

beats in each of the 17 participants, which is a limitation of the study), clustering results 

were consistent in all subjects and reached statistical significance.  In addition, the 

clustering results were consistent with the findings of previous studies that showed 

similar dependence of SCG morphology on respiratory phases. To further confirm this 

result, future studies will consider larger number of subjects including those with 

cardiac conditions. 
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Figure 23-Calculated DBA for 2 clusters for all subjects  

Conclusion 

This study investigated the utility of unsupervised machine learning in 

clustering SCG beats to reduce their variability.  Seventeen subjects participated in the 

study. k-medoid clustering was implemented and dynamic time warping was chosen as 

the dissimilarity measure. The study results showed that the SCG morphology can be 

optimally separated into two clusters based on the elbow method and the comparison 

of average silhouette values. The relation between clusters and respiratory phases was 

investigated. The clusters had better agreement with lung volume phases (i.e., high vs 

low lung volume) than the respiratory flowrate phases (i.e., inspiration vs. expiration). 

SCG switching from one cluster to the other consistently occurred during the first half 

of inspiration and expiration. The relation between SCG switching and heart rate and 

was also investigated.  The average heart rate of the first cluster (containing inspiration 

and high lung volume) was significantly higher than the other cluster. This suggests 

that the mechanisms that cause respiratory sinus arrhythmia may be involved in SCG 

variability. 

Waveform differences between clusters were noticeable and varied among 

subjects. The proposed clustering significantly (p <0.01) decreased SCG variability (by 

about 15%).  The reduced variability can provide more precise average waveforms and, 
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consequently, more accurate estimates of SCG features.  This may yield stronger SCG 

correlation with heart function, which would enhance clinical utility of SCG.  While 

several studies have shown SCG utility for monitoring cardiac pathology, more studies 

are actively investigating additional clinically relevant SCG features. If successful, 

SCG would provide an inexpensive portable noninvasive tool for telehealth and 

precision medicine applications. It may also provide useful information for big data 

approaches across volumes of health systems and monitoring data. 
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CHAPTER 3 – NUMERICAL MODELING OF SCG 

Seismocardiography (SCG) is the measurement of the vibrations on the chest 

surface that are primarily produced by a combination of mechanical activities of the 

heart such as myocardial movements, valve closure and opening and blood momentum 

changes (Gurev et al., 2012; Korzeniowska-Kubacka et al., 2006). SCG is typically 

measured by placing an accelerometer upon the chest surface. Being inexpensive, non-

invasive and compatible with telemedicine, SCG may offer significant potential for 

diagnosis and monitoring of various cardiac diseases SCG analysis of both time and 

frequency domain have been investigated for cardiac diagnosis (Amirtaha Taebi, 2018; 

Amirtaha Taebi et al., 2018), while other studies have utilized SCG features to estimate 

respiratory rate (Reinvuo et al., 2006) and monitor sleep apnea (Morillo et al., 2010).  

 The SCG signal as measured on the chest wall surface is believed to be a 

combination of complex 3D movements of the heart during its pumping activity. The 

complex nature of heart movements, plus vibrations induced by cardiac muscle activity, 

blood flow, valve openings and closings, and other factors have made it challenging to 

identify SCG morphology to vibration genesis. Some studies have used medical 

imaging to link different feature points of the SCG signal by relating their occurrence 

time with the corresponding cardiac events seen during cardiac imaging (Crow et al., 

1994; Giorgis et al., 2008), yet, these findings remain inconclusive (Akhbardeh et al., 

2009).  

 Cardiac movements displace their immediate boundaries (e.g., pericardium, 

Aorta wall) and surrounding tissues (e.g. lung tissue, ribs, chest muscle and skin) before 

they propagate to the chest surface. Hence, modeling the propagation of the overall 

cardiac wall motion to the chest surface may help enhance our understanding of SCG, 
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help perform parametric studies (e.g., on the effects of the tissue properties, etc.) and 

assist in the study of SCG genesis by relating feature points to cardiac wall movement. 

A few studies have attempted computational modeling of SCG. For example, 

one study (Akhbardeh et al., 2009) used cine-MRI images to quantify the movements 

of the ventricles by segmenting the ventricles frame-by-frame and fitting a deformable 

mesh to the segmented volume. In that study, the tissue movement signal was derived 

by calculating the displacement of a point on the ventricle wall relative to an 

observation point. The same study (Akhbardeh et al., 2009) used an electro-mechanical 

model of a canine heart and reported a SCG-like acceleration at the  center of mass of 

the ventricles.  This electromechanical model (Akhbardeh et al., 2009) was 

implemented in another study (Tavakolian et al., 2012) where simplified cylindrical 

geometries were used to represent the sternum and internal organs and study their 

effects on the simulated SCG. These studies predicted SCG waveforms that agree with 

the general shape of the measured SCG waveform reported in the literature (Amirtahà 

Taebi et al., 2019). 

The current study focuses on modeling the propagation of heart wall vibrations 

to the chest surface to produce a simulated SCG. Here, the 3D motion of the heart wall 

was tracked using an optical flow-based motion tracking algorithm on the short-axis 

images of cardiac cine MRI. The tracked heart wall movements were then used as 

boundary conditions in the Finite Element Method (FEM) computational model. The 

model geometry consisted of a region of the thorax that includes part of the lung, rib 

cage, inter coastal muscles (ICMs), and other chest wall musculature.  

The simulated acceleration signals of the chest surface were validated by 

comparing them with previously described SCG morphological features (Crow et al., 
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1994; J. Zanetti et al., 1991). The effect of the rib cage and chest muscle stiffness on 

SCG were investigated. The SCG distribution over the chest surface was calculated and 

compared with experimental measurements. In addition, the effect of heart 

displacement with respiration on SCG was studied by changing the relative position of 

the heart and rib cage to mimic geometry found during end inspiration and end 

expiration with these simulated morphological differences compared with actual human 

SCG measurements. The study enhances our understanding of the SCG genesis, which 

may lead to increased diagnostic utility of SCG, plus provides potentially useful 

information on the chest surface distribution of SCG to help guide sensor location 

placement choices.  

Numerical Methods 

  
 

 

 

 

 

 

 

  

The methodology employed in the current study is shown in Fig. 24. First, short-

axis images of cine MRI were acquired.  These contain gray-scale images of the heart 

chambers at different times during the cardiac cycle. The short-axis MRI images at 

different times were combined to generate a 3D geometry (or a voxel volume). Then, a 

region of interest that contained a part of the thorax adjacent to the heart wall was 

Figure 24- Methodology 
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manually segmented from the voxel volume to derive the geometry for the 

computational model. The region was selected such that it contains the surface locations 

with likely high SCG amplitudes.  The SCG signal is known to be the resultant of the 

heart, valve,  and blood flow movements (Amirtahà Taebi et al., 2019). The current 

study focuses on the propagation of measured ventricle surface movements (which 

would contain the contribution from valve and blood flow movements) to the chest 

surface. Short-axis MRI images provides ventricle movements only, which are known 

to have a dominant effect on the SCG morphology (Crow et al., 1994). Hence, previous 

studies have used ventricle movements alone to model SCG (Akhbardeh et al., 2009; 

Tavakolian et al., 2012), this approach is followed in the current study. Furthermore, it 

can be argued that the movements of main arteries (e.g., movements caused by blood 

acceleration/deceleration in aorta) contribute to ventricles movements since these 

organs are mechanically coupled.  

   The myocardial movement was extracted using a motion tracking algorithm 

implemented in MATLAB (2017b. The MathWorks, Inc., MA). This algorithm utilized 

the frame to frame image intensity changes to quantify tissue movement. The tracked 

3D motion at the heart wall was then used as the boundary conditions in the 

computational model, which simulated the myocardial motion propagation to the chest 

surface.  

Medical imaging 

 Cine MRI frames capture the cardiac motion gated by ECG-triggered 

segmented imaging. As shown in Fig. 25, the different frames (shown by different color 

boxes) were acquired during consecutive cardiac cycles and then combined to create 



` 

44 

 

the final movie (or cine) that shows cardiac movements. Hence, the produced movie 

represents an average (rather than an individual) cardiac cycle. 

 

Figure 25- ECG tracing for cine MRI imaging gating. Different colors refer to 

acquisition time windows. The windows with the same color are averaged to produce 

the cine MRI images. 

 

 Short-axis cine Steady State Free Precession (SSFP) MRI images available in 

an online database (Tobon-Gomez et al., 2013) were used in the current study. These 

images were acquired using a 3T Philips Achieva System (Philips Healthcare, Best, 

The Netherlands) during breath-holds of approximately 15 s and were gated by ECG 

(Tobon-Gomez et al., 2013). The selected images were acquired from a 28-year-old 

healthy male volunteer. The short axis images contained 14 slices with a slice spacing 

of 8 mm. Each Image contained 256 x 256 pixels with a pixel size of 1.25mm. The 

images were available in DICOM format and were read using the image processing 

toolbox in MATLAB (2017b. The MathWorks, Inc., MA). The ECG gated MRI frames 

contained the timing with respect to the R peak, where the first frame was acquired at 

that peak and the final frame was acquired at 791 ms after the peak. The cardiac cycle 

corresponded to 30 frames in this data set. These images were interpolated in both time 

and Z direction (normal to image plane) such that there were 60 frames per cardiac 

cycle and 56 slices at each time frame. 
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Figure 26- MRI images (a) 2- chamber view (b) 4-chamber view and (c) short axis 

views in different planes, (d) voxel volume and (e) the slice orientation with respect to 

the chest denoted by 2 parallel lines 

Motion tracking 

 The motion tracking algorithm employed an optical flow-based method as 

described below. The coordinates (x, y, z) represent a point in the volumetric domain 

(i.e, voxel dataset), which is formed by combining the short-axis image slices where x 

and y are in the directions of width and height of the images and z is the direction 

normal to the images. 

If the intensity of a point (x, y, z) at time t  is 𝐼(𝑥, 𝑦, 𝑧, 𝑡) and the same point 

moves to a location (𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑧 + 𝛿𝑧) in 𝛿𝑡 time, optical flow assumes the 

intensity remains constant as denoted in equation (12). 

𝐼(𝑥, 𝑦, 𝑧, 𝑡) = 𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡)     (12) 

Using Taylor series expansion; 

𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) = 𝐼(𝑥, 𝑦, 𝑧, 𝑡) +
𝜕𝐼

𝜕𝑥
𝛿𝑥 +

𝜕𝐼

𝜕𝑦
𝛿𝑦 +

𝜕𝐼

𝜕𝑧
𝛿𝑧 +

𝜕𝐼

𝜕𝑡
𝛿𝑡 + 𝐻.𝑂. 𝑇  

(13) 

Using equations 12 and 13 and neglecting the higher order terms (H.O.T), the 

following equation can be derived. 

(d) (e) 
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𝜕𝐼

𝜕𝑥

𝛿𝑥

𝛿𝑡
+

𝜕𝐼

𝜕𝑦

𝛿𝑦

𝛿𝑡
+

𝜕𝐼

𝜕𝑧

𝛿𝑧

𝛿𝑡
= −

𝜕𝐼

𝜕𝑡
        (14) 

Equation 3 can also be written as: 

IxVx  +  IyVy  +  IzVz  =  −It          (15) 

where Ix, Iy, Iz denote 3D spatial intensity derivatives and It is time derivative of 

the intensity. 

Different methods have been proposed to solve equation 15 to find the velocities 

(Vx, Vy, Vz). In this study, the method proposed by Lucas and Kanade (Lucas & 

Kanade, 1981) was implemented.  

In this method, a n × n × n neighborhood block in the 3D space is assumed to 

have the same motion. 

 

Figure 27-Movement of n x n x n neighborhood from frame to frame 

Velocity field V can be solved by minimizing equation 16. 

 ∑ [∇I(x, y, z, t) ·  VT  +  It(x, y, z, t)]
2

x,y,z∈Ω     (16) 

A Gaussian windowing function W (W is an array with n×n×n elements 

containing the Gaussian coefficients) was utilized, such that the priority is given to the 

centered pixel. With the inclusion of the Gaussian windowing function, equation 16 

becomes, 
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∑ 𝑊2(𝑥, 𝑦, 𝑧)[∇I(x, y, z, t) ·  VT  +  It(x, y, z, t)]
2

x,y,z∈Ω       (17) 

Velocity vector V can be solved using equation 18. 

𝑉 = [𝐴𝑇𝑤2𝐴]−1𝐴𝑇𝑤2𝐵           (18) 

where  

𝐴 = [∇𝐼(𝑥1, 𝑦1, 𝑧1),…… . , ∇𝐼(𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁)]         

𝑤 = 𝑑𝑖𝑎𝑔[𝑊(𝑥1, 𝑦1, 𝑧1),…… . , 𝑊(𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁)] 

𝐵 = −[It(𝑥1, 𝑦1, 𝑧1), …… . , It(𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁)] 

N= n×n×n. 

𝐴𝑇𝑤2𝐴

=

[
 
 
 
 
 ∑𝑤2(𝑥, 𝑦, 𝑧)𝐼𝑥

2(𝑥, 𝑦, 𝑧) ∑𝑤2(𝑥, 𝑦, 𝑧)𝐼𝑥(𝑥, 𝑦, 𝑧)𝐼𝑦(𝑥, 𝑦, 𝑧) ∑𝑤2(𝑥, 𝑦, 𝑧)𝐼𝑥(𝑥, 𝑦, 𝑧)𝐼𝑧(𝑥, 𝑦, 𝑧)

∑𝑤2(𝑥, 𝑦, 𝑧)𝐼𝑦(𝑥, 𝑦, 𝑧)𝐼𝑥(𝑥, 𝑦, 𝑧) ∑𝑤2(𝑥, 𝑦, 𝑧)𝐼𝑦
2(𝑥, 𝑦, 𝑧) ∑𝑤2(𝑥, 𝑦, 𝑧)𝐼𝑦(𝑥, 𝑦, 𝑧)𝐼𝑧(𝑥, 𝑦, 𝑧)

∑𝑤2(𝑥, 𝑦, 𝑧)𝐼𝑧(𝑥, 𝑦, 𝑧)𝐼𝑥(𝑥, 𝑦, 𝑧) ∑𝑤2(𝑥, 𝑦, 𝑧)𝐼𝑧(𝑥, 𝑦, 𝑧)𝐼𝑦(𝑥, 𝑦, 𝑧) ∑𝑤2(𝑥, 𝑦, 𝑧)𝐼𝑧
2(𝑥, 𝑦, 𝑧) ]

 
 
 
 
 

 

 

𝐴𝑇𝑤2𝐵 =

[
 
 
 
 
 ∑𝑤2(𝑥, 𝑦, 𝑧)𝐼𝑥(𝑥, 𝑦, 𝑧)𝐼𝑡(𝑥, 𝑦, 𝑧)

∑𝑤2(𝑥, 𝑦, 𝑧)𝐼𝑦(𝑥, 𝑦, 𝑧)𝐼𝑡(𝑥, 𝑦, 𝑧)

∑𝑤2(𝑥, 𝑦, 𝑧)𝐼𝑧(𝑥, 𝑦, 𝑧)𝐼𝑡(𝑥, 𝑦, 𝑧)]
 
 
 
 
 

 

 

The following equations were used to numerically calculate the needed 

derivatives. 

𝐼𝑥 =
𝐼(𝑥 + ∆𝑥, 𝑦, 𝑧, 𝑡) − 𝐼(𝑥 − ∆𝑥, 𝑦, 𝑧, 𝑡)

2∆𝑥
 

𝐼𝑦 =
𝐼(𝑥, 𝑦 + ∆𝑦, 𝑧, 𝑡) − 𝐼(𝑥, 𝑦 − ∆𝑦, 𝑧, 𝑡)

2∆𝑥
 

𝐼𝑧 =
𝐼(𝑥, 𝑦, 𝑧 + ∆𝑧, 𝑡) − 𝐼(𝑥, 𝑦, 𝑧 − ∆𝑧, 𝑡)

2∆𝑥
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𝐼𝑡 =
𝐼(𝑥, 𝑦, 𝑧, 𝑡 + ∆𝑡) − 𝐼(𝑥, 𝑦, 𝑧, 𝑡 − ∆𝑡)

2∆𝑡
 

At the image boundaries the Ix, Iy and Iz are calculated from, 

𝐼𝑥 =
𝐼(𝑥 + ∆𝑥, 𝑦, 𝑧, 𝑡) − 𝐼(𝑥, 𝑦, 𝑧, 𝑡)

∆𝑥
 

𝐼𝑦 =
𝐼(𝑥, 𝑦 + ∆𝑦, 𝑧, 𝑡) − 𝐼(𝑥, 𝑦, 𝑧, 𝑡)

∆𝑥
 

𝐼𝑧 =
𝐼(𝑥, 𝑦, 𝑧 + ∆𝑧, 𝑡) − 𝐼(𝑥, 𝑦, 𝑧, 𝑡)

∆𝑥
 

After calculating the velocity vector V, the relative position of the next frame is 

calculated using equation 19. 

𝑝𝑇 = 𝑝0
𝑇 + ∆𝑡 × 𝑉𝑇          (19) 

where  

𝑝0 = [𝑥0 𝑦0 𝑧0] is the initial position of a point and  𝑝 = [𝑥 𝑦 𝑧] is the position 

of the point in next frame after ∆𝑡. In the current study, a block size of 5x5x5 was used 

and the diagonal elements of the Gaussian windowing function W was selected to be 

unity (Baron, 2004). 

Validation of motion tracking 

The accuracy of the motion tracking algorithm was tested using a benchmarking 

framework for validating cardiac motion tracking algorithms (Tobon-Gomez et al., 

2013). This benchmarking framework provided cine steady state free precision (SSFP) 

MRI and 3D tagged MRI data (acquired on the same subject) with the ground truth 

motion for 12 landmarks in the ventricle wall as shown in Fig. 28.  
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Figure 28-Tracked ground truth of landmarks on ventricle wall by two observers 

(Tobon-Gomez et al., 2013) 

 The ground truth motions of these 12 landmark points were manually tracked 

by two experienced observers using the 3D tagged dataset and the ground truth location 

data were mapped in to (SSFP) MRI images coordinates by registering 3D tagged MRI 

coordinates to (SSFP) MRI images coordinates (relative to anatomical coordinate 

system) (Tobon-Gomez et al., 2013). The current study used the same SSFP MRI 

images provided in the study (Tobon-Gomez et al., 2013) and the accuracy of the 

motion tracking algorithm was tested by comparing the tracked motion of the 12 

landmark points against the ground truth motion of the 12 points provided in the study 

(Tobon-Gomez et al., 2013). The distance (in 3D space) between the ground truth and 

the tracked motion over time can be used to quantify the accuracy level for a motion 

tracking algorithm. However, due to different temporal resolutions between  SSFP and 

3D tagged MRI images , the previous study [16] suggested to validate the motion 

tracking on SSFP MRI images by comparing the Euclidean distance between the 

tracked and the ground truth locations of the 12 points at the frames closest to end 

systole and the final frames (Tobon-Gomez et al., 2013). Fig. 29 shows the tracked and 
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ground truth locations of the 12 landmark points at the frame closest to end systole and 

the final frame (i.e. frame closest to end diastole). 

 

Figure 29- Locations of ground truth (GT) and tracked locations at (a) end systolic 

and (b) close to end diastolic frames in 3D Euclidean space (all dimensions are in 

mm)   

An Euclidean difference of 4.10±2.29 mm and 2.06±1.36 mm (mean±SD) were 

observed between the tracked and ground truth locations of the 12 points at end systole 

and end diastole frames, respectively. The error may be partially due to the spatial and 

temporal resolution and due to variabilities of different acquisition sessions of SSFP 

and 3D tagged MRI images (Tobon-Gomez et al., 2013). The error in calculated is 

comparable to acceptable errors in a previous benchmarking study (Tobon-Gomez et 

al., 2013).  
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 Due to the complex fiber structure orientations of the heart muscles, the heart 

exhibits a complex movement which involves rotation, twisting and longitudinal 

movement during cardiac cycle (Ingels Jr, Daughters 2nd, Stinson, & Alderman, 1975). 

It is important to accurately capture these complex 3D movements to properly model 

the SCG waveform at the chest surface. Fig. 30 shows a tracked contour at the ventricle 

walls in the short-axis view (and another view) at end diastole and end systole times. 

The displacement vectors of the contour points are shown using red arrows.  

 

Figure 30-Tracked contours at the ventricle walls (endocardium) with the 

displacement vectors (represented by red arrows) at the end systolic and end diastolic 

states. Top: short axis view, Bottom: Another view to increase clarity. The 

displacement between consecutive frames is shown by the arrows. The arrow length 

equals 8 times the displacement to make arrows more visible.   

End Systole End Diastole 

L

R

L
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The direction of these arrows suggests the ability of the algorithm to capture the 

rotational and twisting action of the heart wall as well as the movement in the 

longitudinal direction of the heart. 

Computational modeling 

The computational domain was generated by segmenting the voxel dataset 

formed by stacking the short-axis MRI slices. The segmented region is shown in Fig. 

31. This region consisted of the chest muscle, ribs, cartilage and lung as shown in Fig. 

32 (a) and (b). Although, the position of the sternum could be seen in the MRI images, 

the intensity contrast levels of the current MRI imaging didn’t allow accurate 

segmentation of the ribs and cartilage. Hence, the ribcage was modeled separately 

according to the dimensions available in literature (Laurin, Jobin, & Bellemare, 2012) 

. The geometry, was then scaled and placed in the model to match the size and 

orientation of the sternum and ribs.  The intercostal muscles were modeled by 

connecting the muscle attachments between ribs (Hamzah et al., 2013). The location 

and orientation of the computational geometry on human chest is shown in Fig. 32 (c). 

The geometry was limited to that region to reduce computational expense while 

including areas of the chest surface where SCG is often measured (Amirtahà Taebi et 

al., 2019).  Future studies would expand the simulated region to include the entire 

thorax. 

Computational modeling was implemented in ANSYS (ANSYS Inc, 

Canonsburg, PA) transient structural analysis module, which uses finite element 

method (FEM) to solve for the displacements in the computational domain. In FEM, 

the structural domain is divided into small (finite) elements, which are assembled to 
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satisfy the required boundary conditions and interfaces (i.e., contacts) between the 

model components. The forces and displacements acting on each element are governed 

by the equation of motion. A system of equations is formed by combining the equations 

from all the elements, which is then solved to find the displacement of all elements 

(Peshala T Gamage 2019). 

Figure 31- Segmentation and 3D model construction. (a) Segmented voxels from the 

MRI slices, (b) 3D model constructed by combining voxels.  

The generated finite element mesh shown in Fig. 33 (a) contained ~45000 

elements and ~84500 nodes and was generated in ANSYS. The tracked motion of the 

heart surface was mapped to the computational model as shown in Fig. 33 (b). The 

model was constrained by fixing all degrees of freedoms at the medial and lateral 

boundaries of the ribs as shown in Fig. 33 (c) and (d). This may be justified by the very 

low (near zero) movements (during breath-hold) of the rib cage. Bonded contacts were 

LV 
RV 

Lung 

Muscle 

Sternum 

(a) (b) 
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defined at the rib cage and muscle interfaces. A contact condition that allows sliding 

between the lung and chest wall was defined at the lung-chest wall interface.  

 

Figure 32- Chest location and detailed structures in the 3D modeled region (a) 

Muscular, bony and lung regions (b) Ribs, ICM, cartilage, sternal and xiphoid (c) 

location and orientation of the modeled region. 

 

 

 

 

 

 

 

 

Figure 33- 3D representations of the computational model domain: (a) Computational 

mesh, (b) MRI-mapped displacements of heart surface and (c) and (d) more 3D views. 

The rib edges are colored in red.  

(a) (b) 

(c) (d
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Table 2- Material properties 

 

 A linear elastic behavior is assumed for all the components except for the lung, 

where hyperplastic material properties were fitted in to Mooney-Rivlin 5th order model 

using available information (Al-Mayah et al., 2007). The material properties for each 

component are shown in Table 2. Although the chest muscle consists of different 

components (i.e., pericardial muscle, pectoralis major, skin), the chest muscle and skin 

were modeled as a single component in this study. Since previous studies (Chawla et 

al., 2006; Gefen & Dilmoney, 2007; Zigras, 2007) reported a range of elasticity values 

for these components, the effect of different elasticities on the simulated SCG was 

investigated. 

Component Young’s modulus Density  (kg/m3) Poisson’s ratio References 

Chest Muscle (includes 

pericardial muscle, pectoralis 

major, Skin) 

0.5-2.5 MPa 1000 0.3 (Chawla, Mukherjee, & 

Karthikeyan, 2006; Gefen & 

Dilmoney, 2007; Zigras, 2007) 

 

Sternum, Ribs, Xyphoid 12 GPa 2000  0.4 (Sundaram & Feng, 1977) 

Costal cartilage 3 GPa 2000 0.4 (Chawla et al., 2006) 

Intercostal muscle 3 MPa 1000  0.4 (Chawla et al., 2006) 

Lung Mooney Rivlin 5th order 

(C10=-859.78 Pa C01= 

947.5 Pa C20=1783.2 Pa 

C11=-5440.5 Pa  

C02=4633.5 Pa) 

 

1250 - (Al-Mayah, Moseley, & Brock, 

2007; Zeng, Yager, & Fung, 

1987) 
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Results and Discussion 

Simulated SCG waveform 

 

Figure 34-Right: Calculated chest surface acceleration waveforms (in dorso-ventral 

direction) at several locations. The vertical dashed line indicates the timing of the 

ECG R-peak extracted from MRI. Left: Location of the 4 precordial points. The 

calculated waveforms had similarities with measured SCG. 

 

The acceleration in the dorso-ventral direction was calculated at several the 

chest surface locations (Fig. 34). These signals showed clear peaks as seen in the SCG1 

and SCG2 regions (which correspond to heart sounds S1 and S2).  

In addition, the blood volume of the left ventricle (i.e., left ventricular volume 

(LV)) was followed by tracking the epicardium boundary in the cine short-axis MRI 

images and the calculating the voxel volume inside the tracked boundary. The LV 

volume variation was used to identify the end systolic and end diastolic states (Kido et 

R 

peak  

(c) Sternum 

(d)Xiphoid 

(a) 4th intercostal  space 

(b) 5th intercostal space 
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(b) 
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al., 2016) and to relate the observed SCG features with respect to the timing of left 

ventricular contraction. This approach of validating the SCG timing was previously 

reported (Akhbardeh et al., 2009; Peshala T Gamage 2019). 

 

 

 

 

 

   

 

 

Figure 35- Feature points identified in the calculated SCG waveform (at 5th 

intercostal space) with the corresponding LV volume variation and R-wave timing. 

The feature points appeared consistent with the LV volume variation and previous 

studies (Crow et al. 1994)  

Several feature points were identified in the simulated signal in relation to the 

previously observed features of experimental studies (Crow et al., 1994; Amirtahà 

Taebi et al., 2019). These feature points of the simulated SCG signal are shown Fig. 35 

with the respective LV volume variation and timing of the ECG signal. It can be seen 

in Fig. 35 that the relatively high amplitude portions of the SCG signal (i.e., SCG1 and 

SCG2 regions) were observed just after the end diastolic volume (EDV) and end 

systolic volume (ESV) times of the LV volume signal. This suggests that these SCG 

portions include components generated by valve opening and closure (i.e., similar to 

S1 and S2 heart sounds).  Following  previous studies (Crow et al., 1994; Amirtahà 

Taebi et al., 2019), several feature points were identified after the EDV: (1) Mitral valve 

AO 

IC 

MO 

AC 
MC 

E

E

R peak  
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closure (MC) at the beginning of the sharp downfall of the SCG signal following QRS 

complex (2) Iso-volumic contraction (IC) at the nadir of following MC, (3) Aortic 

opening (AO) was at the peak following IC. (4) aortic valve closure (AC) at the 

beginning of the sharp downfall of the SCG after the ESV timing (5) mitral valve 

opening (MO) at the nadir of the down slope following AC.  The ability of the model 

to predict the presence these feature points contributes to its validity. 

Effect of chest soft tissue stiffness 

The chest wall contains bones and soft tissue.  In the current study, the soft 

tissue mainly consists of the skin, subcutaneous fat, and muscles such as the pectoralis 

major and intercostal muscles (ICM).  ICM are known to have relatively higher stiffness 

and were treated as such. The rest of the soft tissue were assigned a lower stiffness as 

shown in Table 1.  Since different stiffness values were reported (Chawla et al., 2006; 

Gefen & Dilmoney, 2007; Zigras, 2007), the effect of the stiffness on the simulated 

SCG signal was investigated. The simulated SCG waveform for different stiffness 

values are shown in Fig. 36. 

 

Figure 36- The effect of chest soft tissue stiffness on the SCG waveform at 4th ICS. 

Similar trends were observed at other chest surface locations. Higher stiffness appears 

to increase the waveform amplitude, which is consistent with simplified 1-D models. 
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As seen in Fig. 36, the acceleration magnitude increased with the muscle 

elasticity increase suggesting that the stiffer the muscle, the higher the SCG amplitude.  

This phenomenon can be explained by considering a simplified spring mass system 

with translational motion from one boundary as shown in Fig.37. 

 

 

 

Figure 37- Simplified representation of a spring mass system with translational 

motion from a moving boundary 

The acceleration of the mass can be represented by equation 20. 

𝑥̈ =
𝑘

𝑚
(𝑥 − 𝑢)           (20) 

where 𝑘, 𝑚 denote the stiffness and mass of the system, respectively. The input 

motion (similar to the displacements at the chest tissue subsurface) is denoted by 𝑢 

while 𝑥, 𝑥̈ denote the displacement and acceleration of the mass  , respectively. Equation 

20 suggests that the acceleration is proportional to the stiffness of the system which 

explains the trends observed in Fig. 37. 

Surface distribution of SCG 

Surface distribution of the acceleration (i.e., SCG) in the dorso-ventral direction 

was analyzed. Although the simulation can provide the instantaneous accelerations 

during the whole cardiac cycle, the results are shown for the timing of SCG 1 and SCG 

2 peaks (i.e., high amplitude regions that correspond to heart sounds S1 and S2) as 

examples. Here, the timing of the SCG1 and SCG2 peaks were selected relative to the 

simulated SCG signal at 4th intercostal space (ICS). 

 

m 

u 
x 
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Figure 38- Surface acceleration distribution in dorso-ventral direction at: (a) &(c) the 

chest surface and (b) & (d) underneath the skin and pectoralis major. Sub-plots 

(a)&(b) show results at the SCG 1 peak timing while (c) and (d) are at SCG 2 peak 

timing. Timing was determined from the SCG signal at 4th intercostal space. The 

calculated surface SCG amplitude was comparable to measured values. The locations 

of the maximum SCG1 and SCG2 were around the 4th and 3rd ICS, respectively. The 

surface acceleration was less loud and more uniform than the subsurface SCG.  There 

was less than 15% change in surface SCG amplitude in the 3cm diameter area 

surrounding the maximum amplitude location. This suggests that a sensor positioning 

error of 3 cm may be tolerable; all the measurements are in mm/s2 

Fig. 38 (a) and (c) show the SCG distribution on the chest surface and Fig. 38 

(b) and (d) show that acceleration beneath the chest muscle (also the surface of the rib 

cage and ICMs). It can be seen that maximum SCG1 amplitudes are located around 4th 

ICS near left sternal border. This is similar to the heart sound S1 caused by the mitral 

and tricuspid valve closure (Felner, 1990a).  The location of maximum SCG2 occurred 

at the 3rd ICS near left sternal border, which is similar to the aortic and pulmonary 

SCG1 

peak 

SCG2 

peak 
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valve sounds near the heart base (Felner, 1990b).  This Fig.38 (b) suggests that the SCG 

amplitude tended to decrease over the sternum possibly due to the increased bony 

content. Results also showed that the region of high SCG amplitudes tended to slightly 

spread towards the xiphoid process. This may be because the decreased bone content at 

the siphoned may have provided more freedom to the chest surface movements.   

In addition, the surface acceleration on the rib surfaces (Fig. 38 (b) and (d)) 

showed high amplitude regions similar to those observed at the chest surface (Fig. 38 

(a) and (c)).  It can also be seen that higher accelerations occurred at the ICMs 

compared with the ribs, possibly due to the fixed boundary conditions at the medial 

and lateral boundaries of the ribs. Interestingly, more homogenous distribution was 

seen over the chest surface, suggesting that the chest muscle diffused the sub-surface 

non-homogeneous accelerations as they propagated to the chest surface. 

Results also showed that there was less than 15% change in surface SCG 

amplitude in the 3cm diameter area surrounding the maximum amplitude location. 

This suggests that a sensor positioning error of 3 cm may be tolerable.   In addition, 

the simulated results were compared with experimental measurements of SCG 

distribution over chest surface recorded on a healthy subject using 36 accelerometers 

(Model: 356A32, PCB Piezotronics, Depew, NY). Here, 32 sensors were placed on the 

intercostal spaces and 4 sensors were placed on right clavicle, left clavicle, mid sternum 

and xiphoid locations as seen in Fig. 39.  Sensors placed in the intercostal spaces were 

approximately 3 cm apart (center to center) while the sensors closest to the sternum 

were placed at sternal borders.  
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Figure 39-(a) Array of sensors attached to the chest surface (b) sensor locations with 

index. (Refer with SCG amplitude maps shown in Fig. 17) 

Fig. 40 shows the numerically-modeled surface distribution of SCG at the time 

of different feature points of the SCG. Similarly, Fig. 41 shows the surface distribution 

of SCG measured on a healthy subject during inspiration breath hold. For comparison 

purposes, the computational domain is shown using a black dashed line in Fig.41. 

 

Figure 40- Computational surface SCG amplitude maps at the timing of feature 

points: (a) MC (b) IC (c) AO (d) AC (e) MO and (f) identified feature points on the 

SCG signal measured at 5th ICS; all the measurements are in mm/s2 
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Figure 41- Experimental surface SCG amplitude maps at the timing of feature points: 

(a) MC (b) IC (c) AO (d) AC (e) MO and (f) identified feature points on the SCG 

signal measured at 5th ICS. (Small circles on Figures (a) to (e) represent the sensor 

locations as shown in Fig. 39 (b). The dashed line encloses the region to be compared 

with the computational model); all the measurements are in mm/s2 

The numerically modeled surface SCG magnitude distribution results were 

comparable to the experimental measurements and with similar trends. At the timing of 

MC, AO and AC feature points, high positive surface accelerations were concentrated 

in the region between 3rd and 5th ICS near left sternal border. At the timing of IC and 

MO feature points, high negative accelerations were concentrated in the same region 

(3rd and 5th ICS near left sternal border). Differences between the experimental and 

simulated results may be attributed to the inter-subject variations, different resolutions 

of the computational and experimental measurements, and limitations of the 

computational model (i.e., limited geometrical domain, fixed boundary conditions at 

rib ends, simplified geometry and mechanical properties). 
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Effect of heart position (due to respiratory motion) 

 

Figure 42- The heart location during respiration in (a) posterior-anterior projection 

and (b) lateral projection (Bogren, Lantz, Miller, & Mason, 1977) 

 

The SCG signal is known to be affected by respiration. Several studies have 

investigated the SCG morphological variability due to respiration (Azad, Gamage, 

Sandler, Raval, & Mansy, 2019; Peshala T Gamage et al., 2018; Peshala T. Gamage, 

Azad, Taebi, Sandler, & Mansy, 2020; R. H. Sandler et al., 2019) and the possible 

causes of cardio-pulmonary interactions such as intra thoracic pressure variations and 

respiratory motion of the heart. To study the effect of heart position (due to respiration) 

on the SCG signal morphology, the relative position between the heart and ribcage was 

varied to approximate the end-expiration and end-inspiration states. Here, the original 

position of the model geometry (derived from MRI imaging) was at end inspiration. To 

model the end expiratory state, the rib cage was be moved (w.r.t the heart) to 

approximate end inspiration following a previous study (Bogren et al., 1977) that 

measured the 3D respiratory movement of the heart using cineangiography. Fig. 42 

shows the overall cardiac motion reported in the previous study (Bogren et al., 1977) 

based on 39 cineangiographies. 

sternum 
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Figure 43- Surface acceleration distribution in dorso-ventral direction at: (a) &(c) End 

inspiration state; and (b) & (d) end expiration during both SCG 1 and SCG 2 peak 

timing. The SCG peak tended to be louder at end inspiration. The location of the 

SCG1 peak moved superiorly at end expiration by about 3cm, which is comparable 

with the corresponding upward shift of the heart location; all the measurements are in 

mm/s2 

The surface acceleration distribution of the chest surface at SCG1 peak and 

SCG2 peak for end inspiratory and expiratory states are shown in Fig. 43.  A change in 

the regions of maximum amplitudes can be observed among the two states. At the 

timing of SCG1 peak, the region of maximum amplitudes was centered around the left 

sternal border of the 4th ICS for the end-inspiration and this region has moved laterally 

and upward towards 3rd ICS for the end expiration state. Similarly, at the timing of 

SCG 2 peak, the maximum amplitude region moved slightly laterally and superiorly 

with expiration. This phenomenon can be due to the lateral and upward movement of 

the heart with expiration state.  

End- Inspiration End- Expiration 

SCG2 

peak 
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peak 
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Figure 44- Simulated SCG signals at different chest locations for the end inspiration 

and end expiration states. The waveform variability (calculated as the rms of the 

waveform difference) was comparable with experimental results. 

To assess the effect of heart position (due to respiratory motion) on the SCG 

morphology, the simulated SCG was calculated on the same surface location for the 

end inspiration and end expiration simulations.  Slight morphological variations were 

observed between end-inspiration and end-expiration states. To quantify the 

dissimilarity between the SCG morphologies, the morphological variability of two SCG 

waveforms were measured using root mean square (rms) of the difference between two 

waveforms. Fig. 44 shows the SCG waveforms at end inspiration and end expiration 

states with their respective rms differences. These differences were comparable with 

experimental breath-hold (i.e., measured during end-inspiration and end-expiration) 

SCG data acquired in a previous study (Azad et al., 2019) that reported a rms difference 

of (mean=28.24, SD=8.909 mm/s2) for the measurements at 4th ICM near left ICB on 5 

rms diff: 23.29 

rms diff: 22.5 

rms diff: 23.39 

rms diff: 20.25 
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healthy subjects. These results suggest that the change in relative location of the heat 

and rib cage during respiration is among the possible reason for the differences in SCG 

morphology with respiration observed in previous studies (Azad et al., 2019; Peshala 

T. Gamage et al., 2020). 

Acceleration over the heart wall 

 

 

 

 

 

 

 

 

 

 

Figure 45- Calculated SCG at 4th ICS, 5th ICS, and sternum (a,b,c, respectively) and 

corresponding acceleration on the pericardium (d,e,f). The latter locations were 

determined by projecting the surface locations on the pericardium (The surface point 

locations are shown in Fig. 34). There was some similarity between surface and 

subsurface waveforms although the surface amplitudes were about 10 times lower 

than those at the pericardium, which is consistent with a previous study (Bombardini 

et al. 2007). 

Acceleration in the dorso-ventral direction at heart wall (i.e., pericardium 

boundary) was studied. Here, the accelerations were recorded at several locations on 

the chest surface and their corresponding projections on the heart wall (in dorso-ventral 

direction). These results are shown in Fig. 45. It was observed that the accelerations 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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measured on heart wall were approximately 10 times larger than the accelerations 

measured on chest surface which is consistent with literature (Bombardini et al., 2007). 

Although, the waveforms measured on the heart wall had morphological differences 

with the corresponding SCG signals at chest surface, they demonstrated SCG like 

waveforms with similar high amplitude peaks observed in SCG1 and SCG2 regions.  

There was a trend towards more oscillatory cycles at the heart surface around the SCG1 

and SCG2 timings. These results suggested that an invasive acceleration measurement 

on the heart surface can provide a SCG like high amplitude waveform with similar 

features to the SCG measured at chest surface. Fig. 46 shows an example of a similar 

signal measured with an accelerometer on a dog heart wall in a previous study (Ozawa, 

Smith, & Craige, 1983a) which demonstrated a SCG like waveform. 

 

 

 

 

 

Figure 46- SCG measured at pericardium of a dog (measured using an accelerometer 

attached at left ventricular wall near interventricular septum) with corresponding ECG 

(Ozawa, Smith, and  Craige. "Origin of the third heart sound. II. Studies in dogs." 

Circulation 67.2 (1983): 399-404). This measured acceleration shows characteristics 

similar to MRI-extracted signals, especially that of Fig 19 f.  

Summary and Conclusions 

Computational modeling of cardiac vibration propagation from the heart wall 

boundary to the chest surface was performed. The model geometry was derived from 

ECG gated short-axis cine MRI imaging of a healthy subject. The region of interest 

included a region of the chest above heart ventricles that contained ribs, intercostal 

S

E
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muscles, chest tissue and lung. Displacements at the heart wall were tracked by 

applying a 3D optical flow-based motion tracking algorithm to the voxel volumes 

produced by short-axis cine MRI imaging. The accuracy of the tracking was validated, 

and the tracked displacements were imposed as the boundary conditions at the heart 

wall in the computational model. 

Simulated acceleration signals (i.e. SCG) at the chest surface showed similar 

morphological features observed in previous experimental SCG studies (Akhbardeh et 

al., 2009; Crow et al., 1994; Amirtahà Taebi et al., 2019). These feature points were 

further validated by analyzing their timing with respect to the left ventricle (LV) volume 

variation and ECG R-peak. The surface SCG distribution results showed similar trends 

to experimental results. The increased stiffness of the chest muscle tissue resulted in 

increased SCG amplitudes. The effect the heart displacement (due to respiration) on 

SCG was investigated by changing the relative location of the heart and rib cage to 

mimic end-inspiratory and end-expiratory breath hold states. Results showed that the 

morphological differences of SCG measured at these two states are comparable to the 

differences observed in experimental measurements suggesting that respiratory motion 

of the heart can be a contributing factor to the different SCG morphologies with 

respiration described in previous studies (Azad et al., 2019; Peshala T. Gamage et al., 

2020). The acceleration measured over heart wall (i.e., pericardium) produced high 

amplitude waveforms with morphological features similar to the surface SCG signals. 

These results provide a strong link between surface measurements and myocardial 

movements. The study findings should enhance our understanding of SCG spatial 

distribution and genesis, which may lead to increased SCG clinical utility. With more 

high resolution medical imaging, the proposed methodology of motion tracking and 
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computational modeling can be extended to include complex blood flow and valve 

movements, which would provide more in-depth information about SCG genesis and 

relation between SCG feature points and cardiac events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



` 

71 

 

CHAPTER 4 – PREDICTION OF HEART FAILURE PATIENT 

READMISSION USING SCG 

This chapter presents the application of machine learning (ML) utilizing SCG 

features for predicting HF patient readmission. Heart failure (HF) is one of the major 

global healthcare concerns. In USA,  HF affected adults are estimated as 6.5 million 

from 2011 to 2014 (National Health and Nutrition Examination Survey) and this 

number is projected to increase by more than 40% between 2015 and 2035 (Nelson, 

Whitsel, Khavjou, Phelps, & Leib, 2016). Economic burden associated with HF is also 

extensive which will reach $70 billion by 2030 (Heidenreich et al., 2013). Substantial 

amount of the expense is due to hospital readmission which has become a vital area to 

improve overall healthcare system especially for HF patients. A recent study shows that 

more than 20% of HF patients are readmitted within 30 days and up to 50% by 6 months 

(O’Connor, 2017).   

These high rates of HF readmission urge to administer the readmission events 

properly and more efficiently. One approach for better management is to develop a 

predictive model which can reliably anticipate the readmission of a HF patient. Previous 

studies (Aggarwal & Gupta, 2014; Annema, Luttik, & Jaarsma, 2009) suggested that 

main reason behind high readmission rate is worsening HF. Therefore, features which 

are indicative of different heart conditions should come in handy when predicting HF 

readmission. Seismocardiography (SCG) is a noninvasive way of evaluating cardiac 

mechanical processes which possesses potential to detect and monitor cardiac 

conditions (Amirtahà Taebi et al., 2019). SCG based measurements have gained lots of 

attention among the researchers since the discovery due to its noninvasive nature and 

effectiveness in diagnosis of cardiovascular diseases. Arrhythmias such atrial and 
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ventricular fibrillation which occur due to heart’s irregular electrical impulses can be 

detected using ECG features. But cardiac dysfunctions like heart failure reduced 

ejection fraction (HFrEF) and heart failure preserved ejection fraction (HFprEF) are 

caused due to heart wall thickening and diagnostic tests such as ECG, X-ray aren’t 

effective detecting these heart conditions. SCG signal features can be used as a potential 

way to detect these conditions as SCG originates from cardiac mechanical processes 

such as myocardial wall motions (Sahoo et al., 2018). Advantage of using SCG signal 

over acoustic cardiac signals (e.g. phonocardiographic (PCG) signal) lies in its ability 

to capture cardiac information below audible range which may provide  important 

features related to myocardial movements. 
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Methodology 

 

Figure 47-Methodology 

Fig. 47 summarizes the methodology employed in the study which is further 

discussed in the following sections. 

Study protocol 

After Institutional Review Board (IRB) approval, HF patients were enrolled at 

their discharge from hospital. For the study, only the HF patients with reduced ejection 

fraction (< 45%) were considered. These patients were longitudinally studied within a 

6-month period from their initial discharge. The ongoing study has collected data from 

41 patients and among them 8 patients were readmitted while 13 patients were not re-

admitted during the 6-months period after initial discharge and rest are in the process 

of data collection. The patients with pacemakers (but who were not actively paced 

during the measurements) were included in the study. Table 3 shows the distribution of 
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data recording sessions categorized in time for re-admitted and not re-admitted HF 

patients. The longitudinal distribution of data acquisition is shown in Fig. 48. 

 

Table 3- Data recording sessions longitudinally categorized in time for re-admitted 

and not re-admitted patients from data gathered in a 6 months duration after initial 

discharge. 

Readmitted (n=13 ) Not Readmitted (n=8) 
 

Days>62 

(2 months 

before re-

admission) 

62>days>31 

(Within 1-2 

months 

before re-

admission) 

31>days>2 

(Within 2 

days-1 

month 

before 

readmission) 

Readmission 

(Within 2 

days before 

or after re-

admission) 

 

Discharge  

(At the day of 

initial 

discharge) 

days<31 

(Within 1 

month after 

discharge) 

31<days<62 

(Within 1-2 

months 

after 

discharge) 

62<days<93 

(Within 2-3 

months after 

discharge) 

93<days 

(3 months 

after 

discharge) 

All 

6 7 12 6 8 11 7 3 4 63 

Total=31  

 

Total=32  

 

 

  

 

 

 

Figure 48- Data session distribution of (a) readmitted and (b) non readmitted patients. 

Numbers represent the numbers assigned  

Data acqusition 

Data acquisition was done when patients were sitting on a 45-degree inclined 

exam table with their legs extended. Seismocardiographic signal was acquired using an 

accelerometer (Model: 356A32, PCB Piezotronics, Depew, NY) which was affixed on 

the chest surface at the 4th intercostal space near the left lower sternal border using 

double-sided medical grade tape. The accelerometer signal was amplified using a signal 

Days counted from readmission 
                        (a) 

Days counted from initial discharge 
                             (b) 
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conditioner (Model: 482C, PCB Piezotronics, Depew, NY) with a gain of 100-fold. The 

dorso-ventral component of the acceleration is focused in the current study. ECG signal 

was acquired simultaneously using a IX-B3G bio-potential recorder (iWorx Systems, 

Inc., Dover, NH). In each measurements session data were acquired approximately for 

2 minutes at a sampling rate of 10 kHz. Fig. 49 shows a diagram of the data acquisition 

setup. 

 

 
Figure 49- Data acquisition setup. 

Pre-processing of SCG data 

Raw SCG and ECG signals were forward-backward filtered to reduce 

background noise and baseline wondering due to respiration using a using a 4th order 

Chebyshev 2 type band-pass filter with a cut-off of 0.5-50 Hz (Peshala T. Gamage et 

al., 2020). After filtering, SCG signal was segmented into SCG events (also called 

heartbeats) using the R peaks locations of the ECG signal, which were detected using 

Pan Tomkins algorithm (Tompkins, 1985). The start location of each SCG event was 

selected 0.1 seconds before the R peak of the corresponding ECG and the end location 

at 0.1 seconds before the proceeding R peak (i.e., see Fig. 6). 
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Clustering of SCG morphology for accurate feature extraction 

SCG is known to have high morphological variability which may impedes the 

accuracy of feature extraction (Azad et al., 2019; Peshala T. Gamage et al., 2020; R. H. 

Sandler et al., 2019). Previous studies (Peshala T Gamage et al., 2018; Peshala T. 

Gamage et al., 2020) have reported clusters with different morphological patterns with 

correlations to respiratory phases and suggested that SCG morphology can be optimally 

divided into two clusters which help to reduce the morphological variability of SCG 

allowing for more accurate extraction of SCG morphological features. Hence, prior to 

extracting features from the segmented SCG events, unsupervised clustering was used 

to reduce the morphological variability of the SCG signal. The current study employed 

k-medoid clustering with dynamic time warping (DTW) to cluster the SCG events in to 

two groups as suggested in previous studies (Azad et al., 2019; Peshala T. Gamage et 

al., 2020). After clustering, a representative SCG event was calculated by averaging the 

15% of the events closest to the medoid of each cluster. Here, the averaging was used 

to further reduce the noise of the waveforms and 15% of events allowed averaging of 

(10±3) number of events in each cluster for each patient. When averaging, the length 

of the events was truncated to the length of the shortest event in the group. However, 

since the closest events to the medoid had similar lengths (i.e., similar heart rate), the 

truncated parts of the events were insignificant (± 15 ms) and had minimum effect on 

the SCG waveform features. Also, due to the similar heart rate and similar 

morphologies of these events, averaging had minimal effect on the SCG waveform 

features which is otherwise expected in the case of significant misalignments between 

SCG features (i.e., SCG peaks) (H. A. M. Sandler et al., 2015). Fig. 50 shows an 

example of SCG events closest to each medoid and their respective averages. 
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 Figure 50- Events closest to the medoid with their average waveforms (from 

same session) 

SCG  Features 

Overall, 103 total features were calculated. These contained 3 SCG 

morphological variability features, 9 HRV features and 92 SCG features derived from 

the average SCG waveforms of two clusters.  These 92 SCG features were formed by 

the average and the difference of 46 SCG features calculated for two SCG clusters as 

denoted in equations 21 and 22, respectively. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑎𝑣𝑒 =
𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟1+𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟2

2
        (21) 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑑𝑖𝑓𝑓 =
𝑎𝑏𝑠(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟1−𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟2)

min (𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟1,𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟2)
       (22) 

The description of the features are presented in Table 4. 
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Table 4- Feature description 

Feature type Feature name Description  

Waveform 

variability 

Variability before 

clustering 

Average dissimilarity between SCG events with their medoid before 

clustering 

Intra cluster 

variability 

Average dissimilarity between SCG events with their own medoid 

Inter cluster 

variability 

Average dissimilarity of SCG events with the other cluster medoid 

Time-

Amplitude 

SCG1 amp rms amplitude of a 125 ms window centered around SCG1 location 

SCG2 amp rms amplitude of a 125 ms window centered around SCG2 location 

SCG3 amp rms amplitude of a 125 ms window centered around SCG3 location 

SCG1-SCG2 amp rms amplitude of the window starting 62.5 ms after SCG1 and ending 

62.5 ms before SCG2 locations 

SCG1 amp aud  Audible (i.e., 20-50 Hz) rms amplitude of a 125 ms window centered 

around SCG1 location  

SCG2 amp aud Audible rms amplitude of a 125 ms window centered around SCG2 

location 

SCG3 amp aud Audible rms amplitude of a 125 ms window centered around SCG3 

location 

SCG1-SCG2 amp aud Audible rms amplitude of the window starting 62.5 ms after SCG1 and 

ending 62.5 ms before SCG2 locations 

SCG_PEP ECG Q –SCG1 time interval 

SCG_LVEP SCG1-SCG2   time interval 

TPR Turning Point Ratio (TPR)  (see Eqn 41) 

pk-pk Peak to peak amplitude  

rms_amp Root mean square (rms) amplitude  

En Spectral energy between frequency range (0.5-50 Hz)  

ER (f1-f2/f3-f4) Spectral energy ratio between frequency range (f1-f2 Hz) and (f3-f4 Hz) 

ER(0.5-5/0.5-15),ER(0.5-20/20-50),ER(0.5-10/0.5-50),En(10-20/0.5-

50),ER(20-30/0.5-50),ER(30-40/0.5-50),ER(40-50/0.5-50) were 

calculated. ( see Eqn 26) 

F_avg (f1,f2) F_ave(0.5,50),F_ave(0.5-5),F_ave(5-15),F_ave(0.5,10), F_ave(10,20), 

F_ave(20,30), F_ave(30,40), F_ave(40,50) were calculated. ( see Eqn 27) 

F_peak  Frequency at FFT peak 

FFT_peak_amp Peak FFT amplitude 

FFT_sharpness F_peak/(F1-F2) , where F1 and F2 are the frequencies at the amplitude 

(FFT_peak_amp/√2) and (F1>F2)   

SpEn Spectral Entropy  (see Eqn 30) 

Spectro-

Temporal 

using 

polynomial 

chirplet 

transformati

on (PCT) 

PCT_ER_SCG1 PCT Energy ratio between frequency range (0.5-5Hz) and (0.5-15 Hz) in 

the 125 ms window centered around SCG1 location 

PCT_ER_SCG2 PCT Energy ratio between frequency range (0.5-5Hz) and (0.5-15 Hz) in 

the 125 ms window centered around SCG2 location 

PCT_ER_SCG3 PCT Energy ratio between frequency range (0.5-5Hz) and (0.5-15 Hz) in 

the 125 ms window centered around SCG3 location 

PCT_ER_SCG1-SCG2 PCT Energy ratio between frequency range (0.5-5Hz) and (0.5-15 Hz) in 

the 125 ms window starting 62.5 ms after SCG1 and ending 62.5 ms 

before SCG2 locations 

Instantaneo

us frequency 

(IF)  

F_SCG1 maximum instantaneous frequency near SCG1 

F_SCG2 maximum instantaneous frequency near SCG2  

T_SCG1_max_freq Timing at Fsy 
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T_SCG2_max_freq Timing at Fdia 

Frms Root mean square amplitude of the instantaneous frequency signal 

Heart Rate 

Variability 

(HRV) 

SDNN Standard deviation of ECG R-R intervals 

PNN50 Percentage of successive RR intervals that differ by more than 50 ms 

VLF Spectral power of all RR intervals in 

0.003–0.04 Hz 

LF Spectral power of all RR intervals in 

0.04–0.15 Hz 

HF Spectral power of all RR intervals in 0.15–0.4 Hz 

VHF Total spectral power of all normal sinus RR intervals 0.4–1.0 Hz 

TP Total spectral power of all normal sinus RR intervals 0–0.4 Hz 

LF/HF ratio The ratio of LF to HF 

Ave_HR Average of mean heart rates of cluster1 and cluster2 

SCG waveform variability features 

SCG waveform variability features describe the morphological similarity (or 

dissimilarity) of the SCG events. Here, three different variability features were 

calculated. One feature before clustering and two after clustering the SCG events in to 

two groups such that they have optimum similarity within groups (Peshala T. Gamage 

et al., 2020). The variability before clustering represents the intra session beat to beat 

morphological variability of the SCG signal. The intra cluster variability is a measure 

of the similarity within clusters while inter cluster variability is a measure of similarity 

between the two clusters. These features are denoted in equations 23, 24 and 25. Similar 

variability calculations can be found in the previous studies (Azad et al., 2019; Peshala 

T. Gamage et al., 2020).  

 

   Variability before clustering =
1

𝑛1+𝑛2
[∑

𝑑𝑡𝑤(𝐶,𝑋𝑖)

𝑙𝑖

𝑛1+𝑛2
𝑖=1 ]    (23)   

Intra cluster variability =
1

𝑛1+𝑛2
[∑

𝑑𝑡𝑤(𝐶1,𝑋𝑖1)

𝑙𝑖
+

𝑛1
𝑖=1 ∑

𝑑𝑡𝑤(𝐶2,𝑋𝑖2)

𝑙𝑖

𝑛2
𝑖=1 ]         (24)          

Inter cluster variability =
1

𝑛1+𝑛2
[∑

𝑑𝑡𝑤(𝐶1,𝑋𝑖2)

𝑙𝑖
+

𝑛1
𝑖=1

∑ 𝑑𝑡𝑤(𝐶2,𝑋𝑖1)
𝑛2
𝑖=1

𝑙𝑖
]           (25) 

 

where, 𝑋𝑖1, 𝑋𝑖2 are the 𝑖𝑡ℎ SCG event belonging to cluster 1 and cluster 2, 

respectively while 𝐶1  and 𝐶2  are the respective cluster medoid event. 𝐶 is the medoid 

event before clustering and 𝑛1, 𝑛2 are the total number of events belong to cluster 1 and 
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2, respectively. The function 𝑑𝑡𝑤 calculates the DTW distance (i.e., morphological 

dissimilarity) between two events and the DTW distance is divided by DTW warping 

path length 𝑙𝑖 to normalize the calculated DTW by signal length. Also, SCG event 

amplitude is normalized by its peak to peak amplitude prior to variability calculations. 

This type of normalization in signal length and amplitude allows to compare the 

morphological variability features between different subjects and sessions. 

Spectral features 

Previous studies have focused on the study of the changes in the intensity and 

frequency of sub-audible precordial vibrations on human and animals (Foulger, Smith 

Jr, & Fleming, 1947, 1948)and found that anoxia or other deleterious agents in blood 

can lower the average frequency of vibrations (based on intensity) in sub-audible 

frequencies (Johnston & Overy, 1951). Moreover, the study (Foulger et al., 

1947)suggested that these sub-audible frequencies show a shift towards lower 

frequencies in patients with serious heart conditions in resting state. The analysis of 

sub-audible spectrum may provide important information abound myocardium function 

(Johnston & Overy, 1951) . In the current study, to extract the possible energy and 

frequency shifts in the spectral domain, several features which calculate the spectral 

energy ratios between different frequency intervals in both audible and sub-audible 

domains were calculated. The average frequencies of different frequency bands were 

calculated Equations 26 and 27 denotes the calculation of spectral energy ratios 

between different frequency bands of ( 𝑓1-𝑓2)/ (𝑓3-𝑓4 ) and average frequency of a 

defined frequency interval ( 𝑓1-𝑓2). 

𝐸𝑅 =
∫ 𝑎𝑏𝑠(𝐹𝐹𝑇(𝑓))

2𝑓2
𝑓1

𝑑𝑓

∫ 𝑎𝑏𝑠(𝐹𝐹𝑇(𝑓))
2
𝑑𝑓

𝑓4
𝑓3

         (26) 
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𝐹𝑎𝑣𝑔 =
∑ 𝑓𝑖.𝐹𝐹𝑇(𝑓𝑖)

𝑓2
𝑓1

∑ 𝐹𝐹𝑇(𝑓𝑖)
𝑓2
𝑓1

                  (27) 

where 𝑓, 𝐹𝐹𝑇 denote the frequency and fast fourier transformation function, 

respectively. Information about considered different frequency bands are shown in 

Table 4. In addition to these, 4 more spectral features, namely, FFT peak amplitude 

(FFT_peak_amp) , frequency at peak FFT amplitude (F_peak) , FFT sharpness factor 

(FFT_sharpness) and spectral entropy (SpEn) were defined. Description of these 

features are given in Table 4. While FFT_peak_amp, F_peak, FFT_sharpness are 

identified as potential features for identifying normal and unhealthy heart conditions in 

an early study (Koiwa et al., 1991) which measured cardiac related vibrations on 

precordium, SpEn is used as a feature in a recent study for classification of heart 

conditions using precordial accelerations (Lahdenoja et al., 2017). The following 

procedure (Shen, Hung, & Lee, 1998)is used for calculating SpEn for a signal 𝑥(𝑛). 

Here, 𝑥(𝑛) is a SCG event in time domain where 𝑛 denotes a sample point in time. The 

power spectrum of  𝑥(𝑛) can be denoted as shown in equation 28. 

𝑆(𝑚) = |𝑋(𝑚)|2         (28) 

 

In equation 28, X(m) is the discrete Fourier transform of x(n) where 𝑚 denoted a 

frequency point in spectral domain. Then, the probability distribution P(m) is defined 

as, 

𝑃(𝑚) = 𝑆(𝑚)/ ∑ 𝑆(𝑖)𝑁
𝑖=1        (29) 

 

and the spectral entropy (SpEn) is defined as, 

𝑆𝑝𝐸𝑛 = −∑ 𝑃(𝑚)log2𝑃(𝑚)𝑁
𝑚=1       (30) 

 

where N is the total frequency points. 



` 

82 

 

Spectro-temporal features 

Spectro-temporal features were extracted by analyzing the time frequency 

distribution (TFD) of the SCG signal. TFD allows the study of a signal in both time and 

frequency domain simultaneously which helps the more comprehensive analysis of 

time varying frequency (or instantaneous frequency (IF)) in the SCG signal. Although 

, there are no previous studies which used TFD to extract spectro-temporal features of 

SCG to classify cardiac conditions, TFD analysis has proven to be an effective method 

of extracting spectro-temporal features to classify cardiac conditions using ECG (Rad 

et al., 2017; Zhao, Särkkä, & Rad, 2018). In TFD literature, several well-known forms 

of methods such as short time Fourier transform (STFT), wavelet Transform (WT) and 

chirplet transform (CT) are available. The study (Amirtaha Taebi & Mansy, 2017b) 

rovided an extensive comparative analysis of different methods for obtaining the TFD 

of SCG signal and concluded that PCT is more suited for estimating IF of SCG signals 

due to its consistently in accurate IF estimations. Hence, PCT is used to obtain the TFD 

of SCG signals in the current study.  

 Polynomial Chirplet Transform (PCT) is an improved version of the 

chirplet transform (CT) developed to provide better performance when used with 

signals containing non-linear instantaneous Frequency (IF) trajectory (Z. Peng et al., 

2011). Equation 31 describes the CT transformation if a signal 𝑥(𝑡), 

𝑋̅𝐶𝑇(𝑡0, 𝜔, 𝛼, 𝜎) = ∫ 𝑧̅(𝑡)𝜔(𝜎)(𝑡 − 𝑡𝑜)
+∞

−∞
𝑒−𝑗𝜔𝑡𝑑𝑡                                      (31)                                         

where 𝑡0, 𝜔, 𝛼  denote time, frequency and chirp rate, respectively. The analytical signal 

of 𝑥(𝑡) is defined as 𝑧(𝑡) (i.e., using Hilbert transform 𝐻, (𝑧(𝑡) = 𝑥(𝑡) + 𝑗𝐻[𝑥(𝑡)]). 

The function 𝜔(𝜎) is a symmetric, non-negative and normalized window which usually 

considered as a gaussian window as denoted in equation 32.  
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𝜔(𝜎)(𝑡) =
1

√2𝜋𝜎
 exp ( −0.5 (

𝑡

𝜎
)
2

)                                                                                 (32) 

 

The normalized function analytical signal 𝑧(𝑡) is defined as, 

𝑧̅(𝑡) = 𝑧(𝑡)𝜑𝛼
𝑅(𝑡)𝜑𝛼

𝑀(𝑡, 𝑡𝑜)                                                                                           (33) 

 

where 𝜑𝛼
𝑅(𝑡) and 𝜑𝛼

𝑀(𝑡, 𝑡𝑜) denote the frequency rotating operator and 

frequency shift operator, respectively. The operator 𝜑𝛼
𝑅(𝑡) rotates 𝑧(𝑡) by an angle of 

tan−1(−𝛼) while the operator 𝜑𝛼
𝑀(𝑡, 𝑡𝑜) shits the frequency of 𝑧(𝑡) from 𝜔 to 𝜔 + 𝛼𝑡𝑜 

as indicated in equations 34 and 35. 

𝜑𝛼
𝑅(𝑡) = exp ( −

𝑗𝛼𝑡2

2
)                                                                                                   (34) 

 

𝜑𝛼
𝑅(𝑡, 𝑡𝑜) = exp( 𝑗𝛼𝑡𝑜𝑡)                                                                                                (35) 

In contrast to conventional CT, PCT is improved by defining aforementioned 

higher order non-linear operators in polynomial form. The modified operators are 

shown in equations 36 and 37. 

 

 𝜑𝛼1,𝛼2,………,𝛼𝑛
𝑅 (𝑡) = exp (−𝑗 ∑

1

𝑘
𝛼𝑘−1𝑡

𝑘𝑘=𝑛+1
𝑘=2 )                                                (36)   

 

𝜑𝛼1,𝛼2,………,𝛼𝑛
𝑀 (𝑡, 𝑡𝑜) = exp(−𝑗 ∑ 𝛼𝑘−1𝑡𝑜

𝑘−1𝑡𝑘=𝑛+1
𝑘=2 )                                            (37) 

 

In cooperating the modified higher order non-linear operators PCT 

transformation is denoted in equation 38.  In detail description of the PCT algorithm is 

presented in the study (Z. Peng et al., 2011). 

𝑋̅𝑃𝐶𝑇(𝑡𝑜, 𝜔, 𝛼1, … , 𝛼𝑛, 𝜎) = ∫ 𝑧(𝑡)
+∞

−∞

𝜑𝛼1,𝛼2,………,𝛼𝑛
𝑅 (𝑡)𝜑𝛼1,𝛼2,………,𝛼𝑛

𝑀 (𝑡, 𝑡𝑜)… 

                                                                                            . .× 𝜔(𝜎)(𝑡 − 𝑡𝑜)𝑒
−𝑗𝜔𝑡  𝑑𝑡   (38) 

 

Fig. 50 shows an example of the PCT TFD distribution for a SCG heart cycle acquired 

from a patient. The high energy regions in SCG1 and SCG 2 shown in Fig. 50 
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correspond to S1, S2 heart sounds of phonocardiography (PCG) which is primarily 

generated due to the valve movements of the heart [ref]. The fluctuations from the heart 

surface can travel through the thorax to the chest surface in the form of two different 

type of waves: namely, the slower, high amplitude shear waves and faster low 

amplitude pressure waves. Here, the pressure waves can travel through the thorax with 

speed in order of 1000 m/s and shear wave with a speed in the order of 10 m/s 

(Bombardini et al., 2007; Foulger et al., 1947). In solid mediums, shear waves travel 

by deforming the medium with a much higher amplitude than the pressure waves 

(Bombardini et al., 2007). Unlike a microphone, (used in PCG) which is designed to 

measure audible frequencies (>20 Hz), the current accelerometer (Model: 356A32, 

PCB Piezotronics, Depew, NY) is sensitive to both audible and infrasonic (< 20 Hz) 

frequencies. Hence, the higher energy content in SCG1 and SCG 2 regions observed in 

the infrasonic frequency range (i.e., <20 Hz) can be explained by the fact that the 

accelerometer is sensitive to high amplitude, low frequency shear waves transmitted 

through the thorax. In contrast to PCG which detects audible (i.e., >20 Hz) S1 and S2 

sounds, SCG allows the analysis of these sounds in the infrasonic range that may help 

provide additional diagnostic features. 
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As seen in Fig. 51, in addition to SCG 1 and SCG 2 regions, another region with 

high energy can be observed after SCG 2 region. This high energy region was identified 

as SCG 3 which corresponds to the third heart sound S3 described in previous literature 

(Siejko, Thakur, Maile, Patangay, & Olivari, 2013). S3 is described as a low-frequency 

brief vibration detected in the phonocardiography (PCG) signal, occurring in early 

diastole at the end of the rapid diastolic filling period of the right or left ventricle 

(Ozawa et al., 1983a; Ozawa, Smith, & Craige, 1983b). 

Figure 51-  Top: SCG waveform acquired from a patient, bottom: Time frequency 

distribution of SCG generated by PCT with identified high energy regions  

S3 is regarded as a poor prognostic sign found in patients with failing heart (Ozawa et 

al., 1983b). Several studies (Drazner, Rame, Stevenson, & Dries, 2001; Patel, Bushnell, 

& Sobotka, 1993) analyzed the correlation between s3 and cardiac pathologies.  Hence, 

the current study also included the time-frequency features in SCG 3 region. A 

S S S

Audible 

Infrasonic 
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summary of spectro-temporal features extracted from the TFD distribution of SCG 

using PCT is shown in Table 4. 

Locating the timing of SCG1, SCG2 and SCG3 and feature derivation 

Timing of the SCG1, SCG2 and SCG3 were determined by locating the high 

energy regions in corresponding frequency bands of the PCT distribution. This was 

done by calculating an energy signal for a defined frequency band and locating its 

peaks. Equation 17 represents the energy signal derived from PCT distribution for the 

frequency range f1 to f2. 

𝐸𝑃𝐶𝑇(𝑡) = ∫ 𝑋̅𝑃𝐶𝑇(𝑓, 𝑡) 𝑑𝑓
𝑓2

𝑓1
                                        (39) 

 

Since SCG1 and SCG2 peaks are defined corresponding to S1 and S2 heart 

sounds, their timings were located by finding the peaks of the energy signal in the 

audible frequency band (20Hz-50Hz). As heart sound S3 is known to be distributed 

over both audible and infrasonic frequency ranges with higher energy in infrasonic 

range (Ozawa et al., 1983b; Siejko et al., 2013), SCG3 which corresponds to heart 

sound S3 was located by finding the peaks of the energy signal in the frequency band 

(0.5-50 Hz). Here, SCG3 search window was refined to the region 100-200 ms after the 

detected SCG2 location considering the timing of S3 described in previous literature 

(Ozawa et al., 1983b; Siejko et al., 2013). A similar procedure for detecting heart 

sounds S1, S2, S3 using accelerometer-based measurements is presented in the previous 

study (Siejko et al., 2013). Fig. 52 shows the detected SCG1, SCG2 and SCG3 for two 

different SCG waveforms. 
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 Figure 52- Examples of two SCG waveforms with SCG1, SCG2 and SCG3 

locations 

After finding the locations of SCG1, SCG2 and SCG2, energy ratio between 

frequency range (0.5-5Hz) and (0.5-15 Hz) in the 125 ms window centered around each 

location were calculated as features. These frequency ranges were chosen similar to the 

energy ratio feature described earlier which analyzes the low frequency shift in sub-

audible frequencies A description of features calculated using PCT energy distribution 

is shown in Table 4 under spectro-temporal features. Equation 18 describes the 

calculation of the energy ratio features using PCT distribution. 

𝑃𝐶𝑇_𝐸𝑅 =
∫ ∫ 𝑋̅𝑃𝐶𝑇(𝑓,𝑡)𝑑𝑓𝑑𝑡

5
0.5

𝑡2
𝑡1

∫ ∫ 𝑋̅𝑃𝐶𝑇(𝑓,𝑡)𝑑𝑓𝑑𝑡
15
0.5

𝑡2
𝑡1

         (40) 

 

where t1, t2 denote the start time and end time of the considered time window 

(as stated in Table 4). Note that if any SCG 3 peak is not detected (i.e., absence of 3 rd. 

heart sound), SCG 3 location was defined at 150 ms after the SCG2 location for feature 

analysis purpose. 
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Time-amplitude features 

Time-amplitude features included the rms amplitudes in defined time window 

of 125 ms in the SCG waveform centered at the locations of SCG1, SCG2 and SCG3. 

Two-time interval features, namely; SCG pre ejection period (SCG_PEP) and SCG left 

ventricular ejection period (SCG_LVEP) were calculated. Similar amplitude and time 

interval-based features have been previously studied (Siejko et al., 2013; Amirtahà 

Taebi et al., 2019).  Peak to peak amplitude and rms amplitude of the SCG event were 

also included in time-amplitude features. A description of time-amplitude features is 

available in Table 4. In addition to these, another feature called turning point ratio 

(TPR) was calculated. TPR derived from precordial acceleration and ECG signals has 

proven to be an accurate feature when classifying between normal subjects and HF 

patients with atrial fibrillation (Dash, Chon, Lu, & Raeder, 2009; Lahdenoja et al., 

2017). TPR is defined in equation 41, 

𝑇𝑃𝑅 =  𝑅𝐷(𝑥)/𝑁                                                                                                     (41) 

 

where 𝑅𝐷 is a function which counts the total number of consecutive increasing and 

decreasing runs (i.e. count if (𝑥(𝑛2) − 𝑥(𝑛1)) × (𝑥(𝑛3) − 𝑥(𝑛2)) < 0 , provided 𝑛1 <

𝑛2 < 𝑛3) in signal 𝑥(𝑛). 𝑁 is the total number of points in 𝑥. 

Instantaneous frequency SCG features 

The instantaneous frequency (IF) is a transient parameter that relates to the 

average of the frequencies present in a signal as the signal evolves in time (Boashash, 

1992). In the current study the instantaneous frequency of the SCG heart cycles were 

calculated to extract features. Here, the instantaneous frequency ‘𝑓𝑖𝑛𝑠’ was calculated 

using equation 42. 
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𝑓𝑖𝑛𝑠(𝑡) =
∫ 𝑓.𝑃𝐶𝑇(𝑡,𝑓)𝑑𝑓

50

0.5

∫ 𝑃𝐶𝑇(𝑡,𝑓)𝑑𝑓
50

0.5

               (42) 

 

where, 𝑓 is the frequency and 𝑃𝐶𝑇(𝑡, 𝑓) is the power in the time frequency distribution 

using PCT. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 53- (top): Instantaneous frequency signal with identified features (bottom): 

SCG heart cycle 

 

Fig. 53 shows an example of the IF frequency signal and the corresponding SCG 

heart cycle. As shown in Fig. 53, Two high frequency peaks around SCG1 and SCG2 

regions are observed. Under the hypothesis that these high frequencies are possibly 

related to valve opening and closing at the beginning of systole and diastole, these 

frequencies were named as fsys and fdia. These frequencies were detected by selecting 

the maximum IF frequency in a 150 ms window centered around SCG1 and SCG2 

fsys fdia 



` 

90 

 

locations, respectively. The timing at these frequencies were also considered as 

features. In addition, the rms amplitude of the IF signal was considered as a feature. 

Heart rate variability features 

In addition to the SCG based features, eight common Heart Rate Variability 

(HRV) features were also analyzed. The changes in HRV features have shown high 

correlations when classification between normal and HF subjects (Isler, 2016; Liu et 

al., 2014; Shahbazi & Asl, 2015) as well as when analyzed with mortality rate (Kleiger, 

Miller, Bigger Jr, & Moss, 1987). The current study is focused on evaluating and 

comparing the performance of these features when predicting the re-admission of HF 

patients with the potential SCG features. HRV features are described in Table 4. 

Feature Analysis and Selection 

The features can be analyzed longitudinally (counted as days before re-

admission or after discharge) or group wise (i.e., features in re-admitted (R) vs not 

readmitted (nR) groups). While the longitudinal analysis can help understand useful 

trends of how different features change in time after HF patients are discharged from 

the hospital, accuracy of such analysis is limited by irregular time intervals between the 

data sessions acquired from different patients. Fig. 54 shows an example of longitudinal 

analysis of a feature trajectories of each patient. In Fig. 54, each point represents a 

feature (i.e., SCG variability before clustering) extracted from a data session in time. 

Feature points are also connected using a dashed line to link the features of the same 

patient 
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Figure 54- An example of longitudinal variation of a feature in each patients. Red: re-

admitted, Green: non readmitted. Data points belongs to each patient is linked with a 

dashed line. 

In Fig. 54, a generalized trend of the trajectories for each patient towards 

readmission or after discharge is not prominent as the feature values are fluctuating 

(within a range for majority of subjects). However, feature values between re-admitted 

and non-re-admitted HF patients are distributed in different value ranges (i.e., 0.075-

0.225 for non-re-admitted and 0.015-0.045 for re-admitted). Hence, when analyzing 

features, the attention was given to the differences between the feature values of re-

admitted and non-readmitted groups. Here, following two groups were defined for 

analyzing the feature value differences for feature extraction (or sorting). 

1. R: Readmitted (data sessions within 60 days of re-admission of readmitted 

HF patients) 

2. nR: not Readmitted (data sessions within 60 days from initial discharge of 

non-readmitted HF patients ) 
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These groups were formed under the hypothesis that, a subject is likely to show 

bad cardiac mechanical activity within a 2 month period before the re-admission and a 

subject is likely to show relatively better cardiac mechanical activity within 2 months 

after initial discharge (also provided that the subject is not re-admitted within 6 months 

after readmission). Such classification can help clinicians to predict the likelihood of a 

HF patient being re-admitted within 2 months after initial discharge based on the SCG 

data recordings acquired when patients come for their follow up checkups after initial 

discharge. Data sessions in R and nR groups are highlighted in Fig. 55. 

 

Figure 55- Highlighted regions defining R and nR groups for feature analysis. 
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Feature extraction was done by sorting the features which have significant 

differences between nR and R groups using statistical measures. Provided that the 

statistical analysis assumes the features belong to two independent distributions (i.e., R 

and nR), independent statistical test (i.e., unpaired t-test) was used to sort features with 

significance differences between these groups. 

Fig. 56 shows an example of analyzing the difference between the feature points 

lumped into groups R and nR . In addition, features extracted from another group ‘H’ 

which contains data acquired from healthy subjects with no previous cardiac health 

issues are presented. Group H was introduced for comparison purposes and validation 

of the observed differences between R and nR (i.e., nR distribution is expected to be 

closer to H). 

 
Figure 56- An Example of analyzing the differences of a feature value (SCG3 

amplitude) distributions between R and Re groups.. Features from a healthy group ‘H’ 

is also included for comparison purposes. Distributions are represented by box and 

whisker plots and the p values between the groups are presented. SCG3 amplitude 

shows significant differences (P<0.05) between H and the HF patient groups (i.e., R 

and nR) while no significance difference is observed between R and nR. Such 

observation for SCG3 amplitude is consistent with the previous study (Siejko et al., 

2013) 

Minimum redundancy maximum relevance algorithm 

In addition, Minimum Redundancy Maximum Relevance (MrMR) algorithm 

(H. Peng, Long, & Ding, 2005) was also used for sorting good features for classification 
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of R and nR groups. MrMR algorithm selects a subset of the input feature vector 

containing features which have the most correlation with a class (i.e., R or nR) while 

having the least correlation between the features. Here, the correlation between a 

feature and the class is the ‘relevance’ while the correlation between a feature and other 

features is the ‘redundancy’. MrMR ranks the features based on minimal-redundancy-

maximal-relevance criteria. 

In MrMR algorithm, mutual information 𝐼 between two variables 𝑋, 𝑌 is defined 

as, 

𝐼(𝑥, 𝑦) = ∑ 𝑃(𝑥𝑖𝑖,𝑗 , 𝑦𝑗)𝑙𝑜𝑔
𝑃(𝑥𝑖,𝑦𝑗)

𝑃(𝑥𝑖).𝑃(𝑦𝑗)
      (43) 

The objective of MrMR algorithm is to find an optimal set S of features which 

maximizes the relevance 𝐷 between the feature variable 𝑥 and class 𝑐 and minimizes 

the redundancy 𝑅 between the features 𝑥 and 𝑦. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒, 𝐷 =
1

|𝑆|
∑ 𝐼(𝑥𝑖∈𝑆 𝑥𝑖 , 𝑐)      (44) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒, 𝑅 =
1

|𝑆|2
∑ 𝐼(𝑥𝑖,𝑥𝑗∈𝑆 𝑥𝑖 , 𝑥𝑗)      (45) 

Above criteria is achieved by optimizing the following equation, 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒, 𝜑 = 𝐷 − 𝑅       (46) 

The algorithm delivers the ranked the features sorted in descending order based on their  

𝜑 value (H. Peng et al., 2005). 

Principal component analysis for visualizing the features 

As a starting point, before inputting the features into machine learning (ML) 

classifiers, Principal component analysis (PCA) was used to visualize whether the 

variability of the extracted features can potentially help differentiate between the 

classes R and nR. PCA is a method used to visualize strong patterns in a dataset by 

using the inherent variability of the dataset. In Machine learning, PCA is often uses to 
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visualize the features and to reduce the dimensionality of the feature vector by 

combining features. PCA transforms data (i.e., features) into a new coordinate system 

by an orthogonal linear transformation such that the first coordinate of the orthogonal 

coordinate system (i.e., first principle component) is generated by a scaler projection of 

the maximum variance of the original data set. Similarly, the second orthogonal 

coordinate is generated by a projection of the second largest variance of the dataset and 

so on (e.g., see Fig. 57). 

 

 
Figure 57- Example of PCA components generated using 2D dataset (i.e., 2 features) 

(ref: https://towardsdatascience.com) 

When PCA is calculated, the relationships between the original features and the 

principle components can be visualized using a biplot (e.g., see Fig. 59). Here, as the 

principle components are a linear combination of the original features, the original 

features are represented as vectors in the PCA coordinate system. 

PCA calculation steps can be explained as following. 

Let 𝑥  be the feature matrix which contains 𝑚 features and 𝑛 observations, 

𝑥 = (

𝑥11 ⋯ 𝑥1𝑚

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑚

)       (47) 

Normalize each column of 𝑥  (i.e., normalize each feature to get the variability 

centered around the mean) and get X. 
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𝑋 =

(

 
 

𝑥11−𝑥1̅̅̅̅

𝜎𝑥1

⋯
𝑥1𝑚−𝑥𝑚̅̅ ̅̅̅

𝜎𝑥𝑚

⋮ ⋱ ⋮
𝑥𝑛1−𝑥1̅̅̅̅

𝜎𝑥1

⋯
𝑥𝑛𝑚−𝑥𝑚̅̅ ̅̅̅

𝜎𝑥𝑚 )

 
 

      (48) 

where,    

𝑥𝑖̅ =
1

𝑛
∑ 𝑥𝑗𝑖

𝑛
𝑗=1         (49) 

𝜎𝑥𝑖
= √

1

𝑛−1
∑ (𝑥𝑗𝑖 − 𝑥𝑖̅)2 𝑛

𝑗=1        (50)  

 

Compute the covariance matrix of 𝑋. 

𝐶𝑜𝑣 =
1

𝑛
𝑋𝑇𝑋         (51) 

Note that 𝐶𝑜𝑣  is a square matrix of size  𝑚 × 𝑚.  

Calculate the eigenvalues of 𝐶𝑜𝑣. The eigenvalues are derived from the 

following equation where 𝑉 is the eigen vector. 

𝐶𝑜𝑣. 𝑉 = 𝜆. 𝑉         (52) 

Simplifying the above equation, the following can be derived. 

Det(𝐶𝑜𝑣 − 𝜆𝐼) = 0        (53) 

By solving above equation, 𝑚  number of eigenvalues can be found. Sort the 

eigen values in descending order. 

𝜆1, 𝜆2, …… . . , 𝜆𝑚 

where 𝜆1 is the largest and 𝜆𝑚 is the smallest. The corresponding eigenvectors 

determines the direction of the principle components while eigenvalues determines its 

amplitude. 

let 𝑉1 (1×m) matrix be the corresponding eigenvector of 𝜆1. Then the features 

can be transformed in to the first principle component by the product 𝑉1𝑋. 
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Linear discriminant analysis  

 

Figure 58- Simplified illustration of PCA and LDA component axes 

(https://sebastianraschka.com/Articles/2014_python_lda.html) 

 

Linear Discriminant Analysis (LDA) is a dimensionality reduction technique 

which is commonly used in ML applications.  LDA projects the feature data onto a 

lower dimension such that the class separability is optimum (Fisher, 1936). In contrast 

to PCA which finds the axes in the direction of maximum variance, LDA finds the axes 

which maximize the separation between classes (e.g., see Fig. 58). LDA calculations 

steps can be explained as following. 

Let 𝑋  be the feature matrix which contains 𝑛 observations (i.e., feature vectors), 

𝑋 =

(

 
 

𝑥1,𝑗

⋮
𝑥𝑖,𝑗 

⋮
𝑥𝑛,𝑗)

 
 

          (54) 

where 𝑗 ∈ 𝐶 represents the corresponding class (i.e., 𝐶= 1 , 2) of feature vector 𝑥𝑖. 

Calculate the between-class scatter matrix 𝑆𝑏 and within-class scatter matrix 𝑆𝑤. 

𝑆𝑏 = ∑ 𝑁𝑗(𝑥𝑗̅ − 𝑥̅
𝑔
𝑗=1 )(𝑥𝑗̅ − 𝑥̅)

𝑇
      (55) 

𝑆𝑤 = ∑ ∑ (𝑥𝑖,𝑗 − 𝑥𝑗̅
𝑁𝑗

𝑖=1
)(𝑥𝑖,𝑗 − 𝑥𝑗̅)

𝑇𝑔
𝑗=1     (56) 

https://sebastianraschka.com/Articles/2014_python_lda.html
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Where 𝑥𝑖,𝑗 is an n dimensional feature point (i.e., vector) 𝑖 from class 𝑗 and 𝑁𝑗 

is the number of feature points from class 𝑗 and 𝑔 is the total number of classes. 

Then the LDA components are found by solving the generalized eigenvalue 

problem for the matrix 𝑆𝑤
−1𝑆𝐵 solving the following equation to find the eigen values 𝜆 

and eigen vectors 𝑣. 

(𝑆𝑤
−1𝑆𝐵)𝑣 = 𝜆𝑣       (57) 

While the direction of the LDA components are represented by the eigenvectors, 

their amplitude is represented by the eigenvalues. Hence, the LDA components in the 

direction of best class separability can be found by sorting the eigen values with highest 

amplitudes. However, in LDA, it can be observed that at most only 𝑔 − 1  number of 

eigenvalues will be non-zero. This is due to the fact that only 𝑔 number of points are 

used when calculating 𝑆𝑏 (Fisher, 1936). 

After finding the 𝑔 − 1 eigenvectors with nonzero eigenvalues, the feature 

vector can be projected into LDA space as following. 

𝑋𝐿𝐷𝐴 = 𝑋 × 𝑊       (58) 

where 𝑋𝐿𝐷𝐴 is the transformed feature vector in LDA space and 𝑊 is the (𝑔 −

1) × 𝑛 dimensional transform vector which consists of 𝑔 − 1 eigenvectors correspond 

to non-zero eigenvalues. 

Classification Algorithms 

 Although there are many different ML algorithms available, the current study 

only consider two well-known classifiers, namely, linear Support Vector Machine 

(SVM) and K- nearest neighbor (K-NN). These ML models are considered due to their 

relative simplicity (i.e., compared to neural nets in deep learning applications) and the 
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limited amount of data available for training the models. Also, the study is not focused 

on optimizing the model accuracy through optimizing the hyperparameters of ML 

models, since, such optimization may provide a too generalized solution to the available 

small dataset. In addition, such classifiers (i.e., linear SVM and K-NN) can be used to 

provide a simple interpretation (or visualization) of the separation of different classes 

(i.e., decision boundary) in feature space. Similar ML models were used in previous 

literature (ref) for classifying HF using physiological features, owing to aforementioned 

reasons. 

  Here, SVM was used with the sorted features based on the statistical 

significance test while K-NN algorithm was used with the LDA derived feature 

calculated from the sorted sorted features. 

Support vector machine  

Support Vector Machine (SVM) is considered as a very efficient ML method 

that was successfully utilized in many healthcare related ML applications (Chow, 

Zhong, Blackmon, Stolz, & Dowell, 2008; Venkatesan, Karthigaikumar, Paul, 

Satheeskumaran, & Kumar, 2018). SVM focuses on defining a hyperplane (or decision 

boundary) such that the margin between two classes are maximized (Cortes & Vapnik, 

1995). 
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Figure 59- Simplified illustration of SVM hyperplanes 

Provided that the data is linearly separable, a hyperplane margin which is 

bounded by the planes,   𝑤. 𝑥𝑖 + 𝑏 = 𝑦𝑖 where  𝑦𝑖 = + 1 𝑜𝑟 − 1  can be defined. Here, 

𝑦𝑖 = +1 and 𝑦𝑖 = −1 defines the class of the data point. The data points on the margin 

boundary planes are defined as the support vectors. The separation hyperplane 𝑤. 𝑥 +

𝑏 = 0  is defined as the median between the boundary hyperplanes where  𝑤, 𝑥 and 𝑏 

are the weight vector, feature vector and the bias, respectively. Then, the margin of 

separation between the separation hyperplane and each classes can be defined as 𝑑+ 

and 𝑑−. It can be shown that 𝑑+ 𝑜𝑟 𝑑− =
1

‖𝑤‖
 . Hence, the distance between two 

boundary hyperplanes (i.e., margin) becomes  
2

‖𝑤‖
. 

Since, the goal of SVM is to maximize the margin of separation between the 

classes, the following formulation is formed. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 
2

‖𝑤‖
→   𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝑤‖  subjected to the condition 𝑦𝑖(𝑤. 𝑥𝑖) − 𝑏 = 1 . 

Above is a constrained optimization problem which is solved using the 

Lagrangian multiplier method (Cortes & Vapnik, 1995). The determined values of 

optimum  𝑤 and 𝑏 is sued to define the separation hyperplane. 
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K- nearest neighbor classification 

K- Nearest Neighbor (K-NN) classifier is a supervised classification algorithm 

which predicts (or classify) a new observation point by finding a predefined number of 

K training samples which are closest in distance to the new observation point. The new 

point will be classified into the group which majority of K samples are included. While 

the distance can be measured by any metric, Euclidean distance is the most common 

choice.  In      K-NN classifier, the parameter K can be a predefined constant or a 

parameter which varies based on the local density of points. The latter is also known as 

radius-based K-NN classifier where a point is classified into a group based on the 

groups of the training points in a region defined by a radius around the testing point. 

 

Figure 60- K-NN classifier illustration (Sun, Shaohui. "Automatic 3D building 

detection and modeling from airborne LiDAR Point clouds." (2013).) 

Results and Discussion  

As discussed in feature analysis and selection section , features were sorted by 

analyzing the statistical significance of the difference of the features between following 

two groups.  

1. R: Readmitted (data sessions within 60 days of re-admission of readmitted 

HF patients) 



` 

102 

 

2. nR: not Readmitted (data sessions within 60 days from initial discharge of 

non-readmitted HF patients ) 

These groups were formed under the hypothesis that, a subject is likely to show 

bad cardiac mechanical activity within a 2 month period before the re-admission and a 

subject is likely to show relatively better cardiac mechanical activity within 2 months 

after initial discharge (also provided that the subject is not re-admitted within 6 months 

after readmission).  

Feature sorting using statistical analysis  

Statistical significance of the feature difference between R and nR groups were 

evaluated using unpaired t-test. A feature is sorted as a good feature if the P value is 

less than 0.05. When calculating the P values, a third group H, which consisted of 

features derived from recordings on 10 healthy subjects without any reported heart 

disease was considered. Here, H was used to validate the observed differences between 

R and nR distributions under the hypothesis that if a feature shows a significant 

difference (P value <0.05) between R and nR, for that feature to be valid, feature 

distribution of nR should be closer to H than R ( i.e., P value between R-H <P value 

between nR-H). Hence, the conditions for sorting a feature are summarized as 

following.  

 Small p value ( p<0.05)  between R and nR 

 Small p value ( p<0.05) between R and H 

 p value between R and H < p value between nR and H  (i.e., nR 

distribution is closer to H  than R ) 
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Based on aforementioned criteria 14 features were sorted. The p values of these 

features between three groups are shown in Table 5. 

Table 5- Sorted features based on unpaired t-test (p<0.05) 

Feature P values 

R-nR R-H nR-H (R&nR)-H 

Frmsave 3.61E-13 5.55E-11 0.480887 0.070465 

Variability before clustering 2.04E-06 1.07E-04 0.13784 0.008234 

Inter cluster variability 7.86E-06 0.000595 0.471128 0.031405 

Intra cluster variability 2.55E-05 0.00054 0.206867 0.015878 

SCG2 amp audave 0.00094 0.001365 0.167365 0.019987 

Frmsdif 0.000953 1.88E-02 0.687118 0.121227 

SCG2 ampave 0.001481 8.08E-05 0.126767 0.003049 

SCG1 ampdif 0.006894 0.112748 0.775736 0.333798 

SCG2 ampdif 0.00815 0.000311 0.002401 6.08E-06 

LF/HF 0.008849 0.205675 0.112346 5.55E-01 

F_avg(10,20)ave 0.010607 0.014029 0.610074 0.127506 

SCG2 amp auddif 0.011014 0.179785 0.380613 0.482817 

PCT_ER_SCG1-SCG2ave 0.030356 0.001671 0.097688 0.013009 

PCT_ER_SCG1ave 0.048541 0.000878 0.025976 0.003967 

 

PCA analysis was performed on the sorted features. As PCA components 

represents the axes in the directions of highest variability of these features, PCA can be 

used to visualize the variability of the features in low dimensional space (i.e 2D or 3D) 

which will provide insights on how the variability in the feature data separates different 

classes (i.e., Re, nRe, H) . Fig. 61 and 62 show biplots which represent the sorted 

features as vectors in the space of dominant PCA components (i.e., PCA components 

are the axes of the plot). Here, the direction and the length of each feature vector 

represents how each vector contributes to the principle component.  
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Figure 61- 2D biplot with first 2 PCA components representing PCA analysis of 

sorted features and class distribution 

 

Figure 62- 3D biplot with first 3 PCA components representing PCA analysis of 

sorted features and class distribution 
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The results presented in Fig. 58 and 59 provide evidence that the inherant 

varability of the sorted features can help separate the classes R and nR. Also, in these 

biplots, it can be seen that the observations of group H and nR are clustered in the same 

region indicating that the variability of the features of healthy group ‘H’ is closer to that 

of nR group. This verify the hypothesis that features of a HF patient are likely to reach 

(or be closer) to those of a healthy subject if the HF patient is not readmitted (within 6 

months after intial discharge). 

 

Feature derivation using LDA 

In the previous section, the best subset of features were selected based on a 

statistical measure (using unpaired t-test). However, having mulptiple features may 

complicate the interpretation of the feature differences in different classes (i.e., 

maximum 3 features can be visulaized together in 3D) and  increase the calculation cost 

when used with ML classification. In such cases, the derivation of new simplified 

features using a feature transformation mechanism which minimizes the within-class 

scatter while maximizing the between class scatter is helpful. LDA is a proven feature 

reduction method for classification purposes (Balakrishnama & Ganapathiraju, 1998) 

and some studies (Mandelkow, de Zwart, & Duyn, 2016; Shahbazi & Asl, 2015) have 

shown superior accuracy in ML cassification when used with LDA dirived features. 

The current study utilized linear discreminant analysis (LDA) to transform the sorted 

features in to a new feature (i.e., number of non zero LDA components equal to c-1 

where c is the number of classes) . Fig. 63 shows the box plots of the sorted features 

and the LDA derived feature. 

 



` 

106 

 

 
 

 

   

   

  
 

   

Figure 63- Box plots of sorted features and LDA derived feature  

In Fig. 60, certain overlaps between the classes can be observed in the sorted 

features. The LDA derived feature shows total separability between the classes. This 
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separation between the two classes can be also seen in Fig. 64 which shows the feature 

space plot of the new feature created using LDA. 

 

Figure 64- LDA derived feature (red-R , blue nR) 

Classification using machine learning (ML) 

Two ML models were used to classify the HF groups; readmitted (R) and non-

readmitted (nR). 

1. Linear SVM model with 14 sorted features 

 

2. K-NN model with LDA derived feature. 

 

ML models were trained using features derived from 25 and 26 number 

of data sessions in R and nR groups, respectively. The cross validation 

accuracies using  leave one out and 10-fold cross validation is shown in Table 

6. 

Table 6- Validation accuracies of ML classification 

ML model Leave one out 

accuracy% 

10-fold cross fold 

accuracy% 

SVM 92.16 94.12 

K-NN  (k=1) 100 100 
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The results showed that K-NN cassifier with derived LDA feature delivered 

100% validation accuracy. This result suggests that LDA derived feature has the 

potential to deliver a high accuracy than all 14 sorted features used for classification. A 

similar result (i.e., 100% accuracy) were observed in a previous study where 

generalized discriminant analysis (GDA) (i.e., GDA is an extension of LDA where 

LDA is performed after transforming features in to a new space using kernal functions) 

was used to transform multiple sorted features in to a new feature to classify congestive 

heart failure (CHF) patient risk levels (Shahbazi & Asl, 2015).  

It should be noted that current results are delivered ~25 observations in each 

class and the ML models may provide generalized solutions to the small number of 

data. However, under the assumption that the new data will come from similar 

distributions, these results show the potential capability of both ML algorithms to 

classify HF data in to R and nR with high accuracy. 

SVM accuracy results were also analyzed by varying the number of input 

features to the ML classifier. Here the number of features were sorted using MrMR 

algorithm. Fig. 65 and Fig. 66 show the variation of the training accuracy with leave 

one out and 10 fold cross validation accuracies, respectively. The results show the the 

training accuracy reaches up to ~96 % with the increase of number of features (beyond 

5) while the validation accuracies remains on a lower value. This phenomena is 

expected due to the generalization of the ML optimum solution to the training data. It 

can be observed that the validation accuracies reaches its maximum with (4-6) number 

of features. The fluctuations in the 10-fold cross validation accuracy is probably caused 

by the differnces in the randomly generated folds in different runs, and with large data 

populations a smoother curve is expected. 
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Figure 65- Variation of the training accuracy and the leave one out validation 

accuracy vs. number of features used (sorted using MrMR algorithm) 

 

Figure 66- Variation of the training accuracy and the 10-fold cross validation 

accuracy vs. number of features used (sorted using MrMR algorithm) 

Fig.s 64 and 65 represent the visulalization of SVM hyperplane (or decision 

boundary) when only 3 and 2 sorted features were used, respectively. When 3 features 

were used SVM delivered a 92.16%  leave one out validation accuracy and when 2 

features were used  90.20% leave one out accuracy was observed. In both cases the 

training accuracy was 92.16%. 
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Figure 67- Representation of SVM hyperplane with first 3 sorted features. 

Observation points of classes R and nR are represented by red and blue circles 

respectively.  

 

 

Figure 68- Representation of SVM hyperplane with first 2 sorted features. 

Observation points of classes R and nR are represented by red and blue circles 

respectively. 

 

 



` 

111 

 

HF patients longitudinal trajectory prediction using ML 

Trained ML models were used to predict the longitudinal class trajectory (i.e., 

R or nR) of each patient. Here, feature vectors generated from all data sessions from 

each patient were left out (i.e., one patient at a time) and used as testing data. The ML 

model predicted the class (i.e., R or nR) of each data session. 

Class trajectory of each patient using SVM and K-NN classifiers are shown in 

Fig. 69 and 70, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69- Class trajectory of each patient predicted using SVM. (blue-nR, red-R) 
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Figure 70- Class trajectory of each patient predicted using K-NN. (blue-nR, red-R) 

In these Fig. 69 and 70, class nR is indicated in blue dots while class R is 

indicated in red dots. The numbers represent the numbers assigned to HF patients in the 

study. Here, it can be noted that for readmitted HF patients, days are counted relative 

to the day of readmission while for non readmitted HF patients, days are counted 

relative to the day of initial discharge. Two graphs (i.e., graphs containing the 

trajectories of readmitted HF patients and non readmitted HF patients) are shifted to 

align the groups R and nR. Here, the vertical lines in Fig.s 69 and 70 are used to visually 
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partition the data sessions within R and nR groups. As mentioned earlier, when 

predicting a trajectory of a patient, all the data sessions (including the data sessions in 

R and nR range) were excluded when training the ML algorithm. Hence, the predicted 

trajectory can be named as ‘leave one patient out trajectory prediction’. 

In Fig. 69, all the HF patients except patient numbers 8,18 and 31 show a 

constant trajectory indicating that the patients likely to be readmitted (i.e., similar to 

class R) for readmitted HF patients and to be not readmitted (i.e., similar to class nR) 

for non readmitted HF patients. The first 3 data sessions of HF patient number 8 suggest 

that the patient is likely to be readmitted while the 4th data session suggests the HF 

condition got better. However, his/her HF conditon again fluctuates after 60 days from 

discharge. HF patient number 18 shows that initially the patient is in a better condition 

(i.e., fist 4 data sessions are classified as nR) before he/she reaches readmission. HF 

patient number 31 shows that the HF condition got better 15 days before the 

readmission. However, his/her HF condition near readmission couldn’t be evaluated 

due to the unavalilability of data, proximate or at the day of readmission.  

As shown in Fig. 70, in contrast to SVM model, K-NN model correctly 

classified all the data sessions except the 4th data session of HF patient number 8. In 

addition, the trajectory of HF patient number 18 shows that the HF condtion was 

fluctuating between R and nR before 90 days from readmission. 

These probable misclassifications  may be due to a complex heart conditions 

which cannot be accurately captured by SCG features. Also, it should be noted that HF 

patient readmission is a specific decision taken by a clinician, evaluating the clinical 

data of the patient, while the current ML model prediction is purely based on the 

physiological features extracted from SCG.   
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In the ideal application of the developed ML models, ML algorithms are trained 

using the available HF patient data and the future HF patient data will be used to make 

the predictions. To mimic a similar scenario, a set of most recently acquired HF patient 

data (i.e., Patient set 33,35,36,41 and patient set 10,14,24 for readmitted and non-

readmitted groups, respectively) were excluded from training the machine learning 

model and were used to make the predictions. These results are shown in Fig. 71. As 

shown in the results, ML models (i.e., SVM and K-NN) were able to deliver 100% 

accurate predictions. 

 

 

Figure 71- Class trajectory predictions of (a) readmitted and (b) non-readmitted HF 

patients when patients are divided into training and testing sets. (i.e., Patient set 

33,35,36,41 and patient set 10,14,24 are used as the testing set for readmitted and 

non-readmitted groups,respectively)  

 

The ML models were also tested with a new set of SCG data acquired from HF 

patient who have not completed the 6 months of monitoring. According to the 

predictions all the data sessions in these patients were predicted as nR class (using both 

SVM and K-NN models). These results are shown in Fig. 72  wgich indicate that all 

these HF patients are not likely to be readmitted within 6 months after discharge. 

 



` 

115 

 

 

 

 

 

 

 

 

 

Figure 72- ML predictions for the HF patients who have not completed the 6 months 

of study 

Use of clinical data for predicting HF readmission 

The ability of collected clinical data information to predict the HF readmission 

was also evaluated. Here, two criteria were analyzed. 

1. Meta-Analysis Global Group in Chronic (MAGGIC)-HF Risk Score 

2. Thoracic impedence  

Meta-Analysis Global Group in Chronic (MAGGIC)-HF Risk Score 

The MAGGIC Risk score is predicted using 13 variables: age, sex, body mass 

index, systolic blood pressure, EF, creatinine, smoking status, diabetes mellitus, 

chronic obstructive pulmonary disease, NYHA class, β‐blocker use, and angiotensin‐

converting enzyme inhibitor use. The study (Pocock et al., 2013) used MAGGIC score 

for predicting survival in heart failure, and the score was calculated using 13 variables 

with a weighted integer, having totals ranging from 0-50 points (where more points = 

higher risk patient). 

Days after initial discharge 
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Figure 73- plots of longitudinal variation of MAGGIC score in readmitted and non-

readmitted HF patients. 

Fig. 73 shows the longitudinal variation of MAGGIC score in both readmitted 

and non-readmitted HF patients. As seen in the results, MAGGIC scores in both groups 

vary in similar ranges (2-35) without any significance differences between readmitted 

and non-readmitted groups. 

Thoracic impedance 

Thoracic impedance (TI) is simply a measurement of the resistance of a electric 

current as it travels from the top to the bottom of the thorax. Hence, TI is an indirect 

measure of the water content in the lungs (i.e., high water content in lungs will result in 

low TI and vise versa). Excess fluid buildup in the thorax (i.e., low TI)   is considered 

as a symptom of heart failure. In the current study, TI was measured using ZOE® (FDA 

approved) system and the measured TI (Z0) values of the HF patients are shown in Fig. 

74. 
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Figure 74- Thoracic impedence (Z0) values of HF patients 

As shown in Fig. 74, no clear differences between the TI were found between 

the readmitted and non-readmitted HF patients suggesting that TI alone is not able to 

serve as an accurate measure to predict HF patient readmission.  

Conclusion 

In general, the presented ML models demonstrated the capability of predicting 

a HF patient is likely to be readmitted or not (within 60 days) with a high accuracy (> 

92%)  based on the features extracted from SCG data. The clinical data were also 

assessed to identify the differences between the readmitted and non readmitted groups, 

and the results showed clinical data alone could not make accurate predictions. The use 

of  ML classifiers with SCG derived features combined with clinical information will 

allow doctors to pre-identify the HF patients who need extra care after the initial 

discharge, which will help save money and reduce mortality. 

 

Z0 
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