
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2020- 

2021 

Model-Form Uncertainty Quantification in Prognosis and Fleet Model-Form Uncertainty Quantification in Prognosis and Fleet 

Management with Physics-Informed Neural Networks Management with Physics-Informed Neural Networks 

Arinan De Piemonte Dourado 
University of Central Florida 

 Part of the Mechanical Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd2020 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
De Piemonte Dourado, Arinan, "Model-Form Uncertainty Quantification in Prognosis and Fleet 
Management with Physics-Informed Neural Networks" (2021). Electronic Theses and Dissertations, 
2020-. 491. 
https://stars.library.ucf.edu/etd2020/491 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
http://network.bepress.com/hgg/discipline/293?utm_source=stars.library.ucf.edu%2Fetd2020%2F491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/491?utm_source=stars.library.ucf.edu%2Fetd2020%2F491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


MODEL-FORM UNCERTAINTY QUANTIFICATION IN PROGNOSIS AND FLEET
MANAGEMENT WITH PHYSICS-INFORMED NEURAL NETWORKS

by

ARINAN DE PIEMONTE DOURADO
M.Sc. Universidade Federal de Uberlandia, 2013
B.S. Universidade Federal de Uberlandia, 2011

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Mechanical and Aerospace Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando - Florida

Spring Term
2021

Major Professor: Felipe A. C. Viana



© 2021 Arinan Dourado

ii



ABSTRACT

Prognosis and health management play an important role in the control of costs associated with

the operation of large industrial equipment. By properly comprehending hardware degradation

and accurately predicting the remaining useful life of such equipment, we can significantly lower

operational costs by reducing asset downtime and maintenance interventions. However, complex

interactions between operational conditions and component capability make accurately modeling

damage accumulation for large fleets a daunting task. Unforeseen factors such as aggressive

missions introduced by operators, exposure to harsh environments, manufacturing issues, amongst

many others, can lead to large discrepancies between predicted and observed useful life. Motivated

by the growing availability of data and computational power as well as the advances in hybrid

modeling frameworks, capable of merging elements of physics, machine learning, and statistical

learning, in this dissertation, we focus on the development of novel approaches to minimize the

impact of unforeseen factors in fleet management.

In this dissertation, we focus on the challenges of accounting for the impacts of such unforeseen

factors on two specific stages of a component service life; early-file and end-life. Two numerical

case studies are derived to emulate two common issues in fleet life management; manufacturing

issues leading to an infant mortality problem, and unexpected exposure to harsher environments by

operators, accelerating wear-out and significantly reducing component’s useful life.

In the first analysis, two key aspects in a prognosis and health management perspective are

addressed; detecting the emerging issue (i.e., the infant mortality problem), and the evaluation of

risk mitigation procedures to minimize/mitigate its effects on the overall fleet reliability. Bayesian

networks implementing physics-based models are used to model the fleet unreliability and assist

in the quantification of the infant mortality impact on the fleet useful life. Additionally, steps to
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adapted the derived Bayesian networks to assist in the evaluation of possible mitigation approaches

to minimize the impacts of fleet-wide early life problems are presented.

Concerning the wear-out analysis, a civil aviation case study is derived, in which an aircraft fleet

mainly operates in coastal routes, significantly increasing its exposure to saline corrosion. These

conditions lead to accelerated degradation of the aircraft wing panels due to the combined effects

of corrosion and mechanical fatigue. Such corrosive conditions are not accounted for by the fleet

prognosis model generating a significant epistemic uncertainty (i.e., a missing physics issue). To

address this issue, we proposed hybrid recurrent neural network modules to compensate for the

model-form uncertainty. In the formulated neural network cell, well-understood aspects of the

degradation mechanism are addressed by a physics-based model, while data-driven models are

trained to account for the missing physics effects. After proper training, the hybrid neural network

can compensate for the unaccounted effects in the model damage forecast and generates accurate

predictions to assist in the fleet prognosis analysis.

Obtained results illustrate the capabilities of the proposed frameworks in compensating for the

considered unforeseen factors impacts in fleet management. Additionally, the obtained results

have prominently shown the significance and importance of properly account for such factors on

fleet prognosis and how these factors can drastically hinder engineers’ ability to properly perform

prognosis and health management analysis.
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CHAPTER 1: INTRODUCTION

Large industrial equipment, such as aircraft, are unique in which their maintenance represents a

significant portion of the total costs of the particular industry segment. For example, Tab. 1.1

illustrates the breakdown of the total airline cost [5]. Even though percentages might fluctuate year

over year, maintenance, repair, and overhaul are likely to keep being one of the main contributors

to cost. Therefore, the ability to perform diagnosis (identifying the problem) and prognosis

(forecasting or predicting what will probably occur in the future) is critical for companies operating

these machines.

Most industrial segments have long moved away from reacting to field issues and failures. Instead,

operations and maintenance are highly guided by predictive models, and as such, successful im-

plementation of prognosis and health management programs dependents on the understanding of

the complex stochastic interactions between operating conditions and component capability. As

a matter of fact, there exist a very active market targeting services of industrial assets. Typically,

Table 1.1: Total airline cost in 2013 (adapted from [2]).

Item Contribution (%)
Fuel and oil 33.4
Aircraft ownership 10.6
Maintenance and overhaul 9.4
General and administrative 7.3
Flight deck crew 6.8
Reservation, ticketing, sales, and promotion 6.5
Cabin attendants 6.5
Station and ground 5.1
Airport charges 4.9
Passenger service 4.2
Air navigation charges 4.1
Other 1.2

1



original equipment manufacturers, operators, independent service providers, and software compa-

nies compete with one another through offers covering everything from inspection, to digitization,

to monitoring and day-to-day services, as well as major maintenance and repairs [6, 7, 8, 9, 10].

With the exciting and vivid market for prognosis and health management in mind, few questions

might puzzle the uninitiated. Firstly, why do not companies perform tests to detect early life

problems before shipping every machine to customers? Unfortunately, this would be a prohibitively

expensive approach. While few components (or at least samples out of a manufacturing batch)

might be tested, companies can rarely afford exhaustive testing. Secondly, why do not engineers

and scientists design components in a way to avoid or radically mitigate hardware degradation

and failure in the first place? In a way, the design of industrial equipment does take hardware

degradation and failure into consideration. For the most part, companies adopt different strategies,

but it is fair to say that machines are designed to mitigate problems with known failure modes.

Then, a level of conservatism is added to account for unknowns. Designing for maintenance and

sustainment could easily get even more complicated if we consider the influence of manufacturing

variability, quality control, maintenance, and service levels over time.

Under the previously discussed limitations, in almost all industrial segments, one would, unfortu-

nately, find discrepancies between predicted and observed useful lives. Therefore, in prognosis

and health management, much of the work is spent on building credible models for unexpected

failure modes and/or machine degradation rates. These unexpected failures arise due to the complex

interactions between operational conditions and component capability combined with unforeseen

factors such as aggressive missions introduced by operators, exposure to harsh environments, etc,

leading to large discrepancies between predicted and observed useful life. Often, our ability to

accurately model damage accumulation hinges on our understanding of the physics of degradation

as well as our ingenuity in overcoming limitations introduced by the aforementioned factors.
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Motivated by the growing availability of data and computational power as well as the advances

in hybrid modeling frameworks, capable of merging elements of physics, machine learning, and

statistical learning, in this dissertation, we focus on the development of novel approaches to

minimize the impact of such factors in fleet management. In the scope of this dissertation, fleet

management can be understood as the set of procedures to oversee entire fleets of industrial assets

performance to increase productivity and reduce costs. A significant way to lower operational costs

in most fleet management applications is to reduce asset downtime and maintenance interventions.

To this end, proper comprehension of hardware degradation and accurate predictions of remaining

useful life is crucial. Despite the advances in uncertainty propagation in prognosis and health

management, uncertainty estimations on a fleet level are still a challenging task. Multiple sources

of uncertainties can act asynchronously throughout the fleet usage history and must be properly

handled by the fleet model.

In this dissertation, we focus on the challenges associated with accounting for the impacts of

such unforeseen factors on two specific stages of a component service life; early-file and end-

life. Two numerical case studies are derived to emulate two common issues in fleet management;

manufacturing issues leading to an infant mortality problem, and unexpected exposure to harsher

environments by operators, accelerating wear-out and significantly reducing component’s useful life.

It is worth mentioning that, our goal is not to address all possible sources of uncertainties in these

scenarios but to tackle the impacts of the epistemic uncertainties introduced in the damage prediction

models by these factors. Specifically, we focus on compensating for the partial knowledge of the

physics of degradation and its effects on component damage prediction.

In the first analysis, two key aspects in a prognosis and health management perspective are

addressed; detecting and characterizing the emerging issue (i.e., the infant mortality problem), and

the evaluation of risk mitigation procedures to minimize/mitigate its effects on the overall fleet

reliability. For this analysis, a probabilistic framework able to identify and characterize early life
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problems in fleets models is proposed. The proposed framework can also provide an assessment of

mitigation measures on a fleet level. We will present the analysis of an infant mortality problem

using a numerical experiment, focusing on answering the following fundamental question: how

do fleet size and the number of failures interact with each other when characterizing an infant

mortality problem? We use a physics-based prognosis model as a way to forecast the remaining

useful life through the progression of hardware distress by fusing design, manufacturing, and

services information. The proposed framework is composed of Bayesian networks used to model

fleet unreliability considering the effects of manufacturing problems (due to bad batch of materials).

The proposed Bayesian models use two model parameters: material capability degradation, model

as a shift in the material nominal stress-life curve (S-N curve); and fleet penetration level, i.e., the

percentage of units in the fleet plagued by the material capability degradation. One advantage of

the approach is that we can leverage loads and environment information without the need for direct

damage measurement. Although we point out that our approach offers only a damage estimate

(which can only be confirmed with inspections).

Concerning the wear-out analysis, a civil aviation case study is derived, in which an aircraft fleet

mainly operates in coastal routes, significantly increasing its exposure to saline corrosion. These

conditions lead to accelerated degradation of the aircraft wing panels due to the combined effects

of corrosion and mechanical fatigue. Such corrosive conditions are not accounted for by the fleet

prognosis model generating a significant epistemic uncertainty (i.e., a missing physics issue). To

address this issue, we proposed hybrid recurrent neural network modules to compensate for the

model-form uncertainty. In the formulated neural network cell, well-understood aspects of the

degradation mechanism are addressed by a physics-based model, while data-driven models are

trained to account for the missing physics effects. The final result is a hybrid damage model, where

physics-based models provide the baseline for damage accumulation, while data-driven models

implement correction terms to compensate for the unaccounted and unexpected uncertainties (see
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Figure 1.1: Illustration of the proposed formulation. Fleet usage history is fed into a hybrid recurrent
neural network that is trained to accurately represent asset degradation.

Fig. 1.1). After proper training, the hybrid neural network can compensate for the unaccounted

effects in the model damage forecast and generates accurate predictions to assist in the fleet

prognosis analysis.

In summary, the main problem addressed in this research effort concerns epistemic uncertainties

effects on prognosis and health management models predictions for fleet-level analysis. In this

regard, the main challenges when undertaking this problem can be encapsulated by the following

fundamental questions; in a modeling perspective, is our proposed framework able to account

for the impacts of model form uncertainties in the fleet damage forecast? From an engineering

perspective, are the proposed hybrid frameworks capable to reliably assist with fleet management

tasks (e.g., design of inspection campaigns, risk mitigation assessment, etc)?

The remainder of this dissertation is organized as follows. Chapter 2 presents a survey of modeling
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and analytics used in prognosis and health management. Discussions concerning the general aspects

of maintenance, contributing factors for the implementation of prognosis and health management, as

well as supporting technology are also presented. Chapter 3 focuses on the discussion concerning the

early-life failure analysis and its related case study as well as the proposed probabilistic framework

and most significant results obtained. Chapter 4 illustrates a modeling approach that combines

physics-informed and machine learning models into a single hybrid model concerning a wear-

out analysis focused on a corrosion-fatigue case study. This strategy is growing in popularity

since it combines the understanding of machine operation through reduced-order models with

the potential that machine learning has in quantifying uncertainty. The corrosion-fatigue case

study is then expanded in Chapter 5 to consider seasonality effects in the corrosion damage.

Additionally, different functional forms for the data-driven portion of the hybrid neural network

cell derived from varying physics-based considerations and constraints are presented and properly

discussed. In Chapter 6, the use of ensembles of hybrid modular neural networks for model-form

uncertainty compensation is discussed considering the expanded corrosion-fatigue case study, and

the previously defined hybrid neural network cells. A brief discussion concerning the use of the

ensemble uncertainty to evaluate the ‘‘credibility’’ of predicted damage forecasts is also presented.

Finally, chapter 7 closes the dissertation highlighting salient points and presenting few suggestions

for future research.
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CHAPTER 2: LITERATURE REVIEW - A SURVEY OF MODELING

FOR PROGNOSIS AND HEALTH MANAGEMENT

In this chapter, we present a survey of the literature and discuss important aspects of prognosis and

health management with focus on modeling approaches. In the presented survey, we confirmed

that maintenance approaches for industrial equipment have evolved over the years. Part of the

reason is the shift in paradigm. Most operators have moved away from run-to-failure and corrective

maintenance and have been adopting predictive maintenance, where models assist decision regarding

operation and maintenance levels. In addition, the growth in computational power and access to

data have enable sophisticated models in line with recent initiatives towards digitization and the

industrial internet of things [11, 12, 13]. In the presented review, we also confirm that prognosis

models rarely rely on a single approach. Instead, most applications tend to lead to elaborated

models with elements of statistical and machine learning often intertwined with reduced-order

physics-based models. In addition, we present specific discussion of diagnosis and prognosis for

civil aviation.

2.1 General Considerations and Implementation of Prognosis and Health Management

In this section, we briefly discuss what goes into implementing prognosis and health management.

Fig. 2.1 illustrates some of the key aspects. Even though interconnections between the circles are

not shown, one can imagine how complex they are in real life. For example, the business model

of a particular organization definitely influences the maintenance approach. For some companies,

it might make sense to implement proactive maintenance; for others, reactive maintenance might

be just fine. In addition, we will also discuss how modeling and analytical methods for prognosis

and health management have evolved with the operations and maintenance strategies that different
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Figure 2.1: Prognosis and health management and peripheral web of approaches, factors, and
technologies.

industry segments have in place. Nevertheless, as a way to put modeling in context, we first discuss

maintenance approaches and supporting technology (taking the opportunity to also introduce some

of the jargon).

2.1.1 Maintenance Approaches

Maintenance is at the heart of operation of complex industrial equipment as it constitutes a large

portion of the costs involved in many industries. Semantics aside, Swanson [14] presents an

interesting discussion of maintenance strategies and their impact in the performance of production

plants. The author starts by defining overarching terminology such as:

• Reactive maintenance: where equipment is operated until failure occurs; and only then repairs

are performed to bring equipment back to operation.

8



• Proactive maintenance: where equipment deterioration is monitored so that maintenance/repairs

are performed to restore equipment to satisfactory condition.

• Aggressive maintenance: where equipment is maintained with the aim of improving plant

performance as opposed to the individual equipment performance or reliability.

In Swanson’s view, preventive and predictive maintenance are included in proactive maintenance

and target reducing the probability of unexpected equipment failures. The author also mentioned

that predictive maintenance is sometimes referred to as condition-based maintenance.

One might argue that the specific nomenclature and taxonomy vary from one industry to another, or

even from one scientific community to another. Nevertheless, two points are worth considering.

Firstly, maintenance is related directly to cost; which can come in the tangible form of parts,

labor, etc., but also in terms of downtime, loss of production, warranties, etc.. Secondly, proper

maintenance improves equipment reliability and can restore its performance. For some industries,

such as civil aviation, reliability is as important as performance and therefore, companies tend to

be very careful while implementing their maintenance strategies. Other industries might weight

performance in contrast to strict reliability margins. For example, production plants with redundant

production lines (redundancy acts as a parallel system and accommodates reduction in reliability of

individual lines).

Naturally, maintenance approaches also evolved over time. Advances in the ability to run complex

computational models, improvements in material and manufacturing technologies, quality control,

as well as sensing and monitoring allowed the systematic reduction of conservatism in design and

operation of industrial equipment . With that, operators have been moving away from reactive

maintenance and have been able to adopt different forms of proactive maintenance.
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2.1.2 Implementation Factors

We now recognize the different approaches to maintenance and we can imagine that the adopted

approach can influence the level of sophistication of models. The more proactive the maintenance

approach, the more predictive the models need to be. Before we discuss modeling though, we need

to elaborate on important factors that shape the implementation of prognosis and health management

(as they influence how one perform modeling and implement prognosis analytics):

• Industry segment: one can argue that understanding the industry segment is potentially

the most important aspect before even considering what prognosis means for that industry.

Hardware degradation is usually associated with loss of performance and decreasing reliability.

Some industry segments might be very averse to loss in performance. For example, consider

machines in a production line. Deteriorating performance of critical machines can create a

bottleneck in the production and dramatically decrease yielding. Other industries might be

very sensitive to reliability. For example, in civil aviation reliability is related to safety and

we do not need to discuss how serious the consequences of degrading reliability could be.

• Business model: modeling is supporting technology to a business. Therefore, the business

model of a company is an important aspect to consider when building models that will support

decision making. For example, if an equipment has parts that are very expensive and dominate

the maintenance costs (e.g., hot gas path blades of an aircraft engine), prognosis models

tend to focus on accurate prediction and monitoring of hardware degradation. On the other

hand, if maintenance cost is dominated by downtime, maintenance equipment and labor; then,

analytics tend to focus on optimizing maintenance schedule. Therefore, it is unlikely that one

will find ‘‘one size fits all’’ solutions, although patterns might exist.

• Purpose: once the business model is understood, the next immediate point to consider might
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be the purpose of the analytic. The purpose of a prognosis model is to aid decision regarding

a specific aspect of asset operation and/or fleet management. For example, an analytic can

help deciding how many spare parts are needed next month or year. Alternatively, analytics

can also help with decision of what are the duty cycles (missions) that lead to the safest

operation in the next few days. Obviously, these two models are very different in terms of

implementation, data required, acceptable uncertainty, etc.

• Development: analytics are developed, tested, and validated with care and rigour before

final deployment. Most of the time, a multidisciplinary team of highly skilled scientists

and engineers work together to tackle challenges associated with several aspects of model

development. Activities in the model development include, but not limited to, understanding

of hardware operation and degradation, data acquisition and curation, analysis of modeling

methods and impact of assumptions, verification and validation, quality assurance and

robustness test of resulting computer models, etc.

• Deployment: in other words, once the analytics are developed and validated, what is the

computational environment the models will run and what is the support level they will need

throughout their use? The growth in computational power and access to data opens up

the opportunity for sophisticated high-performance and cloud computing solutions [15, 16].

While some organizations might be willing to take on the task of deploying and sustaining

analytics, others might prefer outsourcing at least part of the solutions.

2.1.3 Supporting Technologies

Once maintenance approaches and implementation factors are understood, we are ready to discuss

the supporting technologies for prognosis and health management:
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• Sensing: there are no questions that data is at the center of most recent developments in

prognosis. However, to the surprise of the uninitiated, in industrial applications, data still

tends to be highly unstructured. At least part of this data comes from the machine control

units, which is optimized for machine control and performance, as opposed to diagnosis and

prognosis. Although they are still a luxury, it is true that structural health monitoring systems

with sensors and processing units dedicated to diagnosis and prognosis have been increasingly

deployed in many applications. Besides thermocouples and accelerometers, structural health

monitoring sensors include, but are not limited to, comparative vacuum monitoring [17],

fiber Bragg grating sensors [18], Eddy current [19], ultrasound sensors [20], and even dye

penetrant inspection [21].

Unfortunately, in many cases, and certainly for legacy equipment, such systems might not

be present (cost analysis might even rule them out as a retrofit). Practitioners can also face

problems beyond the ones previously mentioned. While data obtained through sensors used

for controlling the equipment tends to be plentiful (which does not mean this data is problem-

free), degradation and failure data can impose significant challenges due to to be poor sensing

and characterization methods.

For example, Fig. 2.2 shows two examples of high pressure turbine vanes after they accumu-

lated a number of cycles. While it is easy to recognize that both present different levels of

damage, one can imagine the challenges involved in quantifying the damage (degradation)

level. For example, should the damage quantification segment the vane per region of interest

(leading edge, trailing edge, concave side, and convex side)? What are the metrics (crack

length, percent loss of coating, etc.) that could be used to quantify damage? Does it pay

to develop an automated technique that quantifies damage (however it is measured)? Or

alternatively, are visual inspection and expert judgement sufficient information for building

predictive models?
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• Modeling: in industrial applications, more often than not, multiple models are used to

simultaneously diagnose, track and forecast the state of machine health. With these multiple

models, engineers and practitioners can take informed decisions about what to do with the

specific machine. With that in mind, one might feel tempted to start categorizing the types or

families of algorithms that can be used to build prognosis models, such as Fig. 2.3 does for

machine learning. The cold reality in prognosis is that, most of the time, models are built to

understand machine deviation from design. After all, if failure could be avoided in design,

prognosis would not be needed in the first place. Given how challenging this task is, it is

unlikely that one single modeling approach is used for building prognosis models.

• Repair: in this dissertation, we consider ‘‘repair’’ to be all that goes into fully or partially

restoring the functionality of a component (or system) that has already accumulated service

life while also preserving acceptable reliability levels. This way, repair technologies have to

balance cost of repair with the regained useful life and are highly industry- and application-

dependent. Although further discussion on repair technologies is outside the scope of this

dissertation, the interested reader is referred to the following literature for some examples in

gas turbines [22, 23, 24] and aircraft structures [25, 26].

It is expected that the relative importance of the previously discussed factors will vary on a case-by-

case basis. Nevertheless, once this is realized, prognosis and health management becomes much

easier to propose, develop, and implement. In the next section, we discuss important elements from

an analytics perspective.
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Figure 2.2: Condition of high-pressure turbine guide vanes after many cycles of usage.
Pictures adapted from https://commons.wikimedia.org/wiki/File:Repair_
process_for_a_V2500_high-pressure_turbine_guide_vane_(1).jpg and
https://commons.wikimedia.org/wiki/File:Repair_process_for_a_
V2500_high-pressure_turbine_guide_vane_(3).jpg.

Figure 2.3: Sample of machine learning methods that can be used to build prognosis models.

2.2 Predictive Modeling and Analytics for Prognosis and Health Management

As we have been discussing, prognosis and health management encompass a complex web of

approaches, factors and technologies (Fig. 2.1). On the supporting technology side, we would
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(a) What analytics for prognosis could look like.
(b) Sample of challenges of building and deploy-
ing prognosis models.

Figure 2.4: Idealization and technical challenges of building analytics for prognosis of industrial
equipment.

like to extend the discussion about modeling approaches, historical perspective, implementation,

and deployment of analytics. Fig. 2.4a illustrates an idealized final goal of a prognosis and health

management analytics. Assets, such as a jet engines, are monitored on a serial number basis. Sensor

data is broadcast directly to the ‘‘cloud.’’ This valuable information run against a pipeline of

analytics. At the end, powerful interfaces, designed with user-experience in mind, display the

results for decision-makers. In order to achieve this vision though, there are many challenges an

organization needs to overcome. As briefly depicted in Fig. 2.4b, from accessing and gathering

the data to deploying the analytics at scale, there is a long list of technologies that need to be put

in place. Some of these, such as cyber security (obviously the connectivity should not expose

industrial equipment to cyber attacks) and metering (data is usually billed by volume) exemplify

how information technology plays an important role in prognosis and health management. Further

discussion on how some of the challenges shown in Fig. 2.4b relate to prognosis and health

management can be found at [27, 28, 29, 30].
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Next, we will focus our attention on modeling for prognosis and health management. We start by

reviewing some of the commonly used modeling approaches. We will cover different modeling

methods but also offer a historical perspective for how analytics evolved over time.

2.2.1 Modeling Approaches

By now, one should realize that much of the challenge in building prognosis analytics comes from

dealing with data issues including, but not limited to, noisy sensors, outliers, missing and corrupted

data, data forecast, and partial information. Relevant literature is drawn from fields such as statistical

and machine learning and popular methods include probabilistic principal component analysis [31,

32, 33], spatial dynamic panel data model [34, 35], Bayesian temporal tensor factorization [36],

auto-encoder, variational auto-encoder [37, 38], generative adversarial networks [39, 40], among

others.

In many applications, departures and anomalies in the data are used as diagnosis, while drifts

in certain trends can be used as rudimentary prognosis. Obviously, simplified models that feed

from anomaly detection and monitoring of trends can be very convenient and easy to implement.

However, the use of such models for prognosis is often limited by their lack of explainability and

their inability to extrapolate. On top of that, industrial equipment is monitored by remote control

and operation centers. This way, an excessive number of false alarms and near misses produced

by a poorly performing analytic could reduce the credibility of the approach and, as a result, the

prognosis model becomes invalid.

Therefore, credible models are of utterly importance in prognosis and health management. Unar-

guably, a very desirable situation happens when physics is well understood to the point that

degradation and failure can be modeled accurately and computational cost of such models are com-

patible with the application requirements. Even under these circumstances, one should be aware that

16



purely physics-based models are rarely used. In general, there is at least one element of uncertainty

quantification and model updating that is almost inevitable due to cumulative uncertainties coming

from loads and boundary conditions as well as variations in material properties.

For example, Daigle and Goebel [41] formulated physics-based prognostics as joint state-parameter

estimation problem, in which the state of a system along with parameters describing the damage

progression are estimated. This is followed by a prediction problem, in which the joint state-

parameter estimate (and associated uncertainty) is propagated forward in time to predict end of

life and remaining useful life. They demonstrate their methodology in the estimation of remaining

useful life of centrifugal pump used for liquid oxygen loading located at the Kennedy Space

Center. Literature reporting successful implementation of physics-based prognosis and health

management is very rich. Examples include, but are not limited to, bearings failure [42], Lithium-

ion batteries [43, 44], structures subjected to corrosion-fatigue [45], fatigue of turbine disks [46],

powertrain of unmanned aerial vehicles [47].

One of the benefits of using theory-guided models is that they are based on understanding of degra-

dation mechanisms (using laws of physics, chemistry, etc.). Unfortunately, real-life applications

are inevitably subjected to challenges associated with identification of failure modes, sensitivity of

failure and damage accumulation to operating conditions, robust isolation of hardware degradation

during operation, data problems (noisy sensor readings and missing data, etc.), accuracy and com-

putational cost of physics-based models, interdependence of large system processes, blunt lack of

domain knowledge. Therefore, it is understandable that machine learning methods find home in

prognosis and health management.

With that said, we would like to open the discussion about machine learning methods by re-stating

that they are subjected to the no free lunch theorems [48, 49]. These theorems (established at

the end of the dark ages of machine learning) state that all learning and optimization algorithms
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will perform equally well if their performances are checked against all possible learning problems.

Alternatively, we also can state that no single learning algorithm will always outperform all others.

As a consequence, practitioners are never bounded by one particular algorithm.

Si et al. [50] reviewed statistical data driven approaches for prognosis that rely only on available

past observed data and statistical models (regression, Brownian motion with drift, gamma processes,

Markovian-based models, stochastic filtering-based models, hazard models, and hidden Markov

models).

Khan and Yairi [51] reviewed the application of deep learning in structural health management

(simple autoencoders, denoising autoencoder, variational autoencoders, deep belief networks,

restricted and deep Boltzmann machines, convolutional neural networks, and purely data-driven

versions of recurrent neural networks, including the long short-term memory and gated recurrent

units). They found that most approaches are still application specific (unfortunately, they did not

find a clear way to select, design, or implement a deep learning architecture for structural health

management). They also advise that a trade-off study should be performed when considering

complexity and computational cost. Instead, most acknowledge that algorithms should be seen as

tools.

A very short discussion of the different modalities of machine learning in prognosis and health

management is shown in Tab. 2.1. Besides the modalities discussed, we recognize the substantial

work merging physics and statistical learning methods such as Bayesian networks and Kalman

filter [42, 52, 53].
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Table 2.1: Modalities of machine learning and application to prognosis modeling.

Modality Applicability Examples
Unsupervised
learning

When the data set lacks detected
patterns and/or clearly defined
input-output labeling, algorithms
are used to separate and start iden-
tifying hidden patterns in the data.

Prognosis and health management literature
reports successful applications of clustering
in electrical motors [54] and milling ma-
chines [55]; self-organizing maps in monitor-
ing of mechanical structures [56] and pneu-
matic actuator fault detection [57]; and hidden
Markov models in fault identification of tur-
bofan engines [58] and bearings [59].

Supervised
learning

When the data allows distinction
between inputs and outputs, mod-
els are built to explain the relation-
ship that maps inputs into outputs.
This is probably the machine learn-
ing modality with most reported
examples in prognosis and health
management.

Examples include, but are far from being lim-
ited to, ensembles of classifiers in remain-
ing useful life estimation of tungsten fila-
ments [60]; recurrent neural networks for gear
prognosis [61]; deep learning for degrada-
tion of aircraft engines [62]; and support vec-
tor machines for failure of reactor coolant
pumps [63].

Reinforcement
learning

When machine learning is mod-
eled as a multi-agent problem
where data is used to train agents
seeking to maximize a reward
function [64, 65].

This is a relatively unexplored modality, but
examples from the prognosis and health man-
agement literature include design of fault-
adaptive control strategies [66] and bridge
health monitoring [67].

Physics-
informed
learning

When knowledge about partial dif-
ferential equations is used to de-
sign and/or train the deep learning
models [68, 69, 70].

Chao et al. [71] discuss how hybrid physics-
informed and machine learning models can be
used for prognostics of complex safety critical
systems. Viana et al. [72] discuss how to build
hybrid recurrent neural networks for cumula-
tive damage modeling by merging physics-
of-failure kernels with machine learning for
estimation of model inadequacy.
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2.2.2 Summary of the past 40 years

Researchers have been very active on the field of modeling and analytics for prognosis and health

management. Here, we provide few samples of papers published over the past 40 years on a decade

basis.

Sample of papers published in the 1980’s:

• 1980 - Nelson [73] discussed maximum likelihood methods to estimate a model for life as a

function of constant stress. Initially, the author provided an illustrative data from a step-stress

test of cable insulation, and then used a Weibull model that describes the stress-life relation

for the case. Then, the author estimated the parameters of the model through maximum

likelihood, and validated the estimations over a different cable’s test data. Inferring from the

validation results, the paper is concluded with the remarks on how to interpret the statistical

findings and the effect of number of samples used to fit the models.

• 1984 - Chow and Willsky [74] published a work on designing robust failure detection systems.

Their proposed method utilizes parity functions in order to generate residuals, which are

exposed to several statistical tests for fault diagnosis and identification. The authors tested

their approach on a numerical example, where they considered a four-dimensional system

operating at a set-point with two actuators and three sensors. The goal was to successfully

detect a sensor failure of a system. The paper pointed out the importance of residual generation

process, which yields to accurate fault identification.

• 1985 - Renwick and Babson [75] studied the benefit of using vibration signals as a predic-

tive maintenance tool. The authors combined discrete frequency vibration data with the

demodulated signal-conditioning technique, which they refer as ‘‘quality information’’. Their

proposed method is demonstrated on several case studies, such as a loose pedestal bearing
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on the pinion drive of finish mill, shearing of coupling bolts on a cooler vent fan motor

shaft, and a bearing fault in a gear reducer. Finally, the authors layout three different level

of instruments to acquire vibration signals on different qualities, and discussed the usage of

each instrument for each case presented in terms of reliability and cost trade-off perspective.

• 1988 - Gertler [76] investigated failure detection, isolation, and identification algorithms

based on reduced order models, residual generation, statistical testing, and sensitivity analysis.

The author discussed the applicability of these methods in problems such as sensor biases,

actuator malfunctions, leaks, and equipment deterioration.

Sample of papers published in the 1990’s

• 1993 - Lu and Meeker [77] studied how degradation measures obtained from life cycle

tests (which have either no failures or only a few) can be used to create a time-to-failure

distributions. The authors evaluated approaches such as general path and multivariate normal

models for nonlinear regression of observed degradation. They also suggested using Monte

Carlo simulations in the case where the degradation model does not have a closed-form

expression for time-to-failure distribution. The authors demonstrated the effectiveness of

their approach on a fatigue crack growth example.

• 1996 - Lee [78] implemented a pattern discrimination model based on cerebellar model

articulation component for fault detection and preventive maintenance. The neural network

model is initially trained with desired (or normal) behavior of the machine. Then, the model

is used to detect any deviation from the normal behavior and depending on the magnitude of

deviation, a new confidence level is assigned for reliability of the machine.

• 1996 - Ray and Tangirala [79] presented a stochastic model of fatigue damage, online sensing,

failure prognosis, decision-making, and life extending control in complex dynamical systems.
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The authors described their method in two parts. The first part is the deterministic model

which follows a short crack growth model, and the second part is the stochastic model based

on the extended Kalman filter. They closed the paper with a verification study against

actual fatigue crack data collected from 2024-T3 aluminum alloy panels. With these results,

the authors showed that their method is computationally efficient and suitable for online

application.

• 1999 - DePold and Gass [80] presented a framework based on artificial neural networks

to build gas turbine prognostics and diagnostics. The authors combined neural networks,

Kalman filters, Bayesian and evidence based decision making, along with an expert system

to perform value analysis in making condition-based maintenance recommendations. Their

framework was tested on a case where a crack occurred on a gas turbine engine combustor

with notable prediction accuracy.

• 1999 - Li et al. [81] proposed an adaptive approach to estimate remaining life of rolling

element bearings using a reduced-order model tuned with vibration data. Their methodology

is based on fine-tuning a model inspired in the Paris’ law using recursive least square. The

authors provide both simulation and experimental investigation of the performance of their

approach.

Sample of papers published in the 2000’s

• 2001 - Wang and Vachtsevanos [82] used dynamic wavelet neural networks for prognosis.

Their proposed model was able to take the information from diagnosis, predict the remain-

ing useful life of the component dynamically, and also output a maintenance window for

condition-based-maintenance. The authors illustrated their method on an example where

crack propagation on a bearing is tracked through vibration measurements.
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• 2003 - Qiu et al. [83] investigated rolling element bearing prognosis using wavelet filters.

They addressed the problem of weak anomaly signals, which are challenging to identify

in onset of failure. In addition, the authors propose a self organizing map based method

to construct feature space, detect degradation, and assess performance. An experimental

validation is performed with run-to-failure test and vibration data from four bearings.

• 2006 - Jardine et al. [84] reviewed diagnostic and prognostic approaches such as statistical

models, artificial intelligence methods, and model-based techniques. The authors divided and

discussed the condition-based maintenance process in three distinct steps: data acquisition,

data processing, and maintenance decision support. Encouraged by the increasing number

of complex systems with multiple sensors, they also examined the techniques to fuse sensor

data for advanced diagnosis and prognosis of machinery.

• 2008 - Wu and Liu [85] considered using discrete wavelet transform and neural networks

for the problem of internal combustion engine fault diagnosis. While the discrete wavelet

transform is used to extract features from acoustic emission signals, a multi-layer perceptron is

utilized for classification of the fault. The authors verified their framework on an experimental

rig, where a gasoline direct injection engine’s sound emission signals are analyzed and

classified with high accuracy.

• 2009 - Zhang et al. [86] outlined a framework in order to merge physics-of-failure models with

data-driven approaches for prognostics and health management. In their framework, physics-

of-failure model is used to define failure criteria and thresholds for the data-driven portion,

and data-driven part is used for the calibration of physics-of-failure model. The authors close

the paper with a futuristic vision where the hybrid approaches will be a cost-effective option

for the prognostics and health management of complex industrial systems.

Sample of papers published between 2010’s
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• 2011 - Sikorska et al. [87] presents an in depth overview for prognostics model selection

for industrial application. The discussion begins with the dissection of basic definitions of

prognostics. Then, the authors underline some key aspects from the implementation point

of view, and present a brief classification to the methods of the time. The paper provides a

comparison of modeling approaches with discussion of advantages, disadvantages, and niche

of applications.

• 2016 - Mosallam et al. [88] presented a data-driven prognostic method based on Bayesian

approaches. The authors described their two-phase framework. While the offline phase

constructs custom health indicators that contain information on the degradation of the system

and builds reference models; the online phase attempts to classify real-time health indicators

to the ones in the reference database to evaluate remaining useful life. Finally, a discrete

Bayesian filter is employed to estimate the state of the degradation. Battery and turbofan

engine degradation data obtained from a NASA repository are utilized to test the introduced

framework, and low mean absolute percentage error is observed in both applications.

• 2018 - Li et al. [89] used deep convolutional neural networks for prognostics of industrial

assets. The method adopted a time window approach for improved feature extraction,

avoiding the need for prior expertise knowledge or signal processing. The authors illustrated

the accuracy of the approach with the remaining useful life estimation of aero-engine units.

Authors also compared their proposed framework against the other state-of-the-art data-driven

approaches, such as long short-term memory, convolutional neural networks, and deep belief

networks.

• 2019 - Kordestani et al. [90] reviewed recent advancements in failure prognosis. Initially,

the authors laid out some fundamental concepts regarding fault diagnosis and prognosis, and

categorized current available and widely used prognosis methods based on their characteristics,

advantages, and disadvantages. Then, authors go over the model building task with approaches
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such as wavelet transform, extended Kalman filter, fuzzy logic, Gaussian process, hidden

Markov modeling, deep learning, and many others. Later in the paper, the authors built a

connection in between these methods and the two of the most popular application fields,

batteries and rotating machinery systems. Authors conclude the manuscript with a rich

discussion on promising research directions.

• 2020 - Yucesan and Viana [91], Dourado and Viana [92], and Nascimento and Viana [93]

introduced a hybrid implementation that combines together physics-based reduced order

models and neural networks for cumulative damage modeling. In their approach, the physics-

informed kernels constrain the neural network outputs while the data-driven kernels quantify

model-form uncertainty. Authors demonstrated their approach with applications in wind

turbine main bearing fatigue as well as corrosion-fatigue and fatigue crack growth of aircraft

fuselage panels. The Python packages that implements their hybrid physics-informed neural

networks and application-specific data are freely available at [94, 95, 96].

Prognosis and health monitoring have found a broad spectrum of applications over the years.

Besides many of the papers already mentioned, we illustrate in Tab. 2.2 few other publications to

show the rich variety of applications.

2.3 Prognosis and Health Management in Civil Aviation

In this section, we will further the discussion about modeling for prognosis and health management

applied specifically to civil aviation. Based on this industry own unique features, we will explore

how they affect its modeling implementations.

The safety requirements associated with civil aviation have driven implementation of prognosis

and health management for this industry. As much of the industry, operations and maintenance
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Table 2.2: Additional examples of applications.

Field Area References
Physical Aerospace/Space [97, 98]
Sciences Chemical engineering [99, 100]
& Engineering Civil/Infrastructure [101, 102, 103]

Energy/Propulsion [104, 105, 106, 107]
Materials/Manufacturing [108, 109]

Life & Health Agriculture [110, 111]
Sciences Environmental sciences [112]

Pharmaceutical industry [113]
Medicine [114, 115]

Social Sciences Business [116, 117]
& Humanities Decision making [118, 119]

are heavily regulated, both at the national and international levels. A well-known time-based

maintenance set of checks in aviation is the ‘‘ABCD’’ check system shown in Tab. 2.3. The

guidelines cover everything from daily checks, such as broad visual inspection grounding the

aircraft for up to 8 hours, to major inspection involving structural components and grounding the

aircraft for up to 20 days. The frequency of each type of check is usually defined in accordance

between original equipment manufacturers, operators and airworthiness authorities.

Unfortunately, despite all the regulations and efforts to increase safety, improper maintenance still

has a significant impact on reported accidents and incidents, as described in a study published by

Marais and Robichaud [120]. As discussed by the authors, despite the downward trend, maintenance-

related reports still accounts for roughly 5% of the overall accident and incident reports1. Their

analysis also indicates that maintenance-related accidents are 6.5 times more likely to be fatal in

general.

Prognosis and health management in civil aviation reflects the complexity of the aircraft as a system.

1In the USA, the National Transportation Safety Board maintains a repository with aviation accident reports pub-
lished at https://www.ntsb.gov/investigations/AccidentReports/Pages/aviation.aspx
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Table 2.3: Aircraft maintenance: the ABC check system (adapted from [3]).

Check Average frequency
Transit Aircraft grounded for more than 4 hours.
A 500 flight hours or 2 months.
B 1100 flight hours or 6 months.
C 4000 flight hours or 20 months.
D 25000 flight hours or 6 years.
Check Description
Transit Visual inspection and search for obvious damage and deterioration.

A
- Performed at specialized maintenance station.
- Special tooling required.

B
- Slightly more detailed check of components and systems.
- It does not involve detailed disassembly.

C

- Include A and B checks.
- It requires a thorough visual inspection of specified areas, components and
systems as well as operational or functional checks.
- This is an extensive check of individual systems and components for
serviceability and function.
- It removes aircraft from service for 3-5 days.

D

- Include A,B and C checks.
- It is an intense inspection of the structure for evidence of corrosion, struc-
tural deformation, cracking, and other signs of deterioration or distress.
- It includes detailed visual and other non-destructive test inspections of
the aircraft structure, alongside extensive disassembly to gain access for
inspection.
- It removes the airplane from service for at least 20 days.

Nevertheless, here, we will give examples from the literature on modeling of critical sub-systems

such as aircraft engines, airframe, actuators, landing gear, and avionics.

2.3.1 Engines

Several factors can lead to engine degradation, with the most commonly reported mechanisms being

associated to blade erosion, fouling, and debris deposit [121]. Saxena et al. [122] described how
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damage propagation could be modeled within the modules of aircraft gas turbine engines. Response

surfaces of engine sensors are generated using a thermo-dynamical simulation model for the engine.

Then, a health index is defined as the minimum of several superimposed operational margins at

any given time instant and the failure criterion is reached when health index reaches zero. Xu et

al. [123] presented a fusion prognostics framework based on sensor data, aiming to increase aircraft

engine’s condition forecasting accuracy. The proposed framework was employed to predict the

remaining useful life of an aircraft gas turbine engine based on sensor data providing more accurate

and robust estimates than any of the considered single prognostics methods.

Other interesting applications involving the use of machine learning techniques such as, support

vector machine frameworks for engine health state classification can be found in [124, 125, 121,

126], while applications based on neural networks are presented in [127, 128].

2.3.2 Airframe

Although there might be many reasons associated with failure different airframe components

(including fatigue, corrosion, overload, wear, abrasion, erosion, buckling, flutter), in terms of

prognosis, the two most important forms are fatigue and corrosion [129, 130]. The combined effect

of corrosion and fatigue is also very important [131, 132, 133].

Duquesnay et al. [134] investigated the growth behaviour of fatigue cracks initiated at corrosion

pits of 7075-T6511 aluminium alloy coupons subjected to aircraft loading spectrum. The authors

founded that the depth of the corrosion pit was a suitable parameter for characterizing the corrosion

damage and fatigue life prediction. Additionally, they suggested that the size of the deepest

corrosion pit in the area of corrosion damage on an aircraft, to be used as the metric for predicting

fatigue life.
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Iyyer et al. [135] presented an extensive discussion on crack initiation and crack growth models to

aircraft life predictions and fleet management. Authors describe methods used by the US Navy for

fleet fatigue life assessment and individual aircraft fatigue tracking and discuss the history of life

estimation methods of P-3C aircraft, with brief descriptions of conducted full-scale fatigue test. In

addition, limitations of safe-life methods for aging aircraft are discussed, alongside a deterministic

total life approach for continued operations beyond crack initiation up to a safe limit using full-scale

test as a basis.

In Li et al. [136], a probabilistic model for diagnosis and prognosis based on dynamic Bayesian

networks was proposed and evaluated on a fatigue crack growth on the leading edge of an aircraft

wing problem. In diagnosis, the dynamic Bayesian network was used to track the evolution of the

time-dependent variables and calibrate the time-independent variables; while in prognosis, it was

used for probabilistic prediction of crack growth in the future.

Other important modeling aspects to consider when addressing fatigue in civil aviation involves

loads estimation [133, 137, 138] and materials (e.g. metal alloys [139, 140] or composite materi-

als [141, 142, 143]).

2.3.3 Actuators and landing gear

Berri et al. [144] proposed a framework for prognosis of aircraft electromechanical actuator

for secondary flight controls. Their approach included signal acquisition, fault detection and

isolation, and remaining useful life estimation. In order to keep computational cost manageable,

they proposed using strategies for signal processing combined with physical models of different

fidelity and machine learning techniques.

Byington et al. [145] presented a study on the use of neural networks for prognosis of aircraft
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actuator components. The framework covered tasks such as feature extraction, data cleaning,

classification, information fusion, and prognosis. They successfully demonstrated their approach on

F-18 stabilator electro-hydraulic servo valves.

Jacazio and Sorli [146] presented an enhanced particle filter framework for prognosis of electro-

mechanical flight controls actuators. They achieved promising results and showed the benefits of

their approach as compared to other published methods.

With regards to landing gear, published literature cover issues such as load estimation [147, 148,

149], hard landing [150], sub-components [145, 146] and landing gear design optimization and

health monitoring [151, 152, 148, 153, 154].

2.3.4 Avionics

Wilkinson et al. [155] presented an approach to anticipate the onset of failures in electronic

equipment in real-time. A model-based technique utilizing embedded life models and environmental

information obtained from aircraft mounted sensors is proposed with promising benefits for reducing

the number of unexpected failures.

Kirkland et al. [156] proposed an optimum set of metrics through which the performance of avionics

assemblies can be monitored. Considerable insight into the relative performance of a wide range of

avionics assemblies has been gained through analysis of test parameters and failure information

from automated test equipment. The insights gained from the technique has led to cost avoidance

by reducing no faults found occurrences on USAF F-16 fleet.

Batzel and Swanson [157] developed prognostic tools to detect the onset of electrical failures in an

aircraft power generator, and to predict the generator’s remaining useful life. Focus is given to the

rotor circuit since failure mode, effects, and criticality analysis studies indicated as a high priority
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candidate for condition monitoring. The interested reader is referred to [158, 159, 144, 160] for

other applications and sub-components.

There are few important takeaways from this survey. As carefully pointed out, learning methods

(statistical learning, classical machine learning, deep learning, etc.) are inevitable present in most

applications. However, they are all subject to the no free lunch theorems. Therefore, practitioners

are likely to still use a host of approaches depending on the application. With regards to the civil

aviation industry, we could clearly see the degree of specialization involved in modeling. We

illustrated how regulations and safety play a major role in the widespread adoption of prognosis and

health management. While the focus is aircraft airworthiness, modeling seems to follow the cost

associated with maintaining the specific sub-system (in which case, the aircraft engine dominates).

In the following chapters this dissertation will focus on the challenges associated with epistemic

uncertainty propagation in the prognosis and health management analysis of airframe components,

specifically associated with early-life and wear-out stages of such components.
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CHAPTER 3: EARLY-LIFE FAILURES AND SERVICES OF

INDUSTRIAL FLEETS

On April 1, 2011, a Boeing 737-300 operating in the Southwest Airlines flight 812 suffered rapid

depressurization while cruising, leading to an emergency landing. The National Transportation

Safety Board (NTSB) investigation pointed out that the incident was caused by structural failure

of the fuselage skin. Evidence of manufacturing errors in the joining fuselage crown skin panels

was found (see [161]) accelerating metal fatigue on the panels. This was the second incident with a

Boeing 737-300 in a period of two years in which a fuselage skin manufacturing issue lead to an

unexpected decompression during a flight (the first was Southwest Airlines flight 2294 in 2009).

These incidents are an example of how manufacturing problems can significantly reduce useful life

and lead to unexpected failures in large fleets of engineering assets (e.g. airplanes, jet engines, wind

turbines, etc.).

In general, unexpected premature asset failures is an issue referred to as infant mortality failures

[162]. This issue is usually identified by higher than expected failure rates in early life (short period

after deployment). It is a major concern among original equipment manufacturers (OEM) and

operators of industrial assets. Early-life failures (a) increase the total cost of ownership due to an

increase in costs of maintenance, warranty, services, etc., and (b) can reduce asset performance

and availability. In addition, they can impose difficulties in meeting compliance and regulations

standards (as hardware degradation can be a lead cause of safety standard infringements, elevation

of noise and emission levels, etc.).

Understanding how the complex interactions between operating conditions and component ca-

pability define useful life is a key issue in the services market (ability to comprehend hardware

degradation and predict remaining useful life). This gives operators the chance to make decisions
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that directly impact their financial outcomes. In this chapter we will focus on a numerical experi-

ment in which a probabilistic framework is used to identify and characterize early-life problems in

the fleet management scope. In the proposed framework remaining useful life is forecast through a

prognosis model composed of two dynamic Bayesian networks: an asset level network that imple-

ments component stress-life curves employing a tunable lognormal distribution, and a fleet-level

network that accounts for the integration of Palmgren-Miner’s rule. Since the implementation is

based on component stress-life curve we considered our methodology as a physics-based prognosis

model.

We also provide an assessment of mitigation measures on a fleet level. We will present the

analysis of the infant mortality problem focusing on answering the following fundamental question:

how do fleet size and the number of failures interact with each other when characterizing an

infant mortality problem? We answer this question using prognosis, uncertainty quantification,

reliability and fleet management. The proposed framework is composed of dynamic Bayesian

networks used to model fleet unreliability considering the effects of manufacturing problems (due

to bad batch of materials). The proposed Bayesian models use two model parameters: material

capability degradation, model as a shift in the material nominal stress-life curve (SN curve); and

fleet penetration level, i.e. the percentage of units in the fleet plagued by the material capability

degradation. One advantage of the approach is that we can leverage loads and environment

information without the need of direct damage measurement. Although we point out that our

approach offers only a damage estimate (which is only confirmed with inspection).

3.1 Case Study - Infant Mortality in a Fleet of Assets Due to a Bad Batch of Materials

We use a numerical experiment to study how fleet size and number of failures impact the characteri-

zation of infant mortality in fleets of assets. This numerical experiment aim at emulating scenarios
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in which fleets of industrial assets are plagued with a bad batch of materials. In other words, the

material is contaminated during manufacturing yielding in a significant loss in its capability. We

consider a hypothetical component to be made out of the Al 2024-T3 alloy1 subjected to alternating

loads and assume that initiation cycles dominate fatigue life. This hypothetical component is

mission-critical (its failure does not affect directly the safety of asset operation). Due to the nature

of the considered manufacturing problem, components made with pristine material and components

made with degraded material would be indistinguishable in operation other than by the unexpected

failures. Hence, repairment of plagued components is not possible, although the components could

be replaced. Therefore, the numerical experiment focuses on fleets of different sizes plagued with

contaminated components that can not be detected based solely on operational performance (i.e.,

yielding unexpected early life failures).

We use readily available S-N curves commonly found in material handbooks [1] to model low

cycle fatigue life at different average and alternating stress levels. Then, we mimic problems with

manufacturing (bad batch of materials) by degrading the S-N curves. We designed two missions

and two mission mixes to emulate variation due to customer behavior. Finally, we simulate different

fleet sizes to understand how failure observations affect overall fleet reliability and detection of

emerging issues.

1Al 2024-T3 is commonly used in aircraft fuselage, flaps, trim tabs, servo tabs and control surfaces.
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3.1.1 Damage Accumulation at the Component Level

We used the readily available S-N curves illustrated in Figure 3.1 and the following suggested

fatigue life model as a function of equivalent stress [1]:

Nf ∼ logNormal (µNf , σNf )

µNf = θ1log (Seq + θ2) + θ3

Seq =
(
Smax(1− (2 Smean − Smax))θ4

)
, and

θ1 = −3.33, θ2 = −12.3, θ3 = 9.2, θ4 = 0.68, θ5 = σNf = 0.89, for Seq + θ2 > 0

(3.1)

where:

• Nf is the fatigue life,

• µNf and σNf are the parameters of the fatigue life lognormal distribution,

• Seq is the equivalent stress of a given load cycle,

• Smean and Smax are the mean and maximum stress of a given load cycle, and

• θ1 to θ5 are model parameters.

Damage is accumulated following Palmgren-Miner’s rule:

D =
∑

∆di =
∑ ni

N
(i)
f

(3.2)

where:

• D is the damage accumulated throughout the life of the component
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Figure 3.1: S-N curves for the Al 2024-T3 alloy (adapted from [1]).

• ∆di is the damage accumulated by running ni cycles at the ith load level

• ni is the number of cycles run at the ith load level (uniquely defined by mean and maximum

stress).

• N (i)
f is the fatigue life at the ith load level, and

• the threshold for end of life is dTH = 1.

In many studies, fatigue lives of metal materials are generally assumed to follow either lognormal

or Weibull distributions [163, 164]. In this chapter we assume fatigue life follows a lognormal

distribution. Since fatigue life N (i)
f follows a lognormal distribution, D is a random variable with

no closed-form expression for its probability density function. However, considering that all ∆di
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have the same variance, then, D can be approximated by:

D ∼ logNormal (µD, σD)

σ2
D = ln

[
(e
σ2
Nf − 1)

∑
e2µ∆di

(
∑
eµ∆di )2 + 1

]
µD = ln

(∑
eµ∆di

)
+
σ2
Nf

2
− σ2

D

2
, and

∆di ∼ logNormal
(
−µ

N
(i)
f

+ ln(ni), σNf

)
(3.3)

Since damage is accumulated after each mission, for a given component, the number of missions

to failure (MTF) is a random variable with cumulative density function defined by FMTF (m) =

Pr [MTF ≤ m] = Pr
[
D

(m)
i ≥ 1

]
, where D(m)

i is the damage accumulated up to m missions of

component i. This implies that ith component reliability Ri(m) (probability to perform below the

threshold) and unreliability Qi(m) (probability to perform above the threshold) at mission m are

given by:

Ri (m) = 1− Pr
[
D

(m)
i ≥1

]
, and

Qi (m) = 1−Ri (m) = Pr
[
D

(m)
i ≥1

] (3.4)

We designed the two missions shown in Figure 3.2. At the end of each mission, the accumulated

damage is distributed around 2.63×10−4 and around 6.55×10−5 for mission #1 and #2, respectively.

The 50th percentile of fatigue life is approximately 3,800 and 15,260 missions for missions #1 and

#2, respectively. At any given mission, the load history can be modeled with the mission index

MIDX , which follows a Bernoulli distribution with probability θ6:

LH(m) =

 Mission 1, if MIDX = 1

Mission 2, if MIDX = 2
, and

MIDX ∼ Bernoulli(k = MIDX , p = θ6)

(3.5)
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where:

• LH(m) is the load history for mission m,

• MIDX is an index that defines which mission to assign, and

• θ6 is a calibration parameter.

In this contribution, we considered two mission mixes as detailed in Table 3.1, in which mission

#1 and mission #2 bound the life distributions for any mission mix. This way, when variations

due to both loads in the form of mission mixes and material capability (spread in S-N curves) are

considered, the distribution of fatigue life is as illustrated by Figure 3.3.

We emulate degradation in material capability by shifting S-N curves to the left (i.e., for the same

stress level, the material has a shorter fatigue life as compared to the nominal material). For

simplicity, we can consider that the shift on the S-N curves is only affecting its mean prediction

and not acting on the curve variance. Thus, material degradation can be formulated as a shift on

the mean value of the damage D lognormal distribution given in Eq. 3.3. In this contribution, the

degradation shift is modeled through the introduction of the model parameter θ7 as illustrated by

Eq. 3.6. As formulated θ7 represents percentage-wise the level of knockdown due to the material

capability loss. This way, we model relatively the large deviation caused by problems during

manufacturing (such as problems in surface treatment and/or microstructure).

DDebit ∼ logNormal ((1−θ7)µD, σD) (3.6)

where θ7 is a calibration parameter (defining the degradation in material capability).

Figure 3.4 illustrates the effects of considered material capability degradation on the fatigue life
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distribution for the aggressive mission mix. At the highest degradation considered (20%), the

median of missions to failure can be reduced from 9230 to 860 missions.

Figure 3.2: Alternating stress levels (SMin to SMax) for the two designed missions.

Table 3.1: Mission mix formulation. Every asset in the fleet is expected to operate at or between, or
even alternating between, aggressive and mild mission mixes.

Aggressive Mild
Mission 1 50% 15%
Mission 2 50% 85%

50th prctl Nf 9230 13360

3.1.2 Fleet Commissioning, Reliability, and Failure Observations

Large fleets of assets are usually commissioned over a period of time (as production follows a

backlog of orders, commissioning ramps up for a while before it starts to decline). Commissioning

schedule determines the number of units running (and as a consequence, it impacts the number of

failure observations). In this study, we arbitrarily model commissioning time through a truncated

Gaussian distribution (as illustrated by Figure 3.5), in which assumed commissioning time after

product launch TC ∼ N(µ = 4.5, σ = 2.625) and 0 ≤ TC ≤ 10. With the considered assumptions
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Figure 3.3: Fatigue life distribution in terms of missions to failure considering both load (mission
mix) and material capability variations (spread in S-N curve).

Figure 3.4: Fatigue life distribution for aggressive mission mix and different levels of material
capability.

the expected fleet size in the 10th year is 10,000 units. In real life, this distribution is first estimated

based on market analysis and can be updated as units are sold and commissioned. Different

commissioning time makes the units across the fleet to have different accumulated service lives

(and damage, as a consequence).

After commissioning, we assume that each unit runs one mission per day. Integration of asset

unreliability, for pristine and material with degradation in capability, up to fleet reliability (i.e. the
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Figure 3.5: Commissioned units over time.

complementary set of the accumulated number of failures in the fleet (1− Nfail

NFleet
)) is straightforward:

Q
(t)
Pristine =

∑NFleet

i=1 Q
(t−tcomm.

i )
i

∣∣∣
Pristine

NFleet

, and

Q
(t)
Debit =

∑NFleet

i=1 Q
(t−tcomm.

i )
i

∣∣∣
Debit

NFleet

(3.7)

where:

• Q(t)
Pristine and Q(t)

Debit are the fleet unreliability due to material with the nominal capability and

material with certain capability degradation, respectively, both at time t. Q(t)
Debit is not related

to failures yielded by materials with a specific capability degradation (i.e. to a specific θ7),

but rather accounts for all observed failures due to the material with a non-nominal capability

(i.e. degraded material).

• Q
(t−tcomm.

i )
i

∣∣∣
Pristine

and Q(t−tcomm.
i )

i

∣∣∣
Debit

are the unreliability of component i assuming it is

made of pristine material and material with certain capability degradation, respectively, both

at time t greater than the component commissioning time (tcomm.i ). Q(t−tcomm.
i )

i

∣∣∣
Pristine

and

Q
(t−tcomm.

i )
i

∣∣∣
Debit

only start being computed if the unit is already commissioned (otherwise
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both are null).

• NFleet is the final fleet size.

As a consequence, at time t, fleet unreliability Q(t)
Fleet is:

Q
(t)
Fleet = θ8 ×Q(t)

Debit + (1− θ8)×Q(t)
Pristine (3.8)

where θ8 is a model parameter that defines the penetration of units in the fleet (in terms of a fraction

of the fleet) made of a material with a certain degradation level in capability.

With fleet unreliability we can predict the number of failures at any year after product launch by

using the binomial distribution to model the number of failures:

fNFail

(
n = NFail; p = Q

(t)
Fleet, N = NFleet

)
= NFleet

NFail

×Q(t)
Fleet

NFail ×
(

1−Q(t)
Fleet

)NFleet−NFail
(3.9)

where:

• fNFail
(. )is the probability density function of the binomial distribution,

• NFail is the accumulated number of observed failures up to year y,

• Q(t)
Fleet is the fleet unreliability at year y, and

• NFleet is the fleet size at year y.

Conversely, given a number of observed failures, we can estimate the model parameters through
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the Bayes rule2:

fPost (θ | NFail, NFleet) ∝ fNFail

(
NFail | Q(t)

Fleet , NFleet

)
fPrior(θ) (3.10)

where Q(t)
Fleet is a function of θ.

3.1.3 Fleet Management

Our physics-based prognosis model for fleet management is composed of two Bayesian networks,

one for the asset reliability and another one for the fleet unreliability. Figure 3.6 shows the

asset-specific dynamic Bayesian network that relates material properties and loads with damage

accumulation, where:

• LH corresponds to load history,

• Seq is the equivalent stress of a given load cycle,

• µNf and σNf are parameters of the fatigue life lognormal distribution,

• ∆d
(t)
i is damage accumulated after running through LH(t),

• D(t)
i is the damage accumulated by component i up to t,

• θ1...4 and θ5 are parameters defining material properties,

• θ6 is the parameter defining the mission mix,

2We write the posterior in its proportional form as it is the way it is implemented in most numerical integration

methods (such as Markov chain Monte Carlo). Also, computing the binomial coefficient
(

NFleet

NFail

)
is not necessary

when estimating fleet unreliability given a number of failures for a fleet. This is usually cumbersome and can cause
numerical ill-conditioning depending on NFleet and NFail .
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• θ7 is the parameter defining degradation in material capability.

Superscripts (t − 2), (t − 1), and (t) indicate the timestamps in which inference/estimation is

performed. Load histories for missions 1 and 2 are defined in Fig. 3.2.

As formulated, the general case for the asset-specific model yields in a Bayesian network with

seven model parameters, θ1 to θ7, as illustrated by Fig. 3.6. Albeit, the problem treatment may

significantly vary from the general case to a simplified model, depending on the application some

of the model parameters can be freeze to a given value yielding in a reduced number of model

parameters to be estimated. Here, we will consider material properties to be known values, hence

parameters θ1 to θ5 are freeze to the values given by [1], as shown in Eq. 3.1. In the mentioned

numerical application we also consider the mission mixes to be fixed throughout asset life, thus, θ6

will also be fixed at the values shown in Table 3.1. Therefore, with respect to the asset-specific

model, for the considered application, only θ7, which defines the degradation in material capability,

will be calibrated with failure observations. Again, it worth highlighting that the problem treatment

and uncertainty predictions presented for this simplified model, may not hold for the general case.

Figure 3.7 shows the fleet dynamic Bayesian networks, where D(t)
1...NFleet

∣∣∣
Debit

and D(t)
1...NFleet

∣∣∣
Pristine

are vectors of damage accumulated up to t for the NFleet assets in the fleet with and without degra-

dation in material capabilities, respectively, Q(t)
1...NFleet

∣∣∣
Debit

and Q(t)
1...NFleet

∣∣∣
Pristine

are vectors of

unreliability at time t for the NFleet assets in the fleet with and without degradation in material

capabilities, respectively. Q(t)
Debit and Q(t)

Pristine are the fleet unreliability at time t with and without

degradation in material capabilities, respectively. θ8 is one more calibration parameter related to the

fraction of the fleet made of material with a certain degradation level in capability, i.e., the fleet

penetration of material with low capability, that will also be calibrated with failure observations. In

the numerical application discussed in this chapter, both the simplified asset-specific model and the

fleet dynamic Bayesian network model will be used to make inference about θ7 and θ8, as well as
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estimate and forecast fleet unreliability Q(t)
Fleet.

The number of failures at time t, N (t)
Fail, can be modeled through a binomial distribution where

NFleet (fleet size) is the number of trials and Q(t)
Fleet is the probability associated with each trial:

N
(t)
Fail ∼ Bin(Q

(t)
Fleet, NFleet) (3.11)

This model can be applied in simple estimation at current time or even in forecast (when Q(t)
Fleet and

NFleet can be forecasted).

Figure 3.6: Asset-specific dynamic Bayesian network.

In this contribution, we study the effects of fleet sizes in the ability to forecast the number of

failures and its implication to fleet management. From Eqs. 3.10 and (3.11), it is expected that

inference performed with data from small fleets will result in large uncertainty about the model

parameters. This is a direct consequence of the reduced number of observations (in the binomial

distribution, estimation of small probabilities is accompanied by large uncertainties when the number

of observations is small, see [165] for further details). This is problematic as the model parameters
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Figure 3.7: Fleet dynamic Bayesian networks. Superscripts (t-1), and (t) indicate the time stamps in
which inference/estimation is performed.

are then used to estimate and forecast the number of future failures. Large uncertainty in the number

of future failures drives conservativeness in the way operators manage their fleets. On the other

hand, operators of large fleets, large services and maintenance companies, and original equipment

manufacturers tend to observe a large number of failures and should be able to benefit from it in

terms of uncertainty quantification. Regardless of the fleet size, effective fleet management asks for

a continuous model update as new information is made available throughout service lives (including

revisiting the assumptions about model form, failure modes, etc.).

The estimated number of failures can be used to assess the ‘‘risk’’ associated with the forecast.

One very straightforward measure is the uncertainty about the forecasted number of failures (i.e.,

companies have to be prepared to absorb that variation from a financial perspective). There are a

number of ways to quantify variation in the number of failures. One can simply use the standard

deviation, which might not be convenient given the asymmetric nature of the NFail estimator.
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Alternatively, the difference between 97.5 and 2.5 percentiles of the forecasted number of failures

can also be used. Operators of small fleets can use this range to support the decision to either

self-perform or buy a contractual service agreement from a third party company. Operator of small

fleets tend to have difficulties in absorbing large variations in the forecasted number of failures due

to liability associated with it (both in terms of inventory, labor, etc., as well as in terms of loss of

revenue). This can make operator of small fleets be overzealous and perform excessive inspection

and services in the hope to prevent costly maintenance or catch serious problems when units are

still under manufacturer warranty (minimizing the impact of unscheduled removals and cost of

repairs/replacements). For large fleet operators, the problem shifts from unexpected downtime to

an excessive number of costly maintenance and contractual obligations regarding availability and

reliability.

We compare results from a small and a large fleet to mimic the operator of a small fleet vs large

service provider dynamic. For this portion of the case study, we assume that the large service

provider is more likely to provide an unbiased and accurate estimation of the number of failures.

If that is the case, the difference in the forecasted number of failures can help us judge whether

self-performing is a good decision or not. Mathematically:

FExp = NSmall
Fail@Small −N

Large
Fail@Small (3.12)

where NLarge
Fail@Small and NSmall

Fail@Small are the estimated/forecasted number of failures on the small

fleet coming from the large service provider and the small fleet operator models, respectively.

The fleet exposure index (FExp) becomes an indicator of whether the small fleet operator is likely

to save or lose money by self-performing services and maintenance:

• FExp > 0: the operator of a small fleet over predict failures, which drives the allocation of
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more resources than needed. In other words, the behavior is conservative and it translates in

savings due to avoided unscheduled maintenance, reduced downtime, etc.

• FExp < 0: the operator of a small fleet under predicts failures, which drive allocation

of fewer resources than needed (operator loses money due to unscheduled maintenance,

downtime, etc).

Again, this assumes that NLarge
Fail@Small is a more accurate estimator of NTrue

Fail , i.e. the service provider

estimates for the failure observations in the small fleet is more likely to be closer to the true number

of failures, since as previously mentioned, it is expected that inference performed with data from

small fleets will result in large uncertainty about the model parameters (again see [165], for further

details). Although NTrue
Fail can be obtained in this numerical example (through Eq. 3.11 since fleet

reliability for known loads can be obtained at any point in time), we avoid using it as it is not

available in real life though.

Due to the nature of the considered numerical experiment and for simplicity we opt to focus our

analysis on asset derating (i.e. fleet recommissioning). It is important to point out that this is

by no means the only possible mitigation measure and depending on the nature of the addressed

problem other measures could be considered (e.g burn-in, as usually applied in the electronics

industry). Also, the proposed numerical experiment is an academic simplification, in a real-life

application many other aspects (e.g. asset decommissioning) would influence observed failures and

the performance of the proposed mitigation measures.
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3.2 Results and Discussions

3.2.1 Numerical Example

In order to evaluate the effect of fleet size in the number of failure observations, we defined two

distinct fleets:

• a large fleet of 10,000 units: emulating an original equipment manufacturer or a large service

provider, and

• a small fleet of 1,000 units: emulating a small fleet operator. These units come from the

larger 10,000 unit fleet, which also means that the large fleet operator has visibility into what

happens with this small fleet.

Both fleets are plagued with a material degradation level of 15%. However, to make things more

interesting, we distributed the failures across the fleet such that the small fleet operator has a

penetration of 20% of units plagued with material of inferior capability (i.e., 200 out of 1,000 units

are plagued), while the larger fleet has an overall 10% penetration (i.e., 1,000 out of 10,000 units

are plagued). Thus, in this example we considered that model parameter θ7 and θ8 are constant in

time (as they represent debit and fraction of the fleet plagued). In real life this assumption may

not hold if there are changes in manufacturing process over time (affecting the level of material

degradation, θ7, and the proportion of plagued assets in the fleet, θ8).

The implications in fatigue life distribution are shown in Figure 3.8, in which load history is

exclusively coming from the aggressive mission mix. There is a considerable shift in fatigue life if

the entire fleet is plagued with a material of poor capability. Nevertheless, given the 10% and 20%

penetration levels for the large and small fleets, respectively, the effect mostly manifested in the

lower tail of fatigue life distribution.
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As previously discussed, commissioning has an effect on fleet unreliability as the fleet grows

bigger with asynchronous aging. As an illustration, Figure 3.9 shows a comparison between fleet

unreliability over time with and without the effect of commissioning. The drastic reduction in

unreliability values results in a delay in rising failures observations. Most industrial engineering

assets (the focus of this paper) are commissioned over a period of time. In the remainder of this

section, we will discuss the results following the commissioning previously detailed.

With the fleet unreliability over time, we can forecast the number of failures. Figure 3.10 highlights

the contribution of each subpopulation by material type (pristine and with degradation in capability)

in the resulting failure observations. Besides the obvious penetration of material with poor capability

(10% versus 20% for the large and small fleet, respectively), commissioning also affects the

relative contribution of each material to the number of failures. Early on, most failures come from

components plagued by material with poor capability. Over time, the unreliability for pristine

material increases (see Figure 3.9), and the relative contribution of each population starts to change.

Around the 3rd year after deployment, at least for the large fleet, failures are dominantly coming

from components made out of pristine material (although the contribution from the subpopulation

with plagued material is still substantial).

3.2.2 Bayesian Networks Calibration

At the 3rd year after deployment, we assume the following number of failure observations:

• Small fleet: 17 failures (lower tail of the predicted number of failures).

• Large fleet: 127 failures (roughly 50th percentile of the predicted number of failures). Obvi-

ously, the small fleet failures are contained in this set.
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(a) Impact of material degradation in fatigue life
when the entire fleet is plagued.

(b) Pristine (expected) and actual (large and small)
fleet unreliability at aggressive mission mix.

Figure 3.8: Fleet characterization of fatigue life distribution (without the effects of commissioning
and load history is exclusively coming from the aggressive mission mix).

Figure 3.9: Commissioning effect in overall fleet unreliability.

We use these failure observations and fleet unreliability (from known load histories) to calibrate:

• θ7: degradation in material capability with a uniform prior between 1% to 30%, and

• θ8: penetration of units with poor material capability in the fleet with a uniform prior between

0.01% and 20%.
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(a) Small fleet. (b) Large fleet.

Figure 3.10: Estimated number of failures in each fleet (error bars represent the 95% prediction
intervals).

Figures 3.11 and 3.12 detail the calibration results with regards to both model parameters and the

estimated number of failures for the small and large fleets, respectively. Even for the small fleet

operator, there is considerable uncertainty reduction and failure estimates are much improved as

compared with the uniform priors (see Table 3.2, in which for instance we can observe the reduction

in the 95% prediction interval, from an interval range of (8, 22) in the small fleet prior, to (9, 20) in

its updated posterior).

As we mentioned before, the large fleet operator has full visibility into what happens with the small

fleet. In this numerical example, the relative number of failures with respect to the fleet size can be

used to map the posterior distribution of the number of failures at the large fleet into the small fleet,

as illustrated by Figure 3.13 and summarized in Table 3.2. When compared to Figure 3.11c, the

uncertainty in Figure 3.13 is much smaller and clearly attributed to the much richer information

available at the large fleet level.

The models with updated model parameters can be used to forecast the number of failures over time.

Figure 3.14 shows how these forecasted values look like for the small fleet. In the 3rd year, both
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models are unbiased. The uncertainty in the posterior distribution of model parameters for the small

fleet model, Figure 3.11b, is larger than the one for the large fleet model, 3.12b. The result is the

larger and ever-increasing uncertainty that the small fleet model exhibits when compared to the

large fleet model.

(a) The prior distribution of the number of
failures.

(b) Posterior distribution of model parame-
ters.

(c) Posterior distribution of the number of
failures.

Figure 3.11: Calibration results for the small fleet. Failure observations in the 3rd year after
deployment and uniform priors feed the Bayesian update.
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(a) The prior distribution of the number of
failures.

(b) Posterior distribution of model parame-
ters.

(c) Posterior distribution of the number of
failures.

Figure 3.12: Calibration results for the large fleet. Failure observations in the 3rd year after
deployment and uniform priors feed the Bayesian update.

3.2.3 Mitigation Assessment

Once the infant mortality issue is quantified, operators undergo a number of mitigation actions to

reduce costs associated with unscheduled maintenance, asset unavailability, etc. In this section We

opt to focus on fleet recommissioning (changing the mission mix from aggressive to mild). This

approach can be costly, as mild mission mixes are usually associated with some loss in performance

or productivity. Figure 3.15 illustrates the estimated/forecasted fleet unreliability and forecasted

54



Figure 3.13: Posterior distribution of the number of failures in the 3rd year after deployment for the
small fleet as estimated by the large fleet operator.

Table 3.2: Estimates for the number of failures in the 3rd year after deployment for small fleet. The
small fleet observed 17 failures.

Model Percentile
2.5 50 97.5

Design intent * 3 8 15
Small fleet prior 8 10 22

Small fleet posterior 9 14 20
Large fleet posterior 14 17 20

* Number of failures considering only pristine
material.

number of failures over time for the small fleet. Figure 3.15a shows that after the entire small fleet

is recommissioned from the aggressive to the mild mission mix, the estimated fleet unreliability

with the updated model falls between the estimates for the entirely pristine fleet and the actual fleet

composition both operating at the aggressive mission mix. This means that although there is a

significant improvement in unreliability, the levels are still above design intent. Interestingly, the

distribution in forecasted fleet unreliability might still be useful for estimating the number of failures.

Figure 3.15b shows the forecasted number failures coming out of the unreliability estimates of

3.15a. The aggressive mission mix and pristine material represent the design intent. The estimated

55



penetration and material degradation represent the forecasts if the fleet keeps operating at the

aggressive mission mix. Visual comparison between the two cases makes it clear that the number

of failures could be potentially much larger than what was intended. Recommissioning the fleet

knocks down the number of failures and make the prediction interval overlap with the one from the

design intent.

Figure 3.14: The forecasted number of failures for the small fleet as estimated by both small and
large fleet models (error bars represent the 95% prediction intervals).

(a) Small fleet unreliability after recommission-
ing. (b) Small fleet forecasted number of failures.

Figure 3.15: Small fleet recommissioning. Recommissioning curves show the 50th percentile and
the 95% prediction interval, and error bars represent the 95% prediction intervals.
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As expected, Figure 3.16 shows that recommissioning as a mitigation measure is much more

effective at the large fleet level. Coincidently, the fleet unreliability after recommissioning converges

to design intent. Obviously, it comes at the cost of a mild mission mix. In real life, even though the

reliability levels would be back to design intent, it might not be practical to recommission the fleet

due to performance losses. The final compromise between reliability and performance is a decision

that is highly industry dependent (and discussion is outside the scope of this dissertation). Figure

3.16a shows uncertainty levels in fleet unreliability after recommissioning are much smaller than

those shown in Figure 3.15a. This has direct implications in the forecasted number of failures, as

illustrated by Figure 3.16b, to the point that there is a good overlap between estimated and intended

error bars.

(a) Large fleet unreliability after recommission-
ing. (b) Large fleet forecasted number of failures.

Figure 3.16: Large fleet recommissioning. Recommissioning curves show the 50th percentile and
the 95% prediction interval, and error bars represent the 95% prediction intervals.

Besides recommissioning, the small fleet operator can also consider contracting out services and

maintenance from a large service provider as a way to reduce financial exposure due to the upcoming

high number of failures. In real life, it is difficult to forecast the costs associated with such an option,

as the operator of the small fleet does not know the outcomes of the large fleet operator model (and
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model form, assumptions, etc. also tend to be unknown). Nevertheless, we can study that in this

synthetic example. Figure 3.17 shows the forecasted FExp index as defined in Eq. 3.12 before and

after fleet recommissioning for the small fleet. Continuous and dotted lines represent the median

and 95% prediction intervals, respectively. The operator of the small fleet is likely to lose money

by self-performing services and maintenance when FExp is negative (since unbiased predictions

from the operator of the large fleet tend to be larger than the ones from the operator of the small

fleet). Conversely, the operator saves money by self-performing when FExp is positive. Although

the FExp median is relatively small up to the 5th or 8th year, depending on recommissioning, the

uncertainty about it tends to be large and continuously increasing.

Figure 3.17: Small fleet FExp index (defined by Eq. 3.12) forecast before and after recommission-
ing.

Another way of looking at the risk associated with self-performing maintenance is through the

probability of reward and loss. With the FExp index defined by Eq.3.12, there are three things to

keep in mind:

1. when FExp is positive, the operator of the small fleet saves money by self-performing

services and maintenance,

2. conversely, when FExp is negative loss of money is more likely; and finally,
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3. unbiased number of failure estimates imply that the expected value of FExp is zero.

With that in mind, Figure 3.18a shows that self-performing is reasonable in the short term. For how

long it is a reasonable option really depends on the operator attitude towards unaccounted failures.

Just to illustrate this concept consider an arbitrary threshold of Prob [FExp ≥ 0] ≥ 0.4 is imposed

(in pratical applications this threshold would be imposed by the small fleet operator depending in

its wiliness to handle unexpected failures), then the operator of the small fleet could sustain the

aggressive mission mix until almost the end of the 4th year (without having to buy a services and

maintenance contract). If the operator decides to recommission the fleet at the third year; then, with

the Prob [FExp ≥ 0] ≥ 0.4 threshold, self-performing is reasonable until the 7th year.

Now, let us assume that the operator of the small fleet is willing to accept underestimating failure

of 10 units. Then, Figure 3.18b shows the probability that the operator will have to pay for the

extra 10 units (unplanned failures). If again an arbitrary threshold of Prob [FExp ≤ −10] ≤ 0.2

is imposed, then the operator of the small fleet could sustain the aggressive mission mix until the

middle of the 4th year (without having to buy a services and maintenance contract). Switching to a

mild mission mix early on, extends that window to the middle of the 5th year.

(a) Prob[FExp ≥ 0]. (b) Prob[FExp ≤ -10].

Figure 3.18: Self-performing reward and loss probabilities for the small fleet.
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3.3 Summary

In this chapter, we studied early life failures as applied to fleet management. Depending on the scale

of the problem, early failures can have a significant impact on the safety, availability, and operational

profit of industrial equipment. We used Bayesian networks to model fleet reliability as well as to

characterize and quantify a manufacturing-related problem (material capability degradation). We

designed a simple numerical experiment where:

• degradation in material capability is used to characterize infant mortality, and

• fleet commissioning is a function of time.

We have studied:

• The effect of degradation in material capability: results confirmed that it dramatically reduces

fleet reliability.

• The effect of fleet commissioning over time: results highlighted how it masks the increase in

fleet unreliability.

• Fleet size and number of failures interaction and its effects on the infant mortality charac-

terization: in the considered numerical experiment, the proposed framework was able to

characterize the percent of the fleet plagued by poor material capability. Nevertheless, results

illustrated how the fleet size can hinder the characterization of the problem, especially for

small fleet operators.

• Bayesian models for assessing possible mitigation approaches: the proposed framework was

able to evaluate fleet recommissioning as a risk mitigation procedure (i.e. derating assets to

reduced load levels). Presented results indicate that the proposed model could be used as a
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tool for fleet management and aid operators to decide on a proper action course. For example,

recommissioning mitigates the loads and therefore slows the failure rate down (at the cost of

performance loss).
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CHAPTER 4: WEAR-OUT FAILURES AND SERVICES OF

INDUSTRIAL FLEETS - A CASE STUDY ON CORROSION-FATIGUE

In this chapter we will focus on the effects of epistemic uncertainties due to partial knowledge of the

physics of degradation on the damage accumulation modeling in the wear-out stages of a component

service life. Namely, we will present a numerical experiment concerning corrosion-fatigue of an Al

2024-T3 alloy used on panels of aircraft wings.

We present a physics-informed neural network modeling approach for missing physics estimation

in cumulative damage models. This hybrid approach is designed to merge physics-informed

and data-driven layers within deep neural networks. The result is a cumulative damage model

in which physics-informed layers are used to model relatively well understood phenomena and

data-driven layers account for hard-to-model physics. A numerical experiment is used to present

the main features of the proposed framework. The test problem consists of predicting corrosion-

fatigue of an Al 2024-T3 alloy used on panels of aircraft wings. Due to unforeseen variations in

operational conditions introduced by the air-carrier, an aircraft fleet mainly operates in coastal

routes, significantly increasing its exposure to saline corrosion. These conditions lead to accelerated

degradation of the aircraft wing panels due to the combined effects of corrosion and mechanical

fatigue. Such corrosive conditions are not accounted for by the fleet prognosis model generating

a significant epistemic uncertainty (i.e., a missing physics issue). In this case, we adapted the

Euler integration cell discussed in [72] into a hybrid recurrent neural network in which the physics-

informed layers implement the well known Walker model for crack propagation, while data-driven

layers are trained to compensate the bias in damage accumulation due to the corrosion effects. The

physics-informed recurrent neural network is trained using full observation of inputs (far-field loads,

stress ratio and a corrosivity index defined per airport) and very limited observation of outputs

62



(crack length at inspection for only a small portion of the fleet). Results show that the proposed

hybrid cell is able to learn how to compensate the missing physics of corrosion in the original

fatigue model. Predictions from the hybrid model can be used in fleet management, for example, to

prioritize inspection across the fleet or forecast ahead of time the number of planes with damage

above a given threshold.

4.1 Case Study - The Synthetic Aircraft Fleet Data

Consider a hypothetical control point on the underside of an aircraft wing, as illustrated in Figure

4.1. For simplicity, we consider the aircraft fleet can fly the 10 different flight types detailed in

Table 4.1. Each flight type is characterized by a load frequency distribution. Therefore, these flights

present different levels of severity in terms of mechanical loads. In order to balance out the exposure

of the fleet to the severe flights while attending their demands, airline companies rotate their aircraft

through different mission mixes (combinations of route structures mixing different flight types).

Here, we considered the 10 arbitrarily designed mission mixes. In our study, each one of the 150

aircraft of the fleet is assigned to only one specific mission mix. Within a given mission mix, flights

types are assigned to the aircraft randomly following the probability distribution detailed in Table

4.2. For example, aircraft belonging to mission mix #5 will never fly flight types I and II while

they will fly flight types VII and VIII 4.5% and 10.5% of the time, respectively. In other words,

when we assign a flight type to an aircraft, we are imposing a loading frequency as detailed in Table

4.1. Based on the load magnitude each loading cycle of the flight can be translated into far-field

stress (∆S = Smax − Smin) and stress ratio (R = Smin/Smax) values.

Original equipment manufacturers, airline companies, and service providers usually maintain large

aircraft fleets (in the range of hundreds to thousands of aircraft). Here, we consider a fleet of 150

aircraft, which are scheduled to fly 8 flights per day. The control points of interest, illustrated
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by Figure 4.1, is considered to be on panels made of Al 2024-T3 alloy (coefficients for crack

propagation in pure air known and shown in Figure 4.2a) with a0 = 0.5 (mm) and amax = 20 (mm).

Finally, we assume that inspection of this control point is part of the scheduled maintenance. Here,

we arbitrarily consider that the first inspection is available for only part of the fleet after 5 years of

operation (i.e., nearly after 15,000 flights).

Figure 4.1: Control point on the underside of the aircraft wing.

Table 4.1: Flight type load distribution and related minimum and maximum stresses (MPa) (adapted
from [4]).

Load case Flight type
Smin Smax I II III IV V VI VII VIII IX X

A 0.07 30.5 2 2 1 1 1 0 0 0 0 0
B 2.45 28 2 2 2 1 1 1 0 0 0 0
C 4.8 26 3 2 2 2 1 1 1 0 0 0
D 7.15 23 5 2 2 2 2 2 2 2 2 0
E 9.5 21 13 12 12 12 12 12 12 12 1 0
F 11.85 19 30 29 29 29 29 29 29 29 7 3

In this dissertation, we consider that corrosive cycles represent, on average, 5% of the total number

of cycles in one mission (loads of type E and F are related to take-off and landing, respectively, and

thus are subjected to corrosion). We then proceed to penalize this cycles by accumulating damage

using curves that are between air and NaCl at 3.5% (see Figure 4.2b). The exact curve will depend

on a corrosivity index CIDX (which essentially controls the interpolation between the two curves).

We use the curve for air when CIDX = 0, . We use the curve for NaCl at 3.5% when CIDX = 1.
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Table 4.2: Mission mix configuration (flight type probability per mission).

Flight type
Mix I II III IV V

1 5.10−5 7.5 10−5 1.10−3 2.4 10−3 1.1 10−2

2 2.5 10−5 2.5 10−5 1.2 10−3 1.5 10−3 6.75 10−3

3 0 0 1.3 10−3 2.3 10−3 1.6 10−2

4 0 5.10−5 9.5 10−4 2.5 10−3 8.5 10−3

5 0 0 1.2 10−3 2.3 10−3 6.10−3

6 1.10−4 2.5 10−5 7.5 10−4 2.3 10−3 6.13 10−3

7 0 0 0 2.3 10−3 7.3 10−3

8 2.5 10−5 0 1.10−3 2.5 10−3 1.10−3

9 0 7.5 10−5 7.5 10−4 7.7 10−3 1.1 10−2

10 7.5 10−5 0 7.5 10−4 2.4 10−3 6.25 10−3

Mix VI VII VIII IX X
1 0.01 0.095 0.15 0.248 0.4824
2 0.025 0.035 0.155 0.273 0.5025
3 0.025 0.025 0.105 0.273 0.5530
4 0.013 0.095 0.055 0.323 0.5030
5 0.015 0.045 0.105 0.2975 0.5278
6 0.015 0.045 0.08 0.3975 0.4528
7 0.015 0.070 0.055 0.3225 0.5278
8 0.02 0.02 0.12 0.285 0.5528
9 0.025 0.025 0.055 0.2225 0.6528

10 0.005 0.05 0.08 0.2725 0.5828

To emulate different corrosive environments in the proposed numerical experiment we consider

10 distinct airports. On each flight, we know from which airports the aircraft took off and landed.

Thus, we can proceed to use the respective corrosivity indexes presented in Table 4.3 to penalize the

corrosive loading cycles in the flight. While the actual relationship between the corrosivity index

and the C and m constants is unknown; here, we arbitrarily used the following equations:

C = −2.275× 10−8(CIDX)2 + 4.505× 10−8CIDX + 1.132× 10−10, and

m = 2.046(CIDX)2 − 4.052CIDX + 3.859.

(4.1)
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Table 4.3: Airport corrosion index values.

Airport
A B C D E F G H I J

CIDX 0.517 0.389 0.361 0.545 0.781 1 0.125 0.58 0.608 0.844

As we discussed, Eq. 4.1 is arbitrarily used in this study as a way to generate synthetic data. In

reality, the mapping between corrosivity agents (such as NaCl) and damage accumulation rate (for

example, through coefficients of Paris law) is unknown (or only partially understood). The main

contribution discussed in this chapter, is the use our hybrid physics-informed neural network to

learn that behavior (and adjust the physics-informed portion of the model) with data that could be

observed in real life.

Even the few cycles that have the panels exposed to corrosion (average of 5%) can drastically

accelerate damage accumulation. When corrosion is not considered, the 5 years inspection is

expected to return crack lengths smaller than 1 (mm). However, in the presence of these few

corrosive cycles, the fleet crack envelope is above that value, with few aircraft having crack lengths

above the 20 mm mark. We consider that, for every aircraft in the fleet, the far-field cyclic stresses

and airport corrosivity index of every flight are available. In real life, the far-field cyclic stresses

would be obtained by using engineering models (likely based on finite element analysis) that relate

specific maneuvers with cyclic loads (here, we rely on Tables 4.1 and 4.2). Corrosivity index

could be obtained by analyzing meteorological and environmental data. This information is readily

available for most airports, although proprietary at times (here we rely on the arbitrarily chosen

values shown in Table 4.3). In terms of crack length data, we assume that for 10% of the fleet (i.e.,

15 aircraft) inspection is performed at the end of the 5th year of operation. Hence, the training set

can be summarized as:

1. Observed outputs: crack length at 15 inspected aircraft.
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2. Observed inputs: time series for at, ∆St, Rt, and CIDX
t . The number of cycles depends on

the mission mix each aircraft is subject to. By the end of the 5th year, the average number of

cycles is around 174,000. Since we used 15 aircraft for training, we actually observed around

2,625,000 input conditions

4.2 Physics-informed Neural Network for Corrosion-fatigue Damage Accumulation

Applying artificial neural networks to solve differential equations in engineering is a well-developed

methodology [166, 167, 168]. Nevertheless, the computational power available these days con-

tributed to the popularization of machine learning in engineering applications. The scientific

community has been studying and proposing deep learning architectures that leverage mathematical

models based in physics and engineering principles [169, 170, 69, 171, 172]. Physics laws (in the

form of differential equations) help handling the reduced number of data points, and constrain the

hyper-parameter space. Raissi [173] approximated the unknown solution of partial differential

equations by two deep neural networks. The first network acts as a prior on the unknown solution

(enabling it to avoid ill-conditioned and unstable numerical differentiations). The second network

works as a fine approximation to the spatiotemporal solution. The methodology was tested on a

variety of equations used in fluid mechanics, nonlinear acoustics, gas dynamics, and other fields.

Yu et al. [174] developed a physics based learning methodology to simulate aircraft dynamics based

on a deep residual recurrent neural network. The authors illustrated their methodology by means of

a six degrees-of-freedom Boeing 747-100 aircraft model. The model was trained with simulated

data of the aircraft model and then used to predict aircraft response under arbitrary control inputs

and disturbances.

In the next two subsections, we present cumulative damage models (and the specialized case of

corrosion-fatigue). These models will motivate our approach to physics-informed neural networks.
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Then, we detail how to compensate for bias in the physics-informed layers of a recurrent neural

network.

4.2.1 Cumulative Damage Models and Corrosion-fatigue

Cumulative damage models [175, 176] describe the irreversible accumulation of damage throughout

the useful life of components (or systems) such that the damage at time t, at, is the sum of a damage

increment ∆at on top of damage at−1 at previous time step t− 1

at = at−1 + ∆at (4.2)

where ∆at is the damage increment, which is often a function of at−1 and other inputs xt at time t.

The characterization of the damage at and the inputs xt is highly problem dependent. The damage

at is usually associated with a failure mechanism and at is ideally an observable quantity1. For

example, if fatigue is the failure mechanism, crack length is the observable quantity. The inputs

xt usually express time-dependent loading and boundary conditions (e.g., pressures, temperatures,

torques, mechanical and thermal stresses, etc.) or even operating points (e.g., altitude, thrust, angle

of attack, etc.). For that matter, fatigue crack propagation is usually modeled through Paris law

[179]

da
/
dt = C(∆Kt)

m (4.3)

where ∆K is the stress intensity range and C and m are material properties determined through

coupon data and many engineering materials have constants documented in handbooks such as [1].

The Paris law can be modified to take into account the effect of mean stress, expressed in terms

1Although this is not a requirement, it significantly facilitates the modeling task [177, 178, 176].
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of the stress ratio between the minimum and maximum stress levels R = Smin/Smax. We use the

Walker model [180] to incorporate the stress ratio:

da

dt
=

C0

(1−R)m(1−γ)
(∆Kt)

m (4.4)

where C0 and m depend on the environmental conditions and γ depends on the material and loading

conditions. When cycle-by-cycle information is available, the discrete form of Eq. 4.4 resembles

Eq. 4.2 and becomes:

at = at−1 +
C0

(1−Rt)m(1−γ)
(∆Kt)

m, (4.5)

where stress intensity range, ∆K comes from engineering models that use information about

geometry, crack length, and internal loads (stress amplitude). For example, assuming that fatigue

damage accumulates under mode I loading condition, the stress intensity range ∆Kt can be

expressed as:

∆Kt = F∆St
√
πat−1 (4.6)

where F is a geometry factor and ∆St is the far-field stress.

As we mentioned before, corrosion-fatigue is a very complex phenomenon involving pit nucleation,

pit growth, fatigue crack nucleation, short crack growth, transition from short crack to long crack,

and long crack growth. Modeling corrosion-fatigue has proven to be a daunting task [131, 181] and

it is not our objective to propose a new method (nor defend any preferred method) for it. Instead, we

will focus on how a deep neural network can be designed and trained to act as a bias estimator,

compensating the corrosion effects in crack growth.

In this dissertation, we assume that the corrosivity of an environment can be associated with an

index CIDX (such as the concentration of a particular corrosive agent in the air). Empirical studies,

such as the one found in [182], are usually necessary to determine how a particular corrosive agent
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accelerates the damage accumulation. They showed that corrosivity, that in this case is given by

the concentration of sodium chloride (NaCl) can drastically increase the damage accumulation rate

(shifting the da/dN vs ∆K curve up, when compared to the rates in pure air), as illustrated in

Figure 4.2a.

We assume that, at varying NaCl concentrations, the damage increment per cycle ∆a as a function

of ∆K can be modeled as a baseline contribution, ∆aMECH , plus a shift due to corrosion, ∆aCORR

(see Figure 4.2b), and Eq. 4.5 can be re-written as

at = at−1 + ∆aMECH + ∆aCORR

at = at−1 +
C0

(1−Rt)m(1−γ)
(∆Kt)

m + g(∆St, Rt, C
IDX , at−1)

(4.7)

where g(.) is an unknown function. We discuss how we model g(.) in the next section.

(a) Coupon data (adapted from [182]). (b) Corrosion effect on cyclic damage.

Figure 4.2: Corrosion-fatigue crack propagation rate. Paris law coefficients when R = 0: for
pure air C = 1.132 × 10−10 and m = 3.859; for NaCl (sodium chloride) at 3.5 % solution
C = 2.241× 10−8 and m = 1.853.
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4.2.2 Physics-informed Neural Networks for Cumulative Damage Modeling

A recurrent neural network [183] repeatedly apply transformations to given states in a sequence, as

shown in Eq. 4.8 and illustrated in Figure 4.3a.

at = f(xt, at−1) (4.8)

where t ∈ [0, . . . , T ] represent the time discretization, a ∈ Rna are the states representing the

sequence, x ∈ Rnx are input variables, and f(.) defines the transition between time steps (function

of input variables and previous states). In the recurrent neural network terminology, different

implementations of f(.) are referred to as cells.

As illustrated in Figure 4.3b, a cell implementing f(.) can be as simple as a single-layer perceptron.

However, it can also assume sophisticated forms such as the long short-term memory [184] and the

gated recurrent unit [185]. Besides improving generalization, these architectures improve training

by mitigating the vanishing/exploding gradient problem [183].

Recurrent neural networks have been successfully used in many sequence modeling applications

[186, 187, 188, 189, 190]. Nascimento and Viana [93] proposed the cell illustrated in Figure 4.3c

specifically for the integration of cumulative damage. In such design, the state represents the

cumulative damage at time t and ‘‘MODEL’’ maps the inputs xt and previously accumulated

damage at−1 into a damage increment ∆at (equivalent re-writing Eq. 4.8 as Eq. 4.2). In a purely

physics-based approach, ‘‘MODEL’’ is the computational implementation of the physics of failure

(which, again, is highly application dependent). Nevertheless, in the design cell, nothing prevents

‘‘MODEL’’ to be a data-driven model, such as a multi-layer perceptron, or a hybrid model, where

some parts are physics-based and others are data-driven.

One might be tempted to ask why use the cell shown in Fig. 4.3c and why use physics-informed
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(a) Recurrent neural network over time. (b) Perceptron.

(c) Cumulative damage cell.

Figure 4.3: Recurrent neural network, perceptron as the simplest cell, and cumulative damage cell.

‘‘MODELS’’ within that cell? The answer to both questions is in the niche of applications we target

in this dissertation. Our application of cumulative damage models involves full observation

of input conditions (i.e., loads), and partial observation of damage (e.g., crack length). This

is the case for example when through detailed flight tracking in conjunction with engineering

models the loads can be estimated cycle-by-cycle, and a control point in an aircraft fuselage panel

is inspected in regular intervals through visual inspection or nondestructive evaluation approaches

(e.g., Eddy current [19], ultrasound [20], dye penetrant inspection [21], etc.). Figure 4.4a shows

the typical data collected for training the cumulative damage model. In fairness, this represents

one specific aircraft, and likely, there would be load history and inspection data available for few

aircraft. Figure 4.4b illustrates the typical data collected for prediction using the trained cumulative

damage model. As we mentioned, load history is available throughout the useful life and the initial

value for the states is either known or assumed. The cumulative damage is then used to estimate

the damage growth over time. Given the few observations of damage, we argue that as illustrated

in Nascimento and Viana [93], by using purely data-driven architectures (such as long short-term
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memory and the gated recurrent unit) is unlikely to obtain accurate models. Nevertheless, the long

short-term memory and the gated recurrent unit architectures can be useful in cases where there

is a full observation of the states. This happens when control points are continuously monitored

with dedicated sensors (e.g., comparative vacuum monitoring [17], fiber Bragg grating sensors [18],

etc.). However, this is not the focus of this dissertation.

(a) Training (observations in blue).
(b) Prediction (observations in blue and predic-
tion in orange).

Figure 4.4: Typical use-case of recurrent neural network for cumulative damage model.

As previously discussed, the damage accumulation model presented in Eq. 4.7 is composed of

two main terms. The base damage increment is set at ∆aMECH and can be described by Eq. 4.4.

Added to the base damage increment, there is a contribution due to corrosion (∆aCORR) (with an

unknown functional form). In this chapter, we propose the repeating recurrent neural network cell

illustrated in Figure 4.5 to implement the corrosion-fatigue crack growth model shown in Eq. 4.7.

We implemented the Walker model to account for the base ∆aMECH . This portion of the model

(highlighted in blue) is considered physics-informed. Then, we use a multi-layer perceptron to

model the dependence between the previous state value (at−1) and cycle-by-cycle inputs such as the

73



far-field stress (∆St), stress ratio (Rt) and corrosivity index (CIDX). The multi-layer perceptron is

adjusting the damage increment output by the Walker model so that it compensates for the effect of

corrosion. Therefore, it works as a discrepancy-correction term.

Figure 4.5: Proposed recurrent neural network cell for corrosion-fatigue crack propagation.

4.2.3 Physics-informed Neural Network Design

With the information discussed in Section 4.1, we proceed to built our hybrid physics-informed

neural network model for corrosion-fatigue (illustrated in Figure 4.5). Table 4.4 details all the multi-

layer perceptron architectures evaluated in this chapter. We initially evaluated all the described

architectures and, based on their training performance (i.e. best loss function value, and cross-

validation error), we selected the best architecture for the damage forecast analysis. We opted for

using these architectures to illustrate the ability to fit a neural network with varying number of

trainable parameters. No attempt was made to further refine the multi-layer perceptron architecture

and its accuracy.

The constructed multi-layer perceptrons take four inputs (crack length, far-field stress, stress ratio

and corrosivity index) and provide one output (bias in damage increment due to corrosion). It
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Table 4.4: Multi-layer perceptron (MLP) configurations used to model the bias estimator term.

Layer # neurons/activation function
MLP #1 MLP #2 MLP #3 MLP #4 MLP #5 MLP #6 MLP #7

0 5 / tanh 10 / elu 10 / elu 10 / tanh 20 / tanh 20 / elu 40 / elu
1 1 / linear 5 / elu 5 / sig * 5 / tanh 10 / elu 10 / sig 20 / sig
2 1 / linear 1 / elu 1 / elu 5 / sig 5 / sig 10 / sig
3 1 / linear 1 / elu 1 / elu
Parameters 31 111 111 111 371 371 1241

* here ‘‘sig’’ is referring to the sigmoid activation function.

worth mentioning that the multi-layer perceptron output (∆aCORR) is hidden, meaning that we

do not observe its value directly. We only observe the recurrent neural network output, at, i.e.

the crack length after a given number of flights. We can still build this model since the recurrent

neural network performs the damage integration (Figures 4.3c and 4.5) adding at−1 to the damage

increment contribution due to fatigue ∆aMECH and the damage increment contribution due to

corrosion ∆aCORR. Interestingly, since ∆aCORR is hidden, it leverages the roughly 2,625,000

observed input conditions during its training. Although models described in Table 4.4 can have as

many as 1,241 trainable parameters, there is no risk of model overfitting.

The optimization of recurrent neural network hyperparameters can be challenging and it is conducted

through a gradient-descent algorithm. An initial guess for the hyperparameters that is far away from

the optimum might cause divergence of the optimization (or at least a very long time of training). In

this chapter, we also propose a way to initialize the multi-layer perceptron parameters. We propose

initializing the multi-layer perceptron hyperparameters by using auxiliary planes derived from a

simple linear representation of the input-output relationship:

∆aCORR = β0 + β1∆S + β2R + β3C
IDX + β4a (4.9)
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where βi are carefully chosen to be physically reasonable.

In other words, we reckon that practitioners would be able to define rough order of magnitude of

damage increment as well as its directionality with respect to the input variables. The coefficients

are initialized using engineering judgment. For instance, we know that when the corrosion index

is zero the bias is also zero, and it is safe to assume that the bias value increases with far-field

stress, corrosivity index and crack length (see Figure 4.2b). Using these constraints we randomly

generated 20 auxiliary planes. This procedure is used only to yield an initial point for the recurrent

neural network training and it does not interfere with its overall performance.

The recurrent neural network is fitted with observations for inputs throughout the time series and

observations for crack length only at inspection (besides the initial crack length). In other words,

the multi-layer perceptron outputs (∆aCORR) are latent variables of the model. In the training of

the recurrent neural network, we use the mean absolute percentage error (MAPE) as loss function:

Loss = MAPE =
100

n
×

n∑
i=1

|aPRED,i − aOBS,i|
aOBS,i

(4.10)

where n is the number of observations (inspected aircraft), aPRED,i and aOBS,i are the predicted and

observed crack lengths for the ith inspection, respectively. All training sessions were performed

using RMSProp2 as an optimizer, setup with a learning rate of 10−12 for 25 epochs.

The interested reader is referred to [191] for a discussion about MAPE. Errors of identical

magnitude but opposite sign can have different contributions to the MAPE. Further, when actual

values are small or zero, then contributions to the MAPE are very large. In our application, we

do not have problems with the sign of the errors (since aOBS,i > 0 and |aPRED,i − aOBS,i| ≥ 0).

Nevertheless,MAPE accentuates the contribution of small crack lengths. Again, in this application,

2https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/RMSprop
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we do not find this to be problematic given the cumulative nature of damage. With slightly

overestimation of the small cracks in training, we avoid underestimation in damage forecast (as we

integrate damage over time).

4.3 Results and Discussion

4.3.1 Recurrent Neural Network Training

As detailed in section 4.1, the proposed physics-informed neural network was trained considering

crack length data for 10% of the fleet at the end of the 5th year of operation. Also, as described in

section 4.2.3, different multi-layer perceptron architectures (see Table 4.4) were evaluated along

with distinct auxiliary planes for the multi-layer perceptron hyperparameters initialization. Figure

4.6a illustrates the loss function history of all multi-layer perceptron architectures, considering the

same initial guess (i.e. auxiliary plane). The number of epochs that yields convergence for each

multi-layer perceptron varies, but a rapid convergence rate is noticeable with most architectures

achieving stagnation in 10 epochs or less. On the other hand, Figure 4.6b shows the loss function

history of the multi-layer perceptron architecture #7 across all the 20 auxiliary planes. Even with

the engineered multi-layer perceptron weights initialization, convergence to same value of loss

function is not guaranteed. Moreover, 3 out of the 20 considered auxiliary planes eventually led to

‘‘not a number’’ loss function values (caused by consecutive very large ∆aCORR), which essentially

stops the optimization task. As expected, the success in optimizing the hyperparameters depends on

the initial guess. However, we propose different initial guesses following the approach described in

section 4.2.3. With respect to computational cost, the average wall-clock time for training was of

168 min.

Table 4.5 summarizes the optimization performance (for all multi-layer perceptron architectures
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(a) All multi-layer perceptron architectures starting
from same initial auxiliary plan.

(b) Multi-layer perceptron #7 starting from differ-
ent auxiliary planes.

Figure 4.6: Loss function histories. Multi-layer perceptron architectures are detailed in Table 4.4.

across the 20 planes used for weight initialization). The conversion ratio is the number of times that

the optimization managed to reduce the loss function without leading to ‘‘not a number’’ within

the considered number of epochs. All proposed multi-layer perceptron architectures exhibited

convergence ratios of at least 75% for the considered initial guesses. This results indicates that

the recurrent neural network training is more sensitive to the initial guess than the multi-layer

architecture itself. In general, the training sessions in which the recurrent neural network converged

were based on the same engineered planes used for initializing the trainable parameters. As expected,

Table 4.5 the more complex architectures (MLP #6 and MLP #7) lead to the lowest loss function

values (tending to better represent the input-output relationship in the considered case study when

compared to the other architectures).

Next, we study whether cross-validation analysis as presented in [192] can be used to help choosing

a multi-layer perceptron architecture amongst the ones considered for this problem. We considered

only the best initial guess for each architecture and; to keep the computational cost low, we used

5-fold cross validation. We randomly split our training set into five subsets; and on each iteration
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Table 4.5: Multi-layer perceptron (MLP) architectures convergence analysis. These results evaluate
the training performance of the multi-layer perceptron architectures proposed in Table 4.4 consider-
ing the 20 initial guesses provided by the auxiliary planes. The conversion ratio is the number of
times that the optimization successfully finished given the considered number of epochs. The best
obtained value of the loss function (Eq. 4.10) is also presented.

MLP #1 #2 #3 #4 #5 #6 #7

Conversion ratio (out of 20) 15 16 17 16 16 18 17
Best loss value (%) 24 21 19 21 22 12 14

of the cross-validation, three aircraft were removed from the training process. After the training

is finished, the predictions are checked against the three aircraft left out3. Cross-validation errors

are defined as eXV = aXV − aOBS , where aXV are the cross-validation predicted crack lengths

and aOBS are the actual observed crack lengths (at the end of the 5th year of operation). Percent

cross-validation errors are defined as %eXV,i = 100 × |eXV,i|
aOBS,i

. Figure 4.7a presents a box plot of

the cross-validation absolute errors. The ranking of the models by cross-validation agree with the

ranking given by ‘‘best loss values’’ presented in Table 4.5 (indicating that the more complex

architectures in set, MLP #6 and MLP #7, are the most suitable for the considered case study).

Figures 4.7b and 4.7c illustrate the cross-validation predictions against the actual crack length values.

The simpler architectures (MLP #1 to MLP #5) tend to underestimate the crack length values higher

than 10 mm, while the complex architectures (MLP #6 to MLP #7) tend to overestimate them.

Underestimating the large crack lengths is highly undesirable as it would undermine the safe

operation of the fleet. With the cross-validation analysis results we can choose the model that not

only leads to the best prediction, but it is also slightly conservative. Assuming that a practitioner

wants to avoid underestimation of large crack length values, we opt to select architecture #6 for the

3In sequence to sequence modeling, it is also common to find strategies for splitting the data along the time or
sequence axis. In our application, for the sake of training our hybrid physics-informed neural networks, only inputs are
observed throughout time. The output is known at t = 0 and observed at the time of inspection (not the entire history,
only the value at end of 5th year). Therefore, any splits along the time or sequence axis are not viable.
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remainder of this chapter.

(a) Percentage absolute cross-
validation errors.

(b) Cross-validation prediction vs.
actual crack length (MLPs #1 to
#5).

(c) Cross-validation prediction vs.
actual crack length (MLPs #6 and
#7).

Figure 4.7: Recurrent neural network cross-validation analysis.

Finally, we also studied the contribution of the number of inspected aircraft to the recurrent neural

network training. For this analysis we considered MLP architecture #6 with its best initial guess

trained with three distinct training set sizes: 5, 10 and 15 inspected aircraft in the 5th year of

operation. Figure 4.8 presents the overall crack length prediction for each training set size after

training. One immediate observation, as expected, is that the more aircraft are inspected, the

better the recurrent neural network is (predictions are closer to actual values). However, another

observation is that with small number of inspections, it is naturally harder to sample the entire range

of observed crack lengths, 0 to 25 (mm) As a matter of fact, when 5 aircraft are inspected, the crack

length observations are limited to less than 5 (mm). With 10 inspected aircraft there is only one

aircraft with crack length between 15 and 20 (mm). The final conclusion is that as much as the

number of inspected aircraft contributes to the quality of the resulting model, the coverage of output

observation is equally important.
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Figure 4.8: Recurrent neural network training results considering architecture #6 best initial guess
and varying number of available inspection data during training.

4.3.2 Corrosion-fatigue Diagnosis and Prognosis

After the recurrent neural network was trained, the resulting model was used to perform crack length

estimation at the end of the 5th year of operation (diagnosis) and damage forecast at the end of 6th

year of operation (prognosis) across the entire fleet (150 aircraft). Figure 4.9a presents the results

of the crack length estimation at the 5th year of operation for the entire fleet. We can compare the

crack lengths predictions of the proposed hybrid recurrent neural network with the ones coming

from the fleet (i.e. full corrosion-fatigue model) as well as the purely mechanical fatigue model

(i.e. Walker’s equation). The difference between the last two is the bias estimated by the hybrid

model. It is noticeable in Figure 4.9a how the recurrent neural network predictions captures the

overall trend of the corrosion-fatigue damage, indicating that the proposed hybrid model is acting as

a bias estimator (missing physics). In terms of fleet management, Figure 4.9a shows that the hybrid

recurrent neural network can be used to prioritize which aircraft should be inspected next (the ones

with highest predicted crack lengths).

With regards to prognosis, we split the analysis into two time frames: a short-term analysis in

which we are forecasting a single year of fleet operation (simulating into the end of the 6th year of
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operation); and a long-term analysis in which we forecast damage accumulation until the end of

the 10th year of operation. Figure 4.9b presents the results of the short-term analysis showing the

predicted versus actual crack lenghts at the end of the 6th year of operation. As we discussed before,

the model is known to be conservative; and therefore; the predicted values are expected to be higher

than the actual ones. In terms of fleet management, we could use this predictions to evaluate how

many aircraft in the fleet would be above an arbitrary repair/replacement threshold. Figure 4.9b

shows that, if this threshold is 20 (mm), we correctly flagged all aircraft with actual crack length

above it (22 true positives and no false negatives). In safety critical applications, having no false

negatives is extremmely important (an aircraft being wrongly cleared to flight can have serious

implications). We also see a small number of false positives. These 5 aircraft would be flagged for

repair/replacement while in reality at least 2 of those would be very near the threshold of 20 (mm).

Finally, we also evaluate long-term damage forecast (meaning, performing damage estimation up

to the 10th year of operation). The main findings of this analysis are represented by the empirical

cumulative density function (ECDF) illustrated in Figure 4.9c. Obtained results confirms that the

selected model is conservative. However, in terms of fleet management, it is useful as it warns

operators of the rapid increase over time in the probability that the crack will exceed the threshold

of 20 (mm). The number grows from around 5% by end of the 5th year to almost 60% by the end of

the 7th. This information can guide how fast mitigation strategies have to be put in place.

4.3.3 Replication of results

Our implementation is all done in TensorFlow4 (version 2.0.0-beta1) using the Python application

programming interface. In order to replicate the results presented here, the interested reader can

download the codes and data. First, install the ‘‘PINN’’ python package (base for physics-informed

4https://www.tensorflow.org
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(a) Recurrent neural network crack
length prediction across entire fleet
at the end of 5th year of operation.

(b) Recurrent neural network crack
length prediction at the end of 6th

year of operation. Plot is clipped at
40 (mm) even though predictions
can be higher than that.

(c) Probability that the crack length
is above 20 (mm), given by the em-
pirical cumulative density function
(ECDF), from the 5th to the 10th

year of operation.

Figure 4.9: Corrosion-fatigue diagnosis and prognosis.

neural networks used in this work) available at [94]. Links for the required data sets and Python

scripts demonstrating the proposed framework can be found in [95]. All simulations were conducted

using a laptop configured with an Intel Core i7-7820HQ CPU at 2.90GHz, 32GB of RAM, and

NVIDIA Quadro M620 graphical processing unit running Windows 10.

4.4 Summary

In this chapter, we proposed compensating for epistemic uncertainties in damage accumulation

modeling by simultaneously using physics-informed and data-driven layers within a recurrent neural

network. The major achievement of such a hybrid model is the ability to use the data-driven layers

to compensate for the missing physics in reduced-order models and accurately estimate damage

accumulation. In our numerical experiment, this reduced the need for observing the output of

interest at all times. In other words, the physics-informed layers reduce the need for large datasets

found in purely data-driven approaches.
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In order to evaluate the performance of the proposed framework, we presented a numerical case

study focusing on corrosion-fatigue crack propagation. In the considered case, the physics-informed

layer only accounts for purely mechanical fatigue. The data-driven layer, on the other hand, adjusts

the damage accumulation rate and compensate for the corrosion effects (i.e., working as a bias

corrector).

In the following chapter we will focus our discussion on different functional forms for the data-

driven portion of the hybrid cell and how it can be used to embed distinct physics-based knowledge

into the hybrid model.
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CHAPTER 5: EXPANDING THE CORROSION-FATIGUE CASE STUDY

BY CONSIDERING OTHER FUNCTIONAL FORMS FOR THE

MISSING PHYSICS TERM

In this chapter and in Chapter 6, we will expand the corrosion-fatigue case study discussed in

Chapter 4 to consider different functional forms for the data-driven portion of the hybrid neural

network cell tasked to compensate for the missing physics effects. In the previous chapter we

derived the proposed numerical experiment assuming that once the unexpectedly larger crack

lengths were detected, operators would be able to come to the conclusion that the culprit for the

higher crack propagation rates was the unaccounted corrosion effects, and act to properly take

such effects into consideration in prognosis analysis. Despite not being a farfetched assumption,

given that in the case study the epistemic uncertainty is due to corrosion, and that in inspection

campaigns, visual cues could significantly help to differentiate a purely mechanical fatigue crack

of a corrosion-fatigue crack, it is a little of a stretch to assume that at this point operators would

unequivocally assume corrosion-fatigue to be the sole cause of the unexpected observations. Hence,

in the next two chapters we will revise the numerical experiment to implement different functional

forms for the data-driven layers, derived from different physics-based considerations. The key idea

here is to derive ‘‘pools’’ of hybrid models, and use uncertainty propagation tools to segregate the

models based on their accuracy to predict the observed behavior of the system. This is an attempt to

emulate a scenario in which after the unexpected behavior of the system is detected by operators,

they proceed to use the hybrid models to assist in the task of identifying the its ‘‘root cause.’’

Besides detailing the proposed modifications to the corrosion-fatigue case study, in this chapter

three novel hybrid recurrent neural network cells will be presented and properly discussed. The

test problem still consists of predicting corrosion-fatigue of an Al 2024-T3 alloy used on panels of
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aircraft wings and the unforeseen high exposure to corrosive environments by the air-carrier it still

is the cause of the unexpected larger crack lengths. However, loads and mission mixes were revised

to increase variability in the fleet and accelerate crack propagation, in addition to the consideration

of a meteorological model to stipulate corrosivity indexes and add seasonality effects to its values.

The goal behind the proposed modifications is to hinder the task of distinguishing the main cause of

the unexpected observations, e.g., by increasing the load effects in the crack propagation, a hybrid

model could erroneously favor load compensation instead of compensating for the corrosion effects.

5.1 Revised Synthetic Aircraft Fleet Data

For the discussions presented in this chapter and in Chapter 6, we considered a synthetic fleet of

100 aircraft, scheduled to fly an average of 8 flights per day. The number of cycles depends on

the mission mix each aircraft is subject to (in average at 10,000 flights it revolves around 50,000

cycles).

Wing panels are once again subjected to cyclic mechanical loading alongside saline corrosion. In

any given flight, the vast majority of fatigue cycles are purely mechanical. However, take-off,

landing, and taxing cycles are subjected to a mix of mechanical loading and saline corrosion. The

level of saline corrosion-fatigue depends on the airport and day of the year (seasonality). The

control points of interest are still located over aircraft wing panels made of Al 2024-T3 alloy

(same coefficients as shown in Figure 4.2) with an initial crack length (a0) of 0.5 (mm). Here, we

arbitrarily considered that the crack length information derived from inspection is initially available

for only part of the fleet after 9,000 flight hours (this value was selected to approximated what

would be the second ‘‘C’’ check (see Table 2.3) in the fleet).

For simplicity, we consider that an aircraft in the fleet can fly the 10 different flight types detailed
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in Table 5.1. Each flight type is characterized by a load frequency distribution. Therefore, flights

present different severity levels in terms of mechanical loads. In order to balance out the exposure

of the fleet to the severe flights, as in the previous case, here, we also considered 10 arbitrarily

designed mission mixes. In our study, each aircraft in the fleet is assigned to only one specific

mission mix. Within a given mission mix, flights types are assigned to the aircraft randomly

following the probability distribution detailed in Table 5.2.

Table 5.1: Flight type load matrix distribution and related normalized minimum and maximum
stresses (MPa) (adapted from [4]).

Load magnitude
A B C D E F

Smin 0.07 2.26 4.46 6.65 8.84 11.0
Smax 28.3 26.0 23.8 21.7 19.5 17.3

Load frequency
Flight type A B C D E F

I 2 2 3 5 13 30
II 2 2 2 2 12 29
III 1 2 2 2 12 29
IV 1 1 2 2 12 29
V 1 1 1 2 12 29
VI 0 1 1 2 12 29
VII 0 0 1 2 12 29
VIII 0 0 0 2 12 29
IX 0 0 0 0 1 7
X 0 0 0 0 0 3

Several factors need to be considered while determining the corrosivity index CIDX , including me-

teorological data (namely temperature, humidity, and saline concentration) along with geographical

location (e.g., distance from airport from the coast, altitude, etc.) Here, we use a modified version

of the PACER LIME model [193, 194], illustrated in Figure 5.1. In this case study we considered

corrosion index values coming from a truncated normal distribution, (i.e., 0 < CIDX < 1), with
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Table 5.2: Mission mix configuration (flight type probability per mission).

Flight type
Mix I II III IV V

1 5.0 10−5 7.5 10−5 0.001 2.4 10−3 0.011
2 2.5 10−5 2.5 10−5 1.2 10−3 1.5 10−3 6.75 10−3

3 0 0 1.3 10−3 2.3 10−3 0.016
4 0 5.0 10−5 9.5 10−4 2.5 10−3 8.5 10−3

5 0 0 1.2 10−3 2.3 10−3 0.006
6 1. 10−4 2.5 10−5 7.5 10−4 2.3 10−3 6.13 10−3

7 0 0 0 2.3 10−3 7.3 10−3

8 2.5 10−5 0 0.001 2.5 10−3 0.001
9 0 7.5 10−5 7.5 10−4 7.7 10−3 0.001

10 7.5 10−5 0 7.5 10−4 2.4 10−3 6.25 10−3

Mix VI VII VIII IX X
1 0.010 0.095 0.105 0.2475 0.5278
2 0.025 0.035 0.155 0.273 0.5025
3 0.025 0.025 0.105 0.273 0.5530
4 0.013 0.095 0.055 0.323 0.5030
5 0.015 0.045 0.105 0.2975 0.5278
6 0.015 0.045 0.08 0.3975 0.4528
7 0.015 0.070 0.055 0.3225 0.5278
8 0.02 0.02 0.12 0.285 0.5528
9 0.025 0.025 0.055 0.2225 0.6528

10 0.005 0.05 0.08 0.2725 0.5828

scale σ = 0.05, and location (µCIDX ) defined by the modified PACER LIME model severity levels

(see Figure 5.1). The corrosive severity in the PACER LIME model is defined based on factors

such as sulfur dioxide (SO2) and ozone (O3) levels, relative humidity, yearly precipitation rate, and

airport distance from the coast. In our modified model, this levels are:

• ‘‘AA’’: very severe corrosivity level, and CIDX = 1,

• ‘‘A’’: severe corrosivity level, µCIDX = 0.844,
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• ‘‘B’’: moderate corrosivity level, µCIDX = 0.608, and

• ‘‘C’’: mild corrosivity level, µCIDX = 0.361.

Figure 5.1: Modified PACER LIME model.

Airport data was collected and consolidated from the United States Environmental Protection

Agency1 and FrontierWeather2. Large and popular airports were chosen in the regions with

matching data sets. Airports that lie within a 4.5 km range to the coast will always have a corrosivity

index of 1 because of the ocean’s salinity. Otherwise, depending on their environmental factors,

at any given time of the year airports will either have a ranking of A, B, or C (seasonality will

play a role in that determination). To help illustrate the seasonality effect in the corrosivity index

determination, Figure 5.2a presents the daily corrosivity index over four years of operation in a

given airport.

On each flight mission two airports must be associated to a flight. To help structure this step in the

synthetic simulation, we arbitrarily defined 10 routes. Hence, at each flight mission an aircraft is

1www.epa.gov
2www.frontierweather.com
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(a) Daily CIDX on a given airport. (b) Aircraft CIDX values per loading cycle.

Figure 5.2: Corrosivity index over time for: (a) - an airport (effect of seasonality), and (b) - an
aircraft in the fleet (effect of seasonality and route structure).

randomly assigned to a given route, and therefore, to specific corrosivity indexes. Thus, the actual

value of the corrosivity index for each aircraft on each flight is affected by the airports seasonality

effect, and by the routes structure. Figure 5.2b exemplifies these effects on the aircraft corrosivity

index by illustrating its evolution over the first 3,000 loading cycles of an airplane in the fleet.

Following all the previously discussed steps, the fleet simulation can be summarize as:

• an aircraft is randomly assigned to a route;

• at the beginning of each flight mission random draws are performed to define the corrosivity

index (based on the route structure and the severity levels presented in Figure 5.1), and the

mission mix configuration (see Table 5.2);

• the specific flight type for each mission is then randomly assigned following the mission mix

probability distribution (see Table 5.2);

• based on the selected flight type, loads (i.e., ∆S and R values) are applied following the

distributions detailed in Table 5.1.
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Applying this steps we generate a novel data-set in which the crack propagation history of the

synthetic fleet is as illustrated in Figure 5.3.

Figure 5.3: Crack propagation history in the synthetic fleet.

With this new data-set we retrained the recurrent neural network cell detailed in Section 4.2

considering the multi-layer perceptron configuration presented in Table 5.3, alongside the Mean

Squared Error (MSE) loss function discussed in Eq. 5.1. It is worth mentioning that no attempts were

made to further optimize the multi-layer perceptron architecture or its performance. The revised

results for this bias estimation model will be discussed in the following sections in conjunction with

obtained results for the three proposed cells discussed in this chapter.

Loss = MSE =
1

n
×

n∑
i=1

|aPRED,i − aOBS,i|2 (5.1)

where as in Eq. 4.10, n is the number of observations (inspected aircraft), aPRED,i and aOBS,i are

the predicted and observed crack lengths for the ith inspection, respectively.
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Table 5.3: Multi-layer perceptron (MLP) configurations used on each new recurrent neural network
cell.

Layer # neurons/activation function
Bias model MLP Bias∆K model MLP ∆K model MLP

0 10 / linear 5 / tanh 5 / tanh
1 5 / linear 1 / relu 1 / relu
2 1/ sigmoid
Parameters* 131 38 51

Layer # neurons/activation function
Log model C MLP Log model m MLP

0 5 / tanh 10 / linear
1 1 / relu 5 / linear
2 1 / sigmoid
Parameters 27 97

* differences in the total number of parameters are due to differences in the number of inputs.

5.2 Reducing the Number of Inputs for the Data-Driven Layers: Bias∆K Modeling Approach

This functional form is a direct review of the bias estimator cell discussed throughout Chapter 4.

The bias estimator present in Section 4.2 consisted of a general corrector term of functional form

MLP → g(∆St, Rt, C
IDX
t , at−1). Due to this functional form the correction terms proposed by

the hybrid model to compensate for the missing physics of corrosion are directly impacted by the

loading conditions (through ∆St and Rt values), current damage level (by at−1), and environmental

conditions (through CIDX
t ). This implies that even though the functional form was conceived to

compensate for environmental effects (i.e., the missing physics of corrosion), as formulated, it could

potentially be influenced for instance, by unaccounted issues in the load estimation, and also attempt

to compensate for its effects in crack propagation. In practice, as stated, the data-driven model

detailed in Section 4.2 acts as a ‘‘black box’’, proposing correction terms without distinguishing the

‘‘root cause’’ for this correction.
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In this section, the proposed functional form described by Eq. 5.2, aims to minimize the loading

conditions impacts in the correction term. It is still derived as a bias term proposing bias values to

compensate for the missing physics in the mechanical fatigue damage increment term (∆aF,t).

at = at−1 + ∆aF,t + ∆aCF,t

∆aF,t =
C0

(1−R)m(1−γ)
(∆Kt)

m, and

∆aCF,t = MLP (∆Kt, Rt, C
IDX
t )

(5.2)

where ∆aF,t is damage increment due the mechanical fatigue, and ∆aCF,t is the bias term related to

the missing physics issue that the data-driven portion of the cell (i.e., the MLP) aims to learn during

training.

The key modeling difference in this approach concerning the neural network cell presented in

Section 4.2 is the inputs considered for the data-driven layers. In Section 4.2 the functional form

proposed for the multi-layer perceptron considered previous estimates of crack length (at−1), far-

field stresses (∆St), stress ratio (Rt), and corrosion index (CIDX
t ) values as inputs, while here the

data-driven layers only receive ∆Kt, Rt, and CIDX
t as input information. Despite seemly looking

like a minor modification to the cell, the physical interpretation, and numerical repercussion are very

significant. While in the cell detailed in Section 4.2 the data-driven layer is acting as a generalized

bias estimator, proposing general correction terms for the damage accumulation process, here the

estimated bias values are more constrained in form. The revised functional form proposed here takes

the stress intensity range ∆Kt as input, instead of observing directly the far-field stress ∆St values.

This means that any issues concerning the estimation of these far-field stresses will not be directly

observed by the bias estimator, but instead will indirectly manifest in the stress intensity range ∆Kt.

Such features may hinder the ability of the proposed cell to identify any potential issues with the

load estimation and thus inhibiting attempts for the data-driven model to correct these potential
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issues. The final result may end up being a bias estimator model more focused on the corrosion

index effects in the crack propagation than with the loading effects in the damage accumulation.

Hence, with this proposed functional form the hybrid model may indirectly be more sensitive to

the corrosion index effects, and potentially be more effective in compensating for missing physics

issues related to environmental effects (as being considered in this case study).

Figure 5.4: Recurrent neural network cell considering the Bias∆K model.

5.3 A More Physics-Constrained Cell: Log Modeling Approach

In this section, the functional form described by Eq. 5.3 is derived under significantly more

constraining assumptions. As in the previously described hybrid cells, it still formulated as a

bias estimator term for the mechanical fatigue damage increment (∆aF,t), but contrary to the

previous cells, the bias correction term (∆aCF,t) is being directly calculated based on the curves

presented in Figure 4.2b (where the physics-based layers estimate ∆aMECH considering material

coefficients for pure air, while the data-driven layers estimate the ‘‘blue dashed lines’’ in the figure

to infer ∆aCORR), with two multi-layer perceptrons being used to estimate the equivalent material
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coefficients C and m values.

at = at−1 + ∆aF,t + ∆aCF,t

∆aF,t =
C0

(1−R)m(1−γ)
(∆Kt)

m, and

∆aCF,t = ∆aF,t × (10logMLPC(Rt,CIDX
t )+MLPm(Rt,CIDX

t )×log ∆Kt)−∆aF,t

(5.3)

where MLPC and MLPm are the multi-layer perceptrons tasked with estimating values for the

material coefficients (i.e., Paris’ law coefficients C and m, respectively).

This is a significant departure from the previously discussed cells from a modeling perspective.

Here the proposed multi-layer perceptrons observe only the stress ratio (Rt) and the corrosivity

index (CIDX
t ) at any given cycle in order to estimate values for the material coefficients. This

implies that while this model will be heavily influenced by environmental effects and potentially

capable of directly compensating for environmental effects and material properties variation in

damage accumulation, it will most likely not be able to identify issues with load estimation and

hence not being capable to directly compensate for its effects. It is important to highlight here that

the keyword is direct compensation for the loading effects. Even though the loads are not directly

observed by the data-driven model, its training is still guided by the crack lengths observed in the

inspection. Any unexpected value for the crack lengths due to whatever unforeseen effects (e.g.,

loading issues, material capability variation, environmental effects, faulty sensors, etc.) would

still be provided for the loss function during training and the hybrid model would still attempt

to compensate for any unaccounted effect by proposing equivalent material coefficient values

and correction terms. Nonetheless, the resulting hybrid model is potentially more sensitive to

environmental effects (expressed through CIDX
t ) and material capability variation.
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Figure 5.5: Recurrent neural network cell considering the Log model.

5.4 Focusing on the Loads Effects: ∆K Correction Modeling Approach

Lastly, in this section, we propose a functional form more focused on compensating for potential

load estimation issues. As detailed in Eq. 5.4 in this hybrid model, the data-driven layers no longer

act as bias estimators for the mechanical fatigue damage increment but rather aims to compensate

for missing physics effects on the stress intensity range (∆Kt) by proposing correction terms (bias

values) for its value.

at = at−1 + ∆at

∆at =
C0

(1−R)m(1−γ)
(∆Kt)

m

∆Kt = ∆KF,t + ∆KCF,t

∆KF,t = F∆St
√
πat−1, and

∆KCF,t = MLP (∆St, Rt, C
IDX
t , at−1)

(5.4)
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where ∆KF,t is stress intensity range considering purely mechanical fatigue, and ∆KCF,t is a bias

term related to the potential missing physics that might be plaguing the loads estimation that the

data-driven portion of the cell (i.e. the MLP) aims to learn how to compensate for during training.

This is a more extreme departure from the previously discussed cells from a modeling perspective.

Here the focus is on the stress intensity range rather than on the damage increment itself. This

is the least representative model for the considered case study of this chapter, given that in the

proposed case study the source of the epistemic uncertainty is the missing physics of corrosion and

not any issues with the loading estimation. However, as in the case of the Log modeling approach

(see Section 5.3), the proposed cell is still capable of yielding accurate predictions by proposing

equivalent stress intensity values to compensate for the missing physics of corrosion. Albeit this

is not representative of the actual physics of degradation in the case study, the numerical results

might be the same, as long as the hybrid model learns to stipulate a valid equivalency between the

corrosion effects and the stress intensity range correction terms. As derived this might not be such a

difficult task given that the multi-layer perceptron for the stress intensity range has as one of its

inputs the corrosivity index CIDX
t . Nevertheless, it is expected for the hybrid model resulting from

this approach to be more sensitive to loading effects than to environmental or material capability

effects.

Figure 5.6: Recurrent neural network cell considering the ∆K model.
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5.5 Diagnosis and Prognosis Analyses

Considering the revised data-set detailed on Section 5.1, all four recurrent neural network cells

(the three cells presented in this chapter in addition to the bias cell discussed in Chapter 4) were

trained considering crack length data for 10% of the fleet at 9,000 flight hours of operation (roughly

around the second ‘‘C’’ check (see Table 2.3) in the fleet). Additionally, the auxiliary plane

procedure described in section 4.2.3 for multi-layer perceptron hyperparameters initialization, were

also adopted in the recurrent neural network cells training considering the multi-layer perceptron

architectures detailed in Table 5.3, for all the considered formulations. All recurrent neural network

cells discussed in this chapter were trained considering the Mean Squared Error (MSE) loss function

illustrated in Eq. 5.1.

After all recurrent neural network cells were properly trained, the resulting hybrid models were used

to perform crack length estimation after 9,000 flight hours of operation (diagnosis) and damage

forecast after 12,500 flight hours ((around the third ‘‘C’’ check (see Table 2.3) and at half-point until

the ‘‘D’’ check in the fleet)) of operation (prognosis) across the entire fleet (100 aircraft). Figure

5.7 presents the results of the crack length estimation at diagnosis for the entire fleet considering all

proposed hybrid models. By comparing all four model predictions we can see that for relatively

small crack lengths of 3 mm or lower, all four models seem to have a good agreement with the

actual crack length values. This strongly indicates that, despite the different modeling approaches,

all considered recurrent neural network cells are capable to capture the overall trend of the crack

propagation in the fleet, and, in their own way, compensate for the missing physics of corrosion.

Model behaviors start to diverge from one another when predicting larger crack lengths. For

instance the ∆K model (see Section 5.4) is significantly overestimating crack lengths above 3 mm.

This might be an indication that for larger crack lengths, the cumulative effects of compensating the

missing physics of corrosion by adding a bias to the stress intensity range, start to be significant and
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starts to actively distort the neural network predictions. Nonetheless, even in this scenario, such a

model would still be able to provide rough predictions, albeit extremely conservative, for the fleet

crack lengths. All the remaining hybrid models that are based on providing a bias correction term

to the mechanical fatigue damage increment, provide relatively good predictions regardless of the

crack range.

Figure 5.7: Recurrent neural network cells (Bias∆K , Bias, Log, and ∆K models) prediction across
the entire fleet after 9,000 flights of operation.

Figure 5.8 presents the results for the damage forecast analysis considering all of the proposed

hybrid models. Using the same arbitrary threshold of 20 (mm) for repair/replacement flagging as

shown in Chapter 4 discussion, at 12,500 flights, 5 aircraft in the fleet should be flagged. As seen in

Figure 5.8 all proposed models are capable of accurately flagging the aircraft that requires action

without presenting any false negatives (i.e., aircraft that should be flagged but were wrongly not).

Their behavior differs in regards to wrongly flagging aircraft that do not require action (i.e. false

positives). As seen in Figure 5.8a and 5.8b the so-called Bias and Bias∆K models are the more

accurate models, presenting a minor cost of 1 false positive. The so-called Log model is marginally

more conservative than the previous two models presenting 2 false-positive values as shown in

Figure 5.8c As indicated by the overestimation results from the diagnosis analysis (see Figure
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5.7), the so-called ∆K model end-up being significantly more conservative than the remaining

models, presenting 11 false-positive flags as shown in Figure 5.8d. As previously discussed in

safety-critical applications as in civil aviation, having no false negatives is extremely important

(is highly undesirable to have an aircraft wrongly cleared to flight) for reliable and safe operation,

while false positives will play a significant part in maintenance-related costs. Hence, is reasonable

to conclude that despite the varying levels of conservativeness and the differences in formulation,

all proposed models have a good performance in terms of fleet management.

(a) Bias∆K model. (b) Bias model.

(c) Log model. (d) ∆K model.

Figure 5.8: Recurrent neural network cells (Bias∆K , Bias, Log, and ∆K models) prediction across
the entire fleet after 12,500 flights of operation. Plot is clipped at 40 (mm) even though predictions
can be higher than this value.
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5.6 Summary

In this chapter, we revised the previously presented corrosion-fatigue case study to include season-

ality effects in the corrosion index estimation through the consideration of a meteorological model

and redefined the loading conditions to increase variability in the fleet. All these modifications were

proposed aiming to hinder the task of distinguishing the true cause for the epistemic uncertainty in

crack propagation.

The recurrent neural network cell presented in Chapter 4 were expanded into three novel hybrid cells,

namely, Bias∆K model, Log model, and ∆K model, each derived based on distinct physics-based

considerations and constraints. To evaluate the performance of the proposed cells, we presented a

numerical case study focusing on diagnosis and prognosis analyses of the presented synthetic fleet.

In the considered case, the physics-informed layers only account for purely mechanical fatigue. All

proposed data-driven layers, need by their own means, to adjust the damage accumulation rate and

compensate for the corrosion effects. Presented results indicate that despite the varying levels of

the conservativeness of the hybrid models, all proposed hybrid cells are able to capture the overall

trend of fleet crack propagation.

In the following chapter, we will focus our discussion on different forms of ranking and segregation

of the proposed hybrid models, besides evaluating any possible gain in merging the hybrid models

predictions.
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CHAPTER 6: MODEL SEGREGATION AND FORECAST WINDOW - A

CASE STUDY ON ENSEMBLES OF MODULAR HYBRID NEURAL

NETWORKS

In this chapter, we will focus our attention on the decision-making effort related to the previously

discussed hybrid models. Based on cross-validation errors, we will evaluate two possible routes for

the previously derived model ‘‘pool,’’ either segregate the models aiming to select the model in the

‘‘pool’’ that better represents the observed data; or by employing a weighted ensemble derived from

the base models in the ‘‘pool’’ improve the overall prediction accuracy.

Concerning the model selection task, the analysis is straightforward. We assume that cross-

validation errors are directly related to the true error of the models, and provide a valid estimator

of the prediction true error (which is never observable in real applications given that we would

not have access to true crack length values) From sets of cross-validation errors, we evaluate the

validity of this assumption and how well can the cross-validation errors be used to rank the models

in the ‘‘pool.’’

Regarding the ensemble analysis, we adapted the weighted average surrogate procedure discussed

in Viana et al. [195] to build weighted ensembles from the hybrid neural networks predictions and

improve the overall accuracy of the damage forecast. Additionally, we briefly discuss how the

uncertainty in the ensemble predictions can be used to evaluate the trust in the ensemble forecast.

From this analysis, we aim to determine a time window in which we can safely forecast the crack

propagation in the fleet.

Overall both analysis can be summarized by the following fundamental questions:
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• Can we use the cross-validation errors to properly rank the base models?

• Based on cross-validation errors can we combine the model predictions?

• It is advantageous to combine base model predictions?

• Does the uncertainty in the ensemble relates to its prediction error?

The remainder of this chapter focuses on the discussions associated with these questions.

6.1 Model Ranking and Segregation

In this section, we evaluate the use of cross-validation errors to directly infer the ranking of the

base models and guide the selection of the best base model, or at least to properly determine what is

the ‘‘best’’ model in the pool. To carry such an analysis we first need to define a cross-validation

procedure from which we will extract the cross-validation errors. A cross-validation error is an

error at a data point when the model is fitted/trained to a subset of the data points not including such

a point. As detailed in Section 4.2 we adopted cross-validation procedures as presented in Kohavi

et al. [192]. To perform this analysis we adopted the following measures:

• We started by splitting the synthetic fleet into two portions, 60 aircraft to compose a test set,

and the remaining 40 aircraft were used to derived training sets.

• Considering these 40 aircraft, 20 sample sets containing each 20 aircraft were defined.

• On each sample set, training of each of the four base models described in Chapter 5 is

performed at 9,000 flights (i.e., each base model is retrained on each sample set composed of

20 aircraft each).
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• After the training of the neural networks was completed, a cross-validation analysis, consid-

ering a ‘‘leave-one-out’’ strategy was carried, i.e., at each iteration of the cross-validation

analysis 1 aircraft is removed from the training set, and all the base models are retrained

considering the remaining 19 aircraft on the sample set. After the training considering the

remaining 19 aircraft is finished, the predictions are checked against the aircraft left out. As

previously detailed cross-validation errors are defined as eXV = aXV − aOBS , where aXV

are the cross-validation predicted crack lengths for the left out aircraft and aOBS are the actual

observed crack lengths of said aircraft. This procedure is repeated until all aircraft in the sam-

ple set as being removed once, i.e., at each sample set the cross-validation analysis consists

of 20 iterations. Hence, at the end of the cross-validation analysis, 400 cross-validation error

values will be generated for each base model.

As detailed the computational cost of such cross-validation analysis is relatively high but not

prohibitive. Considering a laptop configured with an Intel Core i7-7820HQ CPU at 2.90GHz, 32GB

of RAM, and NVIDIA Quadro M620 graphical processing unit running Windows 10, and 10 epochs

on each cross-validation iteration, each iteration for each model takes on average 540 seconds. For

all 1600 cross-validation iterations (20 iterations for each of the 20 sample sets and each of the 4

base models) considered in this chapter, the total run time was roughly 240 hours or 10 days. It

is worth mentioning that with parallel computing this computational cost would be significantly

reduced.

Performing the above procedure, three distinct sets of errors are generated:

• a test error set, that in this analysis is the estimator of the actual prediction error for each base

model. It is worth mentioning that such a set would not be viable in most real applications

given that crack length information for the entire fleet would not be available.
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• training error sets for each considered sample set. Most likely in a real application, only one

or very few training error sets would be available given that this information is derived from

crack length values obtained through inspection campaigns.

• cross-validation error sets, that in this contribution are being considered as valid estimators

for the base models true prediction error. It is important to remind that in real application

true errors would not be available and in this section, we evaluate the assumption that the

cross-validation errors are good estimators of such information.

Figure 6.1 illustrates the error distribution for each base model on each of these sets. As shown by

Figure 6.1b the training error sets distribution is very close to the error distribution of the test error

set (see Figure 6.1a), with the more distinct difference concerning the spread of the ∆K model.

Concerning the cross-validation errors distribution, we can see from Figure 6.1c that the spread

of the Log and Bias models significantly increases when compared to the test set errors shown in

Figure 6.1a. Considering the overall behavior of all error sets illustrated in Figure 6.1 it seems

that the cross-validation errors can safely indicate the best model in the pool, but inferences of the

remaining models ranking could be distorted.

To better evaluate the behavior indicated by Figure 6.1 we performed the confusion matrices

analysis shown in Figure 6.2. Here we directly compared the ranking given by cross-validation

errors against the ranking derived from the true prediction errors in the test set (in the figure 1st

means the best model, 2nd indicates the second-best model, etc.). As it can be seen in Figure 6.2a

using the cross-validation errors we can safely infer the best model in the pool (that for the case

study considered in this chapter is the Bias∆K model) and for the vast majority of the cases also infer

the correct ranking of the remaining models. Such results are strong indications that cross-validation

errors can be used to safely segregate the models in the fleet and help to select the base model that

better explains the observed crack lengths.
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(a) Root Mean Squared Error distribution in
the test set evaluation.

(b) Root Mean Squared Error distribution
in the training sets.

(c) Root Mean Squared Error distribution in
the cross-validation analysis.

Figure 6.1: Root Mean Squared Error (RMSE) behavior on the throughout the test set, training sets
and cross-validation analyses.

6.2 Ensemble Analysis

In this section, we focus on the discussion of using cross-validation errors to combine base model

predictions and increase the overall prediction accuracy. To do so we derived ensembles of the base

neural network models by adapting the weighted average surrogate procedure detailed in Viana

et al. [195]. A weighted average surrogate (WAS) intends to take advantage of n surrogates (that

in this contribution are the previously derived base models, namely, Bias, Bias∆K , Log, and ∆K

models) in the hope of canceling errors in prediction through proper weighting selection in the
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(a) Bias∆K base model. (b) Bias base model.

(c) Log base model. (d) ∆K base model.

Figure 6.2: Confusion matrices for the model ranking based on cross-validation errors.

linear combination of the models. Mathematically, this can be summarized as shown in Eq. 6.1.

aEns. =
n∑
i=1

ωi × ai = ωTa, and

n∑
i=1

ωi = 1

(6.1)

where aEns. is the predicted crack length by the resulting ensemble, ωi is the weight associated with

the ith base model, and ai is the predicted response by the respective base model.
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As detailed by Viana et al. [195], given a C matrix of base models cross-validation errors, the

optimal weighted ensemble can be found through the minimization problem shown in Eq. 6.2.

min
ω
ωTCω

s.t. : 1Tω = 1

(6.2)

where cij = 1
p
eTi ej , p is the number of data points in the cross-validation, and ei and ej are the

cross-validation errors of base models i and j, respectively.

The solution of the optimization detailed in Eq. 6.2 is obtained through Lagrange multipliers as

presented by Eq. 6.3. To avoid issues with negative weights as well as weights larger than one, Eq.

6.3 is solved considering only the diagonal terms of matrix C.

ω =
C−11

1TC−11
(6.3)

Figure 6.3 illustrates a possible set of weights for the neural network ensemble considering the

cross-validation errors of a given sample set. For simplicity presented weights were rounded up. As

we can see the derived weights highly favor the Bias∆K model and hardly differentiate among the

remaining base models. This a direct reflection of the behavior illustrated in the cross-validation

error set considered in this example. A possible explanation for the ensemble weights to slightly

favor the ∆K model over the Log model in the example shown in Figure 6.3, despite the ∆K

model clearly overestimation of larger crack lengths, is most likely due to the fact of the best model

in this case (the Bias∆K model) slightly underestimation of such cracks.

In Figure 6.4 we are presented with a direct comparison between the weights distribution across the

sample sets when test errors (Figure 6.4a) and cross-validation errors (Figure 6.4b) are used in the

optimization problem shown in Eq. 6.2. As with the confusion matrices analysis of Figure 6.2 we

108



Figure 6.3: Example of an ensemble prediction. Weights derived considering the cross-validation
errors in a given sample set.

can see that when using the cross-validation errors (see Figure 6.4b) the final ranking expressed

by the model weights largely favor the BiasDeltaK model and heavily minimize the DeltaK model

contributions. However, despite being minimal the contributions DeltaK model is still relevant

as illustrated in the discussion of previous results. By heavily overestimating larger crack lengths,

DeltaK model can help balance out crack lengths underestimation from better models in the

ensemble.

The results illustrated by Figures 6.3 and 6.4 helps answer the questions related to using cross-

validation errors to rank the base models and combine base model predictions. Now we focus our

attention to address the advantages of using such ensembles in comparison to just using the best

base model predictions. In order to answer this fundamental question we used the metric expressed

in Eq. 6.4.

%diff = 100×
(
RMSEBest −RMSEEns.

RMSEBest

)
(6.4)

where RMSE refers to the root mean squared error, and RMSEBest is always the best base model

based on test set errors on a sample set basis. Therefore it changes with the considered data set and
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(a) Weights based on test set errors. (b) Weights based on cross-validation errors.

Figure 6.4: Weights associated with which base model in the ensemble. Distributions derived by
considering all 20 sample sets.

it is an idealization.

Using the metric defined in Eq. 6.4 we can evaluate the following scenarios:

• Ranking and ensemble weights based on test errors set: this is an idealized scenario and

illustrates the best case scenario possible, where true prediction errors are known and no

uncertainty plagues the ranking task and the model weights. Such a scenario is not possible

in real applications given that true prediction errors are unknown.

• Ranking based on test errors and ensemble weights derived from cross-validation errors:

this scenario is also unrealistic given that the base model ranking is based on true prediction

errors. However, this scenario helps us evaluate the impact of the cross-validation errors in

the ensemble weights.

• Ranking and ensemble weights derived from cross-validation errors: this scenario is closest

to real applications, with the exception that in real applications RMSEBest in Eq. 6.4 would

not be known.

110



Figure 6.5 illustrates the results for the previously described scenarios concerning models ranking

and ensemble prediction at 9,000 flights. Except for two outliers in Figure 6.5c we can see that

when the number of base models is equal to 1 (i.e., the ensemble is composed only of the best base

model) the metric described in Eq. 6.4 is zero. This illustrates once again how the ranking based

on the cross-validation errors can safely and accurately identify the best base model in the pool

(RMSEBest derived from the true prediction errors expressed here by the test set errors).

When the number of base models in the ensemble is larger than 1, the metric from Eq. 6.4 can either

be positive or negative. Negative values indicate that for the considered weight combination in the

ensemble, the predictions will be worse than the ones generated by the best base model, meaning

thus that, at this condition, it does not pay off to combine the base models. Positive values indicate

that the ensemble predictions are more accurate than the ones generated by the best base model

and thus it is worth it to combine the model predictions. In the scenario where both model ranking

and ensemble weights are derived from true prediction errors (see Figure 6.5a), negative values are

indications that the generated ensembles are inheriting underlying biases from the base models (e.g.,

all base models have an overestimation trend), given that the ensemble weights are derived from an

error minimization procedure (see Eq. 6.2), and in this scenario should present errors that are at

least equal to the best base model in the ensemble. The overall behavior in Figures 6.5a and 6.5b

are very similar showing once more that the cross-validation errors are good estimators for the true

prediction error in the ensemble weights estimation procedure. Figure 6.5c show how the losses on

accuracy when using the cross-validation errors for model ranking and ensemble weight estimation

are minimal. Again, this is another clear indication that we can safely use the cross-validation

errors for base model ranking and combining the base model predictions. Additionally, from Figure

6.5c we can safely conclude that on average it does pay off, in terms of accuracy, to combine the

base model predictions and as the number of base models in the ensemble increases so does the

gain associated with using the ensemble. Lastly, in Figure 6.5 we can clearly observe that the best
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overall results are obtained when considering all base models in the ensembles. This result further

collaborates with the observation that even a relatively ‘‘poor’’ base model actively contributes to

the ensemble accuracy, and suggests that there is no gain in removing the ‘‘worst” base model from

the ensemble.

(a) Both ranking and weights are based on
test set errors.

(b) Ranking based on test set errors and
weights based on cross-validation errors.

(c) Both ranking and weights are based on
cross-validation errors.

Figure 6.5: Evaluation on the gain of using an ensemble of the neural network predictions over
using solely the predictions of the best base model.
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6.3 A Heuristic for Ensemble Forecast

In this section, we focus our attention on addressing the last fundamental question proposed in this

chapter: does the uncertainty in the ensemble relates to its prediction error? Since the ensemble

is generated by combining the predictions of some base models it is reasonable to assume that

the ensemble prediction starts to lose its validity when the actual value no longer lies within the

prediction range covered by the ensemble base models. This does not mean that prior to this point

in time the ensemble prediction error is not significantly large, it only means that at such condition

is no longer possible for the ensemble to generate an accurate prediction. Figure 6.6 illustrate the

key concepts behind this idea.

Figure 6.6: Example of base models range propagation in a given ensemble. At some point the base
models range that generates the ensemble no longer contains the actual crack length value. This
is the instant in which we should start to be concerned by the ‘‘validity’’ of the ensemble damage
forecast, given that is no longer possible for the ensemble to yield an accurate prediction.

The issue however is that we only have access to actual crack length values in training (i.e., crack

values coming from inspection campaigns), meaning that in the damage forecast we do not have

any information concerning the actual crack length value or the ensemble true prediction error.

However, in Figure 6.6 we can observe another important feature of the neural network ensemble
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for cumulative damage modeling. The base model prediction range grows over time, given that the

cumulative error associated with each base model prediction grows with the continuous increment

in the number of cycles. Hence, in this section, we aim to derive an uncertainty metric for the

ensemble damage forecast based on this range growth. At any instant in the ensemble forecast, we

know the ensemble range for each aircraft, and the ensemble range of the entire training set (that in

this chapter consist of each sample set). Thus, a reasonable approach would be to combine such

information in the desired uncertainty metric. Here, we propose the uncertainty metric given in Eq.

6.5, in which the growth rate of the ensemble range is approximated by a range ratio.

r =
ranget

rangeMAX
training

(6.5)

where ranget is the current range of the ensemble base models predictions (see Figure 6.6) for

a given aircraft, and rangeMAX
training is the maximum observed range during training in a sample

set basis. Therefore, despite r being define on an aircraft basis and applied individually for each

aircraft, rangeMAX
training is defined on a sample set basis. Additionally, r is indirectly evaluating the

range growth rate on damage forecast for each aircraft in the fleet. Thus, by imposing an arbitrary

threshold on r we define a window of damage forecast for each aircraft. On such a window we can

not categorically affirm that the ensemble prediction is accurate or even valid, given that in real

applications we never know the true crack length value in damage forecast, but we can express a

level of confidence in the ensemble predictions.

Similar to the risk assessment analysis discussed in Chapter 3, the definition of the threshold value

for r would depend of operators and practitioners attitudes towards risk. Since rangeMAX
training is a

known value observed in the training set (e.g., 3 mm) by imposing a threshold for instance equals to

3, an aircraft would be flagged when its range is 3 times the value of the maximum training range

(e.g., 9 mm), given that from Eq. 6.5 ranget = r× rangeMAX
training. Thus, operators and practitioners
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could also opt to impose such thresholds based on a maximum allowable range.

Figure 6.7 presents a comparison between two distinct values for r threshold (rthreshold = 2 and

rthreshold = 4). Figures 6.7a and 6.7b illustrates the distribution for the number of flights in

which the ensemble predictions for each aircraft was flagged on a sample set basis. It is clear

that smaller thresholds impose more conservative flags, but on average, in both scenarios, this

approach would allow for around 3,000 flights of damage forecast with worst-case scenarios

revolving around 500 flights of extrapolation. It is worth mentioning that these aircraft with fewer

flights of allowable damage forecast are most likely aircraft that deserve special attention on fleet

management and should most likely be indeed flagged for mitigation actions (e.g., inspection,

derating, repair/replacement, etc.). True prediction errors for each aircraft when flagged for

considered sample sets in this case study are shown in Figures 6.7c and 6.7d. On both scenarios,

average errors are small (roughly around 5 to 10%) with maximum errors around 25 to 30%. Once

again these results indicate that the proposed metric allows for safe extrapolations and damage

forecast, but by no means are direct measures of the ensemble true uncertainty. Reminding that on

real applications the true prediction errors are unknown and such analysis as shown in Figures 6.7c

and 6.7d would not be possible

Figure 6.8 illustrates a more detailed analysis of the ensemble accuracy when its crack length

extrapolation is flagged. As seen in Figure 6.8a some aircraft are being very conservatively flagged

with their predictions very close to the actual crack length value (the 45°dashed line). This suggests

that for the scenario illustrated by the case study considered in this chapter such r threshold might be

too conservative and that the actual crack value still lies within the ensemble range. Now on Figure

6.8b we start to observe a more clear departure from the ensemble predictions and the actual crack

lengths. Such behavior seems to suggest that the ensemble is closer or above the true threshold in

which its range no longer contains the actual crack length. But is important to highlight that even in

this scenario prediction errors are not very large and we can be relatively confident in the ensemble
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(a) Number of flights when flagged for
rthreshold = 2. Analysis was clipped at 13,000
flights.

(b) Number of flights when flagged for
rthreshold = 4. Analysis was clipped at 13,000
flights.

(c) Crack prediction error when flagged for
rthreshold = 2.

(d) Crack prediction error when flagged for
rthreshold = 4.

Figure 6.7: Ensemble behavior throughout the samples in the instant that each aircraft crack
extrapolation is flagged for different values of rthreshold.

prediction accuracy.

6.4 Summary

In this chapter, we evaluated the use of cross-validation errors to either properly rank the predictions

of the previously defined hybrid models pool for the considered corrosion-fatigue case study, or
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(a) rthreshold = 2. (b) rthreshold = 4.

Figure 6.8: Ensemble prediction against actual crack length comparison in a given sample set at the
instant that each aircraft crack extrapolation is flagged for different values of rthreshold.

through weighted ensembles combine the neural networks predictions and increase the overall

prediction accuracy. Concerning the model ranking task, we evaluated the relation between the

cross-validation errors and the unknown true prediction errors. Results showed that the cross-

validation errors act as good estimators for the base models prediction error allowing for the proper

ranking of the models.

Regarding the ensemble analysis, we adapted an existing weighted average procedure to build

weighted ensembles from the hybrid neural networks predictions and improve the overall accuracy

of the damage forecast. Additionally, we also evaluated the use of an indirect metric of the ensemble

uncertainty to infer the confidence in the ensemble forecast and define a time window for crack

length extrapolation in the fleet. Obtained results indicated that the use of cross-validation errors

allows for proper ranking of the base models and to reliability derive model ensembles that on

average increases the overall prediction accuracy. Additionally, depending on practitioners attitude

towards risk the proposed uncertainty metric provides a good indicator for safely performing damage

forecast in the fleet.

117



CHAPTER 7: SUMMARY AND FINAL REMARKS

Motivated by the growing availability of data and computational power as well as the advances

in hybrid modeling frameworks, capable of merging elements of physics, machine learning, and

statistical learning, in this dissertation, we focus on the development of novel approaches to

minimize the impact of unforeseen factors in fleet management. To this end, proper comprehension

of hardware degradation and accurate predictions of remaining useful life is crucial. Despite the

advances in uncertainty propagation in prognosis and health management, uncertainty estimations

on a fleet level are still a challenging task. Multiple sources of uncertainties can act asynchronously

throughout the fleet usage history and must be properly handled by the fleet model.

In this dissertation, we focus on the challenges associated with accounting for the impacts of

such unforeseen factors on two specific stages of a component service life; early-file and end-

life. Two numerical case studies are derived to emulate two common issues in fleet management;

manufacturing issues leading to an infant mortality problem, and unexpected exposure to harsher

environments by operators, accelerating wear-out and significantly reducing component’s useful

life.

In Chapter 3, we studied early life failures as applied to fleet management. Depending on the scale of

the problem, early failures can have a significant impact on the safety, availability, and operational

profit of industrial equipment. We used Bayesian networks to model fleet reliability as well as to

characterize and quantify a manufacturing-related problem (material capability degradation). We

designed a simple numerical experiment where:

• degradation in material capability is used to characterize infant mortality, and

• fleet commissioning is a function of time.

118



We have studied:

• The effect of degradation in material capability: results confirmed that it dramatically reduces

fleet reliability.

• The effect of fleet commissioning over time: results highlighted how it masks the increase in

fleet unreliability.

• Fleet size and number of failures interaction and its effects on the infant mortality charac-

terization: in the considered numerical experiment, the proposed framework was able to

characterize the percent of the fleet plagued by poor material capability. Nevertheless, results

illustrated how the fleet size can hinder the characterization of the problem, especially for

small fleet operators.

• Bayesian models for assessing possible mitigation approaches: the proposed framework was

able to evaluate fleet recommissioning as a risk mitigation procedure (i.e. derating assets to

reduced load levels). Presented results indicate that the proposed model could be used as a

tool for fleet management and aid operators to decide on a proper action course. For example,

recommissioning mitigates the loads and therefore slows the failure rate down (at the cost of

performance loss).

The results motivate us to extend the study in several aspects. For example, to have a better

understanding of the impact that early failure in fleets of assets, we suggest extending the study and

include, among other factors:

• Improved physics of failure models: not only by separating the cycles spent in initiation and

propagation, but also improving the stress models to account for geometry and boundary

conditions.
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• Other sources of uncertainty, such as:

– field inspection: qualitative inspection (distress ranking) instead of damage measure-

ments

– service level (repair versus replace failed units).

In Chapter 4 we proposed modeling damage accumulation by simultaneously using physics-

informed and data-driven layers within a recurrent neural network cell. The major achievement

of such a hybrid model is the ability to use the data-driven layers to compensate for the missing

physics in reduced-order models and accurately estimate damage accumulation. In our numeri-

cal experiments, this reduced the need for observing the output of interest at all times. In other

words, the physics-informed layers reduce the need for large datasets found in purely data-driven

approaches.

In order to evaluate the performance of the proposed framework, we presented a numerical case

study focusing on corrosion-fatigue crack propagation. In the considered case, the physics-informed

layer only accounts for purely mechanical fatigue. The data-driven layer, on the other hand, adjusts

the damage accumulation rate and compensates for the corrosion effects (i.e., working as a bias

corrector).

We designed a numerical experiment where we simulated (a) a fleet of 150 aircraft flying different

mission mixes (which implies in the variation of both mechanical loads and exposure to corrosive

environments), and (b) inspection of 10% of the fleet at the end of the 5th year of operation. With

the help of this numerical experiment, we have studied:

1. Initialization of the neural network parameters: we proposed a simple strategy for initializing

the data-driven portion of our hybrid model (a multi-layer perceptron). We argue that

engineers and scientists would be able to prescribe the first-order effects of input variables in
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the damage accumulation rate. We observed that when neural network parameters are poorly

initialized, their optimization is not guaranteed.

2. Complexity of neural network architecture and the number of available observations during

training: we performed an empirical study varying the depth and activation functions used

in the multi-layer perceptron of our hybrid model. For this particular problem and data set,

we found a marginal influence of the chosen architecture in the final prediction capability

of the recurrent neural network. We believe this is because the ratio between available data

and the number of trainable parameters remained high (i.e., a large number of data points

compared to hyperparameters) across the multi-layer perceptrons studied here. In training, we

observed data for 15 aircraft flying on average 174,000 cycles (around 2,610,000 observed

input conditions) while the number of trainable parameters in the considered multi-layer

perceptrons ranged from 31 to 1,241.

3. Use of the hybrid models for diagnosis and prognosis: we used the obtained model to predict

damage across the fleet close (short-term analysis) and further (long-term analysis) of the

inspection point. We learned that the model can successfully forecast damage both in the

short-term (one year after partial fleet inspection) and in the long-term (up to five years after

partial fleet inspection). The model was slightly conservative, which resulted in a manageable

number of false positives (aircraft with damage wrongly tagged above an arbitrary threshold)

and no false negatives (aircraft mistakenly tagged with damage below the arbitrary threshold).

Despite the many desirable features, the results indicate that the proposed methodology has the

following deficiencies (potential topics for future research):

1. High sensitivity of training results concerning the initial neural network hyperparameters:

even using the proposed auxiliary planes for the neural network initialization, a poorly
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initialization of such parameters can potentially derail the training. Therefore, optimization

with multiple initial hyperparameter values is still needed.

2. Model predictions do not interpolate crack length at the training (or test/validation) points:

depending on the application, this can lead to either undesired conservatism or underpredic-

tion.

The obtained results motivate us to extend the study in several aspects. For example, we suggest

studying the effect of improved physics of failure models (e.g., by including pit growth in the

cumulative damage). We also suggest addressing multiple sources of uncertainty within the model

and proposing ways to handle them using deep neural networks. For example, one can study the

uncertainty in the loads model (from cycle counting to estimation of far-field stresses through

finite element) and/or the scatter in material properties (including uncertainty and limitations in

coupon data). Finally, one can also study how these physics-informed neural networks could be

used to help decision-making in fleet management of industrial assets (inspection optimization,

fleet recommissioning, and repair/replacement).

Chapter 5 extended the discussions presented in Chapter 4 and defined novel hybrid models to

address the epistemic uncertainty in the corrosion-fatigue case study. Varying physics-based

considerations and constraints were applied to derive recurrent neural network cells more sensitive

to different aspects of the crack propagation problem. To evaluate the performance of the proposed

cells, we revised the previously presented corrosion-fatigue case study to include seasonality effects

in the corrosion index estimation through the consideration of a meteorological model and redefined

the loading conditions to increase variability in the fleet. All these modifications were proposed

aiming to hinder the task of distinguishing the true cause for the epistemic uncertainty in crack

propagation.

A numerical experiment focusing on diagnosis and prognosis analyses of the derived synthetic fleet
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was presented. In the considered numerical analysis, the physics-informed layers only accounted

for purely mechanical fatigue damage. All proposed data-driven layers, had by their own means, to

adjust the damage accumulation rate and compensate for the corrosion effects. Presented results

indicate that despite the varying levels of the conservativeness of the hybrid models, all proposed

hybrid cells are able to capture the overall trend of fleet crack propagation.

In Chapter 6, we evaluated the use of cross-validation errors to either properly rank the predictions

of the previously defined hybrid models pool for the considered corrosion-fatigue case study, or

by employing weighted ensembles to combine the neural networks predictions and increase the

overall prediction accuracy. Concerning the model ranking task, we evaluated the assumption that

cross-validation errors can properly relate to the unknown true prediction errors and behave as valid

estimators of such errors. Results showed that the cross-validation errors act as good estimators for

the models prediction error allowing for the proper ranking of the models and selection of the base

model that better explains the observed crack lengths.

Regarding the ensemble analysis, we evaluated the use of an existing weighted average procedure

to build weighted ensembles from the hybrid neural networks predictions and improve the overall

accuracy of the damage prediction. Additionally, we also evaluated the use of an indirect metric of

the ensemble uncertainty to infer the confidence in the ensemble forecast and define a time window

for crack length extrapolation in the fleet. Obtained results indicated that the use of cross-validation

errors allows for proper ranking of the base models and to reliability derive model ensembles that

in the majority of the cases increased the overall prediction accuracy. Additionally, depending on

the selected threshold for the range growth metric the proposed uncertainty metric safely guides the

stipulation of a time window for damage forecast in the fleet.

To improve the performance of the proposed ensemble procedure we suggest the following studies:
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• Increase in the overall number of base models for the ensemble, and evaluated possible effects

of the number of base models in the ensemble accuracy convergence, i.e., there is a number

of base models from which the ensemble accuracy can no longer increase?

• Evaluate the use of actual statistical metrics or metrics derived from statistical process analysis

the properly define the ensemble uncertainty and the confidence in its predictions.

• Investigate the ensemble performance when multiple sources of uncertainty (either epistemic

or random in nature) plague the damage accumulation process.

• Extend the proposed framework to consider complex problems with combined failure modes

simultaneously acting on the fleet.

• Evaluate if the proposed neural network ensemble is capable of automatically learn to identify

the root cause of the unexpected observations and properly detect such unforeseen factors.
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