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New avenues for genetics guided therapeutic
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a b s t r a c t

The development of single nucleotide polymorphism (SNP) microarray analysis and next

generation sequencing (NGS) has significantly contributed to comprehensively characte-

rize the genetic changes underlying acute myeloid leukemia (AML). These genomics tech-

nologies have led to the identification of an increasing number of genomic aberrations

and gene mutations that cause epigenetic changes and lead to deregulated gene expres-

sion. In accordance, AML patients present with a distinct and almost individual combina-

tion of somatically acquired genetic alterations reflecting the molecular heterogeneity of

the disease. Some of these are known driver mutations perturbing self-renewal, prolife-

ration, and hematopoietic differentiation, whereas many mutations also represent mere

passenger events, which do not significantly contribute to AML. In the future, we will

have to discriminate driver from passenger mutations and in addition it will be crucial to

evaluate the prognostic and predictive values of the respective driver mutations, espe-

cially in the context of the overall genetic background. While first genetic markers have

already been translated into the daily clinical routine by impacting treatment decisions,

novel biomarkers are needed especially to improve the effectiveness of molecular targe-

ted therapies, which have to be put into the perspective of mutational networks to fur-

ther ‘‘precision medicine’’ by personalized combination treatment approaches.
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Introduction

The risk stratification of acute myeloid leukemia (AML) has
significantly improved by the identification of cytogenetic
markers [1], and the development of single nucleotide
polymorphism (SNP) microarray analysis [2] and next gen-
eration sequencing (NGS) [3], two novel genomics technolo-
gies, has provided a tremendous contribution to decipher
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the genomic landscape of AML. Individual patients present
with a distinct and almost unique combination of somati-
cally acquired genetic aberrations; however, not all identi-
fied gene mutations perturb cellular processes such as self-
renewal, proliferation, differentiation, and epigenetic regula-
tion, thereby contributing to leukemic transformation. For
example, several genomic aberrations and gene mutations
were found to cause epigenetic changes and to deregulate
gene expression in AML, such as genomic losses and/or
, 89081 Ulm, Germany. Tel.: +49 731 500 45501;

ów, Instytut Hematologii i Transfuzjologii. Published by Elsevier

http://crossmark.crossref.org/dialog/?doi=10.1016/j.achaem.2014.05.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.achaem.2014.05.001&domain=pdf
http://dx.doi.org/10.1016/j.achaem.2014.05.001
mailto:lars.bullinger@uniklinik-ulm.de
http://www.sciencedirect.com/science/journal/00015814
www.elsevier.com/locate/achaem
http://dx.doi.org/10.1016/j.achaem.2014.05.001


Fig. 1 – Incidence and prognostic impact of aberrant gene
mutations in CN-AML
Adopted from Marcucci et al. [1]
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mutations of the TET2 gene [4] as well as IDH1 and DNMT3A
mutations [5, 6], whereas other mutation most likely repre-
sent less important passenger and no driver mutations.

Over the last years novel genetic information has started
to translate into updated classification schemes such as the
World Health Organization (WHO) classification [7], as genetic
changes represent powerful prognostic and predictive
markers for novel therapeutic approaches, such as tyrosine
kinase inhibitors (TKIs) and demethylating agents [8]. These
might significantly contribute to an improvement in the
treatment of AML, which was slow in recent decades [9].
However, some genetic mutations already impact diagnosis
and guide therapeutic decisions in adult AML, and in this
brief review we will discuss the clinical value of the estab-
lished as well as novel investigational genomic markers.

AML with recurrent fusions genes

AML patients who present with a translocation or inversion of
the core-binding-factor (CBF) complex, characterized by either
a t(8;21)(q22;q22) [leading to a RUNX1-RUNX1T1 fusion] or an
inv(16)(p13.1q22)/t(16;16)(p13.1;q22) [leading to a CBFB-
MYH11 fusion], are categorized into a favorable-risk genetic
group [6, 7] that benefits from consolidation therapy with
repetitive cycles of high-dose cytarabine [8, 10]. Recent
evidence points also to a benefit from an antibody-directed
chemotherapeutic approach using the anti-CD33 immuno-
conjugate gemtuzumab ozogamicin (GO), as a subgroup
analysis showed a significant survival benefit for patients
with CBF-AML [11], and other studies showed also a similar
beneficial effect [12, 13].

Frequently observed secondary genetic changes in CBF-
AML associated with inferior outcome comprise mutations
of KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene
homolog) and FLT3 (FMS-like tyrosine kinase 3) [10, 14–16]. In
accordance, recent efforts combining conventional induction
and consolidation therapy with dasatinib, a potent inhibitor
of mutated and wild-type KIT, provided promising results
(www.ClinicalTrials.gov identifier NCT00850382 and
NCT01238211) that might lead to additional molecular tar-
geted approaches [17, 18]. Similarly, the CBF fusion genes
are good markers for MRD monitoring as molecular disease
persistence is a highly predictive factor for relapse-free
survival (RFS) and overall survival (OS) [15, 19–21]. In
accordance, copy ratios of the fusion transcripts should be
monitored in CBF-AML.

Over 60 different fusion partners are involved in the
rearrangements of the mixed lineage leukemia (MLL) gene, and the
translocation t(9;11)(p22;q23), leading to a MLLT3-MLL fusion
(also known as MLL-AF9), forming a unique WHO classifica-
tion entity [7]. Notably, MLL-rearranged leukemias display
remarkable genomic stability [22] and seem to be largely
driven by epigenetic deregulation as several DNA or histones
modifying epigenetic regulators were implicated in MLL-
fusion driven leukemogenesis [23]. In accordance, modifying
the epigenetic state might have therapeutic efficacy in MLL-
rearranged leukemia, and epigenetic treatment approaches
now focus on mediators of MLL-fusion mediated leukemic
transformation, such as the histone methyltransferase
DOT1L, which modifies histone H3 on lysine 79 (H3K79) [24].
While DOT1L plays an active role in the maintenance of the
MLL-fusion mediated transformation and leukemogenesis
programs [24], a first specific small-molecule DOT1L inhibitor
EPZ-5676 showed promising antiproliferative activity [25], and
a first phase 1 trial testing EPZ-5676 was initiated (www.
ClinicalTrials.gov identifier NCT01684150).

AML with recurrent mutations

Mutations of nucleophosmin 1 (NPM1) are found in 25%–35%
of adult AML, especially in cytogenetically normal (CN-)AML
(45%-64%) (Fig. 1) [8], and blast cells typically show high
CD33-antigen, but low or absent CD34-antigen expression
[26]. Associated with FLT3 internal tandem duplications
(FLT3-ITDs), more recently NPM1 mutations were also linked
with IDH and DNMT3A mutations [6, 27–31]. The genotype
‘‘mutated NPM1 without FLT3-ITD’’ confers a superior out-
come in CN-AML only [1, 32], and has been incorporated
into the genetic favorable-risk category of the current AML
recommendations [8]. However, the prognostic value of this
genotype has to be revisited in the context of IDH and
DNMT3A mutations [33]. Younger adult patients with
mutated NPM1 without FLT3-ITD AML might not benefit
from allogeneic HSCT in first complete remission (CR) [32];
however, it may be considered in patients with molecular
disease persistence [34], especially in those with low trans-
plantation-related risk. The favorable prognostic impact of
mutated NPM1 without FLT3-ITD is also seen in older adults
[35, 36], and these patients might also benefit from intensive
conventional chemotherapy [37]. Furthermore, anti-CD33
antibody GO appears to be an attractive therapeutic strategy
in NPM1 mutant AML due to high CD33 expression levels,
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Table I – Prognostic value and impact on treatment decision of selected molecular markers in adult AML

Biomarker Prognostic significance Clinical relevance

AML with RUNX1-RUNX1T1
and CBFB-MYH11

Favorable prognosis in younger and older patients
[additional trisomy 22 predicts superior RFS in AML
with inv(16)]
High relapse probability in patients with molecular
disease persistence
Secondary KIT and possibly also FLT3 mutations
associated with inferior outcome in most but not all
studies

‘‘3 + 7’’ induction followed by repetitive cycles of
high-dose cytarabine = widely accepted standard
therapy (older patients with CBF-AML do also benefit
from intensive conventional chemotherapy)
Allogeneic HSCT may be only considered in indivi-
dual patients with high-risk factors (e.g. elevated
WBC counts, molecular disease persistence) and low
transplantation-related mortality
KIT inhibitor dasatinib in combination with inten-
sive induction and consolidation therapy in phase II
clinical trials
Addition of GO significantly improved OS in the
MRC15 trial

AML with MLL fusions Unfavorable prognosis, except for AML with t(9;11) Allogeneic HSCT appears to improve outcome in
younger adult patients
Experimental therapeutic strategies within clinical
trials (e.g. hypomethylating agents, DOT1L inhibi-
tors)

NPM1 Genotype ‘‘mutated NPM1 without FLT3-ITD’’ (in CN-
AML) associated with favorable outcome
NPM1 mutations in older patients associated with CR
achievement and better outcome, even in patients
above the age of 70 years
Impact of concurrent gene mutations e.g. in IDH1,
IDH2, DNMT3A, and TET2 currently under investiga-
tion

Standard induction therapy followed by repetitive
cycles of high-dose cytarabine = reasonable first-line
treatment option in patients with the genotype
‘‘mutated NPM1 without FLT3-ITD’’ (CN-AML)
Favorable-risk ‘‘mutated NPM1 without FLT3-ITD’’
CN-AML may not benefit from allogeneic HSCT in
first CR, except in individual cases (e.g. those with
molecular disease persistence) with low transplan-
tation-related risk
Older patients with NPM1-mutated AML benefit from
intensive conventional chemotherapy
Concurrent gene mutations other than FLT3 (IDH1,
IDH2, DNMT3A, etc.) should not yet be used for
making treatment decisions

CEBPA Only CEBPAdm cases define this AML entity CEBPAdm

(CN-AML) associated with favorable outcome
Impact on older patients under investigation

Standard induction and consolidation
therapy = reasonable first-line treatment option
Patients may not benefit from allogeneic HSCT in
first CR

FLT3-ITD Unfavorable prognosis
Particular poor outcome in AML with high burden of
mutated FLT3-ITD allele (high mutant to wild-type
allelic ratio as assessed by DNA fragment analysis)
AML with FLT3-ITD located outside the JM (non-JM
ITD, approximately 30% of cases) appears to do
significantly worse than AML with JM-ITD

Allogeneic HSCT appears to improve outcome in
younger adult patients (no data available for elderly
patients)
Patients should be entered on clinical trials with
FLT3 tyrosine kinase inhibitors whenever possible;
first-generation (e.g. midostaurin, lestaurtinib, sor-
afenib) and second-generation TKI (quizartinib) are
currently being evaluated in phase II and III clinical
trials

TP53 Unfavorable prognosis
Mutations/deletions mostly in AML with complex
karyotype (56%-78%)

Allogeneic HSCT does not seem to improve outcome;
experimental therapeutic approaches within clinical
trials warranted

WT1 Prognostic significance somewhat controversial;
most studies report a negative prognostic impact
Additional studies, preferentially large intra-indivi-
dual patient meta-analyses, needed to explore the
prognostic impact by different post-remission thera-
pies
WT1 SNP rs16754 located in mutational hot spot in
exon 7 found to be associated with favorable
prognosis in patients with CN-AML

Unknown

RUNX1 Unfavorable prognosis; all studies showed an asso-
ciation of RUNX1 mutations with lower CR rate and
adverse outcome

Unknown
One study (AMLSG) suggested that allogeneic HSCT
may improve outcome; finding needs to be con-
firmed
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Table I (Continued )

Biomarker Prognostic significance Clinical relevance

TET2 Prognostic significance unclear
CALGB study found a negative impact in the subset
of molecular favorable-risk (mutated NPM1 without
FLT3-ITD) AML; AMLSG study found no impact

Unknown

IDH1 IDH1 mutations appear to confer higher risk of
relapse and inferior OS in CN-AML; however, the
effect in the various molecular subsets of CN-AML is
controversial
IDH1 SNP rs11554137 (located in the same exon as
the R132 mutation) in one study found to be
associated with inferior outcome in molecular
high-risk CN-AML (either NPM1 wild-type or FLT3-
ITD positive)

Unknown
IDH inhibitors in preclinical development

IDH2 IDH2R172 mutations are only rarely found in concert
with other known recurring gene mutations (i.e.
NPM1, CEBPA, FLT3-ITD); they are associated with
inferior CR rate; impact on outcome unclear
Prognostic impact of IDH2R140 mutations controver-
sial, although some studies reported an association
with a better prognosis

(see above)

DNMT3A Associated with intermediate-risk cytogenetics (in
particular CN-AML) and with FLT3, NPM1, and IDH
mutations
Prognostic significance under investigation

Unknown

ASXL1 Unfavorable prognosis;
Mutation incidence increases with age

Unknown

Adopted from Bullinger and Döhner [79]
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and some trials showed a benefit for GO in the low and
intermediate risk groups [38]. Similarly, all-trans retinoic acid
(ATRA) in patients with mutated NPM1 without FLT3-ITD
remains elusive [36, 39], but a recent AMLSG study in younger
AML patients confirms a beneficial effect (Table I) [40].

In CN-AML mutations of the CCAAT/enhancer binding
protein alpha (CEBPA) gene are found in 10%–18% of cases,
either as single mutation, CEBPAsm (one-third of cases), or
double mutation, CEBPAdm (two-thirds of cases), affecting
both alleles, one showing an N-terminal and one a C-
terminal mutation.1 Based on recent studies, only CEBPAdm

AML is an independent prognostic factor for favorable
outcome [41], and in consequence only CEBPAdm AML
should be considered as a distinct entity and prognostic
category, which can be associated with additional genomic
aberrations such as GATA2 mutations [42]. As allogeneic
HSCT may not improve outcome in favorable-risk AML [8],
novel treatment strategies using e.g. lenalidomide might
improve patient outcome [43].

FMS-like tyrosine kinase 3 (FLT3)-ITDs are found in approxi-
mately 20% of all AML cases and in 28%–34% of CN-AML, in
whom the presence of FLT3-ITDs confers a significantly
worse prognosis [8], especially in cases with a high mutant-
to-wild-type allelic ratio [1]. In addition, point mutations in
the activation loop of the tyrosine kinase domain (TKD) are
found in 11%–14% of CN-AML, but the prognostic relevance
of FLT3-TKD mutations remains controversial [1]. Currently,
therapeutic inhibitors of FLT3 such as midostaurin (PKC412),
lestaurtinib (CEP-701), sunitinib (SU-11248), sorafenib (BAY-
43-9006), and the second-generation compound quizartinib
(AC220) have shown promising anti-leukemic activity [44].
In addition to tyrosine kinase inhibitor (TKI) based targeted
treatment approaches, CN-AML and other unfavorable geno-
types with FLT3-ITD might also benefit from allogeneic
HSCT, especially [32, 45, 46].

Finally, while tumor protein p53 (TP53) mutations are rarely
seen in AML (2.1%), mutations and/or loss of the TP53 allele is
found in 69%–78% of AML cases with a complex karyotype
(CK-AML) [47, 48]. Characterized by a higher degree of
genomic complexity, TP53-altered CK-AMLs more frequently
exhibit a monosomal karyotype (MK) [49], and are associated
with older age, specific DNA copy number alterations, and
dismal outcome [48, 50]. Thus, treatment approaches in
TP53-altered CK-AML aim at early allogeneic HSCT in TP53
altered AML cases, although there might be limited benefit in
patients with 17p abnormal AML [51]. In accordance, novel
therapeutic approaches are needed such as combinations of
hypomethylating agents, mTOR (mammalian target of rapa-
mycin) inhibitors, and tosedostat, an orally available amino-
peptidase inhibitor [52], which demonstrated significant
clinical activity in relapsed or refractory AML [53, 54].

‘‘Novel’’ genomic markers

Based on SNP array analysis [4, 55] and NGS studies [3, 56],
novel biomarkers have been discovered that include muta-
tions in transcription factors (WT1, RUNX1, and GATA2), in
genes influencing transcriptional regulation (NRAS, KRAS,
CBL, KIT, and RAD21), and in epigenetic modifiers (TET2,
IDH1, IDH2, DNMT3A, ASXL1, MLL, TET1, BCOR, NSD1, PHF6,
DNMT1, NSD1, EZH2, and MLL3) [1, 33, 57]. Most of these
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genes remain mainly investigational and are still controver-
sially discussed, but for some mutations an important role
in AML was recently supported.

Wilms' Tumor 1 (WT1) mutations occur primarily in CN-
AML with a frequency of 10%–15% [58]. However, the
prognostic relevance of the mutations remains still incon-
clusive as several studies show a negative impact on OS,
whereas no impact was found in a large AMLSG CN-AML
study [58]. Notably, an SNP (rs16754) located in the WT1
exon 7 mutational hot spot was associated with favorable
outcome in CN-AML [59], a finding that warrants further
validation. In addition, the intragenic mutations of the runt-
related transcription factor 1 (RUNX1) have been associated
with inferior outcome [60–63]. Present in 6% of AML cases,
RUNX1 mutations cluster in the intermediate-risk cytoge-
netic group and predict for resistance to chemotherapy as
well as inferior outcome, which might be overcome by
allogeneic HSCT [60].

Among the genes impacting epigenetic regulation tet
oncogene family member 2 (TET2) mutations are found in 12–
27% of patients with AML and in other myeloid diseases [1].
TET2 converts 5-methylcytosine (5mC) to 5-hydroxymethyl-
cytosine (5hmC), an a-KG-dependent reaction playing an
important role in DNA demethylation [64, 65], and TET2-
mutated AML displays uniformly low levels of 5hmC. How-
ever, the prognostic impact of TET2 mutations is still
inconclusive [66, 67], although a recent study reported
reduced OS in TET2 mutant patients with intermediate-risk
AML [68]. Similarly, isocitrate dehydrogenase 1 (IDH1) [5] and
IDH2 are found mutated in AML between 15% and 22% [27,
29, 69], and mutations typically affect IDH1 at codon R132
and IDH2 at codons R140 or R172 [1]. Mutant IDH proteins
acquire an enzymatic activity that converts a-ketoglutarate
(a-KG) to a putative oncogenic metabolite 2-hydroxygluta-
rate (2-HG), a competitive inhibitor of a-KG-dependent
histone demethylases and TET family 5-methylcytosine
hydroxylases [70]. In accordance, there is a mutual exclusiv-
ity between IDH and TET2 mutations in AML [71], and
similar to TET2 mutations the prognostic effect of IDH
mutations in CN-AML remains still controversial [29, 69].
DNA (cytosine-5-)-methyltransferase 3 alpha (DNMT3A) muta-
tions affect a de novo methyltransferase that methylates
cytosines in CpG dinucleotides, thereby further supporting
the importance of altered epigenetic patterns in AML [6, 72,
73]. Found in �20% of AML cases, DNMT3A mutations are
associated with FLT3-ITD, NPM1, and IDH mutations [6]. An
association with inferior survival could only be found in
selected studies [30, 73], while analysis of 1770 younger
AMLSG AML patients showed no clear correlation with
outcome [74]. This might be in part explained by a selection
bias as well as differences in treatment strategies, as high
dose daunorubicin can improve outcome [68]. Loss of func-
tion mutations of the polycomb family gene additional sex
combs like 1 (ASXL1) results in impaired polycomb repressive
complex 2 (PRC2)-mediated histone H3 lysine 27 tri-methy-
lation (H3K27me3) [75], which is a common theme in
myeloid pathogenesis reflected by additional loss-of-func-
tion mutations in other PRC2 complex members such EZH2,
SUZ12, EED and JARID2 [57]. Despite the fact that ASXL1
mutations are relatively uncommon, it could be shown that
ASXL1 mutations confer a poor impact on OS [68, 76–78].
Finally, additional studies are needed to understand the
mechanisms underlying mutations in other epigenetic
modifiers such as PHF6, TET1, BCOR, NSD1, DNMT1, NSD1,
and MLL3, in order to develop novel therapeutic strategies to
restore epigenetic regulation in AML.

Conclusions

Improved understanding of AML pathogenesis has started
to translate into the clinical setting, but a growing num-
ber of molecular markers identified by genomics and NGS
based approaches challenge us to determine biomarkers
of prognostic significance in the context of the overall
mutation spectrum. This demands the analysis of large
numbers of homogeneously treated patients within inter-
national collaborations that will allow to control the
effects of treatment on outcome. In addition, for ‘‘perso-
nalized’’ treatment approaches not only will complex
genotypes have to be considered, but we will also have to
examine the evolution and impact of subclonal mutations.
Thus, studying the effects of treatment on clonal evolu-
tion may help to target not only the most prevalent
drivers, but also the evolutionary landscape. In that
regard personalized combination therapies should be the
goal that ultimately will lead to an improvement in AML
patient survival.
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