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a b s t r a c t

Bone disease is one of the most common complications of multiple myeloma. It is the

result of increased osteoclast activity which is not compensated by osteoblast activity

and leads to osteolytic lesions characterized by bone pain and increased risk for patholo-

gical fracture, spinal cord compression and need for radiotherapy or surgery to the bone.

Recent studies have revealed novel pathways and molecules that are involved in the

biology of myeloma bone disease including the receptor activator of nuclear factor-kappa

B ligand/osteoprotegerin pathway, the Wnt signaling inhibitors dickkopf-1 and sclerostin,

macrophage inflammatory proteins, activin A, and others. A thorough study of these

pathways have provided novel agents that may play a critical role in the management of

myeloma related bone disease in the near future, such as denosumab (anti-RANKL),

sotatercept (activin A antagonist), romosozumab (anti-sclerostin) or BHQ-880 (anti-dick-

kopf 1). Currently, bisphosphonates are the cornerstone in the treatment of myeloma

related bone disease. Zoledronic acid and pamidronate are used in this setting with very

good results in reducing skeletal-related events, but they cannot be used in patients with

severe renal impairment. Furthermore, they have some rare but serious adverse events

including osteonecrosis of the jaw and acute renal insufficiency. This review paper focu-

ses on the latest advances in the pathophysiology of myeloma bone disease and in the

current and future treatment options for its management.

© 2014 Polskie Towarzystwo Hematologów i Transfuzjologów, Instytut Hematologii i

Transfuzjologii. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
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Introduction

Multiple myeloma (MM) is a plasma cell malignancy which is
characterized by the presence of bone destruction due to an
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elevated function of osteoclasts that is not balanced by
a comparable elevation of osteoblast function. This bone
destruction develops lytic lesions that lead to bone pain,
hypercalcemia and skeletal-related events (SREs) such as
pathological fractures, requirement for surgery and/or radiation
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to the bone and spinal cord compression (SCC) [1]. At diagnosis
70% of the patients present with bone pain, while during the
course of the disease 50% of the patients develop at least one
SRE if they do not receive a bone-targeted agent [2]. In two
studies, Melton et al. has shown that MM patients have
generalized bone loss and osteoporosis that make them vulner-
able to osteoporotic fractures [3]. They also showed that even
patients with monoclonal gammopathy of undetermined sig-
nificance (MGUS) have a >2-fold increase in fracture rate of the
axial skeleton [4]. Bone disease has a serious impact on the
quality of life and survival of MM patients [5] and affects both
clinical and economic aspects of their life [6]. The risk of death
in MM patients who develop a pathologic fracture increases by
20% in comparison with MM patients without pathologic
fractures [7]. Thus, it is important to diagnose early and treat
properly bone disease and its complications. This paper
reviews the latest available details of pathophysiology and
treatment of myeloma related bone disease.

Biology of multiple myeloma bone disease

In the adult skeleton, skeletal integrity is coordinated by the
synchronized activity of three cell types. Osteoblasts create
new bone matrix; osteoclasts are responsible for bone
resorption and osteocytes regulate bone turnover. In multi-
ple myeloma patients, bone disease is the result of an
uncoupling in bone remodeling. It consists of an increase in
the osteoclast-mediated bone resorption, which is combined
with suppression in the osteoblast, mediated bone miner-
alization and defects in osteocyte functions [8]. Until today,
several direct and indirect interactions between myeloma
and stromal cells in the bone marrow microenvironment
have been recognized. The fact that osteolytic lesions occur
close to MM cells suggests that factors secreted by tumor
cells lead to direct stimulation of osteoclast mediated bone
resorption and inhibition of osteoblast mediated bone for-
mation [9]. In addition, the increased bone resorptive
progress leads to the release of growth factors that increase
the growth of MM cells, leading to a vicious cycle of tumor
expansion and bone destruction. Apart from this, interac-
tions via adhesion between MM cells and bone marrow cells
result in the production of factors that promote angiogen-
esis and make the myeloma cells resistant to chemotherapy
[10, 11]. One example is that of T-regulatory and T-helper
cells. In MM patients the stimulated T-regulatory cells by
myeloma cells up-regulate pro-osteoclastic molecules and
have been implicated with disease progression, whereas T-
helper cells secrete IL-17 which promotes osteoclast forma-
tion [12–14]. On the other hand, Yaccoby et al. showed that
osteoblasts inhibit MM cell growth in most of the patients
[15].

Increased osteoclast activity

The main regulator of the osteoclast stimulation and activa-
tion is the system of the receptor activator of nuclear factor-
kappa B (RANK), its ligand (RANKL) and its decoy receptor,
osteoprotegerin (OPG). An important step in the osteoclast
stimulation is the binding of myeloma cells to the bone
marrow stromal cells (BMSCs). This adhesion is mediated by
interactions between a4b1 on myeloma cells and vascular
cell adhesion molecule 1 (VCAM-1) on BMSCs, and leads to
the up-regulation of a variety of pro-osteoclastic cytokines
and chemokines which directly or indirectly stimulate
osteoclast formation differentiation and activity. These
factors include interleukin-6 (IL-6), IL-1a, IL-1b, IL-11, macro-
phage-colony stimulating factor (M-CSF), tumor necrosis
factor alpha and beta (TNF-a and TNF-b), macrophage
inflammatory proteins-1 alpha and beta (MIP-1a and b),
parathyroid hormone-related peptide (PTHrP), vascular
endothelial growth factor (VEGF) and others [16–18]. These
factors are excreted by MM cells directly, or indirectly after
stimulation of bone marrow cells by the MM cells.

TNF Superfamily members – the RANK/RANKL signaling
pathway
RANK is a transmembrane signaling receptor. It is located on
the surface of osteoclast precursors [19, 20]. RANKL is
expressed by a range of cell types, including marrow stromal
cells and osteoclasts. Its expression is stimulated by cyto-
kines that stimulate bone resorption [21] such as parathyroid
hormone (PTH), 1,25-dihydroxy vitamin D3 and prostaglan-
dins [22, 23]. RANKL binds to its receptor on osteoclast
precursors and stimulates osteoclast differentiation forma-
tion and survival. These functions are mediated through the
nuclear factor kappa-B (NFkB) and p38 MAP-kinase pathways.
Apart from this, RANKL has direct enhancement effects on
mature osteoclasts that inhibit their apoptosis. The impor-
tance of the role of RANKL in osteoclastogenesis has been
shown in RANKL or RANK gene knockout mice. These
animals lack osteoclasts and as a result they develop osteo-
petrosis [24–27]. In the absence of RANKL almost no chemo-
kine with osteoclast activity can act.

OPG, another member of the TNF receptor superfamily, is
a soluble decoy receptor for RANKL [28]. It is produced by
several cells, including osteoblasts, and interacts with
RANKL, causing inhibition of its action, thereby reducing
osteoclastogenesis. The important role of OPG has been
shown in studies with knock-out mice. OPG deficient mice
develop severe osteopenia and osteoporosis [29–31]. An
abnormal RANKL/OPG ratio is found in the majority of
malignant bone disorders [32].

Myeloma cells turn the balance of the RANKL/OPG ratio in
favor of RANKL. In the bone marrow microenvironment, MM
cells play a double role: they induce the expression of RANKL
from stromal cells, while they directly express RANKL,
although in low amounts [33–37]. Apart from this they
decrease the OPG availability within the bone marrow micro-
environment. This is maintained in two different ways .The
MM cells reduce OPG secretion from osteoblasts and stromal
cells. In addition, they remove the remaining OPG by lysoso-
mal degradation [38, 39]. The up-regulation of RANKL, in
combination with down-regulation of OPG, leads to the
formation and activation of osteoclasts. Levels of RANKL and
OPG have been shown to correlate with clinical activity of
MM, severity of bone disease and poor prognosis[40]. In
individuals with MGUS, the RANKL/OPG is also increased
when compared to that in control subjects but remains
significantly lower than that in patients with myeloma [41],
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partly explaining the higher incidence of osteoporosis in
these patients.

Macrophage inflammatory proteins-1 alpha and beta
(MIP-1a, -b)
These two cytokines play an important role in the biology of
myeloma bone disease. Both are produced and secreted by
MM cells. MIP-1a, also known as chemokine (C-C motif)
ligand 3 (CCL-3), is a low molecular weight chemokine, which
belongs to the RANTES (regulated on activation, normal T cell
expressed and secreted) family of chemokines, primarily
associated with cell adhesion and migration. MIP-1a is
chemotactic for monocytes and monocyte-like cells, including
osteoclast precursors. MIP-1a induces late stage differentia-
tion in human osteoclast progenitors and promotes osteoclast
formation in a dose-dependent way in bone marrow cultures
[17, 42–44]. MIP-1a enhances the effects of RANKL and IL-6 on
osteoclast formation [45]. However, it has also been shown to
enhance osteoclast formation independent of RANKL. MIP-1a
and MIP-1b enhance the RANKL expression in stromal cells
[27]. MIP-1b is a highly homologous chemokine of MIP-1a that
similarly to MIP-1a induces the development of osteolytic
bone lesions [46].

Both MIP-1a and MIP-1b are produced and secreted by
myeloma cells. MIP-1a m-RNA has been detected in MM cells,
while MIP-1a protein was found elevated in the microenvir-
onment of MM patients in whom it correlated with stage and
disease activity. MIP-1a was also elevated in the blood of
myeloma patients with severe bone disorders, but not in
MGUS patients with increased bone resorption [41, 47]. Gene
expression profiling showed that MIP-1a is one of the genes
that is highly correlated with bone destruction in MM [48].

Furthermore, MIP-1a has direct action on myeloma cells,
since they express the receptor CCR5, promoting growth,
survival and migration of myeloma cells [49]. MIP-1a up-
regulates the expression of b1 integrin on MM cells, increas-
ing adhesive interactions between MM cells and marrow
stromal cells. This results in increased production of RANKL,
IL-6, VEGF and TNF-a by marrow stromal cells, which
further enhances MM cell growth, angiogenesis and bone
destruction [27].

Interleukin-3
IL-3 mRNA levels were found to be increased in myeloma
cells and IL-3 protein levels were found to be increased in
bone marrow plasma from MM patients. IL-3 in combination
with MIP-1a or RANKL significantly enhances human osteo-
clast formation and bone resorption compared with MIP-1a
or RANKL alone. IL-3 also stimulates the growth of myeloma
cells independently of the presence of IL-6. These data
suggest that increased IL-3 levels are present in the marrow
microenvironment of myeloma patients, increasing bone
destruction and tumor cell growth [50, 51].

Interleukin-6
IL-6 is a growth factor for both osteoclasts and myeloma
cells, promoting their survival and preventing their apopto-
sis. IL-6 causes an increase in the osteoclast precursors,
which leads to the increase in the number of mature
osteoclasts. The levels of circulating IL-6 and its receptor
(IL-6R) are increased in MM and correlate with stage,
advanced myeloma features and disease-free survival [52].
Levels of IL-6 are elevated in MM patients with osteolytic
bone disease when compared with MM patients without
bone disease, as well as in patients with MGUS [53].

Interleukin-1b
IL-1b has potent osteoclastogenesis activity: it enhances the
expression of adhesion molecules and induces paracrine IL-
6 production, resulting in osteolytic disease. IL-b has been
found to be increased in myeloma cell cultures [50]. Elevated
IL-1b m-RNA levels were also detected in MM patients,
while anti-IL-1b antibodies failed completely to abolish
osteoclastogenesis activity of myeloma bone marrow [54].

Tumor necrosis factor alpha (TNF-a)
High plasma levels of TNF-a have been found in patients
with MM [55]. TNF-a causes proteolytic breakdown of
I-kappa B (the inhibitor of NF-kB), leading to NF-kB activation
and enhancement of gene transcription, including IL-6 and
adhesion molecules, which are involved in promoting bone
resorption [56].

Hepatocyte growth factor (HGF)
Myeloma cells can transform HGF to its active form. HGF
plays an important role in osteoclast activation and angio-
genesis. HGF can up-regulate the osteoclast-like cell-
mediated IL-11 expression [57].

Vascular endothelial growth factor (VEGF)
VEGF plays a major role in tumor neovascularization and
has been recently implicated in osteoclastogenesis in MM. It
is excreted by myeloma cells and binds to VEGFR-1 receptor
that is mainly expressed by osteoclasts. It has a direct role
in enhancing osteoclast function and survival [11]. VEGF
stimulates the IL-6 production by stromal cells, while IL-6
enhances VEGF secretion by myeloma cells, suggesting the
existence of paracrine interactions among stromal and MM
cells [58].

Osteopontin
Osteopontin is a non-collagenous matrix protein which is
produced by different cells including osteoblasts and mye-
loma cells. It is involved in tumor metastasis, adhesion,
apoptosis and angiogenesis. Marrow cells from myeloma
patients with advanced disease produced increased levels of
osteopontin compared with that from asymptomatic MM or
MGUS patients. Furthermore, plasma osteopontin levels of
MM patients were significantly higher than those of MGUS
and controls, and correlated with both disease progression
and bone destruction. These observations suggest that
myeloma cells actively produce osteopontin, which contri-
butes to osteoclastic bone resorption [59].

Stromal-derived factor-1a (SDF-1a)
SDF-1a is another chemokine which is expressed by both
stromal and myeloma cells. MM patients have elevated
plasma levels of SDF-1a when compared with normal, age-
matched subjects. The SDF-1a levels have been correlated
with multiple radiological osteolytic lesions in MM patients.
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SDF-1a binds to its receptor CXCR4, which is widely
expressed on leukocytes, mature dendritic cells, osteoclast
precursors, and myeloma cells, and up-regulates the expres-
sion of the matrix degrading enzyme, matrix metalloprotei-
nase 9 (MMP-9), promoting the recruitment, migration and
activation of the osteoclasts [27].

Parathyroid hormone-related protein (PTHrP)
PTHrP is produced by a number of tumors that grow in bone
and mediates the development of bone metastases, particu-
larly of breast and lung cancer [60–62]. It is possible that
PTHrP stimulates bone resorption and mediates its effect by
up-regulating RANKL in osteoblasts via the PTH-R1 [62].
PTHrP has been shown to be expressed by myeloma cells
and PTHrP signaling, via the PTH-RI, increases expression of
RANKL in myeloma cells [63, 64].

Osteoblast suppression

The inhibition of osteoblasts is another crucial step in the
pathogenesis of myeloma bone disease. As myeloma burden
increases, osteoblast-driven bone formation is suppressed
which further results in the development of osteolytic bone
lesions. Osteoblast suppression is maintained even in
patients in long-term remission. Osteoblast inhibition is
maintained through the secretion of cytokines, which is the
result of interactions between MM cells and osteoblasts or
osteocytes [55].

Wnt signaling pathway
The osteoblast function is maintained by several pathways,
including the canonical Wingless-type (Wnt) pathway. Wnt
proteins bind to the Wnt receptor and its co-receptors LRP5/
LRP6 and lead to a stabilization of b-catenin. This results in
the increase of cytoplasmic levels of b-catenin, leading to
translocation into the nucleus. This event stimulates the
expression of osteoblastic target genes [65]. When the Wnt
signal is absent, b-catenin is phosphorylated and degraded by
the proteasome. Wnt antagonists prevent the binding of Wnt
glycoproteins to their receptors and include the following
molecules [66]. Members of the dickkopf (DKK) family and
sclerostin bind to the LRP5/LRP6 component, while secreted
frizzled-related proteins (sFRP), for example sFRP-2 and sFRP-
3, bind to Wnt proteins. Both result in a suppression of Wnt
signaling and a reduced osteoblast function.

DKK-1 is secreted by myeloma cells and has been shown
to inhibit differentiation of osteoblast precursor cells in vitro.
In MM patients with lytic lesions, immunohistochemical
analysis of bone marrow biopsies showed that myeloma cells
overexpress DKK-1. In fact, bone marrow plasma from newly
diagnosed MM patients contains nearly 3 times more DKK-1
protein compared to that from control subjects: marrow
plasma from patients with MM that contained >12 ng/ml of
DKK-1 inhibited osteoblast differentiation. Furthermore, gene
expression levels of DKK-1 correlated with extensive bone
disease [67]. DKK-1 is increased in the serum of MM patients
[68] and correlates with the extent of bone disease [69]. Serum
DKK-1 decreases in myeloma patients who respond to
therapy, but not in those who did not respond [70]. DKK-1 is
secreted in vivo mainly by myeloma cells. Furthermore, since
Wnt signaling in osteoblasts increases the expression of OPG
and downregulates the expression of RANKL [71, 72], inhibi-
tion of Wnt signaling promotes osteoclastogenesis. Taken
together, DKK-1 seems to be a key regulator of bone metabo-
lism in myeloma.

Soluble FRP-2 is secreted from MM cells and inhibits
mineralized nodule formation and osteoblast differentiation
induced by bone morphogenetic protein 2 (BMP-2) [73]. It
inhibits osteoblastic differentiation at multiple steps, not
only early osteoblastic differentiation to express alkaline
phosphatase (ALP), but also terminal differentiation to
acquire mineralizing properties. It is thought to be a decoy
receptor that interferes with Wnt binding to its receptor,
Frizzled. MM patients with advanced bone disease had
elevated expression of sFRP-2 in their myeloma cells [73].

Finally, sclerostin is a cysteine-knot-containing protein,
which is produced by osteocytes, inhibits canonical Wnt
pathway and thus inhibits osteoblast function [74]. Circulat-
ing sclerostin reflect bone marrow plasma sclerostin levels
[75]. In patients with multiple myeloma, sclerostin is over-
produced in the marrow microenvironment either by the
myeloma cells [76] or the osteocytes, and its circulating
levels correlate with advanced bone disease and abnormal
bone remodeling [77].

Activin-A
Activin is a member of the transforming growth factor-beta
(TGF-b) superfamily with complex effects on the bones.
Activin-A has been shown to inhibit bone formation and in
some studies promote osteoclastic bone resorption,
although this may prove to be context specific. Activin-A is
increased in the bone marrow of patients with myeloma
and serum level is increased in patients with newly diag-
nosed myeloma and associated with elevated bone resorp-
tion [78, 79]. Activin-A signaling occurs through the Activin
A type IIA receptor to inhibit osteoblastic bone formation.
Blocking activin-A signaling using a soluble ActRIIA murine
Fc fusion protein (ActRIImuRc) has been shown to prevent
activin A mediated osteoblast suppression, but has no effect
on osteoclast formation in vitro [80].

Diagnosis and monitoring of myeloma bone
disease

The diagnostic procedures that are used widely today in the
diagnosis and monitoring of myeloma related bone disease
include conventional radiography, computed tomography
(CT), magnetic resonance imaging (MRI) and positron emis-
sion tomography/CT (PET/CT).

Conventional radiography

It is the standard diagnostic procedure for the detection of
skeletal involvement, although it lacks sensitivity as it
requires a 30–50% of the trabecular bone loss to reveal
a detectable lytic lesion [81]. The skeletal survey should
include anteroposterior and lateral views of the skull, poster-
oanterior view of the chest, anteroposterior and lateral views
of the thoracic, lumbar and cervical spine (including an open
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mouth view), humeri and femora, and anteroposterior view
of the pelvis. In addition, symptomatic areas should also be
specifically visualized. Approximately 75% of patients with
multiple myeloma have abnormal skeletal radiographs. The
most common sites involved include the central skeleton, the
skull, and the femur, whereas involvement of distal bones is
not very frequent [27]. The osteolytic lesions of myeloma are
well circumscribed, and sclerosis of surrounding bone is
usually absent. In approximately 15% of patients, generalized
osteopenia is the only bone manifestation of myeloma [82]. In
cases of disease progression, skeletal survey should be
performed again [83].

Computed tomography

It is a sensitive tool for the detection of the bone-destructive
effects in MM as it can detect small osteolytic lesions,
unseen with plain radiographs. CT is not necessary for the
initial staging of patients with MM, but is useful for direct-
ing needle biopsy for histological diagnosis. Urgent CT may
be used when SCC is suspected and MRI is contraindicated
(intraorbital metallic foreign bodies, cardiac pacemakers)
due to patient intolerance or unavailability [27, 84]. A new
CT technique for the whole body with low dose radiation
(LDWBCT) has now been recognized as a simple and very
sensitive method for the depiction of lytic lesions in
myeloma patients, but its value is still under investigation.

Magnetic resonance imaging

It can sample a large volume of bone marrow and depict bone
marrow abnormalities in MM with greater sensitivity than
conventional radiography and CT. MRI should be performed
in all MM patients with negative skeletal survey [83]. Focal
lesions are identified in more than one half of patients
lacking osteolysis in plain radiography. The converse, detec-
tion of focal lesions on plain radiography without correspond-
ing MRI abnormalities, was seen in 20% of patients [27]. MRI
is a useful tool in the detection and staging of nonsecretory
and macrofocal myeloma or relapse. Whole spine MRI is
a staging tool in patients with solitary plasmacytoma of bone,
irrespective of the site of the index lesion. MRI plays a role in
determining the infiltration of the bone marrow and the
adjacent soft tissue structures. This can lead to detection of
bone marrow alterations, before bone destruction is detected
in conventional radiography or in CT scans [84–86]. Myeloma-
tous lesions of bone marrow can be classified into three
patterns: focal, diffuse and variegated. MRI pattern of bone
marrow involvement correlates with prognosis in MM. Dimo-
poulos et al. found that patients with diffuse pattern had
a median survival of 24 months; patients with variegated
pattern had 52 months, patients with focal pattern had 51
months while those with normal pattern had 56 months
( p = 0.001) [87]. MRI images accurately reflect response to
treatment by showing a decrease or resolution of focal lesions
seen on initial studies, whereas lytic lesions are seen on CT
even if a patient has complete remission (CR) on MRI.
Resolution of diffuse disease can also be identified [87].
Complete response to therapy, as accessed by MRI, favors
prolonged survival, especially among patients with a higher
number of focal lesions [87]. These data justify the wider
application of MRI in MM, as the appropriate imaging tool
that permits early detection of eventually devastating focal
lesions and as an independent staging tool with prognostic
implications [83].

Positron emission tomography/computed tomography
(PET/CT)

PET/CT is a technique that combines both anatomical and
functional characteristics. It consists of the injection of
labeled radiopharmaceuticals such as FDG, followed by tomo-
graphic imaging. It combines a high resolution contrast of pet
along with a high resolution of CT. Focal lesions show high
glucose utilization, due to their high metabolic rate [88].
Lammeren-Veneva et al. showed that, in comparison with
conventional radiography, PET-CT revealed more lytic lesions
with the exception of those in the skull [89]. In another study,
PET-CT was found to have 92% specificity and 85% sensitivity
in the detection of myelomatous involvement. This study
demonstrated the superiority of PET-CT in the detection of
extra medullary disease in comparison with MRI and radio-
graphic bone survey. PET-CT can also play an important role
in the assessment of response to treatment and mainly in
the most accurate definition of stringent complete response
in MM [90].

Bone markers

With the exception of MRI, imaging modalities do not
provide information about the rate of the bone turnover.
Bone remodeling in MM patients has been tried to be
monitored through biochemical markers. The assessment of
bone resorption has been made mainly through the urinary
and serum products of bone collagen degradation. These are
the C- and N-terminal cross-linking telopeptide of collagen
type-I (NTX, and CTX or ICTP, respectively) and the serum
levels of tartrate-resistant acid phosphatase type-5b
(TRACP-5b), an enzyme produced by activated osteoclasts.
For the evaluation of bone formation we can evaluate two
enzymes that are produced by the osteoblasts: the bone-
specific ALP (bALP) and the osteocalcin (OC) [84]. Coleman
et al. have shown that high levels of NTX correlated with
increased risk of disease progression and skeletal complica-
tions in comparison with low NTX levels ( p < 0.001) [85].
The levels of bALP correlated with risk of negative clinical
outcomes. Urinary NTX and serum ICTP are sensitive
markers for the identification of patients with increased risk
of early bone disease progression [86].

Treatment of myeloma bone disease

Radiation therapy

Radiotherapy is mainly used for the management of solitary
plasmacytoma, and less frequently when there is evidence of
symptomatic SCC, extensive and symptomatic lytic lesions,
and for the prevention of pathologic fractures. Approximately
20% of patients with MM required radiation therapy in the
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past, but since current novel agents work rapidly the need for
palliative radiotherapy has been decreased [91]. It should be
clear that radiotherapy can lead to delays in other treatments
including drugs that may be effective anti-MM agents but
quite radiosensitizing such as anthracyclines and proteasome
inhibitors. The International Myeloma Working group guide-
lines suggest that a low-dose radiation therapy (up to 30 Gy)
is useful as palliative treatment for uncontrolled pain, for
impending pathologic fracture, or impending SCC [92].
Upfront external beam radiation therapy is useful for patients
with plasmacytoma, extra medullary masses and SCC. How-
ever, radiotherapy for palliation and local disease control
should be used with caution taking into consideration the
prior history of treatment, response and the need for urgent
response. It should be limited, in order to spare the patient's
marrow function. Novel agents have decreased the need for
palliative radiotherapy.

Kyphoplasty and vertebroplasty

Vertebroplasty consists of percutaneous injection of poly-
methylmethacrylate (PMMA) into the vertebral body under
fluoroscopy guidance, and is used in the treatment of
painful vertebral compression fractures (VCFs). Approxi-
mately 80% of patients with pain unresponsive to medical
treatment experience pain relief [93]. The role of vertebro-
plasty has not been studied in MM patients. Kyphoplasty
represents a modification of vertebroplasty, where a balloon
is inflated prior to PMMA injection. This can stabilize the
fractured vertebral body, reduce kyphotic deformity and
restore vertebral height [94, 95]. According to the latest
IMWG guidelines, balloon kyphoplasty (BKP) should be
considered for symptomatic VCFs and is the procedure of
choice to improve QoL in patients with painful VCFs [92].
However risk for subsequent fracture significantly increases
in patients undergoing vertebroplasty or kyphoplasty com-
pared with that in patients with previous VCFs who were
not treated with either procedures [96].

Surgery

There should be a close cooperation and continuous Ortho-
pedic consultation regarding long-bone fractures, bony com-
pression of the spinal cord, or vertebral column instability
(grade D). Consideration and indications for surgery should
be done in consultation with the treating oncologist/hema-
tologist and the orthopedic and neurosurgeon to determine
when MM treatment can be safely restarted [92].

Bisphosphonates

Bisphosphonates are artificial analogs of pyrophosphates. In
comparison with natural pyrophosphates, bisphosphonates
are resistant to phosphatase induced hydrolysis [97]. Bispho-
sphonates cause osteoclast suppression. They bind to cal-
cium containing molecules such as hydroxyapatite [98].
Osteoclast-induced bone resorption causes exposure of
hydroxyapatite. Bisphosphonates bind to the exposed mole-
cules of hydroxyapatite. This fact leads to increased concen-
tration of bisphosphonates within the lytic lesions [98–100].
There are two main groups of bisphosphonates, each with
a differently proposed mechanism of action [98]. Non-nitro-
gen containing bisphosphonates induce osteoclast apoptosis
via their cytotoxic ATP analogs. On the other hand, nitrogen
containing bisphosphonates downregulate osteoclast activ-
ity by inhibiting the HMG-CoA reductase pathway. Etidro-
nate and clodronate are non-nitrogen containing
bisphosphonates. Zoledronic acid, ibandronate, pamidronate
and risedronate are nitrogen-containing bisphosphonates.
All bisphosphonates have similar physicochemical proper-
ties; however, their anti-resorbing activity is different. Their
activity is drastically increased when an amino group is
entered into the aliphatic carbon chain. Thus, pamidronate
is 100- and 700-fold more potent than etidronate, while
zoledronic acid and ibandronate have 10 000- to 100 000-fold
higher potency than etidronate, both in vitro and in vivo
[101]. Bisphosphonates also appear to affect the microenvir-
onment in which tumor cells grow and may have direct
anti-tumor activity [102–107]. Possible mechanisms include
the reduction of IL-6 secretion by BMSCs or the expansion of
gamma/delta T-cells with possible anti-MM activity. The
aim of bisphosphonates use is the reduction of SREs in
patients with myeloma bone disease [27].

Etidronate
Etidronate was found to be ineffective in two placebo-
controlled studies in myeloma patients [108, 109].

Clodronate
Two major, placebo-controlled, randomized trials have been
performed to date in MM. Lahtinen et al. reported the
reduction of new osteolytic lesions by approximately 50% in
myeloma patients who received oral clodronate for two
years. The benefits of clodronate were independent of the
presence of lytic lesions at baseline [110, 111]. McCloskey
et al. showed a survival advantage in patients who received
clodronate and who did not have vertebral fractures at
diagnosis (59 vs. 37 months), even though there was no
difference regarding overall survival in the two groups. After
one year of follow-up, both vertebral and non-vertebral
fractures as well as the time to first non-vertebral fracture
and severe hypercalcemia were reduced in the clodronate
group. At two years, the patients who received clodronate
had better performance status and less myeloma-related
pain than patients treated with placebo [112, 113].

Pamidronate
Pamidronate is an aminobisphosphonate which has been
administered either orally or intravenously. In one trial,
patients with at least one lytic lesion and advanced disease
were randomized to placebo or intravenous pamidronate
[114, 115]. In the pamidronate group, there was a reduction in
time to the first skeletal event and in the total number of
SREs per year. At nine months, the incidence of SREs was
nearly 50% lower in MM patients treated with pamidronate
compared with placebo (24% vs. 41%, respectively; p < 0.001),
and at 21 months the difference remained significant. Pain
scores and quality of life were also significantly improved in
the pamidronate group. In another trial patients were rando-
mized to receive either placebo or oral pamidronate, in
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addition to conventional therapy. There were no reduction in
SREs although there was reduction in severe pain. The overall
negative result of the study was possibly due to the low
absorption of orally administered bisphosphonates [116].

Zoledronic acid
In a randomized trial Berenson et al. compared the effects
of zoledronic acid and pamidronate. Both pamidronate at
a dose of 90 mg and zoledronic acid at doses of 2 mg and
4 mg in comparison with zoledronic acid 0.4 mg significantly
reduced SREs [117]. This trial did not show any superiority
of zoledronic acid in comparison with pamidronate, in
terms of SREs in myeloma population. In a large rando-
mized phase III, double-blind, study the effects of zoledronic
acid and pamidronate were compared [118]. Regarding time
to first SRE there were no differences between the study
groups. Patients treated with zoledronic acid (4 mg) showed
slightly lower skeletal morbidity rate. However, the use of
radiation to bone was significantly lower in patients treated
with 4 mg zoledronic acid compared with pamidronate. In
patients treated with zoledronic acid in comparison with
those treated with pamidronate, the levels of NTX showed
better normalization. A subsequent analysis of data from
a long-term (25-month) extension phase of this study
confirmed the equivocal findings that zoledronic acid and
pamidronate had similar efficacy in reducing the risk of
SREs in MM patients [119]. There is a relatively recent study
exploring the role of zoledronic acid in patients with
asymptomatic myeloma. No difference was observed regard-
ing the time to progression to symptomatic disease requir-
ing chemotherapy between patients receiving zoledronic
acid and the patients who were only observed. However,
SREs were reduced in the zoledronic acid group at progres-
sion (55.5%) vs. the observation group (78.3%; p = 0.041) [120].
In MRC-IX study, there was a comparison between intrave-
nous zoledronic acid (4 mg every 3–4 weeks or at doses
according to creatinine clearance rates) and oral clodronate
(1600 mg orally daily) in newly diagnosed patients with
symptomatic MM (n = 1960 evaluable for efficacy). Zoledronic
acid reduced the incidence of SREs in both myeloma
patients with and without bone lesions as assessed using
conventional radiography, compared to clodronate [121,
123]. The median number of SREs after a median period of
3.7 years was 35% for patients receiving clodronate versus
27% of patients receiving zoledronic acid ( p = 0.004). More
importantly, zoledronic acid reduced mortality and extended
median survival. Further subset analysis showed that this
treatment extended survival by 10 months over clodronate
for patients with osteolytic disease at diagnosis, whereas
myeloma patients without bone disease at diagnosis as
assessed using conventional radiography had no survival
advantage with zoledronic acid [122]. These results confirm
preclinical studies suggesting indirect and direct anti-mye-
loma effects of zoledronic acid [123].

Bisphosphonates adverse events

Even though bisphosphonate therapy is well tolerated in
patients with MM, clinicians should be alert for symptoms
and signs suggesting adverse events (AEs) and patients and
healthcare professionals should be instructed on how to
prevent and recognize AEs. Potential AEs associated with
bisphosphonate administration include hypocalcemia and
hypophosphatemia, gastrointestinal events after oral admin-
istration, inflammatory reactions at the injection site, and
acute-phase reactions after IV administration of aminobi-
sphosphonates. Renal impairment and ONJ represent infre-
quent but potentially serious AEs with bisphosphonate use.

Hypocalcemia
Hypocalcemia is usually relatively mild and asymptomatic
with bisphosphonate use in most MM patients. The incidence
of symptomatic hypocalcemia is much lower in MM patients
compared to that in patients with solid tumors. Although
severe hypocalcemia has been observed in some patients
[124] these events are usually preventable via the administra-
tion of oral calcium and vitamin D3. Patients should routinely
receive calcium (600 mg/day) and vitamin D3 (400 IU/day)
supplementation since 60% of MM patients have vitamin
D deficiency or insufficiency [125, 126]. In vitamin D deficient
patients there is an increase in bone remodeling. This fact
shows that MM patients should be calcium and vitamin
D sufficient [127]. Calcium supplementation should be used
with caution in patients with renal insufficiency.

Renal impairment
Bisphosphonate infusions are associated with both dose- and
infusion rate-dependent effects on renal function. The poten-
tial for renal damage is dependent on the concentration of
bisphosphonate in the bloodstream, and the highest risk is
observed after administration of high dosages or rapid infu-
sion. Both zoledronic acid and pamidronate have produced
acute renal damage or increases in serum creatinine [115,
119]. Patients should be closely monitored for compromised
renal function by measuring CrCl before administration of
each IV bisphosphonate infusion. Current guideline recom-
mendations [92] state that the dosages of zoledronic acid and
clodronate, when administered intravenously, should be
reduced for patients who have preexisting renal impairment
(CrCl 30–60 mL/min) but there are no clinical studies demon-
strating the efficacy of this approach. For patients with CrCl
between 30 and 60 mL/min, zoledronic acid dose should be
adjusted. The effect of zoledronic acid has not been studied
in patients presented with severe renal impairment (CrCl
<30 mL/min), and it is not recommended for these patients.
We suggest that pamidronate may be given at a dose of
90 mg infused over 4–6 h for myeloma patients with osteoly-
tic disease and renal insufficiency. Furthermore, serum crea-
tinine and CrCl should be measured before each infusion of
pamidronate or zoledronic acid, while BPs should not be
administered in short infusion times (<2 h for pamidronate
and less than 15 min for zoledronic acid). Bisphosphonate
therapy can be resumed after withholding zoledronic acid or
pamidronate for patients who develop renal deterioration
during therapy, when serum creatinine returns to within 10%
of baseline [92].

Osteonecrosis of the Jaw
It is an uncommon complication of intravenous bisphospho-
nates. It is potentially serious and its main characteristic is the
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development of exposed bone in the mouth. Incidence may
vary from 2 to 10% [128–130]. Risk factors include the invasive
dental procedures, poor oral hygiene, older age, increased
duration and number of bisphosphonate infusions, and zole-
dronic acid use [129, 130]. In approximately one half of
patients, ONJ lesions will heal [131], but in the other 50% of
patients who restart bisphosphonate after having stopped it,
recurrence of ONJ will develop. According to recent IMWG
guidelines preventive strategies should be adopted to avoid
ONJ [85]. A dental examination is necessary before beginning
the bisphosphonate course. Patients should also be alerted
regarding dental hygiene. All existing dental condition should
be treated before initiation of bisphosphonate therapy. After
bisphosphonate treatment initiation, unnecessary invasive
dental procedures should be avoided, and dental health status
should be monitored on an annual basis. Patients' dental
health status should be monitored by a physician and
a dentist. Dental problems should be managed conservatively
if possible. If invasive dental procedures are necessary there
should be temporary suspension of bisphosphonate treatment.
The panel consensus suggests the interruption of bispho-
sphonates before and after dental procedures for a total of 180
days (90 days before and 90 days after procedures such as
tooth extraction, dental implants and surgery to the jaw).
Bisphosphonates do not need to be discontinued for routine
dental procedures including root canal. Initial treatment of
ONJ should include discontinuation of bisphosphonates until
healing occurs. The physician should consider the advantages
and disadvantages of continued treatment with bisphospho-
nates, especially in the relapsed/refractory MM setting. Pre-
ventive measures during bisphosphonate treatment have the
potential to reduce the incidence of ONJ about 75% [132].
Prophylactic antibiotic treatment may prevent ONJ occurrence
after dental procedures [133]. Management of patients
depends on ONJ stage. Stage I (asymptomatic exposed bone;
no soft tissue infection) can be managed conservatively with
oral antimicrobial rinses. Stage II (exposed bone and asso-
ciated pain/swelling and/or soft tissue infection) requires
culture-directed long-term and maintenance antimicrobial
therapy, analgesic management and occasionally, minor bony
debridement. Stage III disease (pathological fracture and
exposed bone or soft tissue infection not manageable with
antibiotics) requires surgical resection in order to reduce the
volume of necrotic bone in addition to the measures described
in stage II [134].When ONJ occurs initial therapy should include
discontinuation of bisphosphonates until healing occurs [98].

The administration of medical ozone (O3) as an oil
suspension directly to the ONJ lesions that are below �2.5 cm
may be another possible therapeutic strategy for those
patients who fail to respond to conservative treatment. In
such patients, there are reports suggesting that ONJ lesions
resolved with complete reconstitution of oral and jaw tissue,
with 3–10 applications [135, 136]. In addition, treatment with
hyperbaric oxygen has been reported to be helpful.

Future treatment options

RANKL antagonists
Preclinical models of MM demonstrated that RANKL inhibition
can prevent bone destruction from MM. RANKL inhibition with
recombinant RANK-Fc protein not only reduced MM-induced
osteolysis, but also caused a marked decline in tumor burden
[35, 137]. Similar results were obtained using recombinant OPG
for the treatment of MM-bearing animals [138]. These data
gave the rationale for using RANKL inhibition in the clinical
setting.

Denosumab, a fully human monoclonal antibody, has
showed high affinity and specificity in binding RANKL and
inhibits RANKL-RANK interaction, mimicking the endogen-
ous effects of OPG. In knock-in mice with chimeric (murine/
human) RANKL expression, denosumab showed inhibition
of bone resorption [139].

In a phase I trial, 54 patients with breast cancer (n = 29) or
MM (n = 25) with osteolytic lesions received a single dose of
denosumab or pamidronate. Denosumab decreased bone
resorption within 24 hours of administration, as reflected by
levels of urinary and serum NTX. This was similar in
magnitude but more sustained than with intravenous pami-
dronate [140]. These results were confirmed in another phase
I trial, in which denosumab was given at multiple doses [141].

In a phase II trial, the ability of denosumab (120 mg given
monthly as a subcutaneous injection) to affect bone resorp-
tion markers and monoclonal protein levels in MM patients,
who relapsed after response to prior therapy, and in patients
who responded to most recent therapy and had stable
disease for 3 or more months was evaluated. No patient
experienced complete or partial response (�50% reduction in
M-protein) but seven patients had maximum reduction of
�25% in serum M-protein. Bone resorption markers were
reduced by more than 50% with denosumab [142].

In another phase II trial, Fizazi et al. evaluated the effect
of denosumab in patients with bone metastases and elevated
urinary NTX levels despite ongoing intravenous bisphospho-
nate therapy. Patients were stratified by tumor type (total 111
patients; nine patients with multiple myeloma, 50 patients
with prostate cancer, 46 patients with breast cancer and six
patients with another solid tumor) and screening NTX levels
and randomly assigned to receive subcutaneous denosumab
180 mg every four or every 12 weeks or continue intravenous
bisphosphonates every four weeks. Denosumab normalized
urinary NTX levels more frequently than the continuation of
intravenous bisphosphonate (64% vs. 37% respectively;
p = 0.01) and reduced on-study SREs compared to intravenous
bisphosphonate (8% vs. 17%) [143]. This study showed that
denosumab inhibits bone resorption and prevents SREs even
in patients who are refractory to bisphosphonate therapy.

A meta-analysis of major phase 3 studies comparing
denosumab versus zoledronic acid that included mainly
patients with bone metastases due to solid tumors showed
that denosumab was superior in terms of delaying the time
to first on-study SRE by 8 months and reducing the risk of
the first SRE by 17%. No difference between the two drugs
was reported regarding disease progression and overall
survival. Hypocalcaemia was more common in denosumab
arm, while ONJ was similar with the two drugs [144].

Denosumab appears to have little toxicity, mainly asthe-
nia, and multiple phase III trials of denosumab in patients
with bone metastasis are ongoing. However it is crucial to
mention that RANKL is involved in dendritic cell survival
and that the anti-RANKL strategy may have an effect on the
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immune system and a possible increase in infection rate,
especially in cancer patients who have already had severe
immunodeficiency. For MM patients, while denosumab was
comparable to zoledronic acid with respect to the occur-
rence of SREs, inferior survival occurred in denosumab
compared to zoledronic acid-treated patients, but this was
a subset analysis from a large phase III trial that involved
mostly solid tumor patients with metastatic bone disease
[145]. Interpretation is limited based on the small numbers
of MM patients who were enrolled in the trial and imbal-
ance in baseline disease characteristics.

Activin-A inhibitors

Sotatercept (ACE-011) is a novel fusion protein of the
extracellular domain of the activin receptor IIA (ActRIIA)
and human immunoglobulin G (IgG) Fc domain with potent
inhibitory effect on activin, enhancing the deposition of new
bone tissue and preventing bone loss. In the preclinical
setting, RAP-011, a murine counterpart of sotatercept, pre-
vented the formation of osteolytic lesions in a murine MM
model by stimulating bone formation but with no effect on
osteoclast activity [146].

In a phase 1 study, a single-dose of sotatercept decreased
bone resorption and increased bone formation in healthy
postmenopausal volunteers with no severe AEs [147]. In
a multicenter phase IIa study we evaluated the safety and
tolerability of sotatercept and its effects on bone metabolism
and hematopoiesis in newly diagnosed and relapsed MM
patients. Patients were randomized to receive four 28-day
cycles of sotatercept (0.1, 0.3, or 0.5 mg/kg) or placebo. Patients
also received six cycles of combination oral melphalan,
prednisolone, and thalidomide (MPT). Thirty patients were
enrolled; six received placebo and 24 received sotatercept. In
patients without bisphosphonate use, anabolic improvements
in bone mineral density and in bone formation relative to
placebo occurred, whereas bone resorption was minimally
affected. Increases in hemoglobin levels, versus baseline, and
the duration of the increases were higher in the sotatercept-
treated patients, with a trend suggesting a dose-related effect
[148]. Further research is needed to support these findings.

Moreover, increased activin-A secretion was enhanced by
lenalidomide and was inhibited by the addition of an activin
A-neutralizing antibody. This effectively restored osteoblast
function and subsequently inhibited myeloma-related osteo-
lysis without abrogating the cytotoxic effects of lenalidomide
on malignant cells [149] and thus supporting the combination
of lenalidomide with an anti-activin-A molecule.

DKK-1 antagonists
DKK-1 plays an important role in the dysfunction of osteo-
blasts observed in MM. The production of this soluble Wnt
inhibitor by MM cells inhibits osteoblast activity, and its
serum level reflects the extension of focal bone lesions in MM
[67, 150]. Serum DKK-1 is increased not only in symptomatic
MM patients at diagnosis but also in relapsed MM, correlating
with advanced disease features and the presence of lytic
lesions, while serum DKK-1 levels of asymptomatic patients
at diagnosis and plateau do not differ from control values
[68, 151].
BHQ880, a phage-derived IgG antibody, the first-in-class,
fully human anti-DKK-1 neutralizing antibody, seems to
promote bone formation inhibiting tumor-induced osteoly-
tic disease in preclinical studies [152]. Inhibiting DKK-1
with BHQ880 in the 5T2MM murine model of myeloma
reduced the development of osteolytic bone lesions and
in vivo growth of MM cells [153]. Finally in a recent study in
humans BHQ880 managed to increase bone strength in the
majority of myeloma patients with relapsed and/or refrac-
tory disease [154].

Sclerostin antagonists
Circulating sclerostin is elevated in patients with myeloma
and extended bone disease [77]. Romosozumab is
a humanized monoclonal antibody that targets sclerostin. In
a phase II study in women with postmenopausal osteoporo-
sis, romosozumab demonstrated increases in the bone
mineral density of the lumbar spine after 12 months of
therapy [155]. Studies in MM are going to start soon.

Effects of antimyeloma agents on bone metabolism

Bortezomib

Bortezomib is a first-in-class proteasome inhibitor with
known activity against myeloma. Bortezomib plays an impor-
tant role in osteoclast function and differentiation. It affects
both late and early stages of osteoclast differentiation causing
reduction of subsequent bone resorption [156–158]. Clinical
trials with bortezomib indicated that it may also increase
osteoblast activity and induce new bone formation. In mice
bortezomib induces mesenchymal stem cells to differentiate
into osteoblasts [159]. Bortezomib upregulates the transcrip-
tion factor Runx2/Cbfa1 activity in human osteoblast progeni-
tors and osteoblasts [160]. Bortezomib administration in
relapsed/refractory patients resulted in a significant reduction
of DKK-1, enhancement of bone formation and increase in
bone mineral density [161–163]. Furthermore, bortezomib in
combination with thalidomide and dexamethasone (VTD) as
consolidation therapy post autologous transplantation pro-
duces no SREs in patients with no progressive disease,
indicating that patients who respond to consolidation may
not need concomitant bisphosphonate administration [164].

Immunomodulatory agents

Immunomodulatory drugs (IMiDs), such as thalidomide,
lenalidomide and pomalidomide, are highly active agents in
the treatment of both newly diagnosed and relapsed/refrac-
tory MM. These agents also alter interactions between bone
marrow microenvironment and malignant plasma cells, and
modify abnormal bone metabolism in MM [27].

Thalidomide almost completely blocks RANKL-induced
osteoclast formation in vitro. In relapsed/refractory MM pati-
ents, intermediate dose of thalidomide (200 mg/d) in combi-
nation with dexamethasone produced a significant reduction
of serum markers of bone resorption [C-telopeptide of
collagen type-I (CTX) and TRACP-5b] and also of sRANKL/OPG
ratio [165].
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Lenalidomide also inhibited osteoclast formation, by
targeting PU.1, a critical transcription factor for the develop-
ment of osteoclasts, and downregulating cathepsin K. The
downregulation of PU.1 in hematopoietic progenitor cells
resulted in a complete shift of lineage development toward
granulocytes. Lenalidomide also reduced the serum levels of
sRANKL/OPG ratio in MM patients [166]. However, lenalido-
mide seems to have modest or no effect on bone formation
of myeloma patients [167].

Pomalidomide, like thalidomide, blocks RANKL-induced
osteoclastogenesis in vitro, even at concentrations of one
mM, which is similar or even lower than that achieved
in vivo after the therapeutic administration of this agent.
Pomalidomide downregulates transcription factor PU.1,
affecting the lineage commitment of osteoclast precursors
toward granulocytes instead of mature osteoclasts [168].

IMWG recommendations for treatment of
myeloma-related bone disease

The International Myeloma Working group recently pro-
duced recommendations regarding the management of
myeloma-related bone disease. The IMWG experts recom-
mended that all patients with MM, who are receiving anti-
myeloma therapy with or without osteolytic bone lesions, as
well as patients with osteopenia or osteoporosis due to MM
should receive bisphosphonates. Intravenous pamidronate
and zoledronic acid are recommended for the prevention of
SREs in patients with active disease due to their efficacy in
SREs reduction. Intravenous zoledronic acid has shown
better efficacy in SREs prevention compared with oral
clodronate. Zoledronic acid is recommended for MM
patients with bone disease at diagnosis rather than CLO.
This is because ZOL has shown better survival benefit and
has potential antimyeloma activity. MM patients who are
ineligible for transplantation may benefit from the combina-
tion of antimyeloma treatment with zoledronic acid. In
patients with asymptomatic MM of low and intermediate
risk, bisphosphonates are recommended when dual-energy
X-ray absorptiometry (DXA) scan reveals osteoporosis. For
patients with high-risk asymptomatic MM, or if it is unclear
whether bone loss is MM or age related, schedule and dose
of bisphosphonates should follow those of symptomatic
MM, especially in patients with abnormal MRI pattern.
Intravenous bisphosphonates should be administered at 3-
to 4-week intervals to all patients with active MM. Zoledro-
nic acid improves OS and reduces SREs over clodronate in
patients who have been treated for more than two years;
thus it should be given until disease progression in patients,
not in CR or a very good partial remission (VGPR) and
further continued at relapse. There is no similar evidence
for pamidronate. Zoledronic acid and pamidronate should
be discontinued after 1 or 2 years in patients in CR or VGPR
because of the higher rates of ONJ [92].
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