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Abstract 

This basically anatomical study focuses on two items; firstly, the establishment of a system for the 

cartographic subdivision of the neopallium; secondly, the topographical correlation of extracranial 

landmarks and intracranial sites on the neopallium. The surface of the neopallium was subdivided 

into 15 Sectors with reference to a newly introduced pattern of Primary Sulci. The topographical 

link between extracranial landmarks and certain intracranial sites (i.e., neopallium Sectors) was 

elaborated by using a simple stereotactic device and a computer-assisted measurement device. 

Measurements were performed between points on the head´s outer surface and on the isolated brain. 

The introduction of an anatomical three-dimensional Coordinate System was an essential key issue 

for this investigation. This setting facilitated the measurements and calculations of the so-called 

Indirect Distances that were characterized by their alignment along the three orthogonal axes (x, y, 

z) of the anatomical Coordinate System. The inter-individual comparison (16 adult horses [Equus 

caballus]) of the Indirect Distances revealed that each Sector Center lay within a distinct 

morphometric Residence Area. The measured and calculated data also showed that each Sector 
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Center could be assigned to its proper extracranial landmark that – in comparison with other 

landmarks – was best suited for the optimal allocation of the Sector Center Point. 

Key words: brain cartography, encephalometry, craniometry, landmark 

 

 

INTRODUCTION 

The equine telencephalon recently attracted major scientific attention in veterinary medicine 

[16, 24, 34]; however, stereotactic maneuvers were performed in dogs [30], but not in horses 

(Equus caballus). Accordingly, our morphometric study was designed to elucidate the 

topographical relations between extracranial landmarks and intracranial sites on the neopallium. 

Previously, the applicability and usefulness of such extra-intra measurements and calculations were 

demonstrated in the field of equine craniometry [7] with special emphasis on the so-called Indirect 

Distances in a three-dimensional Coordinate System. 

Data from numerous equine craniometric studies [7, 10, 18, 19, 22, 25, 26], various imaging 

procedures [2; 12, 16, 32, 33] and some electrophysiological approaches [1, 3, 6] are currently 

available. However, they appear limited in their methodical scope because a topographical link is 

missing between the two subjects of interest, i.e. skull (head surface) and brain. Kramer et al. used 

extracranial landmarks for a surgical approach to the brain [20]; Wijnberg, van der Ree, and van 

Someren used extracranial landmarks for the placement of electrodes for electroencephalography 

[35], but a comprehensive cartographic guideline is still not available.  

This may, in part, be due to the lack of a uniform reference system for the horse's head, and 

– in particular – to the very complex and heterogenous surface architecture of the equine 

neopallium [4, 9, 24]. The recently elaborated cartographic pattern subdividing the surface of the 

equine neopallium [5, 13] was applied in this study as a promising tool to combine both, landmarks 

on the head and distinct sites on the brain’s surface, for a comprehensive description of the 

topographical extra-intra relations. In order to allow the unanimous identification of the sulci (i.e., 

their courses and depths; cartographic pattern) the isolation of the brain from the cranial cavity was 

assumed to be indispensable at the present early state of this pilot study. 

 

MATERIAL AND METHODS 

Specimens 
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The heads of 16 adult warm-blooded horses were fixed by perfusion with 10 per cent 

formalin via the left A. carotis communis shortly after euthanasia. The horses had been euthanized 

by medical staff at the Clinic for Horses (University of Veterinary Medicine Hannover, Hannover, 

Germany) to be used in the dissection courses of the Institute of Anatomy at the same university. 

No animals were exclusively euthanized for this study. All related procedures were carried out in 

accordance with the German Federal Law, i.e., the Protection of Animals Act (Tierschutzgesetz § 4, 

§ 7, § 7a) as well as the Directive of the European Parliament and of the Council for the Protection 

of Animals Used for Experimental and other Scientific Purposes (2010/63/EU). The project was 

reported to and approved by the Animal Welfare Officer of the University of Veterinary Medicine 

Hannover, Hannover, Germany (TVO-2018-V-70 of 4 September 2018).  

 

Settings 

The heads were frozen and longitudinally cut 15 mm to the right side of the Median Plane 

(to avoid damage to the left hemisphere). Then, the left half was placed on the stereotactic apparatus 

(the section plane lying on a specimen table). A simple stereotactic apparatus was built as 

previously described in detail [13]. Briefly, the specimen table was flexibly connected with a fixed 

base plate; hence, it could be lifted and adjusted to standardized angles (0 and 90 degrees). It also 

had scaled guide bars (mm units) on its sides and, therefore, could be shifted precisely back and 

forth and side to side. Additionally, a drill machine was mounted in a stable vertical position above 

the specimen table (wood drill bit with a diameter of 3 mm). 

To ensure a uniform positioning of the different heads on the specimen table, the 

establishing of a uniform extracranial reference line (like for example the Frankfurt Line in human 

medicine) was indispensable. Hence, the Hannover Line was established: This ran along the Crista 

facialis and extended to the head’s caudal end. Accordingly, the head was placed in such a way that 

the Hannover Line was always parallel to the longitudinal margin of the specimen table. 

A three-dimensional anatomical Coordinate System (Figure 1) was established by using 

three extracranial reference planes, i.e., firstly, the horizontal plane called Hannover Plane (at the 

level of the Hannover Line); secondly, the Transverse Plane cutting the Foramen supraorbitale; 

thirdly, the Median Plane. These planes were orthogonal, and all met in the so-called Zero Point of 

the head (ZP) and represented the three spatial axes x, y and z (Figure 1). 

This setting allowed drilling at different angles (i.e., 90 degrees in the lateral view and 0 

degrees in the dorsal view) and at different sites, i.e., at the so-called Drilling Points (D). The 



4 

Drilling Points were topographically related to palpable anatomical landmarks, i.e., Foramen 

supraorbitale, Crista facialis, Arcus zygomaticus, Margo orbitalis, Median Plane. Three Drilling 

Points were placed parallel to the Hannover Line, three parallel to the Median Plane (Figure 2). This 

stereotactic drilling at the selected extracranial Drilling Points (D) yielded intracranial Target Points 

(T) at the internal surface of the Calvaria and on the brain.  

On the carefully removed brain, the Facies convexa of the neopallium was subdivided into 

15 Sectors (Figure 3), as previously described [5, 13]. The Sectors were delineated by the Primary 

Sulci and by auxiliary lines topographically related to the Primary Sulci. The center of each Sector 

was designated as the Sector Center Point (SCP). Additionally, the rostral pole (RP) and the caudal 

pole (CP) of the neopallium were marked (Figure 3).  

 

Measurements and calculations 

Measurements were performed on the outside of the head (craniometry) and – after brain 

removal from the cranial cavity – on the surface of the isolated brain (encephalometry) using the 

scales of the moveable specimen table of the stereotactic apparatus that was shifted in either the 

longitudinal or transversal direction. Measurements on the macerated skulls (craniometry) were 

performed by using the Faro® Fusion measurement device (Faro Europe, Stuttgart, GER) together 

with the operating software DELCAM PowerINSPECT (DELCAM, Birmingham, UK) as 

previously described [7, 22, 26]. 

The measured distances (Table 1) – designated as Indirect Distances – were strictly aligned 

parallel to the x-, y- and z-axes of the head/skull/brain in accordance with the anatomical 

Coordinate System (Figure 1). On the isolated brain, the longitudinal axis was recognized by the 

Target Points that lay on a line parallel to the Hannover Line and Median Plane of the head/skull, 

respectively; the Zero Point was an essential reference point (Figure 4). 

Determining the Indirect Distances between extracranial landmarks or the Zero Point head 

(ZP) and sites on the brain (SCPs) – “extra-intra distances” – was performed in three steps. Step 1 

(Craniometry): The Indirect Distance between an extracranial landmark (or the ZP) and an 

extracranial Drilling Point was measured on the skull (Figure 5, blue arrows). Step 2 

(Encephalometry): The Indirect Distance between a Target Point on the neopallium and a selected 

SCP was measured on the isolated brain (Figure 5, yellow arrows). Step 3 (Calculation): The 

Indirect Distance between the extracranial landmark (or the ZP) and the SCP was calculated by 
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means of simple arithmetic addition or subtraction, depending on the topographical relation (Figure 

5, purple dotted arrows).  

Finally, for the metric and arithmetic data of all 16 horses (Table 2), the mean values, the 

standard deviations and the differences between the longest and shortest Indirect Distances were 

calculated using Microsoft® Excel® 2016 (Microsoft Corporation, Redmond, WA, USA). 

Diagrams displaying the positions of the SCP in the Coordinate System were generated with 

Microsoft Excel and subsequently graphically supplemented (Adobe Photoshop CS6 Extended 

13.0.1; Adobe Systems, San Jose, CA, USA) to highlight distinct sites (Figure 6). 

 

RESULTS 

All Sector Center Points (SCP) were always located dorsal and caudal to the Zero Point head 

(ZP), i.e., caudal to the Foramen supraorbitale and dorsal to the Hannover Plane. The rostral pole of 

the neopallium lay on average on the same transverse plane as the ZP. In the inter-individual 

comparison, the topographical relations between the SCPs of the neopallium and the ZP varied. 

However, a common basic pattern of localization was obvious, meaning that each of the 15 SCPs (I-

XV) – if compared in the 16 horses – had its position within a certain limited Residence Area 

(Figure 6; see color-coded areas). 

These topographical relations between the SCPs of the neopallium and the ZP were 

visualized by using the mean values of the respective Indirect Distances mentioned above and by 

projecting their Mean Localizations onto the surface of the head (Figure 7, Figure 8). This allowed 

identifying the so-called Mean Localization of each SCP with reference to the three reference 

planes. 

The values of the Indirect Distances between extracranial landmarks and SCPs on the 

neopallium showed inter-individually variable characteristics, depending on the spatial axis and the 

selected landmark. Certain landmarks and the Indirect Distances related to them showed the least 

inter-individual differences, depending on the spatial axis (Table 2) and on the selected SCP. Such 

landmarks, one for each SCP in the respective spatial axis, is recommended as the guiding structure 

to the respective SCP. With reference to these guiding structures, each SCP could be located in an 

area smaller than 23 mm in diameter. The calculated Indirect Distances between landmarks and the 

SCPs other than those listed in Table 2 showed more inter-individual differences; these data (not 

listed here) are available on request.  
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Considering the longitudinal axis (Table 2), one landmark, i.e., the most dorsal and caudal 

point on the Arcus zygomaticus, is particularly recommended to be used as the most suitable 

guiding structure to SCP I and all subsequent caudal SCPs. As for SCPs located further rostrally, 

other landmarks (Table 2) are recommended because the Indirect Distances starting from these 

landmarks showed smaller inter-individual differences. In the vertical axis (Table 2), the Porus 

acusticus externus is particularly recommended for most of the ventral, dorsal and laterocaudal 

SCPs because the Indirect Distances related to these showed the least inter-individual differences. 

In contrast, the most ventral point on the Margo orbitalis is recommended as the guiding structure 

for lateral SCPs (Table 2). The Median Plane was a suitable guiding structure for the Indirect 

Distances in the transversal direction (z-axis; Table 2). However, the Foramen supraorbitale is also 

recommended, e.g., as the guiding structure to the SCPs near the Fissura sylvia (Table 2).  

 

DISCUSSION 

Measurements and calculations of distances between extracranial landmarks and specific 

sites on the brain require appropriate anatomical reference systems in combination with an adequate 

stereotactic device to facilitate, firstly, the standardized and reproducible placement and 

probing/drilling on the head and, secondly, the reproducible placement of the isolated brain for the 

purpose of measurements on the neopallium. 

The stereotactic apparatus used in this study differed from those that had been applied 

previously on pigs [27], cattle [21] or dogs [17, 30]. In those settings, a frame was attached to the 

intact head and the drill bit or probe was movably attached to it. Our setting was simpler and yet 

effective because it overcame the initial challenge in terms of uniform specimen positioning by 

using heads cut in the paramedian plane. This had several advantages. Firstly, it allowed removal of 

the brain (for separate measurements); secondly, it allowed adjusting of the Median Plane of the 

stereotactic system (i.e., the specimen table) with the paramedian plane of the specimen (i.e., the 

cutting surface of the head and brain); thirdly, it allowed adjusting the specimens along the table’s 

scaled margins that represented the x-axis and y-axis of the stereotactic and anatomical Coordinate 

System. Head and brain, though separated from each other, bore identical marks (i.e., external 

Drilling Points and Target Points on the neopallium.), which were identically aligned along the 

Hannover Plane and the Median Plane [13], i.e., two of the three reference planes. 

The three established orthogonal planes formed the basis for the 3-D-navigation, for the 

measurements of the horse's head and brain, and for the distance calculations. In human medicine, 
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similar patient-related Coordinate Systems and reference planes (like the Frankfurt Plane) are 

commonly used in imaging or surgery [14, 29]. 

Previous systems for orientation appeared less suitable for this study because they referred 

to two planes only instead of three [31] or were only used for the examination of the brain [16], i.e., 

without reference to extracranial landmarks.  

The Zero Point of the head (ZP) within our anatomical Coordinate System was a valuable 

morphometric feature as it could be easily projected onto the surface of the head in the lateral and in 

the dorsal view. Previously, such central reference points had been used in equine craniometry [11], 

however, to calculate virtually instead of physically palpable points and – as such – were not 

suitable to serve as anatomical guiding structure. The position of the ZP was deduced from the 

combination of the three designated orthogonal standard planes and, hence, could be regarded as a 

proportional parameter that partially adjusted imbalances related to individual variations in size and 

shape of the head and brain. 

The distinct, appropriately narrow allocation and designation of sites on the neopallium was 

challenged by the complex gyration pattern, which is known to be extremely heterogenous in the 

equine brain [9, 23, 24]. The subdivision of the Facies convexa into 15 Sectors, in accordance with 

the recently introduced cartographic mapping system [5, 13], was the key element for the objective 

and reproducible orientation on the neopallium. Hence, the use of isolated brain specimens for the 

unanimous determination of these Sectors was regarded as an indispensable technical prerequisite; 

this method was preferred instead of computer tomography (CT) and/or magnetic resonance 

imaging (MRI) at this initial state of our study. Such imaging procedures are of course in the scope 

of future investigations now that the basic topographic extra-intra relations (skull vs. brain) and the 

neopallium’s cartographic pattern (Sectors) have been principally elucidated.  

The morphometric procedure applied here highlighted the topography of the equine brain in 

situ because, for the first time, extracranial landmarks were topographically linked to selected 

cerebral surface structures in horses (extra-intra calculations/measurements). The immanent 

biological variability of both, skull and neopallium [24], commonly influences the results of any 

morphometric procedure. To exclude growth-related differences, only adult horses (>5 years) were 

used in this study, bearing in mind that age-related differences in equine skulls have not been 

detected in horses older than five years [7]. In terms of this, our pool of specimens (adult, warm-

blooded horses) was homogeneous. 
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Considering that morphometric data of two biologically variable systems (skull and 

neopallium) were linked in this study, one could not expect to find a certain SCP in the precisely 

identical spot in different horses. Yet, the comparison of data revealed that each SCP was localized 

in a limited space, i.e., the Residence Area. This finding is in line with general morphometric 

principles that apply in a three-dimensional system [7, 26]. Consequently, the Residence Area is 

regarded as a valuable descriptive tool of allocation of the SCPs. 

Several extracranial landmarks on the equine head had been recommended [7, 20, 28, 36] 

and were examined in this study. However, our data emphasized that one particular landmark is not 

equally suitable for all sites on the neopallium in general. Rather, the choice of a distinct, specific 

landmark (i.e., the guiding structure) is recommended for the most precise navigation to the 

requested target site (SCP): The lists of selected data of Indirect Distances presented here and in the 

much more comprehensive data set including Direct Distances [13] are also proposed to be used as 

manuals of reference, indicating the appropriate guiding structure for accurate maneuvers to an 

SCP. 

The cartographic system of Sectors [5, 13] is emphasized as a useful supplementary means 

for the distinct descriptive allocation of investigated sites in the case that certain techniques like, 

e.g., previously performed diagnostic electroencephalographic procedures [36], imaging studies 

[16] or surgery [20] should be further developed and elaborated for the application in horses. For 

example, the area that was electrophysiologically [3, 6] or histologically [8, 15] identified as the 

motor cortex is very likely to be partially located in Sector XI of the neopallium. 

 

CONCLUSIONS 

The elaborated map of standardized Sectors on the neopallium was an effective tool to 

overcome the orientation problems caused by the heterogenous surface architecture of the equine 

brain. The proposed Sectors were adequately small enough to perform the distinct and unanimous 

allocation and designation of targeted sites on the brain. The Coordinate System specifically 

elaborated for the equine head facilitated the topographical, metric linkage of extracranial, palpable 

landmarks and the neopallium’s surface Sectors. The choice of the appropriate landmarks on the 

head’s outer surface enabled the reproducible navigation towards the different Sectors. The 

presented anatomical data are supposed to represent a substantially sound basis for studies by means 

of diagnostic imaging systems like CT or MRI. 
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Table 1. Compilation of measured Indirect Distances between points of interest on the outside of 

the head and skull (craniometry), of measured Indirect Distances between points on the surface of 

the isolated brain (encephalometry) and of calculated distances between extra- and intracranial 

points. 

Measurements on 

head and macerated skull: 

Measurements on 

isolated neopallium: 

Calculations of 

extra-intra distances: 

From – To From – To From – To 



11 

L – D T – SCP L – SCP 

ZP – L T– RP ZP – SCP 

ZP – D  T – CP ZP – CP 

  ZP – RP 

L Landmark on head/skull 

D Drilling Point on head/skull 

T Target Point on brain 

ZP Zero Point of head 

SCP Sector Center Point on neopallium 

RP Rostral pole of neopallium 

CP Caudal pole of neopallium 

 

 

Table 2. Compilation of selected Indirect Distances between an extracranial landmark and a Sector 

Center Point (SCP, I-XV) of the neopallium or the rostral/caudal pole of the neopallium (RP, CP) in 

a longitudinal (x-axis), vertical (y-axis) and transverse (z-axis) direction. Considering each SCP, the 

Indirect Distance that showed the least differences in the inter-individual comparison of the 16 

horses is listed. The difference between the maximum and minimum value of the Indirect Distance 

represents the diameter of the morphometric Residence Area of the respective SCP. A negative sign 

indicates that the SCP lies rostral (x-axis), ventral (y-axis) or medial (z-axis) of the extracranial 

Landmark.  

N = 16, M = mean, SD = standard deviation, Max-Min = difference between longest and shortest 

Indirect Distance.  

 

Indirect Distances along the longitudinal axis (x-axis) 

Extracranial landmark 
SCP 

M 

[mm] 

SD 

[mm] 

Max-Min 

[mm] 

Caudodorsal point on Arcus 

zygomaticus 
I -47 5 14 

Caudodorsal point on Arcus 

zygomaticus 
II -29 5 16 

Porus acusticus externus  III -75 4 13 

Most rostral point on Margo orbitalis IV 95 5 15 

Caudodorsal point on Arcus 

zygomaticus 
V -32 4 15 
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Caudodorsal point on Arcus 

zygomaticus 
VI -18 5 15 

Caudodorsal point on Arcus 

zygomaticus 
VII -11 5 18 

Caudodorsal point on Arcus 

zygomaticus 
VIII 9 6 19 

Most rostral point on Margo orbitalis IX 80 4 14 

Most ventral point on Margo 

orbitalis 
X 47 6 22 

Porus acusticus externus XI -38 5 14 

Caudodorsal point on Arcus 

zygomaticus 
XII -3 5 16 

Caudodorsal point on Arcus 

zygomaticus 
XIII 17 4 15 

Caudodorsal point on Arcus 

zygomaticus 
XIV 1 5 18 

Caudodorsal point on Arcus 

zygomaticus 
XV 23 4 14 

Porus acusticus externus RP -102 5 18 

Caudodorsal point on Arcus 

zygomaticus 
CP 35 4 13 

Indirect Distances along the vertical axis (y-axis) 

Extracranial landmark 
SCP 

M 

[mm] 

SD 

[mm] 

Max-Min 

[mm] 

Most ventral point on Margo 

orbitalis 
I 25 6 17 

Porus acusticus externus II 30 5 15 

Foramen supraorbitale III -43 6 18 

Most ventral point on Margo 

orbitalis 
IV 51 6 18 

Porus acusticus externus V 63 5 17 

Porus acusticus externus VI 49 4 17 

Most ventral point on Margo 

orbitalis 
VII 9 6 18 

Porus acusticus externus VIII 24 5 21 

Most ventral point on Margo 

orbitalis 
IX 13 7 22 

Foramen supraorbitale X -10 5 15 

Porus acusticus externus XI 73 4 14 

Porus acusticus externus XII 58 6 22 

Most caudal point on Arcus 

zygomaticus 
XIII 11 6 22 

Porus acusticus externus XIV 65 5 18 

Porus acusticus externus XV 53 5 16 

Porus acusticus externus RP 38 5 13 

Porus acusticus externus CP 36 4 14 

Indirect Distances along the transverse axis (z-axis) 
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Extracranial landmark 
SCP 

M 

[mm] 

SD 

[mm] 

Max-Min 

[mm] 

Foramen supraorbitale I -33 4 12 

Foramen supraorbitale II -27 5 14 

Median Plane III 40 6 18 

Most dorsal point on Arcus 

zygomaticus 
IV -50 4 13 

Foramen supraorbitale V -41 4 11 

Caudodorsal point on Arcus 

zygomaticus 
VI -30 4 14 

Median Plane VII 56 4 14 

Median Plane VIII 49 4 14 

Median Plane IX 34 3 12 

Median Plane X 13 3 13 

Median Plane XI 17 3 12 

Median Plane XII 36 4 14 

Median Plane XIII 40 3 11 

Median Plane XIV 17 4 14 

Caudodorsal point on Arcus 

zygomaticus 
XV -60 4 13 

Median Plane RP 18 4 14 

Caudodorsal point on Arcus 

zygomaticus 
CP -62 5 15 

 

 

Figure 1. Graphical representation of the left half of an equine head. The horizontal Hannover 

Plane (red dashed line) follows the Crista facialis. The Transverse Plane (green dashed line) cuts the 

Foramen supraorbitale (green dot); both are orthogonal to the third plane that is the Median Plane. 

In the Median Plane, all the three planes meet in the Zero Point of the head (blue dot). The arrows 

indicate the directions of the three spatial axes (x, y, z) of the anatomical Coordinate System. 

 

Figure 2. Sketch of an equine head in lateral and dorsal view. The three reference planes, i.e., 

Hannover Plane (red), Transverse Plane (green) and Median Plane (blue), meet in the Zero Point of 

the head (blue point). The landmarks are osseous points which are easy to identify, and the Drilling 

Points are deduced from these landmarks. The red dotted lines mark the uniform distances between 

the respective Drilling Points and the reference planes. 

 

Figure 3. Graphical representation of 15 Sectors (I-XV) of the equine neopallium. Top: lateral view 

(90° angle), Bottom: dorsal view (0° angle). The numbering of the Sectors starts rostral and caudal 
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to the Fissura sylvia (Sectors I and II) and then continues in a bow-like order in topographical 

relation to the Primary Sulci. The Sectors are delineated by the Primary Sulci (color-coded in 

accordance with Lang et al. [24]) and by auxiliary lines (grey). The auxiliary lines are related to 

standard orientation points (1-6, black) defined as follows: (1) The rostral point on the Sulcus 

presylvius/Sulcus coronalis; (2) the dorsal end of the Fissura sylvia; (3) the most medial point on 

the Sulcus coronalis/Sulcus suprasylvius; (4) the intersection of the Sulcus suprasylvius and the 

Sulcus obliquus; (5) the rostral end of the Sulcus ectomarginalis; (6) the point on the Sulcus 

ectomarginalis halfway between point (5) and the caudal pole of neopallium. The rostral pole (RP) 

and caudal pole (CP) of the neopallium and the Target Points (T) are also marked. Color-coding of 

each Sulcus (S.): orange = S. presylvius / S. coronalis / S. suprasylvius; dark blue = F. sylvia; light 

blue = S. diagonalis; purple = S. obliquus; pink = S. ectomarginalis; green = S. marginalis; red = S. 

endomarginalis. 

 

Figure 4. Graphical representation of the measurement of Indirect Distances in dorsal view. 4a: 

Extracranial measurement between the Zero Point head (ZP) and an extracranial landmark (L) or a 

Drilling Point (D). 4b: Measurement between a Target Point (T) and a Sector Center Point (SCP) on 

the neopallium of the isolated brain. The Indirect Distances indicate how far away one point is from 

another in the caudal direction (x-axis) or in the lateral direction (z-axis). The direction of each 

Indirect Distance is aligned with the axes of the Coordinate System. A Direct Distance (not shown 

here) would indicate the shortest, i.e., direct way between two points and, hence, would run 

obliquely in most cases. 

 

Figure 5. Graphical representation of the three steps for determining the extra-intra distances 

between extracranial points on the head/skull and intracranial Sector Center Points (SCP) on the 

brain; lateral view. Even though the encephalometry was performed on the isolated brain, the head 

and the brain were mounted together in this sketch to better visualize the entire procedure. Step 1: 

The two reference planes (Hannover Plane [red] and Transverse Plane [green]) mark the position of 

the Zero Point head (ZP). Starting there (or at a landmark, L), the Indirect Distance to the Drilling 

Point (D) was measured extracranially (blue arrows). Step 2: The Indirect Distance to a selected 

Sector Center Point (SCP) was measured on the isolated brain, starting from the Target Point (T; 

identical with D in this lateral view) on the brain (orange arrows). Step 3: The distance between the 

extracranial L or ZP and the SCP on the neopallium was calculated (purple arrows). 
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Figure 6. Localization of the Sector Center Points (SCP) of the neopallium of 16 horses in a 

synoptic graphical representation to display their topographical relations to the Zero Point head (ZP, 

blue dot) in a lateral view and dorsal view (scale: mm). The Hannover Plane (red, dashed line) the 

Transverse Plane (green, dashed) and the Median Plane (blue, dashed) correspond with the axes of 

the anatomical Coordinate System and they meet in the ZP; the ZP of all 16 horses are 

superimposed to establish a uniform reference point in this synopsis. Starting from this point, the 

SCPs (I - XV) and the rostral pole (RP) and caudal pole (CP) were then positioned to scale 

according to their Indirect Distances (the diagram was created with MS Excel and modified with 

Adobe Photoshop). The outlines of the colored fields express the positional variations in the SCPs 

(colored triangles) in the inter-individual comparison of the 16 horses (Residence Areas). 

 

Figure 7. Graphical projection of the Mean Localizations of the Sector Center Points (SCPs, I - 

XV) of the left neopallium onto the head surface in a lateral view. Two of the three standard 

reference planes (Hannover Plane [red] and Transverse Plane [green]) and the Zero Point head (blue 

dot) were used as reference points for the projection onto the head surface. Using the positions of 

the individual SCPs of all 16 horses, the Mean Localization of each SCP was calculated and 

projected onto the head surface and drawn to scale. RP = Rostral pole / CP = Caudal pole of the 

neopallium. 

 

Figure 8. Graphical projection of the Mean Localizations of the Sector Center Points (SCPs, I - 

XV) of the left neopallium onto the head surface in a dorsal view. Two of the three standard 

reference planes (Median Plane [blue] and Transverse Plane [green]) and the Zero Point head (blue 

dot) were used as reference points for the projection onto the head surface. Using the positions of 

the individual SCPs of all 16 horses, the Mean Localization of each SCP was calculated and 

projected onto the head surface and drawn to scale. RP = Rostral pole / CP = Caudal pole of the 

neopallium. 


















