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Abstract 

Smoking cigarettes is the leading cause of preventable death in the United States. Menthol is 

well known to exacerbate tobacco addiction. It is unclear, however, if menthol directly effects 

dopamine release which may increase the reward associated with smoking or if menthol has any 

effect on environmental cues which act as reinforcers for smoking behavior. Study 1 used fast 

scan cyclic voltammetry to examine the effects of nicotine and menthol, administered alone and 

in combination, on phasic dopamine release in the nucleus accumbens of male Sprague-Dawley 

rats. Results confirmed that nicotine, but not menthol, enhances phasic dopamine release in the 

nucleus accumbens. Menthol added to nicotine did not enhance phasic dopamine release above 

that elicited by nicotine alone. Study 2 used an online survey to examine the relationship 

between menthol status and environmental cues on nicotine consumption in human smokers. 

Results determined that there is no significant relationship between menthol status and smoking 

behavior. Taken together these results suggest that nicotine is the driving force behind tobacco 

addiction and menthol may act as a facilitator to make nicotine consumption more appealing. 

 

Keywords: addiction, environmental cues, menthol, nicotine   
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Smoking Behavior: An Analysis of Menthol's Effect on Nicotine 

 Smoking tobacco cigarettes is the leading cause of preventable death in the United States 

(Biswas et al., 2016). Nicotine is the primary psychoactive and addictive component in tobacco 

cigarettes and is a powerful reinforcer in both animals and humans (Ahijevych & Garrett, 2010; 

Wickham, 2015).  Mentholated cigarettes have been shown to have greater addictive potential 

and are correlated with a lower quit rate than that associated with nonmenthol cigarettes (Fait et 

al., 2017; Henderson et al., 2017; Wickham, 2019). 

Nicotine  

Nicotine is inherently rewarding and has positive reinforcing effects which increase the 

probability of self-administration in animals, as well as negative reinforcing effects that relieve 

negative symptoms associated with withdrawal (Ikemoto & Bonci, 2014; Valentine & Sofuoglu, 

2018). Nicotine is a nicotinic acetylcholine receptor (nAChR) agonist that binds to nAChRs, 

facilitating the release of dopamine (DA) from the ventral tegmental area (VTA) to the nucleus 

accumbens (NAc) (Benowitz, 2009; Ikemoto & Bonci, 2014). nAChRs are comprised of five 

subunits with the most abundant receptor subtypes in the mammalian brain being α4β2, α3β4, 

and α7 (Benowitz, 2009). The rapidly desensitizing α4β2 and α6β2, and slowly desensitizing 

α4α6β2 and α7 nAChR subtypes are believed to be the main mediating receptors in nicotine 

dependence (Benowitz, 2009; Picciotto et al., 2008).  

Smoking is the fastest route of administration, when a drug is inhaled it enters circulation 

rapidly and reaches the brain within seconds (Benowitz, 2009). Increased rates of absorption and 

drug entry into the brain are correlated with a greater “rush” and consequently the drug is more 

reinforcing (Benowitz, 2009). Nicotine is metabolized into cotinine in the liver by the enzyme 
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CYP2A6, cotinine has a longer half-life than nicotine and both are used as quantitative markers 

for nicotine exposure (Benowitz, 2009). 

Menthol 

Menthol is a naturally occurring cyclic monoterpene alcohol that has a pleasant mint 

flavor and creates a cooling sensation via transient receptor potential melanostatin 8 (TRPM8) 

receptors which masks the aversive taste of nicotine and provides relief from the irritation 

associated with inhaling tobacco smoke (Hans et al., 2012; Kamatou et al., 2013; Lehr et al., 

2021; Wickham, 2019). Menthol has two potential stereoisomers depending on the method of 

production, (-)-menthol and (+)-menthol, however, (-)-menthol appears to be more relevant for 

nicotine abuse because chronic exposure to (-)-menthol upregulates nAChR expression and 

increases DA neuron excitability whereas (+)-menthol exhibits no such effect (Henderson et al., 

2019). With this in mind, a recent study comparing these stereoisomers of menthol found that (-) 

-menthol and (+)-menthol may both effectively contribute to menthol-dependent exacerbation of 

tobacco dependence (Lehr et al., 2021).  

Menthol is a common flavorant in chewing gum and oral care products, and has been an 

additive in cigarettes since the 1920s (Ahijevych & Garrett, 2010; Anderson, 2011; Kamatou et 

al., 2013). Even cigarettes that are not labeled as menthols contain small amounts of menthol (Ai 

et al., 2016; Anderson, 2011; DeVito et al., 2016; Fait et al., 2017; Kamatou et al., 2013; Lee & 

Glantz, 2011). Cigarettes marketed as mentholated products contain a range between 2.9 – 19.6 

mg menthol/cigarette, while cigarettes marketed as nonmentholated products contain 1.8 – 73.5 

µg menthol/cigarette (Ai et al., 2016; Harrison et al., 2017). 

Nicotine and Menthol Interactions  
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Menthol exposure increases nicotine self-administration and produces a leftward shift of 

the inverted-U of nicotine’s dose response curve, this facilitating effect of menthol on nicotine 

self-administration is dose dependent (Biswas et al., 2016). Menthol also widens the dose-

response curve for nicotine’s euphoric and addictive effects, indicating nicotine is the driving 

force behind addictive behaviors and menthol can act as a motivator for continued nicotine use 

(Wickham, 2019). Menthol sustains and reinstates nicotine seeking behavior in rats, independent 

of TRPM8 receptor activity (Biswas et al., 2016; Harrison et al., 2017). This suggests that 

menthol, labeled or unlabeled, in most tobacco products could potentially contribute to the high 

rates of continued use of and relapse to tobacco, though acute exposure to menthol has not been 

shown to alter nicotine sensitivity (Valentine et al., 2018). Menthol also enhances the rewarding 

effect of nicotine and may directly facilitate nicotine consumption (Biswas et al., 2016; 

Wickham, 2019).  

Conversely, long term menthol treatment before nicotine exposure decreases nicotine 

reward-related behavior and the interactions between nicotine and menthol reduce nicotine’s 

reinforcing and positive subjective effects (Henderson et al., 2016; Valentine et al., 2018). 

Extended exposure to nicotine before exposure to menthol may elicit different interactions 

between nicotine and menthol because acquisition did not occur simultaneously. This could 

explain why Nesil and colleagues (2019) found that menthol decreased nicotine reward in their 

study involving rats that were trained to lever press for nicotine alone before they were separated 

into test groups, some of which received no nicotine during testing. This indicates that nicotine 

and menthol may have different effects when present in the blood stream individually compared 

to the effects that are present when combined. 
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Nicotine menthol interactions indicate that reduced concentrations of nicotine in 

cigarettes increases smoking cessation more in nonmenthol smokers than menthol smokers, and 

menthol smokers experience stronger cravings than nonmentholated smokers (Denlinger-Apte et 

al., 2019; Fait et al., 2017). Menthol smokers also have a reduced likelihood of successful 

smoking cessation, and relapse rate is more common with female African American menthol 

smokers (Smith et al., 2014). 

Sensory Effects 

Menthol cigarettes have a characteristic cool minty taste which can make them more 

appealing than nonmentholated cigarettes (Ahijevych & Garrett, 2010). This may enable menthol 

to facilitate smoking initiation by providing positive early smoking experiences and the minty 

taste of menthol may contribute as a reinforcer for smoking behavior (Ahijevych & Garrett, 

2010).  

Menthol can have an analgesic effect whereby it alleviates the irritation in the throat and 

lungs of first-time smokers, this can lead someone who was merely experimenting with smoking 

to develop a habit because they do not experience the negative side effects commonly associated 

with nonmentholated cigarettes (Anderson, 2011; Fait et al, 2017; Lehr et al., 2021). Smoke 

intake in established smokers may be affected by cigarette mentholation, specifically menthol 

smokers appear to have higher levels of smoke inhalation than nonmenthol smokers, and 

menthol also decreases oral nicotine aversion in mice and is correlated with taste and flavor 

association in human smokers (Fan et al, 2016; Strasser et al., 2013; Watson et al., 2017). 

The amount of menthol necessary to begin having slight sensory effects is 0.6 – 1.5 mg 

menthol/cigarette (Ai et al., 2016). Menthol masks the negative short-term physiological effects 
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of smoking including throat pain, burning, and cough which provides superficial relief to 

smokers; however, menthol does not reduce the stinging sensation produced by nicotine in the 

nose (Anderson, 2011; Renner et al., 2012). Menthol dramatically enhances pharmacological 

effects of nicotine including decrease in body temperature and analgesia and can act as a 

counterirritant directly at nAChRs (Alsharari et al., 2015; Hans et al., 2012). 

Systemic Effects 

Menthol smokers have poorer smoking outcomes, as well as higher expression of 

nAChRs in the VTA and other reward-related areas than nonmenthol smokers (Brody et al., 

2013; Wickham, 2015). Thus, menthol may influence neural responses to nicotine and may play 

a role in the poorer cessation outcomes menthol smokers experience. Chronic exposure of 

nicotine and menthol in combination significantly promotes α4β2 nAChR expression in the 

hippocampus, striatum, and prefrontal cortex of mice, and chronic exposure to menthol alone 

causes upregulation of these nAChR subtypes in the same brain regions (Alsharari et al., 2015). 

Chronic nicotine exposure results in increased amounts of nAChRs with a higher affinity for 

nicotine which leads to changes in reward-related DA release (Henderson et al., 2016). Acute 

menthol exposure, however, has no effect on nAChR function (Henderson et al., 2016). 

Chronic menthol exposure stabilizes lower sensitivity nAChRs and produces 

upregulation of midbrain α4* nAChRs on VTA DA neurons which may partially negate 

nicotine’s increased phasic DA release (Henderson et al., 2016). Menthol and nicotine in 

combination produce a significant increase of α4α6β2 nAChRs in the midbrain which is 

correlated with increased frequency of DA-neuron firing and enhancement of reward related 

behavior (Henderson et al., 2017). When paired with nicotine, menthol attenuates α3β4 nAChRs 

in humans through augmented desensitization which has important implications for menthols’ 
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analgesic effects in sensory nerves and may blunt or delay symptoms of nicotine withdrawal 

(Ton et al., 2015). 

Menthol is associated with increased nicotine to cotinine metabolic conversion and 

inhibits nicotine absorption which could lead to subsequent higher consumption of mentholated 

cigarettes to achieve the same level of nicotine exposure (Abobo et al., 2011). Menthol smokers 

also have slower nicotine clearance than nonmenthol smokers which suggests an overall greater 

exposure to nicotine per cigarette (DeVito et al., 2016). Menthol has an inhibitory effect on 

nicotine metabolism which is associated with lower urges to smoke and less severe withdrawal 

symptoms because nicotine remains unmetabolized in the blood stream and can interact with 

more nAChRs which results in greater desensitization and more DA release (Benowitz et al., 

2009; Valentine et al., 2018).  

This inhibition of nicotine metabolism could be a possible explanation for the decreased 

nicotine infusion seeking seen in preclinical studies. Menthol exposed subjects may have less of 

an incentive to receive more nicotine infusions since there is a greater amount of nicotine in their 

blood stream compared to nonmenthol exposed subjects that would require more nicotine 

infusions to attain an equivalent amount of nicotine in the blood stream. When undergoing 

forced abstinence, menthol smokers also experience less alleviation of short-term abstinence-

induced craving than nonmenthol smokers when given intravenous injections of nicotine 

(DeVito et al., 2016). 

Dopamine Release and Nicotine Induced Reward 

The mesolimbic DA system, extending from the VTA to the NAc, influences goal 

directed behaviors, and nicotine augments preexisting goal directed behaviors (Grimm et al., 
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2012; Wickham et al., 2014). DA release results in a pleasurable feeling and is vital to the 

reinforcing effects of drugs of abuse including nicotine (Benowitz, 2009; Grieder et al., 2019). 

During tonic, baseline, firing, very little DA is released, however, phasic firing, where high rates 

of neuron firing occur, there is increased DA release which is typically caused by the activation 

of excitatory inputs to DA neurons (Picciotto et al., 2008). 

Acute nicotine exposure elevates DA release in the NAc and hippocampus (Grimm et al., 

2012). Chronic use of nicotine and menthol in combination significantly increases DA levels in 

the NAc and produces greater reward-related behavior compared to nicotine alone (Henderson et 

al., 2017; Wickham, 2019; Zhang et al., 2018). 

In the aftermath of long-term exposure to nicotine, α4* nAChRs, and sometimes α6* 

nAChRs, upregulate and exhibit an increased sensitivity to nicotine (Akers et al., 2020). nAChRs 

on GABA neurons are rapidly desensitized due to their increased sensitivity to nicotine and this 

desensitization results in the disinhibition of VTA DA neurons and subsequently there is an 

increase in DA neurotransmission within the mesolimbic pathway (Akers et al., 2020). 

Excitatory inputs from medial VTA glutamate neurons, where α7 nAChRs are located, are also 

enhanced, and the combined changes in the inhibitory and excitatory transmission contributes to 

nicotine induced reward (Akers et al., 2020; Picciotto et al., 2008). β2* nAChRs in the VTA are 

necessary for GABA and dopaminergic signaling for reward and aversion respectively (Grieder 

et al., 2019) (see Figure 1). 

Figure 1 

Baseline Firing of Nicotinic Acetylcholine Receptors 
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Note. Figure 1a shows DA firing before nAChR desensitization. The DA neuron receives 

excitatory input from β2* receptor activation on the DA neuron itself, as well as α7 receptor 

activation on glutamate neurons, and the DA neuron receives inhibitory input from β2* receptor 

activation on GABA neurons. Tonic and phasic firing both occur before nAChR desensitization. 

(Picciotto et al., 2008) 

Firing of Nicotine Acetylcholine Receptors after Extended Nicotine Exposure 
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Note. Figure 1b shows DA firing after extended exposure to nicotine. β2* nAChRs are 

desensitized so there is no longer excitatory input from β2* receptor activation on the DA neuron 

itself and there is no longer inhibitory input from β2* receptor activation on the GABA neuron. 

DA release is still sustained due to the continued activation of excitatory input from α7 receptor 

activation on glutamate neurons since α7 nAChRs desensitize much slower than β2* nAChRs. 

(Picciotto et al., 2008). 

Environmental Cues 

Environmental cues are external stimuli associated with a certain behavior, such as drug 

use (Perry et al., 2014). Drug associated cues are important contributors to the effects of the 

associated drug and can also evoke drug seeking in times of abstinence (Palmatier & Bevins, 

2008). These cues also increase DA release in the NAc and are acquired through conditioned 

reinforcement (Perry et al., 2014; Wickham et al., 2013). Desensitization of nAChRs may 

enhance responses to and increase the salience of environmental cues that are paired with 

smoking (Brunzell & Picciotto, 2009). Cues that predict the administration of a reward evoke an 

increase in phasic DA firing to a greater degree than the expected rewards themselves (Day et al., 
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2010). Higher phasic:tonic DA firing ratios, such as those present when nicotine is in the brain, 

make cues more salient and easier to associate with smoking (Picciotto et al., 2008).  

Cues can produce withdrawal symptoms independent of their associated drug in both 

humans and animals (Perry et al, 2014). Contextual cues are environmental stimuli that are not 

directly related to the drug taking behavior, but are present in the background of drug taking 

activities and are therefore important mediators of drug-seeking behavior because the 

environment has become associated with drug taking (Perry et al., 2014). 

Smokers who experience simultaneous cues such as being in a smoking environment and 

seeing cigarettes burning in an ashtray experience cue-induced craving and increased smoking 

behavior (Conklin et al., 2019). Conditioned reinforcers such as flavorants, notably menthol, can 

act as orosensory cues which are important for the self-administration of tobacco products in 

humans (Palmatier et al., 2020; Wang et al., 2014; Wickham, 2019). Menthol can have an 

occasion setting effect wherein the presence of menthol can act as a cue for nicotine self-

administration, independent of TRPM8 receptor activity (Harrison et al., 2017). 

Smoking Demographics 

Sex and age dependent factors may underlie the influence of menthol on nicotine intake. 

Fait and colleagues (2017) found that adult male mice significantly increased nicotine intake 

when it was paired with menthol, whereas adult female mice did not show this preference. The 

adult male mice in this study also exhibited decreased locomotion whereas this behavioral 

response to menthol was not observed in any of the adolescent mice. Ross and colleagues (2016) 

found that, in human smokers, puff characteristics of individual cigarettes are indicative of daily 

nicotine intake and factors including sex and menthol status were significant predictors of daily 
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nicotine exposure. African Americans, females, lower socioeconomic status individuals, and 

adolescents are more likely to use mentholated cigarettes (Ahijevych & Garrett, 2010; Foulds et 

al., 2010; Ross et al., 2016; Wickham, 2015; Wickham, 2019). Among menthol smokers, young 

adults and members of the LGBTQIA+ community are less likely to have an intention to quit 

smoking (Smiley, 2018). 

Marketing for menthol cigarettes has historically targeted African Americans, women, 

and young populations (Lee & Glantz, 2011; Smith et al., 2020; Wickham, 2019). Younger 

populations may be drawn to menthol cigarettes and this may result in menthol cigarettes acting 

as a “starter product” which can lead to the development of a smoking habit (Ahijevych & 

Garrett, 2010; Lee & Glantz, 2011). Menthol smokers who are young and in a racial or ethnic 

minority have a lower quit rate than nonmenthol smokers (Ahijevych & Garrett, 2010; Foulds et 

al., 2010). 

The Present Studies 

The purpose of Study 1 was to examine if menthol alone alters phasic DA release given 

that menthol can influence nicotine receptor expression. Furthermore, this study examined 

whether menthol could influence nicotine’s ability to drive DA release. The first hypothesis was 

that nicotine alone would significantly increase DA release relative to baseline, given that 

previous studies have shown similar results (Picciotto et al., 2008). The second hypothesis was 

that menthol alone would not increase DA levels relative to baseline given that acute menthol 

has no effect on nAChR function (Henderson et al., 2016). And the third hypothesis was that 

when combined with nicotine menthol would have an additive effect on DA release in the NAc 

relative to baseline, given that menthol increases nicotine self-administration in preclinical 

studies and widens the dose response curve of nicotine (Biswas et al., 2016; Wickham, 2019). 
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Cues are potent drivers of relapse to drugs, and menthol can act as a cue as well as 

enhance the rewarding value of other nicotine paired cues (Wickham, 2019). Study 2 aimed to 

examine if menthol increases nicotine's effect on the salience of environmental cues in human 

smokers. More specifically, it was hypothesized that menthol smokers would have stronger urges 

to smoke associated with environmental cues, menthol smokers would have a more difficult time 

quitting than nonmenthol smokers, and that menthol smokers would be more likely to use a 

smoking cessation tool than nonmenthol smokers.  

Study 1 

Methods 

Subjects 

Twenty male Sprague-Dawley rats (250-300g) from Charles River Laboratories were 

housed 2 to 3 per cage and provided ad libitum food and water on a 12-hour light/dark cycle 

beginning at 7 am. Four subjects were removed from analysis due to unreliable data recordings 

and an additional subject was removed from analysis due to insufficient data collection. All 

experiments were conducted according to the Guide for the Care and Use of Laboratory Animals 

and were approved by the Yale University Institutional Animal Care and Use Committee. 

Surgery 

Four small holes were drilled into the skulls of anesthetized rats for the insertion of a 

bipolar stimulator retrofitted with a cannula, a carbon microfiber electrode, a reference wire, and 

a screw to secure the reference electrode. Anteroposterior (AP), mediolateral (ML), and 

dorsoventral (DV) coordinates were referenced from bregma. A bipolar, stainless steel 

stimulating electrode was inserted into the VTA (AP −5.2 mm, ML 0.5-1.5 mm, DV from 7.4 to 
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8.1 mm below dura). An Ag/AgCl reference electrode was inserted into the contralateral cortex 

and was held with a screw attached to the skull to minimize the number of manipulators used. 

The pia matter was punctured and removed, and a carbon-fiber microelectrode was implanted 

vertically in the NAc core (AP +1.2 mm, ML −1.4 mm, DV from 6.2 to 6.9 mm) (see Figure 2). 

Figure 2 

Placement of Stimulating and Recording Electrodes in Rat Brains 

 

Note. The stimulating electrode (black) was placed in the VTA to stimulate the release of DA in 

anesthetized rats and the recording electrode (white) was placed in the NAc to record DA release 

(Kauer & Malenka, 2007). 

Fast-Scan Cyclic Voltammetry (FSCV)  

Electrical stimulation (300µA, 60Hz, 24 pulses) was applied to the VTA using a bipolar 

electrode to evoke phasic DA release in the NAc core of the anesthetized subjects. Each 
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stimulation was applied every 3 minutes so DA releasable stores could return to their original 

levels. 

FSCV is a method of examining neurotransmitter signaling within the brain that provides 

high chemical selectivity and temporal resolution (Wickham et al., 2014). During FSCV current 

is generated at different potentials and the redox reactions for different neurotransmitters are 

recorded and displayed with distinct peaks for oxidation and reduction (Wickham et al., 2014). 

Dopamine is absorbed onto the FSCV carbon microfiber electrode and the electrode records the 

oxidation of DA into DA-orthoquinone and the subsequent reduction of DA-orthoquinone into 

DA (see Figure 3). 

Figure 3 

The Methodology of Fast-Scan Cyclic Voltammetry  

 

 Note. DA is absorbed onto the carbon fiber microelectrode, at 0.6V DA is oxidized into DA-

orthoquinone and at -0.2V reduced back into DA, voltage is cycled every 100ms (Foster, 2014). 
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Experimental Design and Data Analysis 

 Six baseline recordings of DA release were recorded from each subject. Intraperitoneal 

(IP) injections of nicotine (n = 8, 0.35mg/kg in 0.09% saline) or menthol (n = 7, 400mg/kg in 5% 

DMSO, 45% Tween, and 50% vehicle) were then administered and DA measurements continued 

for 30 minutes. In five rats that received IP nicotine injections, IP menthol injections were 

administered 30 minutes later, and DA measurements were collected for an additional 30 

minutes. 

 All FSCV recordings were converted to percent baseline for analysis. A one-way 

Analysis of Variance (ANOVA) was conducted to analyze the effect of time on each drug 

condition. A two-way within subjects ANOVA was conducted to analyze the effects of menthol 

when nicotine was already in the system, and a two-way mixed-model ANOVA was conducted 

to analyze the effects of nicotine versus menthol over time. 

Results 

A one-way ANOVA revealed that there was a significant effect of time on nicotine 

exposure alone, F(15, 105) = 2.056, p = 0.018. Bonferroni’s post-hoc test showed significance 

from baseline to six minutes post-injection, p = 0.0034 (see Figure 4). A one-way ANOVA 

revealed that there was no significant effect of time on menthol exposure alone F(15, 90) = 

1.581, p = 0.095 or nicotine and menthol exposure combined F(12, 48) = 1.270, p = 0.267.  

 A two-way within subjects ANOVA on nicotine and menthol in combination revealed 

that there was no significant effect of time F(12, 48) = 0.547, p = 0.872, drug F(1, 4) = 0.611, p 

= 0.478, or time x drug F(12, 48) = 1.304, p = 0.248. A two-way between subjects ANOVA on 

nicotine alone and menthol alone revealed that there was no significant effect of time F(15, 195) 
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= 1.061, p = 0.396, however, there was a significant effect of drug F(1, 13) = 5.946, p  = 0.030, 

and there was a significant effect of time x drug F(15, 195) = 2.544, p = 0.002. 

Figure 4 

Effects of Nicotine and Menthol Exposure on Phasic Dopamine Release in the Nucleus 

Accumbens 

 

Note. Baseline recordings were taken before the administration of each drug condition: nicotine 

(n = 8), menthol (n = 7), and nicotine and menthol (n = 5). DA levels were recorded for 30 

minutes post drug exposure. After 30 minutes, menthol was administered to a subset of 5 

subjects from the nicotine condition and the subsequent DA levels were recorded for an 

additional 30 minutes and were compared to the last 3 DA recordings in the nicotine condition to 
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examine any additive effects of menthol when nicotine is already present in the system. Data are 

presented as the mean ± SEM. * = p < 0.05 

Discussion 

 Study 1 explored whether acute menthol exposure could influence phasic DA release in 

the NAc. The results of this study confirm that nicotine enhances phasic DA release in the NAc, 

however, menthol alone does not increase DA release, nor does menthol have any additive 

effects on DA release in conjunction with nicotine.  

 In the current literature, systemic changes in nAChR expression are found after exposure 

to chronic menthol (Henderson et al., 2016; Henderson et al., 2017; Ton et al., 2015). While the 

results did not indicate significant changes in DA levels in this study, this could be because acute 

menthol exposure was utilized rather than chronic menthol exposure. It is possible that acute 

menthol has no significant systemic reactions, but rather is more important for the acquisition of 

nicotine consumption because of its ability to mask the aversive taste of nicotine and to coat the 

lungs so smoke inhalation is more tolerable (Wickham, 2019). 

 Nicotine is the primary psychoactive ingredient in tobacco cigarettes, it produces 

euphoric effects and is the driving force behind tobacco addiction (Wickham, 2015). Menthol 

alone has no euphoric effects but is able to facilitate tobacco addiction through enhancing the 

appeal of nicotine products and making them available to larger populations (Wickham, 2015). It 

is possible that acute menthol exposure does not affect the rewarding properties of nicotine and 

tobacco consumption and acute menthol exposure is instead more important for the initial 

acquisition of smoking behavior. 
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These data speak to acute effects of menthol and nicotine, not chronic effects of menthol 

where many nAChR effects are observed. Keeping this in mind, one major limitation to Study 1 

is the small sample size, most notably that only five rats received nicotine and then menthol to 

examine potential additive effects.  Future studies should examine menthol’s influence on DA 

release in the NAc using at least ten rats per experimental condition and more conditions should 

be examined to gain a better understanding for how menthol interacts with DA release alone and 

in combination with nicotine. These conditions should include acute menthol exposure, acute 

nicotine exposure, acute menthol exposure after acute nicotine exposure to examine any additive 

effects, acute menthol and nicotine exposure simultaneously to examine combined effects, as 

well as chronic effects of menthol and nicotine exposure with each condition. 

These results imply that the role of menthol in nicotine and tobacco addiction is more 

complex than simply increasing DA release, leading to a greater feeling of pleasure. Nicotine 

produces rewarding behaviors through increased DA release, which implies that nicotine is the 

driving force behind tobacco addiction. The role of menthol in tobacco addiction appears to be 

more complex and requires further research to be fully understood. 

Study 2 

 Study 2 compared smoking behavior and motivations between menthol and nonmenthol 

preferring smokers. It was hypothesized that menthol smokers would have stronger urges to 

smoke associated with environmental cues, more difficulty quitting, and be more likely to use a 

smoking cessation tool than nonmenthol preferring smokers. 

Methods 

Participants 
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One hundred participants, 42 menthol smokers and 58 nonmenthol smokers, completed a 

five-minute online survey about their smoking preference and behavior. Data from three 

respondents were removed from analysis because when asked “at what age did you begin using 

nicotine products” they responded with “never.” Of the 100 respondents that were included in 

analysis, 22 were 18-24, 15 were 25-39, 46 were 40-59, and 17 were 60+; 93 were White, 3 were 

Black/African American, 1 was Latino/Hispanic, and 3 classified themselves as “other”; 75 were 

female, 22 were male, and 3 were nonbinary; 2 had less than a high school degree, 20 had a high 

school degree or equivalent, 5 had a trade school degree, 26 had some college but no degree, 9 

had an Associate Degree, 23 had a Bachelor’s Degree, 13 had a Master’s Degree, and 2 had a 

PhD or higher; 10 lived in an urban area, 31 lived in a suburban area, and 59 lived in a rural area; 

58 grew up in a smoking household and 42 grew up in a nonsmoking household; and 7 believed 

menthol cigarettes are less dangerous than nonmenthol cigarettes.  

Participants were recruited from different social media platforms utilizing the snowball 

effect method. One initial request was sent out, to take the survey if eligible or to share the 

survey link, and participants were recruited through subsequent reposts of the initial request. 

This study was approved by the Elizabethtown College Institutional Review Board in February 

2021.  

Design 

Participants were asked to respond to yes/no, fill in the blank, and multiple-choice 

questions to understand each individual’s background and smoking preference. These questions 

included “have you smoked in the last 30 days?” (yes/no), “I prefer to smoke 

___________(menthol/nonmenthol) cigarettes”, “Have you ever smoked mentholated 

cigarettes?” (yes/no), “do you currently smoke tobacco on a daily basis, less than daily, or not at 
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all?”, “have you smoked tobacco daily in the past?” (yes/no), “in the past, have you smoked 

tobacco on a daily basis, less than daily, or not at all?”, “have you ever wanted to quit smoking?” 

(yes/no), “have you ever attempted to quit smoking?” (yes/no), “have you ever successfully quit 

smoking?” (yes/no), “how many times have you attempted to quit smoking?” (1-6+), “how many 

times have you begun smoking again after attempting to quit?” (1-6+), “have you ever used a 

smoking cessation tool (i.e. Chantix [Varenicline] or Zyban [Bupropion]) or nicotine 

replacement therapy (i.e. nicotine patch, gum, spray, lozenge, inhaler, etc.)?” (smoking cessation 

tool, nicotine replacement therapy, both, neither), and “during the past 12 months, have you tried 

to stop smoking?” (yes/no). 

Participants were then asked to respond to statements using a five-point Likert scale, 

where 1 indicated strongly disagree, 2 indicated disagree, 3 indicated neutral, 4 indicated agree, 

and 5 indicated strongly agree, in order to understand how environmental cues may impact the 

smoking behaviors of each individual. Likert scale statements included: “when I am in a specific 

environment, I feel a stronger urge to smoke”, “I feel the urge to smoke in inappropriate places”, 

“I often feel the urge to smoke when I see a cigarette”, “I smoke to feel better”, “I smoke to feel 

good”, “I smoke because I am bored”, “I smoke to relieve cravings”, “I smoke to relieve 

withdrawal symptoms”, “I often feel the urge to smoke when I see an ashtray”, “I smoke without 

thinking about it”, “Smoking feels like a habit”, “I often feel the urge to smoke when I see a 

lighter”, and “I often smoke in the same location”; some of these questions were taken from a 

scale used by Newton and colleagues (2009) to examine theories of addiction (Cronbach’s α = 

898).  

Demographics collected included current age, the age participants began using nicotine 

products, race, gender, education level, community type, if the participant grew up in a smoking 
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or nonsmoking household, and if the participant believes menthol cigarettes are less dangerous 

than nonmentholated cigarettes. 

 An independent samples t-test was run to examine the relationship between menthol 

status and environmental cues and to examine the relationship between menthol status and age of 

acquisition, and chi-square test of association tests were run to examine the relationships 

between menthol status and the frequency of nicotine consumption, successful quit rate, 

utilization of smoking cessation tools, and demographics. 

Results 

An exploratory factor analysis revealed three main categories when examining the 

relationship between menthol status and the reasons behind smoking behavior: emotion, urges, 

and environment (see Table 1). An independent samples t-test revealed no significant difference 

in emotion driving smoking behavior between menthol (M = 3.17, SD = 1.02) and nonmenthol 

smokers (M = 2.94, SD = 1.24), t(98) = 0.994, p = 0.323, d = 0.201; no significant difference in 

urges driving smoking behavior between menthol (M = 2.83, SD = 1.19) and nonmenthol 

smokers (M = 3.05, SD = 1.33), t(98) = -0.868, p = 0.388, d = -0.176; and no significant 

difference in environment driving smoking behavior between menthol (M = 1.68, SD = 0.999) 

and nonmenthol smokers (M = 1.94, SD = 1.11), t(98) = -1.21, p = 0.230, d = -0.245 (see Figure 

5). An independent samples t-test revealed no difference age of acquisition between menthol (M 

= 16.6, SD = 3.72) and nonmenthol smokers (M = 16.6, SD = 5.48), t(97) = -0.0307, p = 0.976, d 

= -0.00625 (see Figure 6). 

Table 1 

Exploratory Factor Analysis of the Variables Related to Smoking Behavior 
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Factor Loadings 

 Factor  

  1 2 3 Uniqueness 

When I am in a specific environment, I feel a stronger urge to 

smoke. 
 0.568        0.6148  

I feel the urge to smoke in inappropriate places.           0.6869  

I often feel the urge to smoke when I see a cigarette.           0.4799  

I smoke to feel better.  0.718        0.3612  

I smoke to feel good.  0.895        0.2198  

I smoke because I am bored.  0.616        0.3841  

I smoke to relieve cravings.     0.607     0.4166  

I smoke to relieve withdrawal symptoms.     0.619     0.4801  

I often feel the urge to smoke when I see an ashtray.        0.719  0.3448  

I smoke without thinking about it.     0.778     0.4323  

Smoking feels like a habit.     0.641     0.4219  

I often feel the urge to smoke when I see a lighter.        0.971  0.0479  

I often smoke in the same location.           0.5945  

 

Note. 'Minimum residual' extraction method was used in combination with an 'oblimin' rotation. 

Factor loadings below 0.5 were excluded from analysis. Factor 1 indicates variables in the 

Emotion category, Factor 2 indicates variables in the Urges category, and Factor 3 indicates 

variables in the Environment category. 

Figure 5 

Independent Samples T-Test Examining the Motivation Behind Smoking Behavior 
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Note. Higher numbers are indicative of stronger motivations to smoke. Data is displayed as mean 

± SEM. 

Figure 6 

The Relationship of Menthol Status with Age of Acquisition  

 

Note. Data is displayed at mean ± SEM. 
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 Chi-square test of association were run to examine the relationship between menthol 

status and smoking behavior. There was no relationship between menthol status and desire to 

quit smoking, χ2 (1, N = 100) = 0.072, p = 0.788, Cramer’s V = 0.027 (see Figure 7). There was 

no relationship between menthol status and successful quit rate, χ2 (1, N = 100) = 0.493, p = 

0.483, Cramer’s V = 0.070 (see Figure 8). There was no relationship between menthol status and 

number of attempts to quit smoking, χ2 (6, N = 100) = 4.15, p = 0.656, Cramer’s V = 0.204 (see 

Figure 9a), or number of times relapsing after attempting to quit, χ2 (6, N = 100) = 2.43, p = 

0.877, Cramer’s V = 0.156 (see Figure 9b). There was no relationship between menthol status 

and utilization of a smoking cessation tool, χ2 (3, N = 100) = 1.50, p = 0.682, Cramer’s V = 

0.123 (see Figure 10). There was no relationship between menthol status and smoking daily, χ2 

(1, N = 100), p = 0.116, Cramer’s V = 0.157 (see Figure 11). There was no relationship between 

menthol status and if participants believed menthol cigarettes are less dangerous than 

nonmentholated cigarettes, χ2 (1, N = 100) = 0.00227, p = 0.962, Cramer’s V = 0.00476 (see 

Figure 12). 

Figure 7 

Menthol Status Differences in Desire to Quit Smoking 
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Note. Data is displayed as the mean of each group. 

Figure 8 

Menthol Status Differences in Successful Smoking Cessation 

 

Note. Data is displayed as the mean of each group. 

Figure 9 
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Menthol Status Differences in Number of Attempts to Quit 

  

Note. Figure 9a: Data is displayed as the mean of each group. 

Menthol Status Differences in Number of Relapses 

 

Note. Figure 9b: Data is displayed as the mean of each group. 

Figure 10 
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Menthol Status Differences in Use of a Smoking Cessation Tool 

 

Note. Data is displayed as the mean of each group. 

Figure 11 

Menthol Status Differences in Smoking Daily 

 

Note. Data is displayed as the mean of each group. 
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Figure 12 

Menthol Status Differences in Opinion on if Menthol Cigarettes are Less Dangerous than 

Nonmenthol Cigarettes 

 

Note. Data is displayed as the mean of each group. 

 Chi-square test of association were also run to compare menthol status within each 

demographic collected. There was no relationship between menthol status and growing up in a 

smoking or nonsmoking household, χ2 (1, N = 100) = 1.90, p = 0.168, Cramer’s V = 0.138 (see 

Figure 13). There was no relationship between menthol status and type of area participants lived 

in, χ2 (2, N = 100) = 0.610, p = 0.737, Cramer’s V = 0.078 (see Figure 14). There was no 

relationship between menthol status and the highest level of education participants had 

completed, χ2 (7, N = 100) = 13.9, p = 0.054, Cramer’s V = 0.372 (see Figure 15). There was no 

relationship between menthol status and gender, χ2 (2, N = 100) = 2.72, p = 0.256, Cramer’s V = 

0.165 (see Figure 16). There was no relationship between menthol status and race, χ2 (5, N = 
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100) = 5.01, p = 0.415, Cramer’s V = 0.224 (see Figure 17). There was a relationship between 

menthol status and age, χ2 (3, N = 100) = 21.7, p < .001, Cramer’s V = 0.466 (see Figure 18). 

Figure 13 

Menthol Status Differences in Household Environment Growing Up 

 

Note. Data is displayed as the mean of each group. 

Figure 14 

Menthol Status Differences in Participant Living Location 
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Note. Data is displayed as the mean of each group. 

Figure 15 

Menthol Status Differences in Level of Education 

 

Note. Data is displayed as the mean of each group. 

Figure 16 
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Menthol Status Differences in Gender 

 

Note. Data is displayed as the mean of each group. 

Figure 17 

Menthol Status Differences in Race 

 

Note. Data is displayed as the mean of each group. 
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Figure 18 

Menthol Status Differences in Age 

 

Note. There were significantly more nonmenthol smokers aged 40-59 than menthol smokers. 

Data is displayed as the mean of each group. * = p < .001 

Discussion 

 While the results from Study 2 do not support the hypothesis that menthol smokers would 

have stronger associations with environmental cues and would have a more difficult time with 

smoking cessation, these results do have interesting implications. Abstinence outcomes are 

independent of menthol status which implies that menthol status does not affect the rate of 

successful smoking cessation, although a recent meta-analysis from Smith and colleagues (2020) 

indicates this may only be in Black populations (Jao et al., 2017). Pre-existing differences, 

including biological differences, between menthol preferring and non-preferring smokers may 

influence their perception of nicotine as well as their response to short term abstinence programs 

(DeVito et al., 2016). This suggests that individual differences contribute more to successful 
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smoking cessation than menthol status itself, and furthermore implies that there may be 

biological reasons behind why an individual prefers mentholated cigarettes to nonmentholated 

cigarettes and it may be those reasons, not the menthol itself, that leads to less success with 

smoking cessation that is seen in established literature (DeVito et al., 2016; Fait et al., 2017; 

Henderson et al., 2017; Wickham, 2019). It is possible that future research on this could lead to 

enhancements in smoking cessation interventions. 

 Results did indicate that individuals who are 40-59 years old are more likely to smoke 

nonmenthol cigarettes than menthol cigarettes. This makes sense within the current literature 

because menthol cigarettes are marketed toward younger populations (Lee & Glantz, 2011). 

Nicotine is reinforcing on its own. Menthol may not necessarily increase how reinforcing 

nicotine is, but it can blunt the positive responses to nicotine and is correlated with less severe 

nicotine withdrawal after overnight nicotine deprivation (Valentine et al., 2018). Lifetime 

smokers exhibit no acute effects of menthol, which indicates that menthols’ effects appear to be 

more long term in which the plasticity of the brain is altered via changes in nAChRs (Valentine 

et al., 2018; Wickham, 2019). It is possible that there is a ceiling effect wherein the effects of 

nicotine are so potent that menthol does not have the ability to create additive effects in 

established smokers, similar to how there is a decline in cue reactivity of established smokers 

due to a ceiling effect (Karelitz, 2020). 

Keeping this in mind, it is important to address the limitations of this study. There are 

limitations in the design of the online study. Most questions were not taken from a questionnaire 

that has a known reliability, instead they were made by the author. Questions that target more 

specific behavior of menthol versus nonmenthol preferring smokers could have been asked and 

participants could have been directed to more specific questions depending on their responses to 
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questions about their menthol status. Specifics should have been asked about environmental cues 

as well, for example after each Likert scale question was answered there could have been a 

follow up question asking participants to explain their responses, for example what specifically 

makes them feel a stronger urge to smoke. The questions that were ultimately asked were general 

in nature and it would have been interesting to see if there were any commonalities between 

menthol status if participants were asked to elaborate for themselves. 

 Future studies should examine smoking behavior throughout the duration of an 

individual’s time smoking cigarettes. Questions should examine motivation behind beginning to 

smoke, current smoking behaviors, attitudes toward menthol and nicotine in general, and 

intentions toward smoking cessation. I would also be interesting to conduct personal interviews 

with participants to gather more information from participants in an open-ended manner. It is 

possible that environmental cues related to smoking behavior may operate nonconsciously which 

would mean participants could not report their reactions to these cues themselves. Instead, a 

behavioral measure could be used to examine if this is the case. For a follow-up like this, 

menthol and nonmenthol smokers would both experience the same cue, for example watching a 

video of someone lighting a cigarette, and each participant would be asked to rate their craving 

for a cigarette before and after the cue is administered. Overall, it is important to note that while 

there was no difference in menthol status on efficacy of environmental cues or smoking 

cessation, there could be underlying differences in menthol status that were not addressed with 

this survey. 

Conclusion 

The results of Study 1 confirm that nicotine elevates phasic dopamine release in the 

mesolimbic pathway, which aligns with the first hypothesis of the study. The second hypothesis, 
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that menthol alone would have no significant effect on dopamine release, was also supported by 

data from Study 1. The third hypothesis, that the addition of menthol would have an additive 

effect on dopamine release elicited by nicotine, was not supported. Menthol had no additive 

effect on dopamine release when nicotine was already present in the system. This is likely due to 

the use of acute menthol exposure for Study 1, or due to the delay in administration of menthol 

after nicotine. It is possible that there are effects that are dependent on when nicotine and 

menthol are administered in relation to each other. 

Results of Study 2 did not support the hypothesis that menthol smokers would have 

stronger urges to smoke associated with environmental cues, a more difficult time quitting, and 

be more likely to use a smoking cessation tool than nonmenthol smokers. The present results 

indicate that there is no difference in menthol status on the salience of environmental cues acting 

as motivation behind smoking behavior.  

 Taken together the results of Study 1 and Study 2 have interesting implications. Nicotine 

is the addictive substance in tobacco cigarettes, not menthol, however, menthol can help 

facilitate the acquisition of smoking because it makes the consumption of nicotine less aversive 

by providing relief from smoke inhalation and masking the aversive taste associated with 

nicotine (Wickham, 2019). The mechanisms behind the interaction between menthol and 

nicotine are more complex than initially believed and future research should examine menthol 

independently from nicotine, as well as combined, in several different conditions to examine 

how DA release and nAChR expression are affected. Results from these preclinical studies can 

be applied in human research to better understand how menthol status can affect nicotine 

acquisition, continued use, and smoking cessation. The use of more specific survey questions 



38 

 

geared toward understanding the motivations behind smoking behavior may yield a deeper 

understanding of menthol’s role in the acquisition and continuations of nicotine use. 
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