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Abstract: With the rapid expansion of intelligent resource-constrained devices and high-speed
communication technologies, the Internet of Things (IoT) has earned wide recognition as the primary
standard for low-power lossy networks (LLNs). Nevertheless, IoT infrastructures are vulnerable
to cyber-attacks due to the constraints in computation, storage, and communication capacity of the
endpoint devices. From one side, the majority of newly developed cyber-attacks are formed by slightly
mutating formerly established cyber-attacks to produce a new attack that tends to be treated as normal
traffic through the IoT network. From the other side, the influence of coupling the deep learning
techniques with the cybersecurity field has become a recent inclination of many security applications
due to their impressive performance. In this paper, we provide the comprehensive development
of a new intelligent and autonomous deep-learning-based detection and classification system for
cyber-attacks in IoT communication networks that leverage the power of convolutional neural
networks, abbreviated as IoT-IDCS-CNN (IoT based Intrusion Detection and Classification System
using Convolutional Neural Network). The proposed IoT-IDCS-CNN makes use of high-performance
computing that employs the robust Compute Unified Device Architectures (CUDA) based Nvidia
GPUs (Graphical Processing Units) and parallel processing that employs high-speed I9-core-based
Intel CPUs. In particular, the proposed system is composed of three subsystems: a feature engineering
subsystem, a feature learning subsystem, and a traffic classification subsystem. All subsystems
were developed, verified, integrated, and validated in this research. To evaluate the developed
system, we employed the Network Security Laboratory-Knowledge Discovery Databases (NSL-KDD)
dataset, which includes all the key attacks in IoT computing. The simulation results demonstrated
a greater than 99.3% and 98.2% cyber-attack classification accuracy for the binary-class classifier
(normal vs. anomaly) and the multiclass classifier (five categories), respectively. The proposed
system was validated using a K-fold cross-validation method and was evaluated using the confusion
matrix parameters (i.e., true negative (TN), true positive (TP), false negative (FN), false positive (FP)),
along with other classification performance metrics, including precision, recall, F1-score, and false
alarm rate. The test and evaluation results of the IoT-IDCS-CNN system outperformed many recent
machine-learning-based IDCS systems in the same area of study.

Keywords: deep learning; convolutional neural network; IoT networks; cyber-attack
detection; classification

1. Introduction

The Internet of things (IoT) comprises a collection of heterogeneous resource-constrained objects
interconnected via different network architectures, such as wireless sensor networks (WSNs) [1].
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These objects or “things” are usually composed of sensors, actuators, and processors with the ability
to communicate with each other to achieve common goals/applications through unique identifiers
with respect to the Internet protocol (IP) [2,3]. Current IoT applications include smart buildings,
telecommunications, medical and pharmaceutical, aerospace and aviation, environmental phenomenon
monitoring, agriculture, and industrial and manufacturing processes. The basic IoT layered architecture
is shown in Figure 1. It has three layers: the perception layer (consisting of edge devices that interact
with the environment to identify certain physical factors or other smart objects in the environment),
the network layer (consisting of a number of networking devices that discover and connect devices over
the IoT network to transmit and receive the sensed data), and the application layer (consisting of various
IoT applications/services that are responsible for data processing and storage). Most cyber-attacks
target the application and network layers of the IoT system.
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IoT is a promising profound technology with tremendous effects and potential for expansion.
IoT infrastructures are vulnerable to cyber-attacks in that within the network, simple endpoint devices
(e.g., thermostat, home appliance) are more constrained in computation, storage, and network capacity
compared with the more complex endpoint devices (e.g., smartphones, laptops) that may reside within
the IoT infrastructure. In fact, privacy, authentication, key management, trust management, and the
cyber-attack identification are among the significant challenges of the IoT and cloud based IoT [4].
A number of studies were directed at addressing the security issues and challenges of IoT and cloud
computing using a lightweight authentication process [5], and the secure data sharing and searching of
the cloud based IoT [6]. Once the IoT infrastructure is breached, hackers have the ability to distribute
the IoT data to unauthorized parties and can manipulate the accuracy and consistency of the IoT data
over its entire life cycle [7]. Therefore, such cyber-attacks need to be addressed for safe IoT utilization.
Consequently, vast efforts toward handling the security issues in the IoT model have been made in
recent years. Many of the new cybersecurity technologies were developed by coupling the fields
of machine learning with cybersecurity. It should be noted that the majority of new IoT attacks are
slight deviations (i.e., mutations) of earlier known cyberattacks [8]. Such slight mutations of these IoT
attacks have been demonstrated to be difficult to identify/classify using traditional machine learning
techniques. Promising state-of-the-art research has been conducted for cybersecurity using deep neural
networks [9–17]. Table 1 summarizes the research of conventional and traditional machine learning
approaches to solve cybersecurity issues.
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Table 1. Summary of the related research for machine-learning-based IoT security.

Research Method Description

G. Bendiab et al. 2020 [9] Residual neural network
(ResNet-50)

Two classes, utilized transfer learning
with a 50-layer CovNet, employed
pcap files containing pre-captured
network traffic (normal/abnormal).

R. Shire et al. 2019 [10] Convolutional neural
network (CNN)

Five classes, employed CNN (single
convolution layer + multilayer NN),
three subsystems (sniffer-based traffic
collection, American Standard Code
For Information Interchange
(ASCII)-based 2D traffic visualization,
TensorFlow NN traffic analysis).

I. Baptista et al. 2019 [11] Self-organizing incremental neural
network (SOINN)

Five classes of malware with five
filetypes, color-based binary
visualization of ASCII for
pre-captured files (.exe, .doc, .pdf,
.txt, .htm).

K. Taher et al. 2019 [12] Artificial neural network (ANN)
with a support vector machine
(SVM) classifier

Three classes, with 2 hidden layers
and used only 35 features.

X. Gao et al. 2019 [13] Deep neural network (DNN) with
ensemble voting

Five classes with three methods:
decision tree, random forest,
K-nearest.

S. Sapre et al. 2019 [14] Different machine-learning-based
intrusion detection system
(ML-IDS) techniques

Five classes, with two hidden layers
and a naïve Bayes classifier.

S. Jan et al. 2019 [18] ML-IDS-based SVM system Only binary classification, used only
two or three simple features.

M. Roopak et al. 2019 [19] Deep neural network (DNN) Small representative sample, did not
reflect a realistic accuracy in actual IoT
environments.

C. Ioannou et al. 2019 [20] ML-IDS-based SVM system Only used a binary classification,
used an anonymous sensor topology.

O. Brun et al., 2018 [21] Deep neural network (DNN) System validation was poorly
accomplished on a testbed comprising
only three devices and naïve attacks
were used to validate the system using
real-time data with 50,000 samples.

V. Thing et al. 2017 [22] Deep auto-encoder (DAE) Unrealistic, very small dataset (no
Distributed Denial of Service (DDoS),
no probe), three hidden layers
(256/128/64), needed significant time
for feature engineering (FE).

P. Shukla et al. 2017 [23] Neural network hybrid learning
(K means plus decision trees)

Only used a binary classification,
small-scale simulated network
(16 nodes) with different topologies.

E, Hodo et al. 2016 [24] Multi-layer perceptron (MLP)
neural network

Unrealistic, small dataset with binary
classes.

C. Kolias et al. 2016 [25] Different ML-IDS techniques Very time-consuming manual feature
selection with four classes.

Y. Li et al. 2015 [26] Hybrid NN (autoencoder + deep
belief NN)

Redundant dataset needs to be up to
date to reflect more rational results.

In this study, a new intelligent system that can detect the mutations of common IoT cyberattacks
using non-traditional machine learning techniques exploiting the power of Nvidia-Quad GPUs was
proposed. The proposed system employs the convolutional neural network (CNN), along with its
associated machine learning algorithms to classify the NSL-KDD dataset records (we denote our system
using the acronym IoT-IDCS-CNN). The NSL-KDD dataset stores non-redundant records of all the key
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attacks of IoT computing with different levels of difficulties. Specifically, the main contributions of this
paper can be summarized as follows (after Table 1):

• We provide a comprehensive efficient detection/classification model that can classify the IoT
traffic records of an NSL-KDD dataset into two (binary classifier) or five (multiclassifier) classes.
Furthermore, we present detailed preprocessing operations for the collected dataset records prior
to its use with deep learning algorithms.

• We provide an illustrated description of our system modules and the machine learning
algorithms. Furthermore, we demonstrate a comprehensive view of the computation process of
our IoT-IDCS-CNN.

• We provide an inclusive development, validation environment, and configurations, along
with extensive simulation results to gain insight into the proposed model and the solution
approach. This includes simulation results related to the classification accuracy, classification time,
and classification error rate for the system validation for both detection (binary classifier) and
classification (multiclassifier).

• We provide a comprehensive performance analysis to gain more insight about the system efficiency,
such as the confusion matrix to analyze the attacks’ detection true/false positives and true/false
negatives, along with other evaluation metrics, including precision, recall, the F-score metric,
and the false alarm rate.

• We compare our findings with other related state-of-the-art works employing the same dataset,
as well as with other state-of-the-art machine-learning-based intrusion detection systems (ML-IDSs)
employing different datasets.

The rest of this paper is organized as follows: Section 2 introduces and justifies the dataset of IoT
cyber-attacks employed by our system. Section 3 provides details of the proposed system architecture,
development, and detailed design steps. Section 4 presents the simulation environment for system
implementation, testing, and validation. Section 5 discusses the details about experimental evaluation,
comparison, and discussion. Finally, Section 6 concludes the findings of the research.

2. Dataset of Cyber-Attacks

Data collection involves the gathering of information on variables of interest (VOSs) within a dataset
in a documented organized manner that allows one to answer defined research inquiries, examine the
stated hypotheses, and assess the output consequences. In this research, the variables of interest are
concerned with the intrusions/attacks on data records in IoT computing environments. Two global
datasets of IoT attacks can be investigated, including the KDD’99 dataset and the NSL-KDD dataset.
Indeed, KDD’99 has been developed by the Defense Advanced Research Projects Agency(DARPA)
intrusion detection evaluation program to build a network IDS that is capable of differentiating between
“bad” and “good” connections [27]. This dataset includes a standard list of data to be inspected,
which contains a broad range of cyber-attacks that are modeled in a military communication platform.
However, one of the most important issues of this dataset is the enormous number of redundant data
samples in the training and testing datasets. Such redundancy affects the accuracy of the classifier,
which will have a bias toward more frequent records [27].

Lately, the original KDD’99 dataset [28] has been re-investigated and updated to include more
up-to-date and non-redundant attack records with different levels of difficulty through the newer,
reduced version called NSL-KDD [29,30]. Figure 2 shows sample records of the original NSL-KDD
training dataset in the .csv format but read by Notepad in .txt format (prior to any processing technique).
In this research, the NSL-KDD dataset was employed for many reasons, as follows:

(a) It can be efficiently imported, read, preprocessed, encoded, and programmed to produce two- or
multiclass classification for IoT cyber-attacks.

(b) It covers all key attacks of IoT computing, including denial of service (DoS) [31],
probe (side-channel) [32], root to local (R2L) [33], and user to root (U2R) [33].
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(c) It is obtainable as a .txt/.csv filetype consisting of a reasonable number of non-redundant records
in the training and test sets. This improves the classification process by avoiding the bias toward
more frequent records.

(d) It correlates to high-level IoT traffic structures and cyberattacks, and it can be customized,
expanded, and regenerated [29].
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Figure 2. Sample records of the NSL-KDD training dataset.

The NSL-KDD dataset has been thoroughly developed with high-level diverse interpretations
of the training data, which covers normal and abnormal IoT network traffic data. The normal data
samples represent the legitimate data packets processed by the IoT network. The abnormal data
samples represent mutated data packets (i.e., attacks) that are achieved by slight mutations in the
previously developed attacks, such as small changes in the network packet header configurations.
The original dataset is available in two classification forms: a two-class traffic dataset with binary
labels and a multiclass traffic dataset that includes attack-type labels and a difficulty level. In both
cases, it comprises 148,517 samples, each with 43 attributes, such as duration, protocol, and service [34].
The statistics of the traffic distribution of the NSL-KDD dataset are summarized in Table 2.

Table 2. Statistics of the traffic distribution of the NSL-KDD dataset [28].

Data Groups
Two-Class Dataset Multiclass Dataset

Normal Attack Normal DoS Probe R2L U2R

Training 67,343 58,630 67,343 45,927 11,656 995 52
Testing 9711 12,833 9711 7458 2754 2421 200
Total 77,054 71,463 77,054 53,385 14,410 3416 252

R2L: root to local, U2R: user to root.

3. System Modeling

In this research, the proposed system was partitioned into distinct subsystems, each of which
was implemented with several modules. Specifically, the system was composed of three subsystems
including feature engineering (FE), feature learning (FL), and detection and classification (DC),
as illustrated in Figure 3.
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3.1. Implementation of the Feature Engineering Subsystem

This subsystem is responsible for the conversion of raw IoT traffic data records of the NSL-KDD
dataset into a matrix of labeled features that can be fed into and trained by the neural network’s part of
the FL subsystem. The implementation stages of this subsystem include the following.

(1). Importing the NSL-KDD dataset: In this stage, the collected dataset was imported/read using
MATLAB 2019b (by MathWorks, Inc.) in a tabulated format instead of raw data in the original
dataset text files. All data columns were assigned virtual names based on the nature of the data in
the cells. The imported dataset includes 43 different features/columns. Figure 4 shows a sample
of an imported NSL-KDD dataset using the table datatype. The illustrated sample shows only the
first ten records, along with five features. All data columns were assigned virtual names based on
the nature of data in the cells.

(2). Renaming categorical features: Four of the imported 43 features are categorical features that
needed to be renamed prior to the data encoding and sample labeling processes. These features
were the target protocol, the required service, the service flag, and the record category (e.g.,
normal or attack). Therefore, the four categorical columns were renamed accordingly in this stage.
Figure 5 illustrates the four categorical features (columns) that were renamed for the binary-class
data records (the other columns are omitted for better readability). Furthermore, note that the
dataset encompasses multiclass data records for different traffic categories.

(3). One-hot encoding of categorical features: This module is responsible for the conversion of the
categorical data records into numerical data records in order to be employed by the neural network.
Therefore, three categorical features underwent a one-hot encoding process (1-N encoding) [35].
These features were the protocol column, the service column, and the flag column. The class
feature/column was left for the sample-labeling process.

• For the protocol feature, three different types of protocols were revealed from the dataset,
namely, TCP (Transmission Control Protocol), UDP (User Datagram Protocol), and ICMP
(Internet Control Message Protocol). The one-hot encoding for this feature replaced the
categorical data of the “protocol column” with the three numerical features, as shown in
Table 3.

• For the service feature, 69 different services were revealed from the dataset, such as “AOL,”
“AUTH,” “BGP,” “COURIER,” “CSNET_NS,” . . . , “UUCP_PATH,” “VMNET,” “WHOIS,”
“X11,” and “Z39_50.” The one-hot encoding for this feature replaced the categorical data of
the “service column” with the 69 numerical features, as shown in Table 4.

• For the flags feature, 11 different flags were revealed from the dataset, namely, “OTH,” “REJ,”
“RSTO,” “RSTOS0,” “RSTR,” “S0,” “S1,” “S2,” “S3,” “SF,” and “SH.” The one-hot encoding
for this feature replaced the categorical data of the “flag column” with the 11 numerical
features, as shown in Table 5.

(4). Labeling the target feature: This stage is concerned with sample labeling using numerical (integer)
labels for the target classes. Therefore, the categorical “class column” was converted to numerical
classes according to the classification technique. In our system implementation, we considered
two forms of traffic classifications: binary classification (1: normal vs. 2: attack) and multiple
classifications (1: normal, 2: DoS, 3: probe, 4: R2L, and 5: U2R). After this stage, all data records
were available in a numerical format (i.e., no categorical data existed anymore). As a result of
1-N encoding and numerical labeling, we converted the dataset into 123 features and one data
label. The results of this stage, i.e., the encoded form of the dataset table of the two-class records,
is provided in Figure 6.

(5). Converting tables to a double matrix: At the end of dataset importing, encoding, and labeling
processes, the dataset samples and targets should be provided to the neural network inputs of
FL subsystem as a matrix of all input numerical samples. Therefore, the encoded dataset tables
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were converted to a double matrix (148,517 × 124). For instance, the following double matrix
illustrates the first five rows of the dataset matrix.

[0 491 0 · · · 0 1 0 · · · 1 · · · 0 · · · 1 1]
0 146 0 · · · 0 0 1 · · · 0 · · · 0 · · · 1 1]
0 0 0 · · · 0 1 0 · · · 0 · · · 0 · · · 0 0]
0 232 8153 · · · 0 1 0 · · · 0 · · · 1 · · · 1 1]
0 199 240 · · · 0 1 0 · · · 0 · · · 1 · · · 1 1]
...

...
...

...
...

...
...

...
...

...
...

...
...

...


(1)

(6). Matrix resizing with a padding operation: This module is responsible for adjusting the size of
the dataset matrix to accommodate the input size for the FL subsystem. This was performed by
resizing the matrix of the engineered dataset from 148,517 × 124 to the new size of 148,517 × 784
since the input size of every individual sample processed at the FL subsystem was 28 × 28 =784.
Thereafter, the new empty records of this matrix were padded with a zero-padding technique [36].
To avoid any feature biasing the samples of the dataset, the padded records were distributed
equally around the data samples. Figure 7 illustrates an example of resizing with the zero-padding
operation used in this research. The new matrix size was composed of 148,517 sample attacks,
each with 784 features.

(7). Matrix normalization with a min-max norm: Data normalization is performed such that all the
data points are in the same range (scale) with equal significance for each of them. Otherwise,
one of the great value features might completely dominate the others in the dataset. Thus,
this module is responsible for normalizing all integer numbers of the dataset matrix into a range
between 0 and 1 using min-max normalization (MX-Norm) [37]. MX-Norm is a well-known
method for normalizing data, as it is commonly used in machine learning applications. In this
method, we scanned all the values in every feature, and then, the minimum value was converted
into a 0 and the maximum value was converted into a 1, while the other values were converted
(normalized) into a fractional value from 0 to 1. The min-max normalization Xnorm

i for data record
Xi at the ith position of matrix X is defined as follows:

Xnorm
i = [Xi − min(X)]/[max(X) − min(X)]. (2)

Furthermore, Figure 8 illustrates an example of the integer data features normalized using
min-max normalization (0–1). The effect of normalization can be clearly seen as it ensured all
features were at the same scale.

(8). Reshaping the double matrix: This module is responsible for creating the attack samples for the
CovNet by reshaping the one-dimensional vectors of the attack records into two-dimensional
square matrices to accommodate the input size for the developed CovNet network. Accordingly,
every one-dimensional vector sample (1 × 784) was reshaped into a two-dimensional matrix
(28 × 28) using a raw-by-raw reshaping fashion. This operation generated a square matrix for
each data sample, as illustrated in Figure 9.

Table 3. Scheme for the replacement of the categorical data of the protocols.

Protocol
Equivalent One-Hot Encoding

TCP_Protocol UDP_Protocol ICMP_Protocol

TCP 1 0 0
UDP 0 1 0
ICMP 0 0 1
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Table 4. Scheme for the replacement of the categorical data of the services.

Service
Equivalent One-Hot Encoding

AOL _Service AUTH_Service BGP_Service . . . Z39_50_Service

AOL 1 0 0 . . . 0
AUTH 0 1 0 . . . 0

BGP 0 0 1 . . . 0
. . . . .
. . . . .

. . . . . . . .

Z39_50 0 0 0 . . . 1
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Table 5. Scheme for the replacement of the categorical data of flags.

Flag
Equivalent One-Hot Encoding

OTH_Flag REJ_Flag RSTO_Flag . . . SF_Flag

“OTH” 1 0 0 . . . 0
“REJ” 0 1 0 . . . 0

“RSTO” 0 0 1 . . . 0
. . . . .
. . . . .

. . . . . . . .

“SH” 0 0 0 . . . 1
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3.2. Implementation of Feature Learning Subsystem

So far, the development of the FE subsystem has been discussed and the next step was to process
the encoded input features using an FL-subsystem-based CNN. The deep learning network was trained
with a minimum classification error and thus a maximum accuracy. Generally, a CNN involves various
layers, namely, convolution, activation, pooling, flatten, and others. Convolutional layers are the core
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component of a CNN network and they are hierarchically assembled to generate a number of feature
maps that enable CNNs to learn complex features, which are a vital operation for recognizing patterns
in the classification and detection tasks. Therefore, the developed FL subsystem was responsible for an
appropriate CNN that could accept the encoded features from the FE subsystem at the input layer and
train on them with multiple hidden layers, as well as update the training parameters before classifying
the IoT traffic dataset as being normal or an anomaly (mutated). The implementation stages of this
subsystem included the following.

(1). Feature mapping with a 2D convolution operations layer: This module is responsible for
generating new matrices called feature maps that emphasize the unique features of the original
matrix [38]. These feature maps are produced by convolving (multiply and accumulate) the original
matrix nin × nin using a number N of k × k convolution filters with padding size p and stride size s,
which yields the feature maps nout × nout. The size of the resultant feature maps can be evaluated
as follows:

nout = (nin + 2p− k)/s + 1. (3)

In this research, we applied 20 convolution filters (9 × 9) over the 28 × 28 input samples with p = 0
and s = 1, which resulted in 20 feature maps each (20 × 20). Figure 10 illustrates our convolutional layer,
where the input was a 28 × 28 matrix and a filter of size 9 × 9, where this defined a space of 20 × 20
neurons in the first hidden layer. This was the case because we could only move the window 19 neurons
to the right and 19 neurons to the bottom before hitting the right (or bottom) border of the input matrix.
Note that the filter moves forward one position away, both horizontally and vertically, when a new
row starts. Furthermore, note that the convolution layer goes through a backpropagation process to
determine the most accurate values of its trainable parameters (weights: k × k × N = 9 × 9 × 20).
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(2). Feature activation with the Rectified Linear Unit (ReLU) function: This module is responsible
for activating all units of the feature maps with a non-linear rectification function known as the ReLU.
The ReLU function is MAX(X,0) that sets all negative values in the matrix X to zero, while all other
values are kept constant. The reason for using ReLU is that training a deep network with ReLU tends to
converge much more quickly and reliably than training a deep network with other non-linear activation
functions, such sigmoid or tanh activation functions [39]. Figure 11 illustrates the rectification layer of
the convolved maps.



Electronics 2020, 9, 2152 12 of 26

Electronics 2020, 9, x FOR PEER REVIEW 12 of 27 

 

 
Figure 11. Implementation of ReLU activation layer of our CNN. 

(3). Down-sampling with a pooling operations layer: This module is responsible for generating 
new matrices called pooled feature maps that reduce the spatial size of the rectified feature maps and 
thus reduce the number of parameters and computational complexity in the network [38]. This can 
be done by combining the neighboring points of a particular region of the matrix representation into 
a single value that represents the selected region. The adjacent points are typically selected from a 
fixed-size square matrix (determined according to the application). Among these points of the 
applied matrix, one value is nominated as the maximum or mean of the selected points. In this 
research, we used the mean pooling technique to develop the pooling layer since it combines the 
contribution of neighboring points instead of only selecting the maximum point. To produce the 
pooled-feature maps 𝐿  × 𝐿 , the pooling filter 𝑓 ×  𝑓  was independently applied over the 
rectified feature maps 𝐿  × 𝐿  with stride 𝑠, as follows: 𝐿 = (𝐿 − 𝑓)/𝑠 + 1 (4) 

In this research, we applied 20 pooling operations (2 × 2) over the 20 × 20 rectified feature maps 
with s = 2, which resulted in 20 feature maps each (10 × 10). Figure 12 illustrates our pooling layer, 
where the input from the previous layer was 20 × 20 × 20 and the mean pooling filter was of size 2 × 
2. Note that the stride value was 2, which means that the filter moves forward two positions away, 
both horizontally and vertically, when a new row starts. Thus, we ended up with pooled maps of size 
10 × 10 × 20. 

 
Figure 12. Implementation of pooling layer of our CNN. 

3.3. Implementation of Detection and Classification Subsystem 

The DC subsystem is responsible for providing traffic classification for the input traffic data into 
the binary-class classification (two classes: normal vs. anomaly) or multiclass classification (five 
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(3). Down-sampling with a pooling operations layer: This module is responsible for generating
new matrices called pooled feature maps that reduce the spatial size of the rectified feature maps and
thus reduce the number of parameters and computational complexity in the network [38]. This can
be done by combining the neighboring points of a particular region of the matrix representation into
a single value that represents the selected region. The adjacent points are typically selected from a
fixed-size square matrix (determined according to the application). Among these points of the applied
matrix, one value is nominated as the maximum or mean of the selected points. In this research,
we used the mean pooling technique to develop the pooling layer since it combines the contribution
of neighboring points instead of only selecting the maximum point. To produce the pooled-feature
maps Lout × Lout, the pooling filter f × f was independently applied over the rectified feature maps
Lin × Lin with stride s, as follows:

Lout = (Lin − f )/s + 1 (4)

In this research, we applied 20 pooling operations (2 × 2) over the 20 × 20 rectified feature maps
with s = 2, which resulted in 20 feature maps each (10 × 10). Figure 12 illustrates our pooling layer,
where the input from the previous layer was 20 × 20 × 20 and the mean pooling filter was of size
2 × 2. Note that the stride value was 2, which means that the filter moves forward two positions away,
both horizontally and vertically, when a new row starts. Thus, we ended up with pooled maps of size
10 × 10 × 20.
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3.3. Implementation of Detection and Classification Subsystem

The DC subsystem is responsible for providing traffic classification for the input traffic data into
the binary-class classification (two classes: normal vs. anomaly) or multiclass classification (five classes:
normal, DoS, probe, R2L, U2R). This subsystem is composed of three consecutive stages, as follows.

(1). Flattening layer of the pooled feature maps: This module is responsible for linearizing
the output dimension of the convolutional/pooling layers network to create a single, long feature
vector [38]. This can be achieved by converting the 2D data of the N pooled feature maps into a 1D
array (or vector) to be inputted to the next layer, which is connected to the final classification model,
called a dense or fully connected layer. Since the flattening layer collapses the spatial dimensions of
the input into the channel dimension (array), this means that if the input to the flattening layer is N
feature maps each with a dimension of Fin × Fin, then the flattened output Fout can be obtained via the
linear multiplication of the input dimensions by the number of maps:

Fout = N × Fin × Fin. (5)

In this research, since we had 20 pooled feature maps (N = 20), each with dimensions of
10 × 10 (Fin = 10), then our flatten layer comprised 2000 nodes. Figure 13 illustrates the flattening
layer development of our CNN.
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(2). Fully connected (FC) layer with the ReLU function: FC layers, as the name implies, are those
layers where all the inputs from one layer are connected to every activation unit of the next layer [38].
Commonly, FC layers are located as the last few layers of any CNN. Therefore, this module is
responsible for compiling the high-level features extracted by previous layers (convolutional and
pooling layers) into a reduced form of low-level features in which they can be used by the classifier
located at the output layer to provide classification probabilities. In this research, we developed an FC
layer with 200 neurons connected with 2000 nodes of the flattened (FLT) layer, which provided a layer
complexity reduction of 10:1. As the inputs pass from the units of the FTL layer through the neurons of
the FC layer, their values are multiplied by the weights and then pass into the employed activation
function (normally the ReLU function), just in the same way as in a classical NN (i.e., a shallow NN).
Thereafter, they are forwarded to the output classification layer, where each neuron expresses a class
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label. Note that, the FC layer also goes through a backpropagation [38] process to determine the most
accurate values of its trainable parameters (weights WFTL × WFC = 2000 × 200). Figure 14 illustrates
the development of the FC layer of our CNN.
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(3). Output layer with the softmax function: This module is responsible for providing/predicting
the correct classification for each evaluated sample record of the utilized IoT attacks dataset. Here,
we provided two types of classification, namely, the binary classifier (normal or anomaly) and the
multiclassifier (normal, DoS, probe, R2L, U2R). The data points received from the 200 neurons of the
FC layer (A1, A2, . . . , A200) were fully connected with the five neurons (C1, C2, C3, C4, C5) of the
output classes (j = 5 vectors) through the transposed weight connections (WT

j ). This is illustrated in
Figure 15 and can be achieved algebraically as follows:
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Note that, the output layer also goes through a backpropagation process to determine the most
accurate values of its trainable parameters (weights WFC × Wout = 200 × 5). The last layer of the
neural network is a softmax layer, which has the same number of nodes as the output layer. Softmax
normalizes the output into a probability distribution on classes [38]. Specifically, softmax assigns
numerical probability values for every class at the output layer, where these probabilities should sum
up to 1.0 (following a probability distribution). Given an input a vector x of K real numbers, and i
defines the index for the input values, then, the softmax function σ : Rk

7−→ Rk is defined as follows:

σ(x)i = exi

K

/
∑

j=1

exi for i = 1, 2, 3, . . . , K and x = (x1, x1, . . . , xK) ∈ Rk. (7)
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For example, softmax might produce the following probabilities for an attack record shown in
Table 6.
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Table 6. Numerical Example of the outputs of Softmax function for five classes.

Item
Multiclass Dataset

Normal DoS Probe R2L U2R

Label 1 2 3 4 5
Probability 0.001 0.040 0.008 0.950 0.001

3.4. System Integration

In this section, we integrate all the aforementioned subsystems and modules to produce the
complete system architecture of our IoT-IDCS-CNN. Figure 16 illustrates the top view architecture of
the integrated system as a feedforward CovNet-network-based IoT attack detection system.
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According to the system architecture, after the data preprocessing stages and using the 28 × 28
input matrix, we constructed 784 (= 28 × 28) input nodes. To extract the features of the input data,
the network encompassed a deep convolutional layer involving a depth of 20 convolution filters of
size 9 × 9. Thereafter, the results of the convolutional layer passed via the ReLU activation function,
which was followed by the subsampling operation of the pooling layer. The pooling layer utilized
the average pooling method with 2 × 2 submatrices. The pooled features were then flattened to
2000 nodes. The classification/detection neural network comprised the single hidden FC layer and
the output classification layer. This FC layer comprised 200 nodes along with the ReLU activation
function. Since our system required the classification of the data into five classes, the output layer was
implemented with five nodes with the softmax activation function. The next table, Table 7, recaps the
final integrated CovNet-based system for IoT attack detection.

Table 7. Summary of the developed CovNet for an IoT attack detection/classification system.

Layer Comment Trainable Parameters

Preprocessing 148,517 samples each (28 × 28) -
Input 28 × 28 nodes (784 nodes) -
Convolution 20 convolution filters (9 × 9) + ReLU WCon (9 × 9 × 20)
Pooling Mean pooling (2 × 2) -
Flattening 2000 nodes -
Fully connected 200 nodes + ReLU WFCL (2000 × 200)
Output 5 nodes (or 2 nodes) + softmax WOut (200 × 5)

Moreover, the life cycle for the packet traffic received at the IoT gateway is provided in Figure 17
below. The input layer took the encoded features generated from the FE subsystem in order to be trained
at the CNN, which updated the training parameters and generated the least cost/loss value (error) with
optimal accuracy. The output layer employed the softmax classifier, which was used to classify the data
using two classification techniques, namely, the binary classification technique, which provided two
categories (normal vs. anomaly), and the multiclassification technique, which provided five categories
(normal, DoS attack, probe attack, R2L attack, U2R attack).
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4. Simulation Environment

To implement, verify, and validate the proposed IoT attack detection and classification system,
the training and testing were performed on the NSL-KDD dataset involving the key attacks against
IoT communication. The classifier model was determined to have either two classes (binary attack
detection) or five classes (multi-attack classification). The proposed system was implemented in
MATLAB 2019a. To evaluate the system’s performance, experiments were performed using a
high-performance computing platform that utilized the power of a central processing unit (CPU)
and a graphical processing unit (GPU) with the multicore structure of an NVIDIA GeForce® Quadro
P2000 graphics card. The specifications for the workstation used in the development, validation,
and verification are provided in Table 8.

Table 8. The system development and validation environment.

System Unit Specifications

Processor Unit (CPU) Intel Core I9-9900 CPU, 8 cores, @4900 MHz
Graphics Card (GPU) NVIDIA Quad P2000@1480 MHz, 5 GB memory, 1024 CUDA cores
Cache Memory ($) 16 MB cache @ 3192 MHz
Main Memory (RAM) 32 GB DDR4 @ 2666 MHz
Operating System (OS) 64 bit, Windows 10 Pro
Hard Disk Drive (HD) SATA 1TB drive + 256 GB SSD

Furthermore, the experimental setup for the training/testing model was configured as follows:

• Dataset Distribution:

— 85% of the dataset was used for training (i.e., ≈128,500 data sample records).
— 15% of the dataset was used for testing (i.e., ≈20,000 data sample records).

• CovNet Configurations:

— Input (sample) size = 28 × 28. — Number of kernels = 20.
— Convolution kernel size = 9 × 9. — Mean pooling filter size = 2 × 2.
— Activation function = ReLU. — Classifier function = softmax.
— Number of hidden layers = 5. — Number of output classes = 2 or 5.

• Model Optimization Configurations:

— Optimization algorithm = mini batch gradient descent (find minimum loss).
— Mini_batch_size(MBS) = 50, momentum factor (β) = 0.95, learning rate (α) = 0.05.
— Momentum updates = MomCon[9 × 9 × 20], MomFCL[2000 × 200], MomOut[200 × 5].
— All momentum updates were initialized using zeros matrices (zeros (size)).

• Training Model Configurations:

— Training technique = backpropagation with momentum (to update weights).

— Trainable weights = WCon[9 × 9 × 20], WFCL[2000 × 200], WOut[200 × 5].
— Backprop. Derivatives = dWCon[9 × 9 × 20], d WFCL[2000 × 200], dWOut[200 × 5].

— The number of epochs = 100 and the number of iterations per epoch ≈ 2500.

— All trainable weights were initialized using a random number generator (rand).
— All backpropagation derivatives were initialized using zeros matrices.
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• Weight Update Policy:

— dWCon = dWCon/MBS, dWFCL = dWFCL/MBS, dWOut = dWOut/MBS

— MomCon = α× dWCon + β×MomCon; Ô WCon = WCon + MomCon

— MomFCL = α× dWFCL + β×; Ô WFCL = WFCL + MomFCL

— MomOut = α× dWOut + β×MomOut; Ô WOut = WOut + MomOut

5. Results and Discussion

Verification and validation (V&V) are essential activities and quality control factors that are
performed independently to check the system’s compliance with requirements and specifications,
and that it fulfills its intended purpose. Typically, the verification process is defined as a number
of activities that are used to examine the suitability of the system or component (i.e., whether the
product is being built right). On the other hand, the validation process is defined as a number of
activities that are used to examine the conformity of the system (or any of its elements) with its purpose
and functions (i.e., whether the right product is being built). Note that while system validation is
distinct from verification, the actions of both processes are integral and are meant to be performed
together [40]. In this section, we provide a comprehensive verification and validation to check the
system’s compliance with its intended objectives and purpose.

5.1. System Evaluation and Verification

To verify the effectiveness of the proposed system and whether it is in compliance with its intended
functionalities and missions, we evaluated the system’s performance using the recommended testing
dataset in terms of the classification accuracy, classification error percent, and classification time,
as follows:

Classification Accuracy (%) =
Correctly Predicted Samples
Number of Testing Samples

× 100%, (8)

Classification Error (%) =
Incorrectly Predicted Samples

Number of Testing Samples
× 100%, (9)

Classification Time (ms) =
No. Runs∑

i = 1

Execution time (i) ×
1000

No. Runs
. (10)

The plot for the overall testing classification accuracy and overall classification loss (classification
error) that compares the performance of the binary classifier (two classes) and the multiclassifier (five
classes) obtained during the validation process of the NSL-KDD dataset are illustrated in Figure 18.
According to the figure, at the beginning and after one complete pass (epoch) of the testing process,
both classifiers showed relatively low classification accuracy proportions with 85% and 79% registered
for the two-class classifier and five-class classifier, respectively. Thereafter, both classification accuracy
curves began to roughly increase with a stable tendency, while the testing epochs proceeded with
faster and higher ceiling levels obtained for the classification accuracy of the two-class classifier.
After training the system for 100 epochs, the system was able to record overall testing accuracy
proportions of 99.3% and 98.2% for the two-class classifier and five-class classifier, respectively, for the
given test dataset samples. Conversely, it can be clearly seen that both classifiers showed relatively high
classification error proportions at the beginning of the testing process, with 15% and 21% registered
for the two-class classifier and five-class classifier after one testing epoch, respectively. Thereafter,
both classification error rates started to systematically decline, while the binary classifier progressed
faster, achieving a 0.7% incorrect prediction proportion (classification error percentage). However,
the classification error rate proportion for the multiclassifier was saturated with less than 2.0% of
incorrect predictions. This range of classification error of both classifiers (0.7–1.8%) was permitted
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to avoid underfitting or overfitting from the training loss (≈0.0%) and training accuracy (≈100%),
and thus provided high-accuracy classification performance.Electronics 2020, 9, x FOR PEER REVIEW 19 of 27 
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Moreover, we analyzed the time required to perform the attack detection or classification for
one IoT traffic sample. To obtain accurate and precise results, we ran the validation test 500 times
and then computed the time statistics for the detection and classification. Figure 19 shows the
detection/classification time performance for the proposed model (either two-class or five-class
classifier). According to the figure, the time required to detect/classify one sample record ranged
from min = 0.5662 ms to max = 2.099 ms with an average time of mean = 0.9439 ms recorded for the
500 simulation runs. This average time (around 1 ms) is very useful for the system to run in a dynamic
environment, such as for real-time IDS applications.

Furthermore, even though the classification accuracy measurement is the key factor used to
evaluate the efficiency of the classification or detection system, we evaluated the validation (testing)
dataset using a confusion matrix [41] with a clear identification of the true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) analysis to provide more insight about the performance
of the proposed system. Figure 20 shows the general confusion matrix of our system, confusion matrix
results for the two-class classifier using the testing dataset and the confusion matrix results for the
five-class classifier using the testing dataset.
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The confusion matrix parameters (i.e., TN, TP, FN, FP) were used to compute some other
performance evaluation metrics (which have less importance than the accuracy metric), namely, (a) the
classification precision (detection rate), which is defined as the percentage of relevant instances (e.g.,
attacks) among the retrieved instances; (b) the classification recall (sensitivity), which is defined as
the percentage of positive instances that are correctly labeled; (c) the F1-score, which is defined as the
average score involving the precision and recall (i.e., utilizes both false negatives and false positives);
(d) the false alarm rate, which is defined as the percentage of misclassified normal instances detected
by the system [42]. These metrics can be calculated using the following equations, while Table 9
summarizes the results of the overall evaluation metrics for our proposed system:

Precision =
TP

TP + FP
× 100%, (11)
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Recall =
TP

TP + FN
× 100%, (12)

F = 2 ×
Recall × Precision
Recall + Precision

× 100%, (13)

False Alarm Rate =
FP

TN + FP
× 100%. (14)

Table 9. Summary of the overall evaluation metrics results.

Evaluation Metrics Two-Class Classification Five-Class Classification

Correctly predicted samples 19860 19640
Incorrectly predicted samples 140 360
Classification accuracy 99.3% 98.2%
Classification error rate 00.7% 01.8%
Classification precision 99.04% 98.27%
Classification recall 99.33% 98.23%
F-score metric 99.18% 98.22%
False alarm rate (FAR) 01.28% 1.73%
Average classification time 0.9246 0.9439

5.2. System Validation and Benchmarking

To validate the proficiency of the proposed system in compliance with the system’s purpose and
specifications and to ensure a high level of reliability of our system’s validation stage, we conducted a
five-fold cross-validation process [43] that encompassed five different experiments for each classification
model (total of 10 experiments) with different sets for training (≈128,000 samples) and validation
(20,000 samples) nominated for each experiment, as demonstrated in Figure 21, which shows the
distribution of the dataset across the folds for each conducted experiment.
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For each experiment, we evaluated the validation accuracy and validation error for the classification
system models (two classes/five classes). Thereafter, the results obtained from the five experiments
were averaged to provide an overall validation accuracy and validation error values. Consequently,
the proposed system provided a high level of stability and reliability across the dataset folds,
which confirmed the system’s robustness in the mission of attack detection and classification for IoT
communications. The results of the five-fold cross-validation are provided in Table 10 below.
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Table 10. The results of the five-fold cross-validation of both classifiers (accuracy and error).

Experiment Two-Class Five-Class

Accuracy Error Accuracy Error

Experiment 1 0.9930 0.0070 0.9820 0.0180
Experiment 2 0.9942 0.0058 0.9950 0.0050
Experiment 3 0.98750 0.01250 0.9907 0.0093
Experiment 4 0.99440 0.00560 0.9929 0.0071
Experiment 5 0.99320 0.00680 0.9966 0.0034

Average 99.25% 0.75% 99.14% 0.86%

Additionally, to gain more insight into the advantages of the proposed method, we benchmarked
the IoT-IDCS-CNN classification system by comparing its performance with other state-of-the-art
machine-learning-based intrusion/attack detection systems in terms of the classification accuracy
metric. For a better and more reasonable evaluation, we selected the related studies that employed
machine learning techniques for intrusion/attack detection/classification for the NSL-KDD dataset (the
same dataset used by our system) to be compared with our proposed IoT-IDCS-CNN. We summarize
the classification accuracy metric values for the related state-of-the-art research in the following
table, Table 11, in chronological order. Accordingly, it can be obviously noticed that the proposed
IoT-IDCS-CNN model has a higher cyber-attack classification accuracy compared with other ML-IDS
models by an improvement factor (IF) of ≈1.03–1.25.

Table 11. Comparison with state-of-the-art machine-learning-based intrusion detection systems
(ML-IDSs) employing the same dataset (NSL-KDD).

Research Accuracy IF %

K. Taher et al. 2019 [12] ≈83.7% 117.3%
X. Gao et al. 2019 [13] ≈85.2% 115.2%
S. Sapre et al. 2019 [14] ≈78.5% 125.1%
M. Chowdhry et al. 2017 [15] ≈94.6% 103.8%
Q. Niyaz et al. 2016 [16] ≈88.4% 112.3%
I. Yadigar, et al. 2016 [17] ≈91.7% 108.0%
Proposed Method ≈98.2–99.3% ____

IF: improvement factor.

Finally, although the other existing related studies for machine-learning-based intrusion/attack
detection/classification used different cyber-attack datasets, learning policies, programming techniques,
and computing platforms, we can still compare the classification system performance in terms of
testing accuracy metrics and the level of complexity for the developed method. Therefore, for better
readability, we summarized the classification accuracy metrics for the other related state-of-art research
in the following table, Table 12, in chronological order. According to the comparison done using the
table, it can be seen that the proposed approach produced attractive results in terms of classification
accuracy, showing superiority over all other compared methods.

Table 12. Comparison with state-of-the-art ML-IDSs employing different datasets.

Research Data Accuracy IF %

G. Bendiab et al. 2020 [9] Zero-Day Malware ≈94.50% 105.0%
R. Shire et al. 2019 [10] Zero-Day Malware ≈91.32% 107.5%
I. Baptista et al. 2019 [11] Ransomware filetypes ≈94.10% 104.4%
S.Jan et.al 2019 [18] CICIDS Dataset ≈93.0% 106.7%
M. Roopak et al. 2019 [19] CICIDS Dataset ≈92.0% 107.9%
C. Ioannou et al. 2019 [20] Simulated Dataset ≈81.0% 122.5%
O. Brun et al., 2018 [21] Real-Time Dataset ≈75.0% 132.4%
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Table 12. Cont.

Research Data Accuracy IF %

V. Thing et al. 2017 [22] AWID Dataset ≈98.0% 101.3%
P. Shukla et al. 2017 [23] Simulated Dataset ≈75.0% 132.4%
E. Hodo et al. 2016 [24] DoS Dataset ≈99.0% 100.3%
C. Kolias et al. 2016 [25] AWID Dataset ≈92.0% 107.9%
Y. Li et al. 2015 [26] KDDCUP Dataset ≈92.0% 107.9%
Proposed Method NSL-KDD Dataset ≈98.2–99.3% ____

6. Conclusions and Future Directions

An efficient and intelligent deep-learning-based detection and classification system for cyberattacks
in IoT communication networks (called IoT-IDCS-CNN) was proposed, developed, tested, and validated
in this study. The proposed IoT-IDCS-CNN makes use of high-performance computing by employing
the robust Nvidia GPUs (Quad-Cores, CUDA-based) and the parallel processing employing the
high-speed Intel CPUs (N-Cores, I9-based). For the purpose of the system development, the proposed
IoT-IDCS-CNN was decomposed into three subsystems, namely, the feature engineering subsystem,
the feature learning subsystem, and the detection and classification subsystem. All subsystems were
individually developed and then integrated, verified, and validated in this research. Because of the
use of a CNN-based design, the proposed system was able to detect and classify the slightly mutated
cyberattacks of IoT networks (represented collectively by the NSL-KDD dataset, which includes all the
key attacks found in IoT computing) with a detection accuracy of 99.3% between normal or anomaly
traffic and could classify the IoT traffic into five categories with a classification accuracy of 98.2%.
Furthermore, to ensure a high level of reliability for the system validation stage, we conducted a
five-fold cross-validation process that encompassed five different experiments for each classification
model. Moreover, to provide more insight about the performance of the system, the proposed system
was evaluated using the confusion matrix parameters (i.e., TN, TP, FN, FP) and computed some
other performance evaluation metrics, namely, the classification precision, the classification recall,
the F1-score of the classification, and the false alarm rate. Finally, the experimental evaluation results
of the IoT-IDCS-CNN system surpassed the results of many recent existing IDS systems in the same
area of study. Several recommendations for future research works may be considered to extend this
study. These further recommendations include the following:

(a) Additional data collection by setting up a real-time IoT communication network with a sufficient
number of nodes and gateways to incorporate node diversity. A future researcher can develop
a new software system that can catch and investigate any data packet communicated through
the IoT environment (in-going and out-going) and come up with attacks to update an existing
dataset or come up with a new dataset. Note that the packet collection and investigation should
be performed for a sufficient amount of time to provide more insights into the type of packet
(normal or anomaly) processed during IoT networking. This can provide different perceptions
of the operation of the device, such as the utilization of the processing unit, the memory unit,
and the communication traffic. The collected data can then be deemed as normal or an anomaly
based on their behavior. For example, the normal data is related to the imitation of usual actions
of local IoT devices, such as surveillance cameras. The anomaly data concerns botnet/probe
actions, such as communication with command-and-control units. In the end, the data can be
labeled accordingly.

(b) The proposed IoT-IDCS-CNN can be customized and used for intrusion detection by incorporating
other cyberattack datasets, such as the Aegean Wireless Intrusion Dataset (AWID) dataset [44],
the Canadian Institute for Cybersecurity-Intrusion Detection System (CICIDS) dataset [45],
the Distributed Denial of Service (DDoS) dataset [46], and the University of New South Wales-New
Bot 2015 (UNSW-NB15) dataset [47]. This can be achieved by customizing the preprocessing and
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output layers accordingly with fine-tuning for the hidden layers, as well as the model parameters
and hyperparameters to obtain the maximum classification accuracy and the lowest error rate.

(c) The proposed IoT-IDCS-CNN can also be tuned and used to perform other real-life applications
that require image recognition and classification, such as medical, biomedical, and handwriting
recognition applications.

(d) Finally, the proposed system can be employed by an IoT gateway device to provide intrusion
detection services for a network of IoT devices, such as a network of Advanced RISC Machine
(ARM) Cortex based nodes. More investigation on the proposed IoT-IDCS-CNN can be reported,
including power consumption, memory utilization, communication, and computation complexity
over low power IoT nodes with tiny system components (such as battery-operated/energy-aware
devices).
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