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Mechanical behaviors of hydrogel-impregnated sand 1 

Kejun Wena, Yang Lib, Wei Huangc, Catherine Armwoodd, Farshad Aminie, Lin Lif 2 

Abstract: Hydrogel has been widely used in medical studies due to their unique integration of 3 

solid and liquid properties. There is limited studies of using hydrogel in construction materials. 4 

The goal of this study was to investigate the effect of hydrogel on mechanical behaviors of sandy 5 

materials. The effects of reaction time, sodium alginate content, and curing temperature on 6 

mechanical behaviors of hydrogel-impregnated sand were studied through unconfined 7 

compression tests, falling head permeability tests, consolidated and undrained triaxial tests, 8 

scanning electron microscopy, and durability tests. The unconfined compression strength (UCS) 9 

increased with sodium alginate content, but the hydraulic conductivity of hydrogel-impregnated 10 

sand decreased with sodium alginate content. The optimum reaction time and curing temperature 11 

were found to be 3 days and 50°C, respectively, for the hydrogel-impregnated sand. The stress-12 

strain curves of hydrogel-impregnated sand indicated that the ductility of hydrogel-impregnated 13 

sand was significantly improved compared with the traditional cementitious method. Moreover, 14 

the results of durability tests indicated that approximately 60% of the original UCS of hydrogel-15 

impregnated sand still remained after 12 wet-dry and freeze-thaw cycles.  16 

Keywords: Hydrogel, Ductility, Curing condition, Wet-dry, Freeze-thaw 17 
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Introduction 18 

Mechanical and chemical treatment methods have been developed to improve soil properties of 19 

strength, erosion, dynamic resistance, and stability [1]. The mechanical treatment methods 20 

include densification, dewatering, and structural reinforcement [2-4]. The chemical treatment 21 

methods involve chemical stabilizers such as cement, lime, fly ash, gypsum, and bituminous 22 

materials [5-7]. The stabilization mechanisms of chemical treatments have been extensively 23 

studied [8-11]. However, these materials are costly and may have environmental concerns [1]. 24 

These additives may cause the increase of soil pH after treatment, which have negative effects on 25 

surrounding groundwater and plants. Moreover, the treated soils commonly exhibit brittle 26 

behavior that potentially affect their stability for structures [11,12]. Meanwhile, the production of 27 

traditional additives, such as cement and lime, consume a large amount of natural resources and 28 

energy [1]. Therefore, the development of eco-friendly materials for soil improvement is 29 

essential.  30 

Non-traditional additives including enzymes, microbials, resins, acids, and polymers have 31 

gained much attention in recent years [13-15]. The bio-geochemical processes that induces 32 

mineral precipitation, has been utilized as an alternative to traditional chemical grouting [16]. 33 

Microbial induced calcite precipitation (MICP) is the most common bio-process that has been 34 

studied. The MICP treatment requires the existence of ureolytic bacteria, urea, and calcium-rich 35 

solution to drive the bio-geochemical reaction [13,17,18,19]. The MICP treatment helps bond the 36 

soil particles of sand to improve the mechanical behavior of sandy soil. The MICP-treated sand 37 

materials have been applied as alternative construction materials in the development of bio-38 

bricks and bio-beams [11,16,19]. Wen et al. [19] found that the flexure strength of bio-beams 39 

could achieve around 3.0 MPa, which is equivalent to a plain concrete beams. However, the 40 
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MICP-treated sand materials exhibit brittle performance which is opposite of the desired ductile 41 

performance needed for beams [11,19]. Recent studies have shown that using gel-type bio-42 

polymers can possibly improve the soil strength and the ductility of sandy soil [20]. Previous 43 

studies mostly focused on the use of thermo-gelation bio-polymer such as gellan and agar 44 

biopolymers, which require a high temperature (~100℃) during the reaction. Chang et al. [20] 45 

mixed sand with gellan gum at 100℃ and tested the UCS after sample cooling. The test results 46 

showed that the 2% gellan gum-treated sand gained around 400 kPa UCS and failed at 7% strain 47 

when the sample fully dried. However, the sample lost almost 90% strength after re-submerging 48 

the sample into water. The durability of biopolymer-treated soil presents to be unstable in 49 

aqueous environments.  50 

Hydrogel, a class of three-dimensional (3D) networks formed through the cross-linking 51 

of hydrophilic polymer chains embedded in a water-rich environment, possesses broadly tunable 52 

physical and chemical properties [21,22]. Hydrogel is abundant in plant and animal tissue, with 53 

examples ranging from xylems and phloems to muscles and cartilages [23]. Due to their unique 54 

integration of solid and liquid properties, hydrogel has been widely explored in diverse 55 

application such as drug delivery, biomedicine, soft electronics, sensors, tissue engineering, and 56 

coating for medical devices [22,23,24]. Gong et al. [24] developed a strong hydrogel by inducing 57 

the double-network structure method. The double-network structure with poly (2-acrylamido-2-58 

methylpropanesulfonic acid) and poly (acrylamide) hydrogel can sustain a compression stress of 59 

17.2 MPa and recover immediately after unloading. Sun et al. [25] developed a synthetic 60 

hydrogel by mixing Ca-alginate and polyacrylamide to achieve tough and stretchable properties. 61 

The alginate-polyacrylamide hybrid gel can be stretched to exceed 20 times its original length 62 
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without rupture. The superior toughness and mechanical strength of hydrogel has the potential to 63 

improve the ductility and dynamic loading resistance of construction materials.  64 

The goal of this study was to apply Ca-alginate hydrogel for improving the ductility and 65 

mechanical behavior of sandy soil. In this study, the Ca-alginate hydrogel was selected due to its 66 

environmentally friendly properties [26,27]. The effects of reaction time, sodium alginate content, 67 

and curing temperature on mechanical behaviors of hydrogel-impregnated sand were studied 68 

through unconfined compression tests, falling head permeability tests, consolidated and 69 

undrained triaxial tests, scanning electron microscopy, and durability tests.  70 

Materials and Methods 71 

Sand 72 

Mississippi local sand was used in this study. The sieve analysis method was used to determine 73 

the sand particle size distributions according to ASTM C136 [28]. The standard U.S. sieve was 74 

used in this study. The sand particle distribution curve is shown in Figure 1. The coefficient of 75 

uniformity (Cu) and gradation (Cc) were determined as 2.05 and 1.21, respectively. It was 76 

classified as a poorly graded sand (SP) according to Unified Soil Classification System (USCS). 77 

Ca-alginate Hydrogel 78 

The Ca-alginate hydrogel was prepared from sodium alginate solution that mixing the solution 79 

with CaCl2 agents [29]. The sodium alginate was delivered as powder and the gel solution was 80 

created when the powders were mixed with water. The sodium alginate powder used in this study 81 

was supplied by ACRON (CAS No. 9005-38-3).  The sodium alginate solutions were prepared in 82 

DI water at room temperature. Four different sodium alginate contents (0.1%, 0.2%, 0.3% and 83 

0.4% by weight of dry sand) were used for this study.  84 
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Figure 1. Particle distribution curve of Mississippi sand. 86 

 87 

Hydrogel-impregnated Sample Preparation 88 

All hydrogel-impregnated sand samples were prepared using the following sample preparation 89 

method. Sodium alginate solution (~20 mL) was mixed with sand (100 g) to a workable status at 90 

room temperature as shown in Figure 2 (a). The mixture was compacted in a mini compaction 91 

mold with a diameter of 33.0 mm (1.3 in.) and a height of 71.1 mm (2.8 in.) (Figure 2 (b)). After 92 

compaction, the sample was extruded out and merged into 0.5 M CaCl2 solution as shown in 93 

Figure 2 (c). The CaCl2 solution was used as ionic cross-linking agent with sodium alginate to 94 

form the Ca-alginate hydrogel. The formatted Ca-alginate hydrogel can cement the sand particles 95 

together and improve the mechanical performance of sand. Different reaction times (1, 3, 5, 7, 14, 96 

28 days) in the CaCl2 solution were investigated to explore the optimum performance of 97 

hydrogel-impregnated sand. All testing samples were prepared in triplicate. 98 
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Four different curing conditions were selected to investigate the effect of curing temperature on 99 

the properties of hydrogel-impregnated sand. After removing the samples from the reaction tank, 100 

the hydrogel-impregnated sand was either (1) air-dried at room temperature (250C) for 28 days, 101 

(2) oven-dried in 500C for 24 h, (3) oven-dried in 800C for 24 h, or (4) oven-dried in 1000C for 102 

24 h. 103 

 104 

  105 

Figure 2. Images of sample preparation. 106 

 107 

Unconfined Compression Test 108 

The hydrogel-impregnated samples for the unconfined compression test were cylinder-shaped 109 

with 2H:1D ratio (diameter of 33.0 mm and height of 71.1 mm). The unconfined compression 110 

test was conducted under strain-controlled conditions at a uniform loading rate of 1.5%/min in 111 

accordance with ASTM D2166 [30].  112 

Permeability Test 113 

The falling head permeability testing method was used to test the hydraulic conductivity of the 114 

hydrogel-impregnated sand following ASTM D5084-16a [31]. For untreated sand, the constant 115 

head permeability testing method was used following ASTM D2434-68 [32]. 116 

(a) (b) (c) 
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Consolidated and Undrained Triaxial Test 117 

Consolidation undrained triaxial compression tests were conducted under 100, 200 and 400 kPa 118 

cell pressure at a constant axial strain rate of 1.0% stain/min. The tests terminated after the strain 119 

reached 15%.  120 

Durability tests 121 

Durability tests of hydrogel-impregnated sample were conducted in accordance with ASTM D 122 

560 [33] for freeze-thaw cycles and ASTM D 559 [34] for wet-dry cycles. The UCS tests were 123 

conducted on these samples after every 3 cycles.  124 

Freeze-thaw 125 

Every freeze-thaw cycle began by introducing specimens in a freezing cabinet with constant 126 

temperature of -230C for 24 h. Next, the samples were placed in the moist room at temperature of 127 

250C and a relative humidity of 100% for 24 h. The number of freeze-thaw cycles was up to 12 128 

times in this study. The mass loss after each freeze-thaw cycle were measured. After each freeze-129 

thaw cycle, the hydrogel-impregnated samples were thawed at 500C for 24 h before testing. 130 

Wet-dry 131 

Every wet-dry cycle began with oven drying for 24 h at 500C. Then, specimens were immersed 132 

underwater for 24 h at 250C. The number of wet-dry cycles was up to 12 times in this study. The 133 

mass loss after each wet-dry cycle were measured. 134 

Scanning Electron Microscopy (SEM) Analysis  135 

SEM images were taken to observe the micro-scale connections between hydrogel and sand 136 

particles. Selected samples including untreated sand and hydrogel-impregnated sand under wet 137 
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and dry conditions were mounted on the stubs with adhesive carbon conductive tabs. The 138 

prepared samples were observed by secondary electron detection in SEM (TESCAN LYRA3). 139 

 140 

Results and Discussion 141 

Effect of reaction time on strength improvement of hydrogel-impregnated sand 142 

The stress-strain relationship of hydrogel-impregnated sand with 0.4% sodium alginate content at 143 

different reaction times (1 day, 3 day, 5 day, 7 day, and 14 days) in the CaCl2 solution is shown 144 

in Figure 3. The conventionally-reinforced sandy soil commonly exhibited a brittle behavior 145 

[11,17]. In contrast, the failure stain of hydrogel-impregnated sand could reach up to 6%, 146 

indicating a good ductility behavior. Meanwhile, all samples exhibited residual strength after the 147 

peak strength, which demonstrated better elastic behavior. The UCS of hydrogel-impregnated 148 

sand increased with reaction time up to 3 days, and then the UCS started to reduce. This could be 149 

caused by the degradation or decrosslinking of hydrogel. Shoichet et al. [35] found that increased 150 

exposure of calcium-crosslinked alginate to sodium citrate can result in decreased gel strength 151 

because sodium citrate chelates calcium, thereby decrosslinking calcium alginate. Rowley et al. 152 

[36] also indicated that the ionically crosslinked alginates lost its mechanical properties over 153 

time due to an outward flux of crosslinking ions into the surrounding medium. The exchange 154 

between divalent crosslinking ions (e.g., Ca2+) with monovalent ions from the surrounding 155 

environment causes alginate hydrogels to degrade [37]. In this study, the sodium ions in the 156 

solution may have degraded the Ca-alginate over time. Therefore, the study proposed the 157 

optimum reaction time for Ca-alginate was 3 days.  158 
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Figure 3. The UCS of hydrogel-impregnated sand with 0.4% sodium alginate content at different 160 

reaction times.  161 

Effect of sodium alginate content on strength improvement of hydrogel-impregnated sand 162 

The stress-strain relationship of hydrogel-impregnated sand at different sodium alginate contents 163 

after 3 days of reaction time was shown in Figure 4 (a). It can be seen that the UCS of hydrogel-164 

impregnated sand increased with the increase of sodium alginate content. The strength of 165 

hydrogel-impregnated sand at 0.4% sodium alginate content (260 kPa) was around two times 166 

higher than that at 0.1% sodium alginate content (140 kPa). Bu et al. [11] found that the UCS of 167 

the optimum lime-treated sand (15% by weight of dry sand) was 140 kPa, which is similar to 168 

hydrogel-impregnated sand with 0.1% sodium alginate. The UCS of hydrogel-impregnated sand 169 

was lower than that of cement-treated sand, but is still comparable with a lower percentage 170 

additive at 0.4%. Consoli et al. [38] reported that the UCS of 2% cement-treated sand was 171 

around 250 kPa which was similar to that of hydrogel-impregnated sand with 0.4% sodium 172 

alginate. Chang et al. [12] mixed different contents of gellan gum with sand to improve the 173 
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strength behavior of sand, and the results indicated that the UCS increased with gellan gum 174 

content. The UCS of 2% gellan gum-treated sand was around 180 kPa. Meanwhile, the residual 175 

strength of hydrogel-impregnated sand increased with the increase of sodium alginate content, 176 

and hydrogel-impregnated sand with 0.4% sodium alginate content had a residual strength of 100 177 

kPa. This is in agreement with the fact that the gellan gum contents had a positive effect on 178 

residual strength of gellan gum-treated sand [12]. 179 
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Figure 4. The effect of sodium alginate content on (a) stress-strain curve; (b) hydraulic 182 

conductivity of hydrogel-impregnated sand. 183 

 184 

The hydraulic conductivity of hydrogel-impregnated sand at different sodium alginate 185 

contents was investigated in this study. As shown in Figure 4 (b), the higher the sodium alginate 186 

content, the lower the hydraulic conductivity of hydrogel-impregnated sand. The hydraulic 187 

conductivity decreased from an untreated condition (~10-2 cm/s) to hydrogel-impregnated sand 188 

with 0.4% sodium alginate content (~1.8×10-4 cm/s), indicating that the void spaces between 189 

sand particles were filled and cemented by the inclusion of hydrogel. 190 

Effect of curing temperature on strength improvement of hydrogel-impregnated sand  191 

Four different curing conditions were selected to investigate the effect of curing temperature on 192 

the UCS of hydrogel-impregnated sand. Figure 5 shows the stress-strain curve of hydrogel-193 

impregnated sand with 0.4% sodium alginate content at different curing temperatures. The wet 194 

condition means that the samples were tested without curing. It can be shown that the 195 

performance of stress-strain hydrogel-impregnated sand was significantly affected by the curing 196 

temperature. The highest UCS was around 430 kPa at 500C oven-dried curing condition, and the 197 

lowest one was 160 kPa at 1000C oven-dried curing condition. Chang et al. [12] studied the 198 

strength behaviors of gellan gum-treated sand under different curing conditions. They reported 199 

that the UCS of the air-dried sample was higher than that of the wet samples. This is related to 200 

the remaining sodium ions in the wet sample degrading/decrosslinking the Ca-alginate over time 201 

during the air-dry process over 28 days. 202 
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Figure 5. The stress-strain curve of hydrogel-impregnated sand under different curing conditions. 204 

 205 

The failure modes of hydrogel-impregnated sand at different curing temperatures are 206 

shown in Figure 6.  In the case of the wet condition, the sample did not completely break after 207 

peak strength and was still cemented by hydrogel, achieving a residual strength of 90 kPa at 15% 208 

strain. The failure sample exhibited a shear zone failure mode as shown in Figure 6 (a). An X-209 

shape shear band and several small cracks appeared in the failure sample. Asghari et al. [39] 210 

found this similar failure mode for lime-cemented sand. Figure 6 (b) shows the failure sample 211 

after 28 days of air-dried conditions. The sample failed in a barreling or drum shape and no 212 

cracks were identified, indicating a uniform status of the sample. This is consistent with the 213 

result from the stress-strain curve in Figure 5. The air-dried sample presented a superior ductility, 214 

and the failure strain was around 7%, with 100 kPa residual strength at 15% strain. Plé and Lê 215 

[40] reported that the fiber-reinforced silty clay soil presented a drum shape failure mode, which 216 

indicated that the strain localization is prevented by the presence of the fibers. When the 217 
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hydrogel-impregnated sample was cured at higher temperatures, the ductility and strength 218 

significantly changed. Figure 6 (c) shows the failure sample at 50°C curing temperature, and the 219 

sample exhibited a shear failure mode. Meanwhile, the peak strength reached around 430 kPa, 220 

but the stress reduced dramatically after peak stress. The residual strength was around 20 kPa at 221 

15% failure strain. When the curing temperature increased to 100°C, the failure strain reduced to 222 

around 2.0% and the peak stress reduced to 160 kPa. The sample was brittle and weak with no 223 

residual stress. The top of the sample was broken and the failed portion became loose sand as 224 

shown in Figure 6 (d).  225 

 226 

 227 

Figure 6. The failure mode of hydrogel-impregnated sand under (a) wet condition; (b) air-dry 228 

condition; (c) 500C oven-dried condition; (d) 1000C oven-dried condition. 229 

 230 

The SEM images of untreated sand and hydrogel-impregnated sand are shown in Figure 7. 231 

The untreated sand did not have cohesion, and the shape of untreated sand was irregular as 232 

shown in Figure 7 (a). The image of hydrogel impregnated sand under wet condition is shown in 233 

Figure 7 (b). The hydrogel uniformly warped the sand particles and cemented them together, 234 

resulting in the reduction of void space. This is consistent with the results of hydraulic 235 

conductivity in Figure 4 (b). The hydrogel connection shrank in size after the hydrogel-236 

(a) (b) (c) (d) 
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impregnated sample cured at 50°C as shown in Figure 7 (c). However, the strength of 50oC dried 237 

sample increased which may be because the hydrogel becomes a solid material during the drying 238 

process. 239 

 240 

     241 

Figure 7. SEM images of a) Untreated Mississippi sand; b) hydrogel-impregnated sand under wet 242 

condition; c) hydrogel-impregnated sand under dry condition (500C oven dried). 243 

 244 

Shear strength of hydrogel-impregnated sand  245 

The natural repose angle of Mississippi sand is shown in Figure 8 (a), which was around 32°. 246 

The consolidated and undrained triaxial tests were conducted on hydrogel-impregnated sand with 247 

0.4% sodium alginate, and three different confining pressures (100 kPa, 200 kPa and 400 kPa) 248 

were selected. Figure 8 (b) shows the Mohr circle curves and failure envelopes obtained from 249 

triaxial compression strength tests on hydrogel-impregnated samples. The test results show that 250 

the cohesion and friction angle of hydrogel-impregnated sand were 150 kPa and 16°, respectively. 251 

Sandy soil is well-known as cohesionless soil. The gelation connection provided by hydrogel 252 

enhanced the connection between sand particles and improved the cohesion of sandy soil. Li et al. 253 

(a) (b) (c) 
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[41] investigated the shear strength of MICP-treated sand (0.18 M Ca) and found that the 254 

cohesion of MICP-treated sand increased to 20 kPa, which was much lower than that of 255 

hydrogel-impregnated sand, and the friction angle of MICP-treated sand was similar to that of 256 

hydrogel-impregnated sand. 257 

 258 
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Figure 8. (a) The natural repose angle of Mississippi sand; (b) Mohr circle and failure envelope 261 

of hydrogel-impregnated sand with 0.4% sodium alginate.  262 
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Durability Test on Hydrogel-impregnated Sand  264 

The durability of hydrogel-impregnated sand was tested through wet-dry and freeze-thaw cycles. 265 

The effect of wet-dry and freeze-thaw cycles on the UCS of hydrogel-impregnated sand is shown 266 

in Figure 9. The samples used for the durability tests were hydrogel-impregnated samples with 267 

0.4% sodium alginate content at a curing temperature of 50°C. It was found that no significant 268 

difference for the samples subjected to 3 wet-dry or freeze-thaw cycles. After 3 cycles, the UCS 269 

of hydrogel-impregnated sand started to decrease with the increase of wet-dry or freeze-thaw 270 

cycles. After 12 wet-dry or freeze-thaw cycles, 60% of the original UCS of the hydrogel-271 

impregnated sand still remained. Kampala et al. [42] used fly-ash to reinforce clay soil, and the 272 

UCS reduced over 50% after 6 wet-dry cycles. Chang et al. [12] studied the strength behavior of 273 

2% gellan gum-treated sand and found that the UCS dropped dramatically from 435 kPa (dry 274 

condition) to 45 kPa (re-submerged condition). This result indicated that the gellan gum-treated 275 

sand was not recoverable once the gellan gum gel is condensed through dehydration. Eskişar et 276 

al. [43] found that cement-treated clay reduced 50% in strength after 5 freeze-thaw cycles. With 277 

these studies, it is indicated that the Ca-alginate hydrogel has a superior durability performance.  278 

However, the natural environment contains many micro-organisms that may have an 279 

impacted the stability of Ca-alginate impregnated sand. Studies have concluded that the 280 

decreased mechanical strength of Ca-alginate is due to the entrapped growing microorganism 281 

[44,45]. Therefore, the effects of microorganisms on the mechanical properties of hydrogel-282 

impregnated samples need to be studied further. 283 
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Figure 9. The effect of wet-dry (a) and freeze-thaw (b) cycles on unconfined compressive 286 

strength of hydrogel-impregnated sand 287 
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 288 

Conclusions 289 

As an environmentally friendly material used for sandy soil improvement, the hydrogel-290 

impregnated sand achieved a relatively high strength even at low concentrations of hydrogel. The 291 

effects of reaction time, sodium alginate content, and curing temperature on mechanical 292 

behaviors of hydrogel-impregnated sand were studied through unconfined compression tests, 293 

falling head permeability tests, consolidated and undrained triaxial tests, scanning electron 294 

microscopy, and durability tests. The optimum reaction time and curing temperature of hydrogel-295 

impregnated sand were found to be 3 days and 50°C, respectively. The UCS tended to increase 296 

with more sodium alginate content, but hydraulic conductivity decreased with the sodium 297 

alginate content. The UCS of hydrogel-impregnated sand at 0.4% sodium alginate content 298 

reached 430 kPa and presented to be the optimum mixture ratio. The hydrogel-impregnated sand 299 

showed a significant improvement in the cohesion of the sand particles. The results showed that 300 

the cohesion and friction angle of hydrogel-impregnated sand at 0.4% sodium alginate content 301 

were 150 kPa and 16º, respectively. In addition, the stress-strain curves of hydrogel-impregnated 302 

sand indicated that the ductility of hydrogel-impregnated sand was significantly improved 303 

compared to traditional cementitious methods. Moreover, the results of durability tests indicated 304 

that approximately 60% of original UCS of hydrogel-impregnated sand still remained after 12 305 

wet-dry and freeze-thaw cycles. 306 
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