
Tennessee State University Tennessee State University 

Digital Scholarship @ Tennessee State University Digital Scholarship @ Tennessee State University 

Biology Faculty Research Department of Biological Sciences 

3-8-2017 

Quantifying the short-term dynamics of soil organic carbon Quantifying the short-term dynamics of soil organic carbon 

decomposition using a power function model decomposition using a power function model 

Weiping Zhou 
Chinese Academy of Agricultural Sciences 

Jinhong He 
Chinese Academy of Sciences 

Dafeng Hui 
Tennessee State University 

Weijun Shen 
Chinese Academy of Sciences 

Follow this and additional works at: https://digitalscholarship.tnstate.edu/biology_fac 

 Part of the Soil Science Commons 

Recommended Citation Recommended Citation 
Zhou, W., He, J., Hui, D. et al. Quantifying the short-term dynamics of soil organic carbon decomposition 
using a power function model. Ecol Process 6, 10 (2017). https://doi.org/10.1186/s13717-017-0077-5 

This Article is brought to you for free and open access by the Department of Biological Sciences at Digital 
Scholarship @ Tennessee State University. It has been accepted for inclusion in Biology Faculty Research by an 
authorized administrator of Digital Scholarship @ Tennessee State University. For more information, please contact 
XGE@Tnstate.edu. 

https://digitalscholarship.tnstate.edu/
https://digitalscholarship.tnstate.edu/biology_fac
https://digitalscholarship.tnstate.edu/biology
https://digitalscholarship.tnstate.edu/biology_fac?utm_source=digitalscholarship.tnstate.edu%2Fbiology_fac%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/163?utm_source=digitalscholarship.tnstate.edu%2Fbiology_fac%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:XGE@Tnstate.edu


RESEARCH Open Access

Quantifying the short-term dynamics of soil
organic carbon decomposition using a
power function model
Weiping Zhou1,2, Jinhong He3,4, Dafeng Hui5 and Weijun Shen3*

Abstract

Introduction: Soil heterotrophic respiration (Rh, an indicator of soil organic carbon decomposition) is an important
carbon efflux of terrestrial ecosystems. However, the dynamics of soil Rh and its empirical relations with climatic
factors have not been well understood.

Methods: We incubated soils of three subtropical forests at five temperatures (10, 17, 24, 31, and 38 °C) and five
moistures (20, 40, 60, 80, and 100% water holding capacity (WHC)) over 90 days. Rh was measured throughout the course
of the incubation. Three types of models (log-linear, exponential, and power model) were fitted to the measurements
and evaluated based on the coefficient of determination (r2) and Akaike Information Criterion (AIC) of the model. Further
regression analysis was used to derive the empirical relations between model parameters and the two climatic factors.

Results: Among the three models, the power function model (Rh = R1 t
−k) performed the best in fitting the descending

trend of soil Rh with incubation time (r2 > 0.69 for 26 of 30 models). Both R1 and k generally increased linearly with soil
temperature but varied quadratically with soil moisture in the three forest soils.

Conclusions: This study demonstrated that the power function model was much more accurate than the exponential
decay model in describing the decomposition dynamics of soil organic carbon (SOC) in mineral soils of subtropical
forests. The empirical relations and parameter values derived from this incubation study may be incorporated into
process-based ecosystem models to simulate Rh responses to climate changes.

Keywords: Soil respiration, Subtropical forest, Moisture, Temperature, Power function, Climate change

Introduction
Soil heterotrophic respiration (Rh) is a major component
of soil CO2 efflux resulting from microbial decompos-
ition of litter and soil organic carbon (SOC) (Luo et al.
2001; Davidson and Janssens 2006; Richardson et al.
2012). Many studies about the environmental controls of
Rh have been conducted over the past decades using
both field experiments and laboratory incubations
(Giardina and Ryan 2000; Fang et al. 2005; Curiel Yuste
et al. 2007; Deng et al. 2012). Previous field observations
and experiments generally characterized the diurnal, sea-
sonal, or annual variation patterns of soil CO2 fluxes
and derived their empirical relations with environmental

factors such as temperature and moisture (Raich and
Schlesinger 1992; Bond-Lamberty and Thomson 2010;
Wei et al. 2015). Although field studies have the advan-
tage of investigating soil CO2 fluxes in less or undis-
turbed soils, the influential environmental factors are
often confounded with each other under field condi-
tions. For instance, the increase of soil temperature may
cause the decrease of soil moisture (Kirschbaum 1995;
Davidson et al. 1998). Moreover, the temperature and
moisture effects may also be confounded by other biotic
and abiotic factors such as substrate availability and mi-
crobial biomass (Wei et al. 2015). Laboratory incubation
experiment was considered the most unbiased method
to investigate intrinsic soil Rh variation patterns and
underlying mechanisms (Kirschbaum 1995) because it
can isolate the effects of a single process on system
dynamics, which may be impossible in nature. Many lab
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incubation studies therefore have been conducted to
quantify biotic and abiotic effects on soil organic matter
(SOM) decomposition (Kirschbaum 1995; Dalias et al.
2001; Iqbal et al. 2009; Curtin et al. 2012). For example,
researchers incubated mineral soils under certain tem-
peratures and moistures and measured CO2 release from
the soil (i.e., Rh) at different time intervals over a given
period of time (Giardina and Ryan 2000; Fang et al.
2005; Thiessen et al. 2013; Zhou et al. 2014). These data
were often used to quantify the dynamics of SOM
decomposition and to investigate the temperature sensi-
tivity of soil Rh (Fierer et al. 2005; Craine and Gelderman
2011; Zhou et al. 2014).
Up to date, exponential decay model has been widely

used to describe the dynamics of SOM decomposition
(Fang et al. 2005; Wu et al. 2006; Ise and Moorcroft
2006; Tan and Chang 2007; Song et al. 2010; Iqbal et al.
2009; Lee et al. 2014) because of its relatively simple
form and reasonable goodness of fit especially for the
early stage of SOM decay (Gholz et al. 2000). The expo-
nential decay model was first proposed by Jenny et al.
(1949) and later developed by Olson (1963) to quantita-
tively describe the first-order kinetics of SOM decom-
position. It is often used for predictive purposes based
on the assumption that the decomposition rate is con-
stant and that all material can be decomposed (Berg and
McClaugherty 2014). However, Aber et al. (1990)
pointed out that predictions of SOM decomposition
rates using a certain model are not necessarily univer-
sally applicable. Huang and Schoenau (1997) compared
linear, second-order kinetics, exponential, logarithmic,
and power models in describing the short-term leaf litter
decomposition dynamics. Their results showed that the
exponential model was not the one with the best fit. In-
stead, a polynomial second-order model fitted the best
for aspen leaves while a logarithmic model fitted the best
for hazel and mixed leaves, indicating that different
models may be suitable for different kinds of leaf litter
differing in quality and quantity.
Process-based ecosystem models have been widely

used to simulate ecosystem responses to climate
changes, although they often require vast amount of in-
put data for model parameterization (Hui and Luo 2004;
Ise and Moorcroft 2006; Shen et al. 2008; Shen et al.
2009; Davidson et al. 2012). While process-based models
are considered better at forecasting future changes, em-
pirical models (e.g., exponential decay model) are often
used to fitting observational data due to their simple
forms and ease of parameter estimation (Olson 1963;
Meentemeyer 1978; Zhang et al. 2008; Hui and Jackson
2009; García-Palacios et al. 2013). Furthermore, such
simple empirical models (e.g., the Q10 function describ-
ing the relationship between Rh and temperature) are
the key constitutes of more sophisticated ecosystem

process models (Shen et al. 2008; Shen et al. 2009).
Deriving accurate empirical relations and parameter
values for particular ecosystems is therefore an import-
ant step for the development and parameterization of
ecosystem models (Luo et al. 2001; Hui and Luo 2004;
Shen et al. 2008; Shen et al. 2009; Davidson et al. 2012;
Bauer et al. 2008). Although the exponential decay
model had been used to describe leaf litter decompos-
ition process in plantation forests of southern China (Li
et al. 2001), few studies have derived the empirical rela-
tions between SOC dynamics and climatic factors for
the mineral soils of subtropical forests. This is in spite of
the fact that subtropical forests in southern China are
the largest carbon sink of the country, and the soils play
a critical role in the carbon balance of the region (Piao
et al. 2009; Wei et al. 2015).
In this study, we incubated soils from three subtropical

forests under a range of temperatures and moistures
over 90 days and measured soil Rh during the course of
the incubation. The main objectives were (1) to quantify
the dynamics of soil Rh for various forest soils under
different soil temperature and moisture treatments, (2)
to test the suitability of different empirical models (e.g.,
log-linear, exponential, and power functions) in simulat-
ing the short-term dynamics of Rh flux or SOC decom-
position, and (3) to derive the empirical relations
between model parameters and soil climatic conditions.

Methods
Soil sampling and incubation experimental design
The laboratory incubation experiment was conducted at
South China Botanical Garden, Chinese Academy of Sci-
ences (CAS) in Guangzhou, China. Soils were collected
at the top soil layer (0–20 cm) from three subtropical
forests at the Heshan National Ecosystem Observation
and Research Station (22° 34′ N, 112° 50′ E), about
80 km away from the Guangzhou City. The three forests
included a plantation of Pinus elliottii (PE), a plantation
of Schima superba (SS), and a subtropical coniferous
and broadleaf mixed forest (CB). Soil total organic
carbon content (TOC) were 14.8 (±0.26), 13.3 (±0.32),
and 16.95 (±0.46) mg g−1 dry soil; total nitrogen (TN)
were 1.05 (±0.01), 0.99 (±0.02), and 1.22 (±0.02) mg g−1

dry soil; total phosphorus (TP) were 0.19 (±0.008), 0.22
(±0.005), and 0.25 (±0.004) mg g−1 dry soil for PE, SS,
and CB, respectively. Soil bulk density (BD) were
1.4 g cm−3 for PE and SS, and 1.027 g cm−3 for CB. Soil
pH (KCl extraction) were 3.58 (±0.08), 3.34 (±0.02), and
3.32 (±0.01) for PE, SS, and CB, respectively. The
detailed description of soil sample collection, laboratory
incubation, and measurements can be found in Zhou et
al. (2014). Here, we briefly described the relevant
experimental design and measurements.
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In each forest, we established four plots (10 × 10 m2)
at least 10 m apart from each other to collect replicated
soil samples. We randomly located five sampling spots
(area = 20 × 10 cm2) within each plot and collected five
soil samples to the depth of 20 cm. The five random
samples were homogenized to form a composite sample
for each plot. We therefore had four replicated soil
samples for each forest, with each composite sample
weighing about 50 kg in fresh weight. All soil samples
were transported to the laboratory and sieved through a
2-mm sieve to remove coarse plant and mineral materials.
The laboratory incubation experiment was conducted

using a full factorial design with two factors (temperature
and moisture) and five treatment levels for each factor.
The five temperature levels were 10, 17, 24, 31, and 38 oC,
and the five moisture treatment levels were 20, 40, 60, 80,
and 100% water holding capacity (WHC). The total num-
ber of treatments for each forest was 25 (five temperature
treatments time five moisture treatments). Each treatment
had four replicates from the four composite samples, thus
resulting in 300 incubation soil samples in total (25 treat-
ments × 4 replicates × 3 forest soils). Each incubation sam-
ple weighing ~50 g of oven-dried soil was added to each
Erlenmeyer flask that was covered by rubber stoppers with
small holes to reduce evaporative water loss and maintain
gas exchange. Soil water content was adjusted to corre-
sponding soil moisture level by adding deionized water
using a pipette. Soil temperature was controlled using the
thermostat incubator (RXZ-600B, Southeast Instrument
Co., Ltd., Ningbo, China). Soil Rh was measured using Li-
6262 infrared gas analyzer (Li-Cor Inc., Lincoln, Nebraska,
USA) at the days of 1, 2, 3, 4, 6, 7, 13, 18, 27, 34, 41, 53,
62, 74, and 90. It is noted here that the Rh data of SS on
day 7, day 30, and day 90 had been reported in Zhou et al.
(2014), which were used to assess the moisture effects on
the temperature sensitivity of Rh; here, the data were
mainly used to derive empirical relations.

Statistical modeling and analysis
We fitted log-linear, exponential, and power function
models to the Rh—incubation time data pairs for all the
three forest soils, and then assessed the performance of the
three models based on coefficient of determination (r2) and
Akaike Information Criterion (AIC). The r2 is a measure of
goodness of fit of the model while AIC offers a relative esti-
mate of the information lost when a given model is used to
represent the process that generates the data. Therefore,
larger r2 values represent a better goodness of fit while
lower AIC values indicate a relatively higher quality of the
model. The three models are as follows:

Rh ¼ aþ bLog tð Þ ð1Þ

Rh ¼ aExp btð Þ ð2Þ

Rh ¼ atb ð3Þ
where Rh is the soil heterotrophic respiration at time t, a
and b are two parameters.
Besides assessing the performance of different models,

we tested the differences of the best model parameters
among the three forest soils using analysis of variance
(ANOVA). All data analyses were performed in SAS 9.3
(SAS Inc., Cary, NC).

Results
Modeling the dynamics of soil Rh
Under all the temperature and moisture treatments for
the three forest soils, soil Rh showed similar dynamic
patterns: the highest Rh appeared in the beginning of the
incubation and declined rapidly in the first 10–20 days,
then leveled off eventually (Figs. 1 and 2). Although all
the three models could quantitatively describe the dy-
namic behavior, the power function model provided the
best fit for the measurements, since AIC was the lowest
and r2 the highest for the power function model com-
pared with the other two models (Table 1). This was also
consistent across all the three forest soils. For most of
the power function models (26 out of 30; 15 for the
temperature treatments (Fig. 1) and 15 for the moisture
treatments (Fig. 2)), the r2 values were larger than 0.69
(Table 2). The power function model (Rh = R1 t−k, with
R1 being the Rh at t = 1 and k the power) was therefore
used to describe the dynamics of soil Rh for all treat-
ments and forest soils hereafter.
For temperature treatments, soil Rh was higher under

higher temperatures, particularly in the beginning of the
incubation (Fig. 1). Soil Rh was the largest under the 38
oC treatment and the lowest under the 10 oC treatment.
Among the three forest soils, PE soil had the lowest soil
Rh (Fig. 1a) and CB the highest (Fig. 1c). Averaged over
the 15 measurement times during the 90-day incubation,
soil Rh was 0.577, 0.723 and 0.876 μg C g−1 dry soil h−1

for the PE, SS, and CB forests, respectively. The power
function model fitted soil Rh dynamics well at all the five
temperature levels, with the r2 ranging from 0.55 to 0.97
(Table 2). The r2 was lower under 10 oC than the other
temperature levels, indicating a relatively poor goodness
of fit of the model at a low temperature (Table 2). The
initial respiration R1 and power k of the model generally
increased with temperature.
For soil moisture treatments, the largest Rh appeared at

the 60% WHC moisture level, followed by the 80% WHC
(Fig. 2). Soil Rh was the lowest under the 20% WHC mois-
ture level in all the three forest soils. The r2 of power func-
tion models ranged from 0.69 to 0.92 (Fig. 2 and Table 2)
and was lower under the 20% WHC moisture than higher
moisture levels, indicating that the power function model
received a relatively poorer goodness of fit at a dry
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condition. The initial respiration R1 and power k were
generally larger at 40–80% WHC than those at 20 and
100% WHC (Table 2), indicating that Rh declining rate was
faster at moderate moisture conditions than at very dry or
wet conditions.

Half-life of soil Rh
While the power function model described the declining
trend of Rh with incubation time well as shown in Figs. 1 and

2, the half-life of soil Rh reduction (i.e., the time it takes for
soil Rh to be reduced to 50% of its starting value) could pro-
vide a simple indicator of SOC decomposition rate. The
shorter the half-life, the faster the SOC decomposition. Based
on the power function, we estimated the half-life of soil Rh
(t1/2) using the equation t1=2 ¼

ffiffiffiffiffiffiffi

0:5k
p ¼ e ln 0:5ð Þ=k ; with k be-

ing the component as given in Eq. (3) in the method section.
The estimated t1/2 of soil Rh varied from 8.3 to

175.0 days under different soil temperature and moisture

Fig. 1 Relationships between soil heterotrophic respiration (Rh) and
incubation time (t) under different soil temperature treatments in
three subtropical forest soils. Each Rh data point is an average of the
Rh measurements at five soil moisture levels. Error bars are omitted
for clarity. The fitted power model parameters are listed in Table 2.
PE, SS, and CB in panels a-c represent the P. elliottii plantation,
S. superba plantation, and conifer and broadleaf mixed forest
soils, respectively

Fig. 2 Relationships between soil heterotrophic respiration (Rh) and
incubation time (t) under different soil moisture treatments in three
subtropical forest soils. Each Rh data point is an average of the Rh
measurements at five temperature levels. Error bars are omitted for
clarity. The fitted power model parameters are listed in Table 2.
PE, SS, and CB in panels a-c represent the P. elliottii plantation,
S. superba plantation, and conifer and broadleaf mixed forest
soils, respectively
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treatments, but most of them were less than 20 days
(Table 3). We could clearly see that the half-life of Rh was
much longer under the lowest temperature (10 oC) and
the driest moisture (20% WHC) conditions (Table 3), indi-
cating a slower SOM decomposition under cool and dry
conditions. Forest soil type also had significant effects on
t1/2 under different temperature (P = 0.03) and moisture
(P = 0.04) treatments. The SS soil had the longest half-life
of Rh, followed by the PE and CB soils (Table 3), indicating
that the SOM decomposition rate was slower in SS soils
compared with the other two soils.

Influence of soil temperature and moisture on model
parameters
The ANOVA analysis showed that there were clear differ-
ences in model parameters (k and R1) among the three
forest soils (Figs. 3 and 4). Under temperature treatments,
forest soil type effect on initial respiration R1 was not sig-
nificant (P = 0.37). k value was significantly influenced by
forest soil type (P = 0.009), being significant lower in the
SS soil (0.187) than in the CB (0.276) and PE (0.244) soils.
Under moisture treatments, forest soil type effect on R1
was also not significant (P = 0.36), but its effects on k were
also significant (P = 0.014). The k value was significantly
lower in the SS soil (0.190) than in the CB (0.275) and PE
(0.244) soils (P = 0.007).
The values of k and R1 were also markedly affected by soil

temperature and moisture. In all forest soils, R1 increased
linearly with the increase of soil temperature (Fig. 3). The
value of k also increased linearly with soil temperature in
the PE and SS soils, reflecting a faster declining rate of Rh
under warmer temperatures for these two soils. However, k
showed a quadratic response to temperature in the CB soil
(Fig. 3c), indicating the optimum temperature range for soil
Rh in this forest soil was narrower relative to those for the
PE and SS soils. With respect to the soil moisture treat-
ments, both R1 and k increased quadratically with moisture
to the highest values at around 60% WHC and declined at
lower and higher soil moistures (Fig. 4).

Discussion
Like plant litter decomposition, SOC decomposition is a
complex process involving several key components such as

Table 1 Comparison of three statistical models relating
heterotrophic soil respiration (Rh) to incubation time (t) in three
subtropical forest soils

Modela PEb SS CB

Log-linear a, b 1.0290,−0.1250 1.2802,−0.1788 1.8248,−0.3020

Rh = a + bLog(t) AIC −57.68 −70.52 −48.08

r2 0.51 0.90 0.88

Exponential a, b 0.4152,−0.0207 0.5894,−0.0173 0.9690,−0.0267

Rh = aExp(bt) AIC −50.94 −50.40 −38.04

r2 0.67 0.62 0.71

Power a, b 0.9754,−0.2355 1.1125,−0.1862 2.4384,−0.2782

Rh = atb AIC −61.27 −75.14 −54.28

r2 0.82 0.93 0.91
aIn deriving the impirical models, one Rh data point at each measurement day
was the average of the Rh measurements under the 25 experimental
treatments (i.e., 5 temperatures × 5 moistures)
bPE, SS, and CB represent the P. elliottii plantation, S. superba plantation, and
conifer and broadleaf mixed forest soils, respectively

Table 2 Parameters and coefficient of determination (r2) of the power function model fitting the change of soil heterotrophic
respiration (Rh) with incubation time in three subtropical forest soils

PEa SS CB

Initial Rh (R1)
b Power (k) b r2 Initial Rh (R1) Power (k) r2 Initial Rh (R1) Power (k) r2

Temperature (oC)

10 0.628 0.236 0.720 0.582 0.136 0.612 0.747 0.268 0.555

17 0.768 0.243 0.793 0.702 0.134 0.581 1.137 0.307 0.946

24 0.944 0.238 0.760 0.998 0.167 0.764 1.456 0.293 0.905

31 1.276 0.253 0.855 1.647 0.266 0.963 2.054 0.268 0.942

38 1.712 0.252 0.821 1.913 0.232 0.965 2.523 0.242 0.937

Moisture (% water holding capacity)

20% 0.494 0.195 0.692 0.514 0.159 0.874 0.576 0.201 0.708

40% 0.847 0.270 0.858 1.038 0.206 0.913 1.179 0.278 0.917

60% 1.423 0.232 0.739 2.118 0.202 0.901 2.928 0.328 0.863

80% 1.578 0.266 0.893 1.262 0.201 0.891 2.364 0.314 0.922

100% 1.059 0.259 0.917 0.913 0.180 0.861 1.362 0.255 0.909
aPE, SS, and CB represent the P. elliottii plantation, S. superba plantation, and conifer and broadleaf mixed forest soils, respectively
bTo derive the empirical relation for each temperature level, Rh under the five moisture levels were averaged; to derive that for each moisture level, Rh under the
five temperature levels were averaged. All models are significant at α = 0.05
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microorganisms, quantity and quality of SOC substrates,
and environmental factors (Fang et al. 2005; Davidson and
Janssens 2006; Zhou et al. 2014). Exponential decay model
has been widely used to describe the dynamics of SOM
decomposition (Paul et al. 1999; Iqbal et al. 2009), but few
previous studies have tested the generality of its use in
comparison with the other models. No fully controlled
incubation experiments, to our knowledge, have been
devoted to deriving the empirical relations between soil Rh
and climatic factors for subtropical forest soils of southern
China. We used soil Rh as a proxy of SOC decomposition
in this study and demonstrated that the power function
model was more accurate than the widely used exponential
decay model in fitting the short-term dynamics of SOC
decomposition in three subtropical forest soils.
To compare the dynamic behaviors between a power

function model and an exponential model, we plotted
the fitting curves of the two models in Fig. 5 using the
parameters (a = 2.4384 and b = −0.2782) listed in Table 2
for the CB forest soil. The descending trend was much
faster for the exponential model than that for the power
function model, especially at the early stage of SOC de-
composition (<13 days of incubation). We therefore
argue that exponential decay models may be more suit-
able for describing the decomposition process of labile
organic carbons (e.g., leaf litter or glucose amended in
mineral soils) as have been frequently reported in litera-
ture (Blagodatskaya et al. 2009; Nottingham et al. 2009;
Berg and McClaugherty 2014), whereas power function
models may be more suitable for recalcitrant organic
carbons require a slower decomposition process. In
many process-based ecosystem models such as CEN-
TURY (Parton et al. 1988; Paustian et al. 1992) and PALS
(Reynolds et al. 2000; Shen et al. 2009), both the labile and

recalcitrant SOC pool dynamics were described using
exponential decay models. Based on the results of this
incubation experiment and the modeling analysis, we
suggest that power function models should be used to
describe the dynamics of recalcitrant carbon pools.
Moreover, power function models are equally good as

exponential models for that the two key model parame-
ters (R1 and k) have clear ecological meanings. When
log-transformed, the power function receives the form
of ln(Rh) = ln(R1)–k ln(t). Here, power k is the slope of
the log-transformed linear function and therefore indi-
cates the rate of soil Rh change. The initial respiration R1

means the starting soil Rh at the beginning of incubation
when t = 1. In all the three forest soils, both k and R1

varied with temperature and moisture but in different
patterns, which may be a reflection of the variations in
substrate availability and microbial communities among
different soils. It is well known that SOC decomposition
is an enzyme-driven, microbe-mediated biological
process (Luo et al. 2001; Craine and Gelderman 2011).
At higher temperatures (e.g., 31 and 38 oC), microbes
are usually more active and grow faster, which explains
why R1 was larger at warmer than lower temperatures
(e.g., 10 oC). The faster growth of microbes under
warmer temperatures may result in a greater carbon
consumption and therefore a shorter half-life (t1/2) of Rh
(Table 3). This pattern is consistent with what had been
found in Nambu et al. (2008) that t1/2 was inversely re-
lated to R1. Similar to R1, k was also larger under higher
than lower temperatures in SS and PE forests (Fig. 3a,
b). The different response patterns of k for the CB soil
(Fig. 3c) may be ascribed to the differentiated soil prop-
erties between the natural CB forest and the man-made
SS and PE plantations.

Table 3 Half-life (t1/2) of soil heterotrophic respiration (Rh) for three subtropical forest soils incubated over 90 days under five
temperature and five moisture levels

PEa SS CB

Half-life (t1/2) Rh(t1/2) Half-life(t1/2) Rh(t1/2) Half-life (t1/2) Rh(t1/2)

Temperature (oC)

10 18.8 0.314 161.4 0.291 13.3 0.374

17 17.3 0.384 175.0 0.351 9.6 0.569

24 18.4 0.472 63.8 0.499 10.6 0.728

31 15.5 0.638 13.5 0.823 13.3 1.027

38 15.7 0.856 19.9 0.956 17.5 1.261

Moisture (% water holding capacity)

20% 34.8 0.247 79.3 0.257 31.3 0.288

40% 13.0 0.423 29.1 0.519 12.1 0.590

60% 19.9 0.712 31.1 1.059 8.3 1.464

80% 13.6 0.789 31.4 0.631 9.1 1.182

100% 14.6 0.529 46.9 0.457 15.1 0.681
aPE, SS, and CB represent the P. elliottii plantation, S. superba plantation, and conifer and broadleaf mixed forest soils, respectively
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Fig. 3 Empirical relations between the power model parameters (R1
and k) and soil temperature (T) in three subtropical forest soils. R1 is
the initial respiration, i.e., the starting value of Rh when t = 1; k is the
power indicates the rate of Rh change. PE, SS, and CB in panels a-c
represent the P. elliottii plantation, S. superba plantation, and conifer
and broadleaf mixed forest soils, respectively. Models of fitting for
PE, R1 = 0.001 T + 0.230 (r2 = 0.71), k = 0.038 T + 0.148 (r2 = 0.94); for SS,
R1 = 0.052 T−0.068 (r2 = 0.95), k = 0.046 T + 0.076 (r2 = 0.74); for CB, R1 =
0.064 T + 0.052 (r2 = 0.99), k = −0.0002 T2 + 0.009 T + 0.208 (r2 = 0.89)

Fig. 4 Empirical relations between the power model parameters
(R1 and k) and soil moisture (M) in three subtropical forest soils. R1 is
the initial respiration, i.e., the starting value of Rh when t = 1; k is the
power indicates the rate of Rh change. PE, SS, and CB in panels a-c
represent the P. elliottii plantation, S. superba plantation, and conifer
and broadleaf mixed forest soils, respectively. Models of fitting for
PE, R1 = −3.868 W2 + 5.572 W−0.561 (r2 = 0.89), k = −0.165 W2 + 0.2659
+ 0.162 (r2 = 0.54); for SS, R1 = −6.576 W2 + 8.403 W−0.979(r2 = 0.76),
k = −0.237 W2 + 0.304 W+ 0.111(r2 = 0.88); for CB, R1 = −9.864 W2 +
13.214 W−1.907 (r2 = 0.82), k = −0.598 W2 + 0.790 W + 0.065 (r2 = 0.99)
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With respect to soil moisture treatments, the two pa-
rameters of the power function model showed different
response patterns compared with those to temperature
treatments. At a low soil moisture (e.g., 20% WHC),
SOC decomposition may be limited by water availability.
At a high soil moisture (e.g., 100% WHC), it may be lim-
ited by oxygen availability. Thus, soil microbes are often
more active at medium soil moistures (Bauer et al. 2008;
Craine and Gelderman 2011; Davidson et al. 2012). This
explains why the values of R1 and k were the highest
when soil moisture was at 60% WHC (Fig. 4). Relative to
that of R1, the response pattern of k was less curving, in-
dicating that k was less sensitive to moisture changes.
Forest type had significant effects on k but not on R1.

Previous studies reported that plant species and soil bio-
logical communities could affect soil respiration through
altering soil physicochemical properties (Monokrousos
et al. 2004; Wei et al. 2015). The three forests in this
study differed in their dominant tree species and soil
properties, with CB having the highest soil TOC, TN
and TP, and SS having the lowest ones. Although we
found no significant forest type effects on R1, it did vary
among forest types (Figs. 3 and 4). The mechanisms
underlying the influence of forest type on the model pa-
rameters R1 and k need to be better understood in order
to explain the Rh variations across ecosystem types.

Conclusions
Compared with the widely used exponential decay
model, the power function model performed better in
quantitatively describing the change of Rh with incuba-
tion time under a wide range of temperature (10–38 oC)
and moisture (20–100% WHC) conditions in three sub-
tropical forest soils. The two key parameters (R1 and k)
of the power function model had a linear relationship
with temperature but a quadratic relationship with mois-
ture. The empirical relations derived from this incuba-
tion study provide important insights for developing and

parameterizing more mechanistic process-based ecosys-
tem models. However, the generality of these empirical re-
lations should be further tested under field conditions for
the purpose of simulating soil Rh responses to climate
changes in subtropical forests. Why and how the parame-
ters vary with other soil properties such as substrate avail-
ability, microbial diversity and community composition,
and the structural and functional properties of plant
communities are the prior questions towards a better
understanding to the mechanisms underlying the Rh
responses to climate changes.
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