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Abstract 

Owing to the suspected toxicity and carcinogenicity of tungstate (VI) oxyanions [i.e. 

mono tungstate and several polytungstate, generally represented by W (VI)], the environmental 

fate of W (VI) has been widely studied. Sorption is regarded as a major mechanism by which W 

(VI) species are retained in the solid/ water interface. Iron (hydr )oxides have been considered 

important environmental sinks for W (VI) species.  Here we report sorption mechanisms of W 

(VI) on a common iron oxide mineral-hematite under environmentally relevant solution 

properties using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) 

spectroscopic probes.  Initial W (VI) loadings varied from 10-200 µM at fixed pH values ranged 

from 4.6-8.1.  For pH envelope (pHs = 4.6, 5.0, 5.5, 6.0, 6.5, 7.5, and 8.1) experiments, fixed W 

(VI) concentrations (i.e. 10 & 200 µM) were used to understand the effects of pH.  The results 

indicated that at acidic pH values (pH < 6.0) the sorbed polytungstate surface species are 

prominent at 200 µM initial W (VI) conc.  The pH envelop experiments revealed that sorbed 

polytungstates can be present even at lower initial W (VI) conc. (i.e. 10 µM) at pH values <5.5.  

Overall, our in situ ATR-FTIR experiments indicated that W (VI) forms inner-sphere type bonds 

on hematite surface and the strength of the interaction increases with decreasing pH.  In addition, 

initial W (VI) concentration affected the sorption mechanisms of W (VI) on hematite. Our study 

will aid the molecular level understanding of W (VI) retention on iron oxide surfaces.   
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1. Introduction 

Recently tungsten (W) has invoked considerable attention in the scientific community 

due to its suspected link to the childhood leukemia cluster in Fallon, NV; Sierra Vista, AR and 

Elk Grove, CA (Koutosospyros et al., 2006).  Although the Center of Disease Control’s (CDC) 

investigation did not reveal a conclusive evidence about the link between childhood leukemia 

cluster and W, the concerns about the W as a toxic element triggered many studies assessing the 

effects of W exposure to human, animal, plant, and to overall ecological health (Strigul et al., 

2005, 2010; Thomas et al., 2009; Ringelberg et al., 2009; Johnson et al., 2009; Kelly et al., 2013; 

Laulicht et al., 2015).  With their in vivo experiments involving wild mice, Kelly et al. (2012) 

concluded that chronic W exposure with a conc. of 15-200 mg L
-1

and for a period of 16 weeks 

could increase DNA damage, alter B-cell development and ultimately could act as a tumor 

promoter.  The carcinogenic potential of W to the human bronchial epithelial cell line was 

reported as well (Laulicht et al., 2015).  Strigul et al. (2005) noticed that 95% of soil bacteria 

died after 3 months of incubation with W powder.   

The environmental provenance of W can be caused both by anthropogenic activities and 

by natural processes solubilizing W compounds (Seiler et al., 2005; Johannesson et al., 2013).  

Seiler et al. (2005) attributed the elevated conc. of W (0.27-742 µg L
-1

), found in ground water 

samples of the aquifers in Carson Desert, NV, to the dissolution of the W-bearing mineral in the 

Carson River watershed and to the upwelling geothermal waters.  Alternatively, Hsu et al. (2011) 

reported that water and sediment contamination form the treated effluents of the semiconductor 

manufacturing industry in Taiwan.  The unique physical and chemical properties of W prompted 

its frequent use in industrial and domestic applications (Strigul, 2005).  Major industrial and 
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domestic applications of W include tungsten-cemented carbides, metal wires, turbine blades, 

high temperature lubricants, catalysts, incandescent lamp filaments, television sets, heat sinks, 

golf clubs, fishing weights, and hunting ammunitions (Koutosospyros et al., 2006).  Tungsten 

(W) has been used as a substitute for lead (Pb) in hunting and recreational shooting after the ban 

on Pb shot in USA and Norway for hunting waterfowl (Fisher et a., 2006; Thomas et al., 2009).  

In fact, the US Army’s pollution prevention initiative, the Green Armament Technology (GAT) 

program, proposed the use of W in low caliber ammunition (Koutosospyros et al., 2006; 

Johannesson et al., 2013).   The overall worldwide production of W in 2001 was reported to be 

44,200 metric tons, 83% of which was from China (Shedd, 2001).   

The environmental chemistry of W is complex.  The most stable oxidation state of W is 

+6 in surface and near surface aqueous environments (Hur and Reeder, 2016).  In this oxidation 

state, several mono-and polymeric oxyanions with a generic name tungstate (e.g. mono 

tungstate-WO4
2-

, paratungstate A-W7O24
6-

, paratungstate B-H2W12O42
10-

, α-metatungstate-

H2W12O40
6-

) exist under various solution conditions (Ogundipe et al., 2009; Hur and Reeder, 

2016).  Generally, monomeric non-protonated tungstate species (WO4
2-

) prevail at neutral to 

alkaline conditions, whereas acidic pH values promote polymerization leading to formation of 

poly-tungstate species (Cruywagen and van der Merwe, 1987; Shijun et al., 1998; Ogundipe et 

al., 2009; Cruywagen, 2000; Gustafsson, 2003; Davantés et al., 2015; Davantés and Lef`evre, 

2015; Hur and Reeder; 2016). However, this general consensus is based on limited data on the 

solution speciation of W (VI). There are many unclear aspects of solution speciation of W (VI). 

First, the conversion of mono-tungstate (WO4
2-

) to some of the polymeric forms may take as 

long as 8 months (Smith and Patrick, 2000). Therefore, use of true thermodynamic equilibrium 

conditions for short-term experiments may be complex.  Second, in all of the studies, the solution 
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speciation was conducted at very high initial concentrations of W (VI) due to either lack of 

sensitivity of the currently available analytical instrumentations or the laboratory methods [e.g. 

0.5-123 mM in the titration data of Cruywagen and van der Merwe, (1987); 0.5 M in Shijun et al. 

1998; 3 M in Smith and Patrick, (2000); and 2 mM in Hur and Reeder, (2016)].  Since W (VI) is 

known to polymerize at higher conc., extrapolating these solution speciation data to the µM level 

conc. should be done with caution.   

In contrast, sorbed species of W (VI) have been successfully characterized in recent 

research work by Hur and Reeder, (2016) and Davantés et al. (2015) with initial W (VI) 

concentrations as low as 5 µM and 10 µM using EXAFS and in situ ATR-FTIR spectroscopic 

tools, respectively.  Davantés et al. (2015) characterized W (VI) sorption complexes with layered 

double hydroxide (LDH) using in situ ATR-FTIR scans in the pH range of 5-9 and found that 

polytungstate ions electrostatically sorbed to LDH and the main species is paratungstate A 

(W7O24
6-

).  Hur and Reeder, (2016) conducted an analysis of 5 µM sorbed-W (VI) on boehmite 

using W L1 and L3 –edge XANES and compared the results with model compounds to find that 

the sorption samples at both pH values (4 and 8) contained octahedrally coordinated W (VI) with 

some distortion in structure (distorted octahedral configuration).  It is known that monotungstate 

has tetrahedral coordination and polytunsgate has octahedral coordination (Panagiotou et al., 

2009; Davantés and Lefèvre, 2015).  The results at higher concentrations were similar, i.e., 

unlike the solution speciation, only the poly tungstate species existed as the surface bound 

species at both low (4) and high (8) pH values.  However, the authors acknowledged that due to 

the lack of sensitivity of the method used to detect all the surface complexes, it was possible that 

there were some tetrahedral tungstate (mono tungstate, WO4
2-

) present as well.  The authors 
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reported that the W (VI) sorption on boehmite was strong inner-sphere type at lower pH and 

became less strong as the pH was increased.   

Since sorption is the main retention process by which W (VI) can be immobilized in the 

environment, a thorough understanding of the sorption mechanism is important to predict W (VI) 

mobility and to remediate dissolved W (VI) in the environment (Gustafsson, 2003; Hur and 

Reeder, 2016).  Iron (hydr)oxides are an important sink in the environment for many oxyanions 

and have already been reported to possess high affinity for W (VI) (Gustafsson, 2003; Xu et al., 

2006, 2009; Lorenz, 2009; Lorenz et al., 2011; Kashiwabara et al., 2013; Davantés and Lefévre, 

2015; Sun and Bostick, 2015).  However, a detailed mechanistic study using in situ surface 

sensitive spectroscopic tools such as ATR-FTIR is lacking.  There are several advantages of 

using in situ ATR-FTIR techniques over other spectroscopic tools in that this technique is non-

invasive, highly sensitive to small structural changes, and the results are obtained in real 

time(Hind et al., 2001; Lefèvre, 2004; Hug and Bahnemann, 2006; Elzinga and Sparks, 2007; 

Zhang and Peak, 2007).  The ex-situ FTIR requires high loading of the sample (i.e. mM to M 

level) when compared to the in situ one, in which data can be collected at low loadings (i.e. to 

the µM level).  In addition, the sample drying may cause structural alterations of surface 

complexes that may favor surface speciation that is not representative of actual in situ conditions 

(Elzinga and Sparks, 2007).  To date no studies have been published to analyze the surface 

interaction mechanisms of W (VI) on hematite surface under various environmentally relevant 

solution properties.  Hence, the main objective of this study is to probe surface interaction 

mechanism of W (VI) on hematite across an environmentally relevant pH range (4.6-8.1) and 

initial W (VI) conc. (10-200 µM).   
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2. Materials & Methods 

2.1. Reagent and materials 

Hematite was prepared according to the procedures described in Sugimoto et al. (1993) 

and Elzinga and Kretzschmar, (2013).  Briefly, 500 mL of 2 M Fe Cl3 solution was added slowly 

over a period of 5 min to a continuously stirred 500 mL solution of 5.4 M NaOH. The resulting 

gel was aged in a sealed Pyrex glass bottle at 101
0
C for 8 days.  After cooling to room 

temperature, the product was washed with Milli-Q water (18.2 MΏ cm) until the electrical 

conductivity was < 5 µS cm
-1

.  The resulting suspension was then freeze-dried.  The mineral 

identity was confirmed using X-ray diffraction (Rigaku, Woodlands, TX).  The mineral was 

stored in a dry place under room temperature.  Sodium tungstate (Na2WO4, 2 H2O) was 

purchased from Sigma Aldrich (Grass Lake, MI) and used as received.  

2.2. In situ ATR-FTIR Experiments 

To evaluate the molecular interaction of W (VI) with hematite, in situ ATR-FTIR 

experiments were carried out with a Perkin Elmer Frontier Infrared spectrometer equipped with a 

liquid N2 cooled MCT-A (mercury cadmium telluride) detector and an optics compartment 

purged with CO2- and H2O-free air delivered by a Balston- Parker air purger.  The flow cell 

consists of a rectangular holder into which a horizontal 45
0
 ZnSe ATR crystal is attached (Pike 

Technologies, Madison, WI), coated with a thin film of mineral substrate (~ 2.5 mg), prepared by 

overnight drying of 500 µL mineral suspension in water evenly spread across the crystal surface, 

and a top portion that seals the flow cell.  The flow cell is installed on the ATR sample stage of 

the IR spectrometer and connected to an Ar-purged reaction vessel containing 500 mL 

background electrolyte solution (0.01 M NaCl) adjusted to desired pH values.  A peristaltic 

pump (Watson Marlow 400, Falmouth, UK) was used to circulate the solution in the reaction 

vessel to the flow cell at a rate of 2 mL min
-1

.  The content of the reaction vessel was 



8 
 

continuously stirred with a magnetic stir bar to ensure even mixing.  The pH was monitored 

throughout the experiment and readjusted when necessary using 0.1 M NaOH or HCl.  The 

adsorption isotherm/ loading experiments were conducted at various pH values between 5-8 

using the flow cell set up described above and in other studies (Elzinga and Sparks, 2007; 

Rakshit et al., 2013ab).  This type of in situ flow cell experiments using ZnSe HATR (Horizontal 

ATR) crystal is noted for the first time in the environmental science related literature by Hug and 

Sulzberger, (1994).  Hug, (1997), in another study, noted that at a very low conc. of sulfate, the 

IR signal enhancement for the sulfate sorption on hematite coated HATR cell was ~33% more 

than the uncoated HATR cell (Hug, 1997), thereby indicating the IR signal is caused by the 

sorption phenomenon.  In our study, we collected similar IR spectra of dissolved W (VI) in 

hematite uncoated HATR cell and compared with that of sorbed W (VI) on hematite coated 

HATR cell under same solution properties (i.e. ionic strength, initial W (VI) conc. and pH). We 

found negligible signal for dissolved W(VI) (Supporting documents Figure S1 & 2). Therefore, 

we assumed the IR bands associated with the sorption experiments are mainly arising due to W 

(VI) binding on hematite- a very similar inference used by Hug, (1997) and other researchers 

conducting in situ ATR-FTIR experiments for sorption process.   

Each experiment was started by a preliminary equilibration step, in which the background 

electrolyte solution was pumped through the flow cell at a particular pH value and flow rate (2 

mL min
-1

) for approximately 2h.  During the equilibration period, background spectra were 

recorded frequently.  All other spectra were collected as a ratio against the background spectrum.  

The adsorption isotherm / loading experiments were initiated at fixed pH values (pHs = 5.05, 

6.01, 7.05, and 8.1) by introducing an appropriate volume of aliquot of freshly prepared W (VI) 

stock solution (prepared from Na2WO4, 2H2O, Sigma Aldrich) through injection in the reaction 
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vessel to achieve a desired solution concentration.  The adsorption of W (VI) onto the mineral 

substrate film was monitored through the characteristic IR absorbances in the 1400 to 700 cm
-1

 

spectral range (Davantés et al., 2015; Davantés and Lefévre, 2015).  Intensities of the IR bands 

were noted from the collected spectra. When no further increase of the intensities of the IR bands 

of W (VI) were found, it was assumed that the sorption reaction had reached equilibrium and the 

final scan of adsorbed W (VI) was collected.  After that the W (VI) concentration was raised to 

the next level and allowed to attain sorption equilibrium.  This procedure was repeated to obtain 

W (VI) isotherms in the range of 10-200 µM. 

To test the effects of pH on W (VI) sorption on hematite, the initial equilibrium step with 

the background electrolyte solution was followed at a fixed pH (8.1). Since W (VI) is known to 

polymerize at lower pH (<6) and higher concentrations, the pH envelope experiment was started 

at higher pH value (i.e. 8.1) and lowest possible W (VI) conc. (i.e. 10 µM for discernable 

spectra).  The pH envelope experiment was initiated by introducing appropriate volume of 

aliquot of freshly prepared W (VI) stock solution through injection in the reaction vessel to 

achieve a solution concentration of 10 µM at a fixed pH value.  After the equilibration was 

reached, the pH was lowered to a value less than the previous one and a new equilibrium was 

established and the final scan of sorbed-W (VI) spectra was be recorded. This process was 

repeated to record the spectra until a pH value of 4.6 was reached.  

Collected infrared (IR) spectra were corrected for background by linearizing the baseline 

in the range 700-1400 cm
-1

.  All spectra, other than the ones in difference spectra, were 

normalized to the highest peak near 920 cm
-1

.  Difference spectra were obtained by subtracting 

the background corrected non-normalized spectra following the procedures of Elzinga and 

Sparks, (2007).  Difference spectra were plotted in between the parent spectra for comparisons.   
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3. Results & Discussions 

3.1 Analysis of W (VI) loading on hematite deposit at fixed pH 

The infrared (IR) spectra of W (VI) sorption on hematite at fixed pH values were shown 

in Figures 1 A, B, C, and D.  Spectra were collected with a W (VI) initial conc. range of 10-200 

µM (i.e. 1.83-367 mg W L
-1

).  The corresponding difference spectra were obtained by 

subtracting the background corrected raw spectrum for each conc. set (Figures 2 A1, B1, C1, and 

D1).  The concentration ranges used in our study are consistent with the current spectroscopic 

studies on W (VI) sorption mechanisms and environmentally relevant detected levels of W in the 

terrestrial and aquatic systems (Koutosospyros et al., 2006; Davantés et al., 2015; Hur and 

Reeder, 2016).  To gain insights on the W (VI) binding mechanism on hematite, the spectra can 

be inspected in two different ways. First, at fixed pH values, the IR bands of sorbed W (VI)-

hematite at various W (VI) initial conc. (10-200 µM) can be compared to understand if there 

were any changes in the IR peak shapes or the positions when initial concentrations of W (VI) 

had been increased.  A corresponding difference spectrum between highest and lowest initial W 

(VI) can clarify the changes in IR bands upon increasing conc. as well.  Use of difference spectra 

in interpretations of IR bands in sorption mechanisms is widely accepted in literature (Goyne et 

al., 2005; Zhang and Peak, 2007; Elzinga and Sparks, 2007; Boer et al., 2009; Elzinga and 

Kretzschmar, 2013).  Second, collected spectra can also be compared across the pH values 

studied (i.e. pHs 5.05-8.1) for any specific change in the IR bands with variations of pH values.   

Inspection of the IR bands of sorbed W (VI)-hematite spectra collected at pH 8.1 indicate 

a strong peak at 929 cm
-1

 and a broken band at 833 cm
-1

 for all the initial conc. of W (VI) (i.e. 

10-200 µM).  It should be noted that all the spectra in Figures 1A, B, C, and D were normalized; 

therefore, no comparisons based on the intensities among the spectra could be made. However, 

the difference spectra (Figures 2 A1, B1, C1, D1) were obtained by subtracting background 
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corrected non-normalized spectra. Hence, the difference spectra can be used to note any increase 

in the intensities of the peaks.  Interestingly, the difference spectra (200-10 µM) at pH 8.1 

(Figure 2A1) reveals that the IR band at 929 cm
-1

 has increased in intensity with the increase in 

initial W (VI) conc. This indicates the amount of W (VI) sorbed on hematite increased with 

increasing initial conc. of W (VI) from 10 to 200 µM.  However, no discernable change in peak 

shapes is observed at 929 cm
-1

, indicating that W (VI) binding relevant to this peak position most 

likely did not change with increasing initial W (VI) conc.  Generally, symmetric stretching 

modes of W-O bonds in WO4 unit of W (VI) were assigned to wavenumbers bet ween 930-960 

cm
-1

 in the literature (Zorina and Syritso, 1972; Charton et al., 2002; Tomaszewicz et al., 2009; 

Kumar and Mohanta, 2011; Tribalis et al., 2014; Davantés and Lefévre, 2015).  Therefore, the 

appearance of a strong IR band at 929 cm
-1

 with increasing initial conc. of W (VI) is 

representative of the binding of W (VI) on the hematite surface through the O atom.  For all 

other pH values (see Figures 1B, C, and D) a very similar feature can be noticed.   

The second broad IR band at wavenumber ~ 833 cm
-1

 for the sorbed W (VI)-hematite 

spectra collected at pH 8.1 (Figure 1A) is most likely due to the antisymmetric W-O vibrations 

(Charton et al., 2002; Kumar and Mohanta, 2011; Tribalis et al., 2014).  The difference spectra 

for pH 8.1 (Figure 2A1) highlights some changes in the shape of the IR peak at 833 cm
-1

 for 10 

µM sorbed W(VI)-hematite spectra compared to that of 200 µM. This suggests that some 

changes in the W (VI) binding on hematite relevant to the antisymmetric stretching band of W-O 

most likely occurred upon increasing W (VI) initial conc. from 10 to 200 µM at pH 8.1.  

Analyses of other spectra collected at pH values from 7-5.05 indicate that the peak at 833 cm
-1

 

became much stronger as the pH value is decreased.  At pH 5.05, the IR band around 830-870 

cm
-1

 indicated a strong but broad peak (Figure 1D). Interestingly, the W-O-W stretching 
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vibrations, which are characteristics of polymeric tungstate species, can appear ~ 875 cm
-1

 

(Tribalis et al., 2014).  Therefore, the strong but broad IR band in the sorbed W (VI)-hematite 

spectra (at pH 5.05) is most likely due to the presence of two combined peaks from the 

antisymmetric stretching band of W-O bond (~833 cm
-1

) and the stretching vibrations of W-O-W 

bonds (~875 cm
-1

).  Owing to close proximity of W-O antisymmetric vibration (833 cm
-1

) and 

W-O-W stretching vibration (875 cm
-1

), the separation between these two IR bands may be 

ambiguous when the IR band is broad (Figures 1A-D).  However, the difference spectra can 

clarify any change of peak shapes and intensities in this region.   

The difference spectra between the highest (200µM) and lowest (10µM) W (VI) loadings 

at this pH value resulted in an IR band in the 873 cm
-1

 position (Figure 2D1), thereby suggesting 

the presence of polytungstate surface species (Charton et al., 2002; Tribalis et al., 2014). 

Therefore, at pH 5.05, upon increasing initial W (VI) conc. from 10 to 200 µM, a polytungstate 

surface species was formed (Figure 2D1).  In fact, Tribalis et al. (2014), in their in situ Raman 

study of oxo-tungsten (VI) species deposition on titania surface, assigned a 875 cm
-1

 band to the 

W-O-W stretching vibrations of two polymeric tungstate species, such as W7O24
6-

 and HW7O24
5-

.  

Interestingly, the difference spectra for pH 6.01(Figure 2C1) indicated formation of an IR band at 

872 cm
-1

.  This suggests that the polymeric W (VI) species started forming at pH 6.01.  These 

results are consistent with the known solution speciation of W (VI), in which W (VI) is present 

as a monomeric species at pH values (> 6) and below that polymeric species begin to form 

(Cruywagen and van der Merwe, 1987; Smith and Patrick, 2000; Panagiotou et al., 2009; 

Davantés et al., 2015; Hur and Reeder, 2016).  However, the speciation of W (VI) seems to vary 

with change in conc. at a fixed pH value as well (Hur and Reeder, 2016). This is consistent with 

our finding that IR bands corresponding to the polytungstate surface species resulted in the 
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sorbed W (VI)-hematite spectra at pH 5.05, in which W (VI) initial conc. was 200 µM. A similar 

IR band was absent for a lower initial W (VI) conc. (Figures 1D, 2D1), indicating the absence of 

polymeric W (VI) species at 10 µM initial W (VI) conc.  However, due to the broad nature of the 

IR band near this region, the presence of polytungstate surface species at 10 µM cannot be 

overruled. From the difference spectra at Figure 2D1, we can only verify that the presence of 

polytungstate surface species becomes prominent when the conc. is increased to 200 µM. In the 

next section, in which the IR data collected in pH envelop experiments (conducted at both 10 and 

200 µM initial W (VI) conc.) were discussed, a clearer understanding about this phenomenon 

may be revealed.   

The IR bands in the regions 1000-1200 cm
-1

 constitutes an interesting feature, which is 

most likely hinting at the formation of polytungstate surface species.  Several IR peaks (1285, 

1288, 1191, 1171, 1064, and 1064 cm
-1

) appear in this region at pH 6.01, and 5.05 are absent at 

higher pH values.  Kumar and Mohanta, (2011) noted W-OH vibrational bands near 1041 cm
-1

.  

Multiple IR peaks close to this region may represent multiple W-OH vibrational bands 

corresponding to either poly tungstate surface species or H-bonding interactions.  Similar 

features are completely absent at higher pH values (i.e. at 7.05 and 8.1).   

In summary, the loading or isotherm experiments conducted at fixed pH values indicate 

that W (VI) sorption increased with increasing conc. at all pH values as noted by the strong IR 

band ~ 929 cm
-1

.  The formation of polytungstate surface species is more prominent at higher 

initial W (VI) conc. (~ 200 µM) at pH values 6.0 and 5.01.   

3.2. Analysis of pH envelop 

Background corrected normalized IR spectra for pH envelop experiments conducted at 

two fixed conc. of W (VI) (10 & 200 µM) were shown in Figures 3A and 3B, respectively.  The 
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corresponding difference spectra were depicted in the Figures 3 A1 and 3B1.  These IR spectra 

would help understand if change in the pH value affected the sorption mechanism/ surface 

complexation of W (VI) on hematite. The difference spectra for 10 µM W (VI) revealed several 

key features (Figure 3 A1).  First, as the pH is lowered from 8.1 to 4.6 gradually with a 0.5 unit 

difference, the intensity of the W-O stretching band (~ 947 cm
-1

) increased consistently (Figure 3 

A1).  This reflects that the amount of W (VI) sorption increased with decreasing pH.  Also 

strengthening of this IR-band most likely represents the inner-sphere nature of the interaction 

being more prominent at lower pH values.  Second, the broad IR band near 830-880 cm
-1

 became 

well-formed and intense as the pH value was gradually decreased from 8.1 to 4.6.  We found in 

our inspection of IR band in the previous section that the broad peak around this region could be 

a combination of the W-O antisymmetric stretching band (~ 833 cm
-1

) and W-O-W stretching 

vibration (~874 cm
-1

).  In fact, the difference spectra of pHs (4.6-8.1), (5.0-8.1), and (5.5-8.1) 

clearly showed an IR peak near 874 cm
-1

 (Figure 3A1).  Therefore, the presence of polytungstate 

surface species even at a lower initial conc. of W (VI) (10 µM) can be predicted at pH values 

4.6, 5.0, and 5.5.  This result is consistent with the W (VI) sorption study on boehmite by Hur 

and Reeder, (2016), in which the authors reported the presence of polytungstate surface species 

at acidic pH values at a very low W (VI) conc.   

The difference spectra collected for the pH envelope experiments carried out at higher 

initial W (VI) conc. (200 µM) showed that the intensity of the W-O stretching band (~ 947 cm
-1

) 

increased consistently with decreasing pH (Figure 3B1), thereby indicating the amount of 

sorption and the strength of the sorption interaction (i.e. inner-sphere vs. outer-sphere bonds) 

increased consistently.  This feature of the IR band at this position is very similar to that of the 

difference spectra collected at lower W (VI) conc.(i.e. 10 µM).  The contrasting features of the 
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IR bands of the pH envelope experiments carried out at 200 µM initial W (VI) conc. as 

compared to that of 10 µM initial W (VI) conc. arise in the band position 877 cm
-1

.  A careful 

inspection reveals that the peaks at 877 cm
-1

 band position in the various difference spectra [i.e. 

pH (4.6-8.1), (5.0-8.1), and (5.5-8.1)] are much sharper and intense for W (VI) ~ 200 µM than 

that of W (VI) ~ 10 µM.  This most likely suggests that at 200 µM intial W (VI) conc. the 

amount and the extent of the surface interactions of polytungstate species with hematite are 

greater than that of W (VI) ~ 10 µM.   

4. Conclusion 

This study reports for the first time about detailed surface chemical interactions of 

tungstate with hematite under environmentally relevant solution properties using in situ 

spectroscopic techniques (i.e. ATR-FTIR).  The results indicate that W (VI) sorbs strongly on 

hematite surface. The amount and extent of sorption, revealed by the strong IR bands in the 

range 929-947 cm
-1

, increased with decreasing pH.  The formation of sorbed polytungstate 

surface species is more prominent at lower pH values (i.e. 4.6, 5.0, 5.5, and 6.0) and higher 

initial W (VI) conc. (i.e. 200 µM). However, at pH values 4.6, 5.0, and 5.5, although not 

prominent, some evidences for the existence of sorbed polytungstate  surface species can be 

found in the IR bands near 870-880 cm
-1

 region. More work using reference compounds are 

needed to isolate the exact polytungstate surface species sorbed on hematite.  Our study will help 

enhance the molecular level understanding of the tungstate retention mechanisms on oxide 

surfaces.   
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FIGURE CAPTION 

Figure 1. ATR-FTIR spectra of sorbed W (VI) on hematite at fixed pH values of A) 8.1, B) 7.05, 

C) 6.01, D) 5.05 with increasing initial W(VI) loadings of 10, 25, 50, 100, & 200 µM and fixed 

ionic strength (I) of 0.01 M NaCl.  The symbol [W]i represents initial conc. of added W (VI). 

The arrow denotes the direction of increasing conc. in the spectra. 

Figure 2. ATR-FTIR difference spectra collected at the highest W (VI) conc. and those collected 

at lowest W (VI) conc. at fixed pH values of A1) 8.1, B1) 7.05, C1) 6.01, D1) 5.05.  For visual 

guidance, each difference spectrum was plotted in between the highest (i.e. 200 µM) and lowest 

(i.e. 10 µM) W (VI) loadings.   
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Figure 3. ATR-FTIR spectra of sorbed W (VI) on hematite in the pH range of 4.6-8.1 at fixed 

ionic strength I = 0.01 M NaCl and initial W (VI) conc. A) 10 µM and B) 200 µM were plotted 

with corresponding difference spectra at fixed W (VI) conc. A1) 10 µM and B1) 200 µM to 

indicate the growth of the W (VI) surface complex with decreasing pH values.   
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Figure 1 
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Figure 2 
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Figure 3 
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