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Abstract Common bean (Phaseolus vulgaris L.), one of
the most important grain legume crops for direct human
consumption, faces many challenges as a crop. Domes-
ticated fromwild relatives that inhabit a relatively narrow
ecological niche, common bean faces a wide range of
biotic and abiotic constraints within its diverse agroeco-
logical settings. Biotic stresses impacting common bean
include numerous bacterial, fungal, and viral diseases
and various insect and nematode pests, and abiotic stress-
es include drought, heat, cold, and soil nutrient deficien-
cies or toxicities. Breeding is often local, focusing on
improvements in responses to biotic and abiotic stresses
that are particular challenges in certain locations and
needing to respond to conditions such as day-length
regimes. This review describes the major breeding ob-
jectives for common bean, followed by a description of

major genetic and genomic resources, and an overview of
current and prospective marker-assisted methods in com-
mon bean breeding. Improvements over traditional
breeding methods in CB can result from the use of
different approaches. Several important germplasm col-
lections have been densely genotyped, and relatively
inexpensive SNP genotyping platforms enable imple-
mentation of genomic selection and related marker-
assisted breeding approaches. Also important are socio-
logical insights related to demand-led breeding, which
considers local value chains, from farmers to traders to
retailers and consumers.
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Introduction

Common bean (Phaseolus vulgaris L.) is the arguably
the most important edible grain legume worldwide, with
global production estimated to be 26.8 million metric
tons in 2016 (http://faostat.fao.org/). Common bean
(CB) accounts for a high proportion of daily protein
intake in many countries, particularly in Latin America,
Africa, and parts of Asia. Beans are also an economi-
cally significant food legume and vegetable crop in
Canada, USA, and Europe. Bean consumption is partic-
ularly high in African countries—for example, per
capita consumption of bean ranges from 50 to 60 kg
per year in Rwanda, Kenya, and Uganda (Broughton
et al. 2003; Buruchara et al. 2011). CB is very nutrient
rich, with both protein and complex carbohydrates, vi-
tamins (e.g., A, C, folate), dietary fiber, and biologically
important minerals such as Ca, Mg, K, Cu, Fe, Mg, and
Zn (Broughton et al. 2003; Blair 2013). CB also helps
improve soil and environmental health through symbi-
otic nitrogen fixation (SNF).

The challenges faced by CB as a crop are strongly
shaped both by its evolutionary history in particular
environments of Central and South America and by
the set of new agroecosystems where it is now grown.
Several lines of evidence indicate that CB was domes-
ticated at least twice—from northern Andean and from
Mesoamerican populations (Bitocchi et al. 2013;
Schmutz et al. 2014; Ariani et al. 2016; Cortés and
Blair 2017). Ecological niches for both wild populations
are relatively specialized and narrow—with the Meso-
american population, for example, being adapted to a
bimodal rainfall regime and a mid-season dry period,
typically on relatively fertile volcanic soils, in disturbed
areas or transitional forest clearings, in a near-equatorial
geographical range, while the Andean wild population,
growing on the Andean slopes, is more cold-adapted
(Bitocchi et al. 2013; Ariani et al. 2016). Domestication
bottlenecks have likely further reduced the capacity for
responses to some stresses such as drought conditions
and particular pathogens (Bitocchi et al. 2013; Schmutz
et al. 2014). These evolutionary and domestication his-
tories arguably leave CB with vulnerabilities to a wide
range of biotic and abiotic stresses, particularly as the
crop has moved into new agroecological niches world-
wide. These constraints, in turn, help set the breeding
objectives for CB.

Both traditional and molecular breeding methods are
in use in CB (Miklas et al. 2006). New genomic tools

promise more rapid progress and the ability to solve
some previously intractable breeding challenges.
Marker-assisted breeding (MAB) should, in principle,
increase the efficiency of selection for both major and
minor qualitative and quantitative trait loci (QTL) (Xu
and Crouch 2008). There are not only technical chal-
lenges; however; in developing countries, breeding pro-
grams face additional challenges of correctly identifying
the highest value breeding targets and of getting uptake
of new varieties where they are needed (Rubyogo et al.
2007). Some approaches, under the name of Bdemand-
led breeding^ and Bwider impact,^ have shown successes
(Persley and Anthony 2017; Rubyogo et al. 2010).

The review concludes with the following set of rec-
ommendations: integration of robust, high-value
markers into breeding programs; better characterization
of strengths and weaknesses of genomic selection and
related methods; better characterization of germplasm
resources; solutions for physiological weak points in
CB; and combiningMarker-Assisted BreedingMethods
with Demand-Led Breeding.

Breeding objectives for common bean

Overview of target traits and market classes for breeding

Breeding in CB is guided primarily by improvement with
respect to biotic and abiotic stresses, combined with a
need to maintain particular quality traits and market class
characteristics, which are essential for meeting consumer
preference in variousmarkets. For example, most farmers
in Africa and Latin America are continuing to plant
specific Andean type varieties with lower yield to meet
particular quality traits required by consumers, even
though the Mesoamerican types commonly yield higher
than the Andean types (Beebe 2012). Objectives relative
to biotic and abiotic stresses tend to vary by location—
varying, for example, by temperature and humidity or by
soil fertility and water availability.

Over 80% of bean production in developing coun-
tries is from subsistence farming of semi-arid regions
and sub-humid to humid growing environments. In
these areas, most producers are small-scale farmers
who use unimproved bean cultivars. CB tends to face
a high incidence of biotic and abiotic stresses, including
diseases, insects, drought, and low soil fertility (Singh
1992). Hence, breeding for resistance/tolerance to these
stresses has been a major research objective (Singh
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1992; Beebe 2012). Table 1 provides an overview of
some of the breeding objectives, derived from breeding
priorities of the International Center for Tropical Agri-
culture (CIAT) and Pan-African Bean Research Alliance
(PABRA, http://www.pabra-africa.org; described in the
BLinkage and association mapping resources^ section
below), and includes some other traits such as higher
content of minerals (iron and zinc), fast cooking time,
canning quality, harvest index, and market class/seed
color (Beebe et al. 2013; Assefa et al. 2015, 2017).

In the USA, Canada, and European countries, most
bean production is by commercial farmers, with much
of that production being for export (e.g., small white
Navy beans for UK processing and small black beans
for Cuba and Mexico) or for specialized markets (e.g.
Balubias^ white beans for export largely to Argentina
and Spain). In these areas, improvement efforts have
particularly focused on resistance to major diseases,
including white mold, bacterial blight, rust, halo blight,
anthracnose, and bean common mosaic virus, and to
insect pests such as bean leaf beetle, stinkbugs, and
aphids (Table 1).

Major bean classifications are based on market clas-
ses and agronomic features (Voysest and Dessert 1991;
Santalla et al. 2002). Great variation is found among dry
bean market classes—with differences in pod shape,
size, and color as well as seed shape (kidney, elongate,
and round), seed size (varies from small-medium to
large size), seed color (classified into nine groups being
white, cream, yellow, brown, pink, red, purple, black,
and other = gray/green/etc.), seed pattern or striation
(striped, mottled, and bi-color), growth habit, and phe-
nological traits (Singh 2001). Seed size in CB cultivars
varies from small (< 25 g/100 seeds) to large (> 40 g/100
seeds). Seed shape varies from round to oblong to
kidney-shaped, with different combinations of color
patterns (Voysest and Dessert 1991). Seed also varies
in terms of surface texture from shiny (brilliant) to
opaque to intermediate.

CB genotypes can also be grouped into determinate
bush types to indeterminate climbing growth habit. This
growth habit classification divides beans into four
groups: Type I (determinate bush), Type II (indetermi-
nate bush), Type III (indeterminate semi climber), and

Table 1 Summary of breeding objectives in common bean

Disease • Anthracnose
• Angular leaf spot
• Bacterial brown spot
• Bean golden mosaic virus
• Bean common mosaic virus Common bacterial blight
• Halo blight
• Rusts
• Root rot complex
• White mold
• Web blight

• Ascochyta blight
• Curly top virus
• Bean yellow mosaic virus
• Bean golden yellow mosaic virus
• Bean calico mosaic virus
• Fusarium solani, oxysporium
• Pythium

Pests • Bean pod weevil
• Leaf hoppers
• Bean fly
• Bruchids
• Thrips
• White fly

• Aphids
• Pod borers
• Mexican bean beetles
• Mites
• Nematodes

Abiotic stress • Drought
• Low phosphorus
• Aluminum toxicity
• Heat

• Cold
• Manganese toxicity
• Salinity

Agronomic • Growth habit
• Plant architecture
• Mechanical harvesting

• Pod wall biomass partitioning
• Canopy temperature control

Quality • Canning
• Cooking time
• Iron and zinc

• Grain composition
• Flatulence reduction
• Adaptation of various market classes

Environment • Genotype × environment
• Prediction (site)

• Agronomic practices

Priorities vary by location and breeding program
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Type IV (indeterminate climber) (Singh 1991). Besides
growth habit classification, beans are sometimes also
classified by origin—specifically, by the major Andean
and Mesoamerican gene pools and races within those
pools (Singh et al. 1991b; Beebe et al. 2013).

For example, in many developing countries, reduc-
tion of cooking time and improvement of mineral com-
position are of relatively higher importance than in
developing countries, and biotic stress challenges such
as web blight and nematode are of greater concern in
particular locations, while various root rot diseases are a
problem worldwide. See references in BBreeding objec-
tives for common bean^ section for discussion of rela-
tive priorities.

Grain yield and yield-related traits

Grain yield is a product of both plant growth rate and
capacity to partition photosynthates to seeds. Significant
yield differences are likely due, in part, to differing
growth habits and seed sizes for beans from different
market classes and gene pools (Beebe 2012). However,
yield differences among cultivars within the same gene
pool are often small, especially for those in the same
maturity group.

Large-seeded cultivars with growth habits I, II, and
III belonging to the Nueva Granada and Chile races,
respectively, are physiologically less efficient and ex-
hibit narrow adaptation compared with the small-seeded
market class genotypes (Beaver et al. 1996; Beebe
2012). Direct selection for seed yield was used to im-
prove CB productivity for Andean bush beans and is
thus considered an important selection criterion. How-
ever, the progress in increasing CB yield has been
modest compared to self-pollinated cereals (Singh
1991). This is due to lower dry matter partitioning
efficiency toward grain yield of CB compared to cereals,
low response to inputs (nitrogen fertilizer), moderate to
low narrow-sense heritability of yield, high intensity of
diseases, and large genotype by environment interac-
tions (Singh 1991; Beebe 2012).

Seed yield and yield components are quantitatively
inherited and are highly influenced by environments
(Singh 1991), so understanding the relation between
yield and its components is important to set effective
selection criteria and breeding strategies. In several CB
studies, high correlations have been found between
yield and 100 seed weight, yield and pods/plant, and
yield and seeds/plant (Beebe et al. 2013; Assefa et al.

2015; Rao et al. 2017). Hence, yield component traits
have been used as selection criteria to improve grain
yield and cultivar development.

The majority of efforts toward increasing seed yield
under favorable environments has come from improve-
ment in pods/plant, seed/plant, and seed weight (Beebe
et al. 2013). However, under unfavorable conditions
(e.g., drought), other traits including biomass
partitioning indices (pod partitioning index, harvest in-
dex, and pod harvest index) have been used as key traits
to improve yield (Beebe et al. 2013; Assefa et al. 2013,
2017; Rao et al. 2017).

Improvements in grain yield and related traits in CB
have been associated with the improvement of the num-
ber of seeds per plant and grain yield per day
(Bezaweletaw et al. 2006; Ribeiro et al. 2008). Several
studies showed that hybridization of interracial bean
varieties had higher yield, particularly in crosses be-
tween Mesoamerican with Durango or Jalisco races
(Beebe 2012). Increasing yield potential has also been
achieved through breeding for abiotic stress tolerance.
Beebe et al. (2008) reported that yield could increase
under drought conditions through photosynthate remo-
bilization and biomass translocation, implying that yield
improvements can be made under drought conditions.
Further, CIATand PABRA have designed new breeding
strategies to breed for grain yield and resistance to single
biotic and abiotic stresses, based both on grain type and
market class. This has led CIAT and PABRA to release
numerous new bean varieties in Africa and Latin Amer-
ica (Buruchara et al. 2011).

Biotic stresses

With over 200 different bean diseases reported, the
pathogens causing significant yield losses to beans in-
clude bacteria, virus, fungi, and plant parasitic nema-
todes (Table 2). Many of these diseases and insect pests
have co-evolved with CB (Beebe 2012; Beebe et al.
2013). Some of the most significant bean diseases in
the tropics include bean angular leaf spot (ALS,
Phaeoisariopsis griseola), anthracnose (ANT,
Colletotrichum lindemuthianum), common bacterial
blight (CBB), and viral diseases bean golden mosaic
virus (BGMV) and bean common mosaic virus
(BCMV) (Beebe and Corrales 1991; Duc et al. 2015;
Miklas et al. 2017). In temperate regions, the most
common diseases are CBB, halo blight, rust, and white
mold (Duc et al. 2015).
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Significant progress has been made in developing
cultivars with resistance to various diseases using con-
ventional breeding. Some important resistance-mapping
studies are summarized in Table 2. Markers associated
with established resistance loci can be used for more
efficient breeding to develop resistant cultivars. Some
early examples of marker-assisted selection for bean
diseases include 23 RAPD markers and 5 SCAR
markers associated to 15 different resistance genes, de-
scribed by Kelly and Miklas (1998). Molecular markers
and linkage mapping of rust resistance genes have been
reviewed by Miklas et al. (2002). Kelly and Vallejo
(2004) provided a summary of markers, MAS, map
location, and breeding value for anthracnose
resistance. Similarly, Miklas et al. (2006) reviewed
MAS in breeding for resistance to anthracnose, angular
leaf spot, common bacterial blight, halo bacterial blight,
bean golden yellow mosaic virus, root rots, rust, and
white mold (Table 2).

Abiotic stresses

Drought stress Abiotic (climatic and edaphic) stress
factors are major constraints for bean productivity in
most tropical and subtropical countries (Rao 2014). In
Central America and in eastern and southern Africa, as
much as 60% of the bean growing areas in these regions
suffer from periodic drought stress (Assefa et al. 2013;
Ambachew et al. 2015; Darkwa et al. 2016). Key traits
linked to drought resistance include phenology, root size
and depth, root hydraulic conductivity, carbohydrate
reserve storage and mobilization, and water absorption
efficiency (Beebe et al. 2013). Breeders and physiolo-
gists are particularly focused on improving the traits
related to photosynthate mobilization from vegetative
parts of the plant to the pod walls and seeds under
drought conditions (Rao et al. 2017). These
photosynthate-mobilizing traits include pod harvest in-
dex (PHI), pod partitioning index (PPI), and harvest
index (HI) (Beebe et al. 2013) which may be used to
select drought-adapted beans (Beebe et al. 2008; Assefa
et al. 2013; Rao et al. 2013, 2017; Polania et al. 2016a,
2017). Sources of drought resistance have been found in
the Durango race and in tepary bean (Beebe 2012; Rao
et al. 2013; Asfaw and Blair 2014; Mukeshimana et al.
2014). Several drought-resistant lines have also been
identified in Africa (Asfaw et al. 2012; Mukeshimana
et al. 2014).

Breeding for improved adaptation to drought is com-
plex because several traits are involved in resistance
mechanisms, and the traits are quantitatively inherited
and highly affected by environments (Mir et al. 2012).
Use of MAS for improving drought resistance was ex-
plored by Schneider et al. (1997), who identified QTLs
for drought using RandomAmplified Polymorphic DNA
(RAPD) markers. In this study, yield was improved by
11% under drought and 8% under normal conditions by
using five RAPD markers (Schneider et al. 1997).

Genotype by environment interactions affecting
drought QTL are reported by Chavarro and Blair
(2010), Asfaw et al. (2012), Asfaw and Blair (2012),
Blair et al. (2012), and Mukeshimana et al. (2014).
Asfaw et al. (2012) identified 9 and 69 QTLs associated
with drought using mini-environment mixed model ap-
proach and composite mapping approaches, respective-
ly. Asfaw et al. also reported that the phenotypic varia-
tion explained by QTLs is up to 37% for SPAD leaf
chlorophyll and pod partitioning index traits. This result
shows the importance of QTL detection for
photosynthate acquisition and remobilization traits.
Trapp et al. (2015) also detected two major QTLs on
Pv01 and Pv02 for seed yield in several abiotic stresses
and drought tolerance conditions. QTL in populations
with Durango derived drought tolerance have also been
analyzed (Mukeshimana et al. 2014; Briñez et al. 2017).
The QTLs identified in all those studies could be impor-
tant tools for MAS in bean breeding programs to select
indirectly for drought tolerance traits that are difficult to
screen in large populations.

Heat stress High temperature (HT) stress is a major
bean production constraint (Rainey and Griffiths 2005;
De Ron et al. 2016). HT (greater than 30 °C day and/or
greater than 20 °C at night) causes significant reduction
in yield and quality and limits environmental adaptation.
The major effect of high temperature is shown as inhi-
bition of pollen fertility that results in blossom drop.
This causes reduced seed number and quality of the
seed. Researchers have identified heat-tolerant CB ge-
notypes from diverse gene pools (Porch and Jahn 2001;
Porch 2006; Porch et al. 2013). Some of these maintain
pollen viability up to 5 °C higher during night temper-
atures compared to temperatures that are normally con-
sidered to be limiting (> 18 °C at night). Development of
HT varieties under adverse environments would also
increase resilience for the future global climate change
threats (Porch et al. 2013; Gaur et al. 2015).
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Low temperature stress CB is sensitive to low temper-
atures, which can limit production in the early part of the
season. Differences among genotypes for tolerance to
suboptimal temperatures were reported by Dickson and
Boettger (1984). The unifoliate and the first trifoliolate
leaf stages were the most sensitive to freezing tempera-
tures in CB (Meyer and Badaruddin 2001). Their esti-
mated temperature to cause 50% mortality was −
3.25 °C, although regrowth after survival was limited,
meaning few plants made it to maturity. Interspecific
introgression of portions of the tepary bean genome into
CB is a promising method for increasing tolerance to
extreme temperatures in CB (Souter et al. 2017). Rodino
et al. (2007) reported seven cultivars of P. coccineus that
showed ability to germinate, emerge, and grow under
cold temperature—thus showing potential for as source
of cold-tolerant genes in interspecific hybridization with
CB.

Low P stress Low soil phosphorus (P) availability
causes significant bean yield loss in the tropics
(Ramaekers et al. 2010; Beebe 2012). About 50% of
bean growing regions worldwide are affected by low
soil P (Nielsen et al. 2001; Beebe 2012).More than three
million hectares of bean-growing areas of Africa could
suffer from P constraints (Wortmann et al. 1998). Prog-
ress has been made in developing tolerant cultivars with
better P acquisition efficiency, involving higher total
root length, root surface, and shallow root angle under
low P (Ochoa et al. 2006; Beebe 2012; Rao et al. 2016).
One of the key mechanisms identified to increase access
to P is greater topsoil foraging resulting from root archi-
tectural, morphological, and anatomical traits (Lynch
2011). Shallower root growth angle of axial or seminal
roots increases the topsoil foraging and thereby contrib-
utes to greater acquisition efficiency of P from low P
soils.

Rao (2001) and Beebe et al. (2009) reported that
greater photosynthate remobilization to the grain gives
better yield under conditions of low P availability. The
CIAT Bean Program has reported that bean genotype
G21212 and other breeding lines identified for drought
tolerance also gave better yield than poor performing
lines under low soil P conditions (Beebe et al. 2008).
Root QTLs associated with P acquisition in low soil P
environments were reported in Beebe et al. (2006),
which are linked with root parameters such as total
and specific root length. QTLs associated with P use
efficiency were also reported by Cichy et al. (2009a).

QTL studies of P deficiency tolerance have also been
conducted with other inter-genepool crosses (Ochoa
et al. 2006) and within Andean genotype populations
(Cichy et al. 2009a, 2009b). Mechanisms of tolerance to
low soil fertility have been studied both in terms of root
architecture and higher root hair density (Liao et al.
2004).

Low N stress Low soil N affects bean production in
many regions (Wortmann et al. 1998). Beans grown in
marginal, generally low-nutrient and moisture-limited
soils, also tend to show diminished nodulation activity
(Albrecht et al. 1984). Significant genetic variability is
known to exist in both the host-plant and rhizobium
strains in terms of SNF, which should enable breeders
to find cultivars with improved SNF ability (Bliss 1993;
Snoeck et al. 2010; De Ron et al. 2015; Drevon et al.
2015; Polania et al. 2016b). Total seed N concentration
could be used as selection criterion to screen advanced
breeding lines for genetic variability in SNF (Miranda
and Bliss 1991). Harvest index and biological yield are
also considered indirect measures for genetic improve-
ment of SNF ability in bean (Araújo et al. 2015). Farid
et al. (2017) reported that selection of bean lines for their
high SNF capacity could be done in both CBB-
susceptible and CBB-resistant genotypes. Their work
suggests that selection for SNF capacity in CBB-
resistant lines of CB may have negative influence on
the degree of rhizobial infection.

Aluminum toxicity and acid soil stress Other abiotic
stress factors such as aluminum (Al) and manganese
toxicities associated with soil acidity are also problems
to bean production, particularly in acid soil regions of
Latin America and Africa (Rao 2014; Rao et al. 2016).
Mechanisms of Al resistance were defined using the Al-
resistant genotype ‘ICAQuimbaya’ and the Al-sensitive
‘VAX-1’ (Yang et al. 2013). The induced and sustained
Al resistance of ‘Quimbaya’ was shown to be mediated
by reducing the stably bound Al in the apoplast, thus
allowing cell elongation and division to resume. Resis-
tance to Al is attributed to the release of citrate by the
root apex which is mediated by the multidrug and toxin
extrusion (MATE) citrate transporter gene. Resistance to
Al in CB was mainly dependent on the capacity to
sustain citrate synthesis, thereby maintaining the cyto-
solic citrate pool that enables exudation. The initial Al-
induced inhibition of root elongation in both Al-resistant
and Al-sensitive genotypes was correlated with the
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expression of the 1-aminocyclopropane-1-carboxylic
acid oxidase gene (Yang et al. 2013). QTLs for Al stress
tolerance were first identified by López-Marín and Rao
(2009). Andean genotypes have been screened for Al
tolerance, with significant genetic variability identified
for this trait (Blair et al. 2009).

Genetic and genomic resources for CB breeding

Germplasm collections and CB diversity

Significant national collections of CB are maintained at
the USDA, in Pullman, Washington, USA (about
15,000 accessions), the Institute für Pflanzengenetik
und Kulturpflanzenforschung, Germany (about 9000
accessions), in Brasilia, Brazil (CENARGEN/
EMBRAPA, with about 6000 accession), in Beijing,
China (CAAS, Institute of Genetic Resources with more
than 5000 accessions), and the National Center for Plant
Genetic Resources in Alcala de Henares, Spain (with
more than 5000 bean accessions). The largest collection
of CB genetic resources is maintained under the auspic-
es of the Food and Agriculture Organization (FAO)
treaty, under International Treaty on Plant Genetic Re-
sources for Food and Agriculture (ITPGRFA), at CIAT
in Cali, Colombia (around 36,000 accessions), with a
backup at the Svalbard Global Seed Vault in Norway,
where more than 50,000 accessions are now held. In
addition to CB (P. vulgaris) and various wild Phaseolus
species, these collections include four other domesticat-
ed Phaseolus species: year-long bean (Phaseolus
dumosus), runner bean (Phaseolus coccineus), tepary
bean (Phaseolus acutifolius), and lima bean (Phaseolus
lunatus). Most of these collections were made from the
centers of origin, mainly Andean and Mesoamerican
regions. Smaller collections of CB accessions exist
through non-governmental agencies such as Seed
Savers Exchange in Decorah, Iowa or at breeding sta-
tions of national, sub-national, or multi-country regional
programs (e.g., ECABREN and SABRN bean networks
in East and Southern Africa, respectively). Germplasm
accessibility is generally not a bottleneck for bean
breeding and genetic studies.

Genetic diversity has been extensively studied in
bean using different types of markers, including seed
protein (e.g., phaseolin) (Gepts et al. 1986; De La
Fuente et al. 2012) and isozyme analysis (Koenig and
Gepts 1989). Other molecular markers used for genetic

diversity in CB are DNA restriction fragment length
polymorphism (RFLP) (Khairallah et al. 1990, 1992),
nuclear RFLP (Becerra Velasquez and Gepts 1994),
allozymes (Singh et al. 1991a; Santalla et al. 2002),
and random amplified polymorphic DNA (RAPD)
(Freyre et al. 1998; Beebe et al. 2000). Similar reports
have also demonstrated genetic diversity through use of
amplified fragment length polymorphism (AFLP)
markers (Beebe et al. 2001; Papa and Gepts 2003;
Zizumbo-Villarreal et al. 2005), SSR markers (Gaitán-
Solís et al. 2002; Blair et al. 2006a), DNA sequencing
(Gepts et al. 2008), and single nucleotide polymorphism
(SNP) markers (Galeano et al. 2009a, 2009b, 2012;
Blair et al. 2013). These tools help answer different
questions related to evolution, domestication, and diver-
sity of CB, which is not possible to answer with the use
of phenotypic methods alone (Arif et al. 2010). For
example, genes related to domestication from the An-
dean and Mesoamerican domestication events and evo-
lutionary traits such as shattering have been identified
(Bellucci et al. 2013; Gaut 2014) as have polymorphism
in drought-related genes (Cortés et al. 2012a, 2012b).
Due to their cost-effectiveness, efficiency, and simplic-
ity, SNP, SSR, and AFLP markers have been the most
commonly used markers studies on CB genetic
diversity.

The world’s germplasm collections can be character-
ized in various ways: by genotype (i.e., marker- or
sequence-based characterization), by phenotype (e.g.,
growth habit, seed characteristics, disease responses,
photoperiod response, etc.), by pedigree or genepool
or race, or by geographic origin. Ideally, these charac-
teristics would be maintained, in combination, for all
germplasm accessions, but in practice, the characteriza-
tions are incomplete and not fully correlated. Substantial
phenotype data is maintained for the U.S. germplasm
collection in the GRIN system. Pedigree data is gener-
ally lacking, except for selected populations, usually at
institutes with long-running breeding programs (e.g.,
CIAT). For geographic origin, an interesting resource
is the geographic information systemmap of germplasm
origin maintained at LegumeInfo (https://legumeinfo.
org). This interactive viewer displays geo-coordinates
for the bean collection in GRIN, along with the pheno-
typic data in GRIN. The data in the viewer can then be
queried by geographical location or by phenotype (e.g.,
photoperiod or seed size)—and then phenotypic catego-
ries or values can be displayed geographically, to look
for correlations such as seed size by location—showing
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the Andean material generally having larger seeds than
Mesoamerican landraces.

For genotypic data, several projects have gener-
ated large SNP datasets. The U.S. Bean Coordinated
Agricultural Project (BeanCAP) has generated SNP
calls for two diversity panels: the Mesoamerican
Diversity Panel (MDP) and the Andean Diversity
Panel (ADP) (Moghaddam et al. 2014). These are
d e s c r i b ed and ava i l a b l e a t Legume In f o :
http:/ / legumeinfo.org/data/public/Phaseolus_
vulgaris/G19833.gnm1.div1/.

To access and utilize the highly valuable material
in germplasm repositories, arguably the most com-
mon approach has been to order a subset of material
of interest, on the basis of what phenotype data is
available, followed by field trials to screen for par-
ticular traits (e.g., resistance to a disease of interest).
Availability of genotype data (e.g., for the MDP and
ADP panels) makes it possible to select for geno-
typic diversity as well or even for presence of par-
ticular alleles for known genes.

Genomic resources and tools for CB research
and breeding

CB has a medium-sized, diploid genome of 588–
637 Mbp (Arumuganathan and Earle 1991; Bennett
and Leitch 2005; McClean et al. 2008). Genomic re-
sources have advanced dramatically in recent years,
with reference genome sequences, dense genetic maps,
marker and genotyping sets, and many QTL and
genome-wide association studies (GWAS).

Reference genome assemblies provide an impor-
tant resource for organizing many other genetic and
genomic features and resources. At the time of writ-
ing, there are three genome assemblies of reference
quality: two versions of the Andean G19833 acces-
sion (Schmutz et al. 2014) and the Mesoamerican
BAT93 assembly (Vlasova et al. 2016) [https://doi.
org/10.1186/s13059-016-0883-6]. The G19833
assembl ies (v1 and v2) are ava i l ab le fo r
downloading, sequence searching, and browsing at
both Phytozome (https://phytozome.jgi.doe.gov) and
LegumeInfo (https://legumeinfo.org).

These on-line tools are typically used for basic re-
search toward marker development and selection and
for investigation of the genetic basis of traits of interest,
rather than directly for day-to-day breeding work.

Together with QTL, marker, and sequence data, com-
parative genomic analyses are possible through the Le-
gume Information System (LIS or LegumeInfo). The
resources at LegumeInfo legume-focused gene families
and gene family trees (phylogenies) also include an
InterMine instance (https://mines.legumeinfo.
org/beanmine) for querying regions and lists of
features (e.g., genes within a QTL region, filtered for
gene expression).

The legume gene families are an important tool
for identifying corresponding genes (orthologs)
across legume species and thereby for linking re-
search across various legume species. For example,
research on gene function in soybean is often trans-
ferrable to orthologous bean genes. A published
gene in soybean (e.g., the determinacy gene Dt1)
could be used to detect the gene family containing
the gene (either through a BLAST search against
gene families or by entering a gene name), and the
family, in turn, identifies both near and more distant
orthologs in CB. Expression patterns can then be
checked for the bean genes in the genome browser
or gene record pages at LegumeInfo.org or in the
BeanMine.

To effectively use the genomic resources at
LegumeInfo.org or BeanMine, it may be helpful to
think of three use-cases, distinguished by starting
knowledge. In the first case, one has a gene with
known function in another species and wishes to
find whether there is evidence for similar functions
in the ortholog in common bean. In the second case,
one has genetic association information, either in the
form of genetic markers from a QTL studies or
genomic regions from a GWAS study, and wishes
to find candidate genes within that genetic or
genomic region. In the third case, one starts with
gene enr ichment in fo rmat ion (e .g . , genes
upregulated under some condition) and wishes to
narrow that list to find causal genes for a trait.

For the first use-case (gene in species 1 to candidate
gene in CB), the sequence for the starting gene can be
used as a query in a BLAST search at legumeinfo.
org—either against the reference genome sequence,
which will lead to a genome browser view centered on
the BLAST hits, or against gene sequences (protein or
coding sequence), which will lead to pages for the
respective genes. From either target location (genome
browser or gene page), there are link-outs to other
resources—for example, from a gene to a gene family
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or from a gene to gene expression profiles or from a
gene to a genomic synteny in the LegumeInfo Genomic
Context Viewer (GCV). Information toward validation
of function can be gleaned from expression information,
from phylogenetic and genomic context (from the gene
tree viewer and GCV), or from overlapping QTL or
GWAS regions. For GWAS andQTL regions, additional
work typically needs to be done by the researcher to find
the locations of flanking markers on the genome
browser—which can be done by a search within the
genome browser or by a search in LegumeInfo in the
marker search page.

For the second use-case (from QTL or GWAS region
to candidate genes), the first step is to find the region of
interest in the genome browser. This can be done using a
search of either flanking- or top-ranked marker, within
the browser page or from the LegumeInfo in the marker
search page. This needs to be done with caution, partic-
ularly for markers identified in QTL studies, because
QTL regions are distributions, often with the signifi-
cance region spanning many very large regions in ge-
nomic space. For either QTL or GWAS associations, it
is appropriate to extend the region search to include all
genes spanned by the flanking non-significant markers.
For example, if there are significant markers at positions
1,000,000 and 1,100,000 and non-significant markers at
999,000 and 1,200,200, then the region that should be
searched for candidate genes is from 999,000 and
1,200,200—because with greater SNP density, it is like-
ly that significant markers would be found outside the
two markers that were reported as significant. Once a set
of candidate genes has been located in the genome, then
functional information for predicted can be used to
assess potential function in the plant, and gene lists
can be further evaluated for information—either toward
confirmation or elimination from candidacy.

For the third use-case (a list of genes of interest from
any source to a reduced list of high-value candidates),
the initial list could, in principle, come from numerous
sources. Take the example of genes with significant
differential expression, assayed in an RNA-Seq experi-
ment, for response to some condition, e.g., drought
response. Such a gene list can be used in a custom query
at the BeanMine (available via LegumeInfo.org:
https://mines.legumeinfo.org/beanmine). To be useful,
the query should substantially narrow the initial gene
list. This could be done by intersecting the genes with
one or more genomic regions (likely determined from
QTL or GWAS studies) or by another list (for example,

the set of orthologs from a BLAST search from genes
known in another species to mediate drought response).
Both types of queries and list operations are easily
conducted at the BeanMine using similar query
templates available from the main page.

Linkage and association mapping resources

Linkage mapping enables identification of associations
between traits and markers, for both simple Mendelian
traits and quantitatively inherited traits (QTLs) (Ibarra-
Perez et al. 1997; Gepts et al. 2008; De Ron et al. 2015).
The first widely used genetic map in bean was developed
from a backcross (BC) mapping population between
Mesoamerican line ‘XR-235-1-1’ and ‘Calima’ (Andean
cultivar (Vallejos et al. 1992). This linkage map included
9 seed proteins, 9 isozymes, 224 RFLP, and seed and
flower color markers. These molecular markers were
placed on 11 linkage groups, spanning 960 centimorgans
(cM). The second genetic map was developed using
RFLP markers, spanning 827 cM. These markers were
placed on an F2 mapping population (cross of BAT93 by
Jalo EEP558), with 142 markers being assigned to 15
linkage groups (Nodari et al. 1993).

A third genetic map was developed by Adam-
Blondon et al. (1994) from the cross between Ms8EO2
and Core. This map contained 51 RFLPs, 100 RAPDs,
and two sequence-characterized amplified region
(SCAR) loci and spanned 567.5 cM across 12 linkage
groups. These three maps were mainly based on RFLPs,
though few seed protein and isozyme markers were also
included (McClean et al. 2004). A consensus map was
then developed utilizing these linkage maps on BAT93
× Jalo EEP558 (BJ) as a core map (McClean et al.
2004). The creation of this consensus map has provided
bean breeders with the means for combining all the
genetic information from multiple populations devel-
oped from diverse genetic background. It also provided
the opportunity to map more loci than from single cross
populations and also increased important markers over
different genetic backgrounds (Rami et al. 2009).

Numerous subsequent maps have been generated,
using a succession of marker types (reviewed by
González et al. 2018). Although SNP markers have
generally supplanted prior types of markers, important
early markers and mapping populations are valuable
resources for interpreting new SNP maps and crosses,
sometimes through conversion of older marker types to
nearby SNP markers. SSR markers (also called
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microsatellites), which are also typically though not
exclusively PCR-based, have been extensively used in
bean genetic studies. SSR markers were first reported in
bean by Yu et al. (1999, 2000), with 15 different micro-
satellite markers included in a molecular linkage map
constructed primarily using RAPD and RFLP markers.
Blair et al. (2003) integrated 100 SSR markers in two
linkage maps along with RFLP, AFLP, and RAPD
markers. Much more saturated SSR-based maps were
reported by Córdoba et al. (2010) and Blair et al. (2014).
Since then, several bean genetic studies have been im-
plemented using SSR markers and have further been
employed for map comparison and integration. The
sequence-characterized amplified region (SCAR) mark-
er is another PCR-based marker that has been used for
comparison of genetic map and integrating genetic maps
(McClean et al. 2002). Additional types of PCR-based
markers include indel-based markers, including a large
set described by Moghaddam et al. (2014).

In the last decade, SNP assay methods have become
far more efficient. Researchers can now inexpensively
scan the whole genome to identify rare variants that are
potentially associated with traits of interest. SNP discov-
ery in maize and soybean is illustrative for many other
crop species (Rafalski 2002, 2010; Hyten et al. 2010),
though there are species-specific differences—for exam-
ple, with the SNP frequency being roughly an order of
magnitude higher in maize than soybean. In CB, SNP
frequency is relatively high, with approximately one SNP
per 88 bp across a genome of ~ 588 Mbp—implying
more than six million SNPs are expected in the genome
(Gaitán-Solís et al. 2008; Schmutz et al. 2014; Blair et al.
2018). An important recent SNP map is the high-
resolution Mesoamerican × Andean cross of Stampede
× Red Hawk produced by Song et al. (2015), which
utilized 7276 SNP markers in an F2 mapping population
of 267 RILs. This was used to anchor sequence scaffolds
into pseudomolecules in the first reference genome as-
sembly for CB (Schmutz et al. 2014). Many bean SNPs
have been discovered through sequencing and genotyp-
ing by sequencing (Bhakta et al. 2015; Ariani et al. 2016;
Schröder et al. 2016), and some older markers have been
converted to BKompetitive Allele Specific PCR^
(KASP)-based SNP assays (Cortés et al. 2011).

Genetic maps for CB are found at LegumeInfo
(https://legumeinfo.org/traits_maps#phavu) and at
PhaseolusGenes (http://phaseolusgenes.bioinformatics.
ucdavis.edu). Both of these websites include various
genetic maps, as well as QTL features from numerous

studies projected onto a reference geneticmap. In the case
of LegumeInfo, QTL and markers are projected onto the
combinedmap of three populations (Fig. 1), two of which
were inter-genepool, namely DOR364 × G19833 (DG)
and BAT93 × Jalo EEP558 (BJ) with one Mesoamerican
×Mesoamerican BAT477 ×DOR364 (BD) population as
described in Galeano et al. (2012). This resource has links
to a high-density map for an F2 population for North
American researchers based on the Mesoamerican × An-
dean cross of Stampede × Red Hawk (SR) (Song et al.
2015) and to an integrated map for the BJ reference
population. Finally, all the maps are tied into the
G19833 sequence information from LegumeInfo (Fig. 2).

A great number of trait-mapping studies in CB have
been produced over roughly the last 40 years, involving
both mapping of qualitative and quantitative traits in
biparental populations, and more recently, through
genome-wide association studies in diverse germplasm
collections (reviewed by González et al. 2018). A sam-
pling of some of these important trait-mapping follows.

The primary determinacy locus, FIN, has been iden-
tified on LG01 in CB as PvTFL1y, homologous to the
Arabidopsis TFL1 gene (Kwak et al. 2008; González
et al. 2016). The allele conferring determinacy is the
mutant (recessive) form.

Control of photoperiod has been repeatedly mapped to
two loci on LG01 (Koinange et al. 1996; Kwak et al.
2008). A compelling candidate for the PPD (photoperiod)
locus is an ortholog of the E3/PHYA3 gene in soybean
gene (McClean et al. 2010). A candidate for the other
LG01 locus, HR, is orthologous to the Flowering Time
(FT) gene in Arabidopsis (Gu et al. 1998).

Traits such as seed and pod size and yield are com-
plex, involving multiple genes and numerous epistatic
interactions, but loci involved have been identified re-
peatedly, in various backgrounds, and with increasingly
tight genetic bounds (González et al. 2018). For exam-
ple, pod size and pod length QTLs have been reported in
similar locations, including LG01, LG02, and LG04
(Koinange et al. 1996; Hagerty et al. 2016; Yuste-
Lisbona et al. 2014).

Current and prospective methods in CB breeding

Genomics-assisted breeding

Conventional bean breeding approaches have produced
many improved varieties. However, genetic progress in
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yield has been slow compared to crops such as soybean
and maize. Improved molecular marker technologies
may enable bean breeders and geneticists to speed up
cultivar development. An important intermediate step in
this direction is to transfer desirable QTLs (genes) into
active breeding populations using MAS—and to trans-
fer multiple traits through gene pyramiding (Das et al.
2017). Progress has beenmade in applyingMAS toward
improved resistance and it is described by Miklas et al.
(2006) and Tryphone et al. (2013).

A collection of molecular breeding techniques, col-
lectively labeled MAB by Ribaut et al. (2010), in-
cludes selection based on marker-assisted back-cross-
ing (MABC), marker-assisted recurrent selection
(MARS), and genomic selection (GS) (Fig. 3). The
MABC approach is to transfer a major gene from a
donor cultivar into an elite line. The MARS approach

is to assemble and involve favorable alleles from
various sources for the expression of quantitative
traits. The GS approach relies on marker-based selec-
tion that might be performed without major testing or
even prior marker × trait associations (Bernardo and
Yu 2007). MABC and MARS have been effective as
indirect selection techniques by selecting for traits
without evaluating the trait of interest. MABC is one
of the most preferred molecular approaches for trans-
ferring desirable genes into well-adapted commercial
cultivars. Carneiro et al. (2010) reported that micro-
satellite markers linked with white mold resistance
(genes) were effective in selecting individual plants
with a higher resistance relative to the recurrent parent
genome. Integrating MABC into bean breeding has
been effective for improving traits controlled by major
genes and used for stacking of few genes and QTLs

Fig. 1 Consensus genetic map,
showing QTL from various
studies
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(Kelly 2004; Carneiro et al. 2010; Varshney et al.
2010). It is also efficient for gene pyramiding (e.g.,
combining two or more strains of the same pathogen).

An early example of marker-assisted selection was
used to determine and select anthracnose resistance
genes Co-5 and Co-42. The markers SAB3 and

Fig. 2 Reference map of the BAT93 × Jalo EEP558 population using trans-legume orthologous gene-based (TOG) markers

Fig. 3 Genomic selection scheme. GEBV = genomic estimated breeding value. Adapted from Fig. 2 in Heffner et al. (2009), with
modifications to show integration of participatory variety selection and demand-led breeding
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SAS13 are associated with the anthracnose resistance
genes Co-5 and Co-42, respectively, in the donor parent
G2333 (the source of resistance genes to anthracnose).
This resistant parent was crossed with susceptible com-
mercial cultivars, and resistance was selected for by
selecting for these markers (SAB3 and SAS13) in the
backcross progeny. The resistance was effectively trans-
ferred to the BC1 population (Garzón et al. 2008). In that
study, the Co-5 and Co-42 anthracnose resistance genes
associated with the markers (SAB3 and SAS13) can be
stacked to increase the level of resistance to anthracnose.
Subsequent studies have also selected for bruchid and
virus resistance (Blair et al. 2010b).

MAS in bean breeding and the progress that has been
made are well explained by Miklas et al. (2006), who
describe success toward several diseases of CB. MABC
for quantitatively inherited traits including yield and
drought tolerance has not yet been well developed in
CB (O’Boyle et al. 2007). Markers linked to QTL for
disease and insect resistance have been identified and
are being utilized to introgress genes into elite varieties
(Briñez et al. 2017).

The MARS approach helps breeders identify superi-
or alleles for complex traits such as drought resistance
and yield and to develop superior breeding lines from
both parents. Bernardo and Charcosset (2006) reported
that MARS is effective for identifying multiple genomic
regions and to detect both minor and major QTLs. Thus,
MARS may be able to achieve greater genetic gain
compared to MABC.

GS, another emerging molecular approach, is a form
of molecular MAS that enables breeders to increase
genetic gain in a short period of time for quantitatively
inherited traits (Heffner et al. 2009). GS is different from
MABC and MARS in that it directly identifies better
genotypes via predicted breeding value (BV), using
markers with genome-wide distribution. GS methods
use a training population and a validation population.
The training population consists of elite lines that are
both phenotyped and genotyped with genome-wide
markers. These markers are treated as random instead
of fixed effects.

In GS, the molecular marker effects on the pheno-
types of elite materials are assessed concurrently in a
model. It is assumed that one or more markers are in
linkage disequilibrium with corresponding QTL associ-
ated with the trait. In GS, the model for prediction is
fitted to detect the entire additive genetic variances
based on totality of the effects of the molecular markers,

to estimate breeding values of individual markers. This
model is also applied to the genomic data of a validation
population in which the individuals are genotyped but
not phenotyped. The model produces genomic estimat-
ed breeding values (GEBV), which captures the effects
of markers in the training population toward phenotypes
of interest. After predicting the breeding value (GEBV)
for each genotype in the breeding program, genotypes
with higher breeding values are either recycled into the
crossing program or dropped. The advantage of using
GS over conventional breeding is that it has the potential
to reduce the number of breeding cycles and reduce the
need for phenotyping in every cycle, while maintaining
genetic diversity. GS should be efficient than traditional
MAS at selecting for complex traits with low heritabil-
ity, since models comprised of many markers are able to
pick up low-effect genes.

Genomic resources in bean have also enabled the use
of GWAS to identify marker-trait associations. A signif-
icant advantage of GWAS over QTL studies is that the
marker-based associations (typically SNPs) can be inte-
grated with other GWAS, as long as the markers are
placed on a common genomic reference assembly. The
markers acquire position by virtue of the genomic se-
quence rather than through genetic mapping and
recombination-counting (Schmutz et al. 2014). Signifi-
cant GWAS research has been conducted in CB to find
genetic associations with some traits such as agronomic
performance and SNF ability (Kamfwa et al. 2015a,
2015b), anthracnose and angular leaf spot resistance
(Perseguini et al. 2016), cooking time (Cichy et al.
2015), anthracnose resistance (Zuiderveen et al. 2016),
and drought tolerance (Hoyos-Villegas et al. 2017).
More research and a better understanding of different
biotic and abiotic stress tolerance traits in the context of
GWAS in CB are still needed.

High-throughput phenotyping approaches for CB
breeding

Progress in high-throughput phenotyping (HTP) in CB
has generally lagged genomic progress. It remains dif-
ficult and costly to do precise phenotyping of simple and
complex traits such as plant height, biomass, flowering,
and yield for a large breeding population with replicated
tests across different environments, requiring large num-
ber of plant measurements—many of which are time-
sensitive and growth-stage dependent. This bottleneck
has led to some new HTP approaches, unlocking

20 Page 14 of 23 Mol Breeding (2019) 39: 20



prospects for non-destructive field and lab-based phe-
notyping (Cobb et al. 2013; D’Agostino and Tripodi
2017; Varshney et al. 2018).

Currently, most plant trait phenotyping is heavily
dependent on visual observation and manual mea-
surements, which are time consuming, labor inten-
sive, costly, error-prone, and liable to miss subtle
phenotypic variations (Kumar et al. 2015). Some
HTP imaging techniques are non-invasive and accu-
rate, reducing dependence on invasive or destructive
methods (Bhat et al. 2015)—employing, for exam-
ple, multi-spectral imaging for different traits such
as phenology, leaf disease (chlorosis, necrosis), plant
structure, and biomass accumulation. For example,
near infra-red cameras are used for measuring tissue
water content and chlorophyll fluorescence analysis
to assess photosynthetic efficiency (Kumar et al.
2015). A combination of new imaging techniques
and robotic and conveyer belt systems in greenhouse
could be used for bean HTP (McDonald et al. 2016).
At a smaller plot level, ground-based HTP including
tractor-based system or modified vehicles such as
phenomobiles and phenocarts equipped with global
positioning system (GPS) and sensors could be eas-
ily applied to bean phenotyping.

Demand-led breeding

Although many aspects of bean improvement de-
pend on technical factors, we would also like to
highlight an important sociological approach that
has demonstrated success in CB breeding. CB has
steadily evolved from primarily a smallholder sub-
sistence crop (Katungi et al. 2009) to market-
oriented production (Buruchara et al. 2011). This
shift in focus has necessitated a revision in the
varietal development process and seed system. The
hands-on nature of participatory variety selection
(PVS) has evolved from more contractual and con-
sultative to demand-led breeding (Persley and
Anthony 2017) where multidisciplinary researchers
work closely with bean value chain actors to devel-
op bean varieties that meet the needs of farmers and
others in the value chain. This paradigm shift in
bean breeding has been toward a value chain-
focused approach, with relatively less emphasis
placed on the farmer-focused approach of a few
farmers engaged in selecting varieties for ecological
suitability. Currently, nearly all the bean breeders in

PABRA are employing demand-led breeding ap-
proaches. A variety of factors that include different
users groups (women/men, more market-oriented/
home consumption), a range of agroecological
zones, and preference information (from participants
including households, farmers, traders, and proces-
sors) are resulting in fine-tuning of formal breeding
programs. Conventional plant breeding has been
successful in developing bean cultivars that can be
used in environments that are fairly homogenous
and stable, but it has been less effective in develop-
ing cultivars in complex and marginalized drought
affected environments (Ceccarelli et al. 2000; Fufa
et al. 2010; Assefa et al. 2014) Conventional plant
breeding is also framed to accommodate limited
requirements and the particular needs of farmers
and particular growing environments (Assefa et al.
2014). Through demand-led breeding (DLB), bean
breeders can also enhance varietal diversity through
involvement of actors throughout the value chain, as
well as minimizing effort that might be invested in
developing varieties that are unacceptable to farmers
and local communities, and traders/processors. DLB
is also able to exploit genotype by environment
interaction by taking advantage of specific adapta-
tions to particular locations and growing conditions,
such as periodic drought or soil mineral toxicity.

Tremendous gains have been made in getting con-
ventionally selected varieties released through the for-
mal cultivar release system. Through collaborative ef-
forts, PABRA has succeeded in fast-tracking the release
of bean varieties selected for a range of preferred traits.
The number of varieties released rose from 73 in 1990–
2000 to 130 in 2001–2008 to 340 in 2009–2016, includ-
ing seven PABRA members with less resourced breed-
ing programs: Burundi, Cameroon, Democratic Repub-
lic of Congo, Swaziland, Congo Brazzaville, Lesotho,
and Guinea (http://www.pabra-africa.org/pabra-annual-
report-20162017-20th-anniversary-special-edition). As
result of use wider impact seed systems approach
(Rubyogo et al. 2010), within the PABRA region,
improved bean varieties occupy 56% of the bean-
growing area. More importantly, yields have nearly
doubled in Ethiopia (Berhanu et al. 2018), while they
have increased by 55% in Uganda, 20% in Burundi, and
12% in Rwanda over the last decade (PABRA 2017).
This significant increase of yield for improved bean
cultivars is found to be related to the positive impacts
(CIAT 2013; Larochelle et al. 2013).
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Gaps in common bean improvement and potential
future developments

Although a great deal of work is underway globally
toward bean improvement, we see several areas of cur-
rent weakness—and, concomitantly, areas for
opportunity.

Integration of robust, high-value markers into breeding
programs There remains a lack of some key informa-
tion for CB improvement, including easily assayed
markers tightly linked to important traits and more com-
plete understanding of the mechanisms underlying
quantitative traits. In the absence of that mechanistic
understanding, single markers will generally be of lim-
ited use, particularly given the complexity and hetero-
geneity of genetic backgrounds in CB. Further, even the
best markers for high-value traits are of limited utility in
a breeding program unless the breeder has access to
efficient, low-cost assays, integrated as a regular part
of the annual breeding cycle.

Better characterization of strengths and weaknesses of
genomic selection and related methods Although GS
methods have been in use for more than a decade
(Bernardo and Yu 2007) and have been shown to be
useful in multiple species (being particularly helpful in
avoiding the need to do expensive phenotyping during
each selection round), the method remains challenging
to do well—generally requiring careful phenotyping in
the first generations in for distinct populations and
breeding projects. It works better in some germplasm
collections than others and can be highly affected by
population structure, which may not be straightforward
to identify or correct for.

Better characterization of germplasm resources Complete
genome sequence assemblies are available for several
bean accessions, and there are available methods for
high-throughput genotyping, e.g., genotyping-by-
sequencing (Schröder et al. 2016; Ariani et al. 2016)
or SNP chips (Song et al. 2015). Nevertheless, no com-
plete catalog of variants across the global germplasm
collections exists for CB. This would be helpful in
identifying both unique germplasm as well as redundan-
cies across collections.

Solutions for physiological weak points in CB CB re-
mains a vulnerable crop in several ways. It has limited

tolerance to high temperatures, particularly during
flowering. It also generally has poor tolerance to cold
temperatures and to drought and is vulnerable to many
diseases and pests. Improvements in any of these areas
remain a daunting challenge, but there are opportunities
for improvements through introgressions, both from
wild P. vulgaris accessions with valuable traits and by
interspecific crosses to gain traits for tolerance to
broader environmental ranges from species such as
P. acutifolius and P. coccineus.

Combining marker-assisted breeding methods with
demand-led breeding While DLB and MAB have each
been highly selective where applied, DLB has typically
been an approach used in developing countries and
MAB (summarized in Fig. 3) more often used in
resource-wealthy breeding situations. Merging the two
should have promise—although the technical require-
ments of MAB are significant enough to require sub-
stantial coordination by experienced organizations (e.g.,
CIAT or ICRISAT or focused international grant-led
projects). The types of methods to incorporate into
DLB include MAB and GS (Fig. 3). MAB or GS can
further improve the efficiency of selection for biotic and
abiotic stress resistance/tolerance traits that typically
have a low heritability and also help to increase the
initial frequency of favorable alleles in bulk populations.
Then, the farmers select the elite lines in their own field
(Steele et al. 2004; Kanbar and Shashidhar 2010), help-
ing reduce program costs in the breeding project while
also helping build buy-in by farmers.

Summary

Conventional plant breeding and a collection of world-
wide germplasm have been the primary source of im-
provements in CB. However, enormous opportunities
still exist to improve the efficiency and accuracy of bean
breeding and to increase genetic gain with the use of
genomic tools, improved phenotyping methods, and
well-coordinated DLB projects. Genomic data facilitate
the identification of traits and regions for introgression
by direct selection of specific alleles. Genomic ap-
proaches are also used for diversity analysis, germplasm
characterization, and identification of tightly linked
markers for important traits. Linkage maps and identifi-
cation of QTLs for important traits have enabled MAS,
which is now commonly used, and is important for
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simply inherited traits, sometimes several at a time,
through pyramiding. GWAS and genomic selection are
also poised for broader use. Reference genome se-
quences are now available in CB, which will help
breeders identify genes involved in major traits. Socio-
logical insights related to DLB outcomes include partic-
ipation of local value chains, from farmers to traders to
retailers and consumers.
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