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Abstract 

 

Pesticides are commonly used for pest management in apple, pear and walnut orchards in the western 

U.S. and may disrupt biological control of secondary pests in these crops.  A comparative analysis was 

made of results obtained from a series of laboratory bioassays of acute mortality and life table response 

experiments to estimate lethal and sublethal effects of eight pesticides on seven natural enemy species 

through use of stage-structured population models.  Even though a number of the pesticides tested 

were reduced-risk products, all of them with the exception of copper plus mancozeb and 

chlorantraniliprole, caused more than 80% acute mortality of at least one life stage of at least one of the 

natural enemy species at a full field-rate concentration and could thus be considered moderately 

harmful according to the International Organization for Biological Control classification for laboratory 

bioassays.  Important sublethal effects included reductions in daily fecundity and egg fertility.  From 

integration of the lethal and sublethal effects in matrix models, the mean of the estimated intrinsic rates 

of increase for natural enemy species was negative for exposure to cyantraniliprole, lambda-cyhalothrin 

and spinetoram, but positive and not significantly different from the control for exposure to 

chlorantraniliprole, copper plus mancozeb, novaluron, and sulfur.  For comparisons among pesticides, 

there appears to be considerable variation in response among natural enemy species that can only be 

represented effectively from a full life table response experiment and a population-level endpoint, 

whereas among natural enemy species, their population-level response to the range of pesticides tested 

could frequently be represented by acute adult mortality alone. 

 

Keywords: Aphelinus mali, Chrysoperla carnea, Deraeocoris brevis, Galendromus occidentalis, 

Hippodamia convergens, Trioxys pallidus  



1. Introduction 

 

 The conservation of natural enemy activity in agricultural crops is one of three key approaches 

to the biological control of arthropod pests (Mills, 2014).  While conservation biological control includes 

a number of different strategies for manipulating environmental conditions to enhance the abundance 

and activity of natural enemies (Jonsson et al., 2008), one of the most important is the judicious use of 

pesticides to avoid disrupting the biological control services provided by natural enemies.  Ever since 

Stern et al. (1959) highlighted the need for a more holistic and integrated approach to pest 

management, and Carson (1962) popularized the issue of disruptive impacts of insecticides on natural 

ecosystems, the compatibility of pesticides and natural enemies has been a major concern for 

conservation biological control. 

 While the selectivity of pesticides with respect to natural enemies can be tested both in the 

laboratory and in the field, the majority of studies have been conducted in the laboratory due to the 

uncertainty of uncontrollable biotic and abiotic influences on field studies (Galvan et al., 2006; Beers et 

al., 2015). The early classes of synthetic insecticides, such as organochlorines, organophosphates and 

carbamates, were acutely toxic to a broad range of arthropod natural enemies (Croft, 1990; Sterk et al., 

1999) and the focus of laboratory bioassays was on measures of mortality, such as LC50s, as 

toxicological endpoints (Stark et al., 2007a).  However, with the emergence of newer classes of 

pesticides, such as insect growth regulators, spinosyns, diamides, and strobilurins, effects on natural 

enemies are less likely to be lethal, but may include sublethal effects on their life history performance 

and behavior (Stark and Banks, 2003; Desneux et al., 2007).  For these newer classes of pesticides it has 

also been important to use multiple routes of exposure (oral, topical and residual) in laboratory 

bioassays (Banken and Stark, 1998; Stark and Banks, 2003; Galvan et al., 2006), in contrast to the 



standardized methodology of exposing natural enemies to fresh dry residues that had been developed 

earlier for the older classes of pesticides (Hassan, 1986, 1992; Croft, 1990). 

 One of the most important challenges in using laboratory bioassays to test for effects of 

pesticides on different aspects of the life history performance of a natural enemy has been to effectively 

extrapolate from the multiple life history parameters (development time, sex ratio, fecundity, etc.) 

obtained from measurement of individuals in the bioassays (individual-level endpoints) to a single index 

of the response of the natural enemy population to pesticide exposure (population-level endpoint).  

Two different approaches for integrating combinations of lethal and sublethal effects into single 

response indices include the total effects or reduction coefficient approach (Overmeer and van Zon, 

1982; Urbaneja et al., 2008; Biondi et al., 2012) and the demographic approach (Forbes and Calow, 

1999; Stark et al., 2007b; Forbes et al., 2008, 2011; Hanson and Stark, 2011a).  The total reduction 

coefficient is simply the product of the proportional reductions for each individual-level measurement, 

after correction relative to the control, expressed as an overall percentage reduction.  The demographic 

approach is more complex, but also more inclusive, in that it is based on data from life table response 

experiments that were specifically designed to estimate population-level responses to environmental 

factors that are measured as individual-level effects (Caswell, 1989).  Life table response experiments 

have proven to be an effective way to estimate the individual-level effects of exposure to toxicants for 

organisms with short generation times, such as arthropods (Stark and Banks, 2003; Stark et al., 2007a). 

 The literature on laboratory bioassays of pesticide effects on natural enemies is extensive and 

such studies are an integral part of the registration process for pesticides in Europe (Desneux et al., 

2007).  The majority of studies have been designed to test the effects of a range of different pesticides 

on one or two species of natural enemy (e.g., Biondi et al., 2012; Liu et al., 2012; Amarasekare and 

Shearer, 2013; Wang et al., 2013; Beers and Schmidt, 2014).  The main objective of these studies is the 



ability to rank or to classify the pesticides with respect to their selectivity for the natural enemy species 

in question. For example, the International Organization for Biological Control (IOBC) uses a 

standardized classification for the impact of pesticides on natural enemies that consists of four 

categories: harmless (< 30% effect), slightly harmful (30 - 80% effect), moderately harmful (80 - 99% 

effect), and harmful (> 99% effect) (Sterk et al. 1999).  This is intuitively appealing as it provides an 

opportunity to consider the use of more or less selective materials with respect to preserving or 

enhancing the biological control services in cropping systems.  However, the predictive ability of such a 

ranking of pesticide effects will depend on how representative the natural enemy species selected for 

testing is in terms of its functional role in contributing to the biological control services in different crops 

and locations. In contrast, other laboratory studies of pesticide effects on natural enemies have tested 

the effects of a single pesticide on a range of different natural enemy species (e.g., Jansen et al., 2011; 

Rodriguez et al., 2013).  In this case, the objective is to determine how variable the impacts are among 

individual species within the natural enemy community of a particular crop or within a particular 

taxonomic group of natural enemies.  While this provides valuable data on the variation in selectivity of 

a particular pesticide, it can seldom be used to guide the choices that are often sought by pest 

management practitioners in seeking materials that are compatible with biological control.  Although a 

number of laboratory studies fall within the continuum between these two extremes of experimental 

designs, it is surprisingly difficult to compare different studies due to the wide variation in pesticide 

concentrations, natural enemy life stages, routes of exposure, and experimental methods and arenas 

used, and perhaps as a consequence, we know of no meta-analyses of pesticide effects on natural 

enemies. 

 Here we focus on a set of laboratory studies designed to determine the selectivity of eight 

different pesticides (two used only as a mixture) employed for orchard pest management in the western 

United States with respect to eight different natural enemy species that are well represented in these 



tree crops.  Each of these studies focused on a single natural enemy species, but all were coordinated to 

use similar pesticide concentrations, natural enemy life stages, routes of exposure, and experimental 

methods.  This allows us to examine variation in effects of pesticides among natural enemy species and 

to build a more comparative evaluation of the consequences of pesticide choice on natural enemy 

communities in western orchards.  The objective of this comparative analysis is to address the question 

of the extent to which laboratory observations from individual species can be generalized to other 

members of a natural enemy community, and to help guide future laboratory studies of pesticide effects 

on natural enemies. 

 

2. Natural enemies, pesticides and experimental design 

 

 Codling moth, Cydia pomonella (L.), (Lep., Tortricidae) is a key pest in apple, pear and walnut 

orchards throughout the western United States.  One of the main objectives of this collaborative study 

was to assess the risk of pesticides that are used for the management of codling moth, and fungal or 

bacterial diseases in these crops, to the natural enemies associated with the secondary arthropod pests 

that occur in these orchards.  A set of eight natural enemy species were selected for the laboratory 

bioassays.  Two of the selected natural enemies were parasitoid species, Aphelinus mali (Hald.) (Hym., 

Aphelinidae) a parasitoid of woolly apple aphid Eriosoma lanigerum (Hausmann) and Trioxys pallidus 

(Hal.) (Hym., Braconidae) a parasitoid of the walnut aphid Chromaphis juglandicola (Kalt.).  Three insect 

predators were selected, Chrysoperla carnea (Stephens) (Neur., Chrysopidae) a generalist predator, 

Hippodamia convergens Guérin-Méneville (Col., Coccinellidae) primarily an aphid predator, and 

Deraeocoris brevis (Uhler) (Hem., Miridae) primarily a psyllid predator.  Three arachnid predators were 

also included, Galendromus occidentalis (Nesbitt) (Acar., Phytoseiidae) a predatory mite, Pelegrina 



aeneola (Curtis) (Aran., Salticidae) a hunting spider, and Misumenops lepidus (Thorell) (Aran., 

Thomisidae) an ambush spider. 

 The eight pesticides (two as a mixture) used in the bioassays were selected to represent those 

that are commonly used in apple, pear and walnut orchards in the western United States (Table 1).  The 

five insecticides are all primarily used for management of codling moth in western orchards.  The other 

two pesticides are fungicides/bactericides, with mancozeb plus copper hydroxide being used as a 

mixture.  Three concentrations of each pesticide were used for the laboratory bioassays and 2 ml of 

each solution was applied with a Potter Spray Tower (Burkard Mfg, Rickmansworth, England) equipped 

with an intermediate nozzle.  The three concentrations consisted of a full field rate (1x), representing 

the maximum label rate applied at 935 l ha-1 (Table 1), a dilute rate (0.1x), representing 1/10th of that 

amount to simulate aged residues, and a distilled water control. 

 Detailed accounts of the experimental methodology used can be found in Amarasekare and 

Shearer (2013) for D. brevis, in Beers and Schmidt (2014) for G. occidentalis, and in Amarasekare et al. 

(2015) for both C. carnea and T. pallidus.  All laboratory bioassays (except those for G. occidentalis, 

which were conducted on leaf disks with prey) were carried out in glass arenas and incorporated 

multiple routes of pesticide exposure (topical, residual and oral).  A two-tiered approach was used, 

progressing from measurements of acute mortality at 48 h when exposed to all three concentrations of 

the pesticides to measurements from life table response experiments when exposed to the distilled 

water control and the higher of the two concentrations that generated < 80% acute mortality.  It was 

considered that meaningful estimates of sublethal effects could only be obtained using pesticide 

concentrations that allowed for sufficient survivorship of the natural enemies from acute mortality 

effects.  Thus concentrations that resulted in acute mortality that was moderately harmful to harmful 

according to the IOBC classification were excluded from the life table response experiments.  Two life 



stages were exposed to the pesticides, young adults and young juveniles (larvae or nymphs for the 

predators, and unparasitized hosts for the endoparasitoids [see Amarasekare et al., 2015 for further 

details]), and from 20-30 replicates were used for each pesticide concentration.  Measurements from 

the life table response experiments included longevity, daily fecundity and fertility for the adult 

bioassays, and survivorship, time to maturity (development time) and sex ratio (percent female) for the 

juvenile bioassays.  Life table measurements were continued throughout juvenile development, and 

either over the complete lifespan of the adult stage or for a censored period representing at least the 

first 1/3rd of the lifespan.  No life table response experiments were conducted for the two spider species, 

and acute bioassays were restricted to adult P. aeneola and to juvenile M. lepidus due to limited 

availability for the bioassays. 

 The life history characteristics of the selected natural enemies varied considerably between 

species and so for comparative purposes each of the measured responses to pesticide exposure were 

standardized by correction relative to the controls.  Correction of mortality has commonly been used in 

acute bioassays (Abbott, 1925; Hoekstra, 1987) and correction of other vital rates was accomplished in a 

similar way to provide a reduction coefficient E(V) = 100*[(VC – VE)/VC], where VE is the vital rate from 

the experimental treatment and VC is the vital rate from the control treatment (Biondi et al., 2012; 

Hamby et al., 2013; Beers and Schmidt, 2014).  The corrected acute mortalities and reduction 

coefficients were then classified into one of three categories representing a reduced version of the 

system developed by the International Organization for Biological Control (IOBC) for pesticide risk 

assessments conducted in the laboratory (Sterk et al., 1999) in which the top two categories are 

combined; harmless (< 30% effect), slightly harmful (≥ 30 and ≤ 80%), and moderately harmful (> 80% 

effect).  



 The lethal and sublethal data obtained from these acute mortality and life tables response 

experiment bioassays were also used to extrapolate from individual-level effects to population-level 

responses using demographic population models.  Stage-structured matrix models, based on PopTools 

(Hood, 2010), were used to estimate the population growth rate responses of the natural enemy species 

to exposure to each of the pesticides (with the exception of the spiders for which there was no life table 

response data).  Stage-structured models were used in preference to age-structured models for 

simplicity, given that results from stage-structured models appear to correlate strongly with those from 

more complex age-structured models (Levin et al., 1996; Hanson and Stark, 2011b), and due to the 

censored nature of the data collected during the adult stage for some of the natural enemy species. 

 

3. Synthesis of results from the laboratory bioassays 

 

3.1. Acute mortality 

 

As would be expected, acute mortality of the selected natural enemies varied from 0 to 100% 

depending on pesticide and natural enemy species (Fig. 1).  All of the pesticides tested, with the 

exception of copper plus mancozeb and chlorantraniliprole, caused more than 80% acute mortality of at 

least one life stage of at least one of the natural enemy species at the 1x concentration and could thus 

be considered moderately harmful according to the IOBC classification for laboratory bioassays.  At the 

more dilute 0.1x concentration this was the case for cyantraniliprole, lambda-cyhalothrin and 

spinetoram only.  For the 1x concentration, cyantraniliprole had a much greater acute effect on adult 

(moderately harmful) than juvenile (harmless) C. carnea, and a similar response was found for the effect 



of spinetoram on adult and juvenile G. occidentalis.  Conversely, sulfur had a much greater acute effect 

on juvenile (moderately harmful) G. occidentalis than on adults (harmless), as was also the case for the 

effect of novaluron on D. brevis. 

To look for more general differences between the acute mortality responses of adults and 

juveniles by pesticide or natural enemy species, we used paired t-tests based on mean paired 

differences and the one-tailed null hypothesis that the adult life stage is more susceptible to pesticides 

than the juvenile life stage.  The acute effects of the pesticides were generally comparable between 

juvenile and adult stages of the natural enemies (Fig. 1).  However, for spinetoram, the acute effects 

were significantly greater on adults than on juveniles (t = 2.30, df = 5, P = 0.04, Fig. 1A).  Similarly, both 

A. mali and C. carnea were generally more susceptible to acute effects in the adult rather than juvenile 

stage.  For A. mali, this was evident at both the 1x concentration (t = 2.3, df = 6, P = 0.03, Fig. 1B) and the 

0.1x concentration (t = 2.6, df = 5, P = 0.02, Fig. 1C), whereas for C. carnea a significant difference was 

evident only at the 1x concentration (t = 2.3, df = 6, P = 0.03, Fig. 1B). 

 

3.2. Life table response experiments 

 

The life table responses, as represented by the corrected reduction coefficients, also varied 

extensively depending on pesticide and natural enemy species (Table 2).  In some cases no life table 

responses could be measured, such as for spinetoram and the two parasitoid species, for 

cyantraniliprole and T. pallidus, and for lambda-cyhalothrin and both A. mali and H. convergens, due to 

very strong acute mortality effects (Fig. 1).  In other cases, only partial results could be obtained from 

the life table response experiments due to extensive reductions in juvenile survivorship, adult longevity, 



or adult daily fecundity.  Despite this, the response of natural enemy species to exposure to the 

pesticides could be classified as either moderately harmful or harmful in some cases.  The most 

consistent life table response of the natural enemy species to the pesticides tested was a reduction in 

either juvenile survivorship or adult longevity.  In addition, there were some less consistent, but notable 

effects on other life history parameters.  For example, exposure of adults to novaluron reduced the 

fertility of all three insect predator species by more than 87% (moderately harmful), whereas the 

product of the daily fecundity and fertility of D. brevis and G. occidentalis was reduced by more than 

92% (moderately harmful to harmful) following adult exposure to spinetoram.  In contrast, however, 

exposure to some of the insecticides resulted in notable increases in performance among the survivors 

(represented by negative values in Table 2).  For example, an increase in sex ratio (percent females) of 

48.9% and 72.5% was observed for D. brevis following juvenile exposure to chlorantraniliprole and 

cyantraniliprole respectively.  Similarly, an increase in daily fecundity of 18.3% and 57.4% was observed 

for H. convergens following adult exposure to spinetoram and copper plus mancozeb respectively.  

While pesticide-induced hormesis is not uncommon among arthropod pests, and is most frequently 

associated with reproductive traits, it has been less frequently reported for natural enemies (Guedes 

and Cutler, 2014). 

 

3.3. Demographic population models 

 

Stage-structured matrix models were parameterized using data obtained from the acute 

mortality bioassays and the life table response experiments.  Each of the natural enemy species had very 

different life history characteristics and consequently population-level parameters (Table 3).  In the 

absence of pesticide exposure, the walnut aphid parasitoid T. pallidus was estimated to have the 



greatest intrinsic rate of increase (r = 0.317) and shortest population doubling time (t2 = 2.18) due to a 

very short generation time (T = 10.50) combined with a moderate net reproductive rate (R0 = 27.99).  In 

contrast, the psylla predator D. brevis was estimated to have the lowest intrinsic rate of increase (r = 

0.085) and longest population doubling time (t2 = 8.13) due to a long generation time (T = 33.98) 

combined with a low net reproductive rate (R0 = 18.10). 

By extrapolating the different life table measurements to population-level indices the complete 

set of effects from exposure to the pesticides are taken into account.  As the intrinsic rate of increase 

can be negative under conditions of exposure to pesticides, there is no equivalent of a corrected 

reduction coefficient for this population index, and so both r and corrected reduction coefficients for R0 

are presented in Table 4.  A negative r indicates that a natural enemy species is unable to sustain a 

population when exposed to a particular pesticide, whereas a negative E(R0) indicates that the net 

reproductive rate was greater when exposed to a particular pesticide than in the control.  The instances 

of a negative r or a greater than 80% reduction in R0 (classified as moderately harmful to harmful by 

IOBC) have been highlighted in the table.  Moderately harmful to harmful population level effects were 

detected for each of the seven pesticides tested for at least one of the natural enemy species.  In most 

cases the estimated population-level effects indicated a detrimental effect on the natural enemy species 

from exposure to the pesticides tested, but enhanced effects occurred for A. mali from exposure to the 

two fungicides/bactericides, for H. convergens from exposure to copper plus mancozeb, and for D. 

brevis from exposure to the two anthranilic diamide insecticides.   

These population-level estimates of pesticide effects on natural enemies allow us to address 

two important comparative questions.  The first is how do each of the pesticides rank in terms of their 

average effects on the set of natural enemy species tested, and the second is whether individual natural 

enemy species differ in their general susceptibility to the range of pesticides tested.  Unfortunately, as 



each pairing of pesticide and natural enemy species provided only a single estimate of population 

growth (r and/or R0, Table 4) it was not possible to consider interactions between pesticide and natural 

enemy species in this analysis. To address the ranking of the pesticides we compared the mean intrinsic 

rates of population growth (r) for the set of natural enemies with respect to pesticide treatment 

including the control (Tables 3 and 4).  There was significant variation in the ranking of the seven 

pesticides (ANOVA, F7,40 = 5.14, P < 0.001, Fig. 2A), but only lambda-cyhalothrin had a sufficiently 

negative effect to be significantly different from those pesticides (copper plus mancozeb, 

chlorantraniliprole, novaluron, sulfur) that did not reduce the mean r below 0 (Tukey’s honest significant 

difference).  It is notable that in addition to lambda-cyhalothrin, both spinetoram and cyantraniliprole 

also generated negative mean values of r.  However, due to the variation in response of different natural 

enemies to each pesticide, only the more extreme differences in average values of r were significantly 

different. To address the ranking of the natural enemy species we compared the mean reduction 

coefficients [E(R0), Table 4] for the set of pesticides tested (using logit transformation and excluding the 

controls) with respect to natural enemy species.  In this case, we used the reduction coefficient rather 

than r to avoid the confounding effect of inherent differences in r between natural enemy species (Table 

3).  There was no evidence for significant variation in the E(R0) response of the six species of natural 

enemy tested to the set of pesticides used in the laboratory bioassays (ANOVA, F5,36 = 1.60, P = 0.19, Fig. 

2B).  A. mali had the smallest mean reduction coefficient and T. pallidus had the largest, but there was 

sufficient variation in the response to individual pesticides within natural enemy species to mask any 

more general effects between natural enemy species. 

The population-level effects of the pesticides were often driven by different life history 

components for each natural enemy species tested.  For example, the population-level effects of 

spinetoram were driven by strong acute adult mortality for the two parasitoids, by acute adult mortality 

and sublethal effects for G. occidentalis, by chronic larval mortality for C. carnea, and by reduced adult 



fecundity and fertility for D. brevis.  In contrast, for the two diamides, chlorantraniliprole and 

cyantraniliprole, the population-level effects were primarily driven by acute or chronic effects on 

juvenile mortality alone, although chlorantraniliprole also had an important effect on C. carnea through 

reduced adult fecundity.  Similarly, the main effects of novaluron and sulfur were through chronic 

juvenile mortality for the insect and mite predators, but through acute adult mortality and reduced 

adult fecundity/fertility in the case of T. pallidus exposed to sulfur. 

The estimated population-level effects also allowed us to ask whether simpler laboratory 

bioassays, requiring less effort and expense than the acute plus life table response experiments 

conducted in this study, would be sufficient to capture the same potential disruptive effects of the 

pesticides on natural enemy populations.  Two commonly reported individual-level endpoints for 

bioassays of pesticide effects on natural enemies are corrected acute adult mortality and corrected 

reduction coefficients for adult reproduction/fertility (Stark et al., 2007b; Urbaneja et al., 2008; Giolo et 

al., 2009; Suma et al., 2009; Hanson & Stark, 2011a; Biondi et al., 2012; Hamby et al., 2013).  Therefore, 

we tested the extent to which these two individual-level endpoints or their combination (corrected 

percent reduction in adult survivorship*daily fecundity*fertility) could account for the variance in 

intrinsic rate of increase of the natural enemies from our laboratory bioassays using linear regression 

models with sequential Bonferroni correction for family-wise error rates (Fig. 3).  For comparison among 

pesticides, although corrected acute adult mortality alone accounted for as much as 77% of the variance 

in r between natural enemy species following exposure to cyantraniliprole, none of the regression 

models for the seven pesticides were significant after sequential Bonferroni correction.  The corrected 

percent reduction in fecundity/fertility and the corrected percent reduction in acute survivorship and 

fecundity/fertility combined accounted for significant variation in r for chlorantraniliprole only (Fig. 3A).  

In contrast, acute adult mortality accounted for a significant amount of the variation in r as a response 

to the different pesticides for most of the natural enemy species tested (Fig. 3B), with the exception of 



D. brevis that showed only a limited acute mortality response to all of the pesticides tested (Fig. 1B).  

However, corrected percent reduction in fecundity/fertility did not account for any significant variation, 

and corrected reduction in adult survivorship and fecundity/fertility combined accounted for significant 

variation for only two of the six natural enemy species tested (Fig. 3B).  Thus for comparison among 

natural enemy species for a single pesticide, there appears to be considerable variation in response that 

can only be captured effectively from a full life table response experiment and a population-level 

endpoint, whereas for individual natural enemy species, their population-level response to the range of 

pesticides tested could frequently be represented by acute adult mortality alone.   

 

4. Discussion 

 

Pesticides continue to be an important component of pest management programs worldwide, 

but the biological control services provided by natural enemies have become more widely recognized 

for their role in the development of more comprehensive and sustainable management practices (Jones 

et al., 2009; Gentz et al., 2010; Hillocks, 2012; Roubos et al., 2014).  Moreover, the conservation and 

enhancement of natural enemy activity in agroecosystems is one of the key elements of sustainable 

agricultural production (Pretty, 2008; Shennan, 2008; Power, 2010; Ekström and Ekbom, 2011).  

Effective integration of pesticides and natural enemies can only be achieved if we have sufficient 

knowledge of the selectivity of pesticide products across a broad range of natural enemy taxa.  As newer 

classes of ‘reduced risk’ pesticides have been replacing the more traditional classes in recent years 

(Agnello et al., 2009) it is important to understand how selective they are with respect to natural 

enemies.  While new classes of pesticides have different modes of action and may be expected to have 

improved selectivity, this may not necessarily be the case (Gentz et al., 2010), placing greater emphasis 



on the need for laboratory bioassays to take into account multiple routes of exposure and sublethal 

effects on life history in addition to lethal effects (Stark and Banks, 2003; Desneux et al., 2007). 

In this study we used a shared set of experimental protocols to conduct laboratory bioassays on 

the effects of the same set of pesticides commonly used in western U.S. orchards on a range of natural 

enemy species that contribute to the biological control of secondary pests in these orchards.  This 

allowed us to develop a comparative dataset from which the generality of natural enemy responses to 

particular pesticides, and the generality of the response of particular natural enemy species to a range 

of pesticides, can be addressed.  In addition, by using both acute and life table response bioassays on 

the natural enemies, we provide the first comparative data that can be used to address how well some 

of the more commonly used individual-level toxicological responses of natural enemies in laboratory 

bioassays might reflect their population-level responses.  The wide range of pesticide concentrations 

and experimental protocols more generally used in laboratory bioassays of pesticide effects on natural 

enemies has made it difficult to conduct detailed comparative studies.  The Western Palearctic Regional 

Section of IOBC has played a lead role in testing the side effects of pesticides since 1980, and has 

developed a database of selectivity data for more than 140 pesticide products and 20 beneficial 

arthropod species (Sterk et al., 1999; IOBC-WPRS, 2014).  However, most bioassays are focused on lethal 

effects, although some include adult reproduction, and the resultant database is currently only available 

to its membership (IOBC-WPRS, 2014).  While the range of pesticides and natural enemies included in 

our comparative dataset was inevitably small in comparison to the IOBC-WPRS database, due to the 

time and effort required to conduct these types of bioassays, it includes a more comprehensive set of 

bioassay experiments. 

 One of the most important outcomes of this analysis for orchard pest management in the U.S. is 

that even the reduced-risk insecticides had significant impacts on some of the natural enemy species 



tested and that many of the observed population-level effects of the pesticides occurred through 

chronic effects on survivorship or effects on other life history components rather than through acute 

mortality.  An important question associated with laboratory bioassays is whether the observed 

disruptive effects of pesticides on natural enemies can be extrapolated to similar effects in the field.  

The experience from the IOBC-WPRS program has been that an effect of greater than 80% in laboratory 

bioassays is needed before any such effects are likely to be seen in the field (Sterk et al. 1999).  From use 

of the same classification system in this study, our findings suggest a number of potential disruptive 

effects would be expected on natural enemies in western U.S. orchards.  However, there are some 

important caveats and limitations that need to be considered in extrapolating from laboratory bioassays 

to the field, including substrate choice for pesticide residues, persistence of effects, natural enemy 

behavior, and recolonization by natural enemies. 

 Although the majority of laboratory bioassays, including our own, have used glass substrates for 

the application of pesticide residues, this may overestimate the toxicological impacts and represent a 

worst-case scenario that could be avoided through use of leaf surfaces as application substrates 

(Desneux et al., 2006; Biondi et al., 2012).  Similarly, under field conditions the impact of pesticide 

applications on natural enemy life history parameters will change over time due to effects of aging and 

persistence of pesticide residues.  Although stage-structured demographic models effectively capture 

the initial effects of pesticides on natural enemy populations, they do not allow for a reduction in effects 

on life history over time (Banks et al., 2008a); inclusion of a temporal reduction in toxicological effects 

requires the use of more complex differential equation models (Banks et al. 2008b).  In addition, while 

life table response experiments provide an effective way to estimate the direct impact of pesticides on 

life history parameters of natural enemies, they do not incorporate indirect impacts of pesticides on 

behavior (Desneux et al., 2007; Delpuech and Leger, 2011).  As pesticides can have significant impacts on 

foraging, learning, feeding, mating and oviposition behaviors, these indirect effects can further 



compromise natural enemy populations beyond the direct effects measured in laboratory table 

response experiments.  Finally, while both direct and indirect effects of pesticides can have localized 

effects on natural enemy populations, little is known about the speed of recovery of biological control 

services in agroecosystems through natural enemy recolonization.  Clearly the availability of natural 

enemies for recolonization from local refuges and from the general landscape pool (Roubos et al., 2014) 

and the degree of persistence of pesticide residues are likely to influence the speed of recovery; this 

aspect of extrapolation deserves greater attention in the future. 

 The results of our comparative laboratory bioassays suggest that while individual natural enemy 

species did not differ in their mean population-level response to the range of pesticide tested, many of 

them did exhibit a close relationship among the pesticides tested between acute adult mortality and 

intrinsic rate of population increase.  This was surprising, as it was anticipated that the sublethal effects 

of the pesticides would have been equally as strong as the lethal effects in impacting the natural 

enemies in the laboratory bioassays.  While a clear relationship between acute and population effects is 

not unique (Kuhn et al. 2000), it may be uncommon (Stark, 2005), and in our study may have been 

related to the wide variation in acute toxicity effects among the pesticides tested.  In contrast, there was 

almost never a clear link between the intrinsic rate of population increase and the reduction coefficient 

for loss of fecundity and/or fertility and seldom a relationship with the reduction coefficient for 

combined acute survivorship and fecundity/fertility.  Thus despite the increasing use of combination 

reduction coefficients to represent the broader life history effects of pesticides (Urbaneja et al., 2008; 

Biondi et al., 2012; Hamby et al., 2013), the results from our study suggest that such indices may not 

predict population-level impacts.  Nonetheless, whether comparative population effects of pesticides for 

individual natural enemy species can more generally be represented by acute adult toxicity responses 

alone is intriguing and deserves closer attention, as the bioassays would be clearly be much quicker and 

easier to conduct and would enhance the value of previously published acute mortality studies. 



 In conclusion, our comparative laboratory bioassays suggest that under field conditions 

disruptive effects on natural enemies would be more commonly expected from applications of lambda-

cyhalothrin and spinetoram. In contrast, copper plus mancozeb and chlorantraniliprole would not be 

expected to cause disruptive effects on natural enemies, although more specific impacts could occur for 

predatory mites and green lacewings respectively.  In addition, novaluron appeared more likely to 

disrupt predator than parasitoid populations, while other products had less predictable effects among 

natural enemy species.  While it is tempting to search for general patterns of pesticide effects among 

functional groups of natural enemies or among classes of pesticides, as attempted here, in reality our 

dataset is far too small to be able to provide robust predictions.  In this context, Banks et al. (2011) 

caution against extrapolation of pesticide effects from individual species to other members of the same 

functional group due to extensive variation in life history traits which affects the resilience of individual 

species to disruption by pesticides at the population level.  While our comparative study has provided a 

step in the right direction, a more extensive comparative database of population-level effects of 

pesticides on natural enemies will be needed to improve our ability to predict disruptive effects and to 

provide robust recommendations to growers.  
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Figure legends 

Fig. 1.  Comparison of acute mortality responses of adult and juvenile natural enemy species to the 

pesticides tested in acute bioassays arranged firstly by pesticide for the different natural enemy species 

at the 1x concentration (A), and secondly by natural enemy species for the different pesticides for both 

the 1x concentration (B) and the 0.1x concentration (B).  The smaller white square delimits pesticide 

effects that are harmless, the larger grey square indicates effects that are slightly harmful, and the area 

above and to the right side of the grey square represents effects that are moderately harmful to harmful 

according to the IOBC classification system for laboratory bioassays.  Data points above the diagonal line 

and positive mean paired differences (across natural enemy species in A and across pesticides in B and 

C) show a greater response in the adult stage, while those below the line and negative mean paired 

differences show a greater response in the juvenile stage.  Asterisks indicate significant differences from 

zero (one-tailed, paired t-test, P < 0.05). 

Fig. 2.  A comparison of (A) the mean population-level effects of the pesticides tested, and (B) the mean 

population-level susceptibility of the natural enemy species tested, as represented by the estimated 

intrinsic rate of increase when exposed to the pesticides.  Bars followed by different letters are 

significantly different at P < 0.05 (Tukey’s honest significant difference). 

Fig. 3.  A comparison two individual-level endpoints (corrected acute adult mortality and corrected 

percent reduction in daily fecundity*fertility) or their combination (corrected percent reduction in adult 

survivorship*fecundity*fertility) as predictors of the effect of pesticide exposure on the intrinsic rate of 

natural increase (r) of natural enemy populations.  The coefficient of determination represents the 

proportion of the total variance in r explained (i.e., the goodness of fit of the linear regression model) by 

each of the individual-level endpoints in relation to (A) pesticide and (B) natural enemy species.  Bars 



with asterisks represent regression models that were significant at P < 0.05 after sequential Bonferroni 

correction for family-wise error. 

 



Table 1 

 

Chemical name Chemical class Brand name 
/formulation 

Use rate 
(g ai ha-1) 

Assay concentration 
(mg ai l-1) (1x conc) 

Lambda-cyhalothrin Pyrethroid Warrior II 2.08CS 47 50 

Spinetoram Spinosyn Delegate 25WG 123 131 

Novaluron IGR - benzoyl 
urea 

Rimon 0.83EC 363 389 

Chlorantraniliprole Anthranilic 
diamide 

Altacor 35WDG 110 118 

Cyantraniliprole Anthranilic 
diamide 

Exirel 0.83SE 149 159 

Copper hydroxide Inorganic Kocide 3000WG 2067 2210 

Mancozeb Dithiocarbamate Manzate Pro-Stick 
75W 

1,513 1,618 

Sulfur Inorganic Kumulus 80W 17,933 19,174 

 

 

 



Table 2 

 

Natural enemy species 
tested 

Life table 
response 

Chlorantran-
iliprole 

Cyantran-
iliprole Spinetoram 

Lambda-
cyhalothrin Novaluron Sulfur 

Copper+ 
mancozeb 

Aphelinus mali Sex ratio 7.8 7.7 
  

8.3 1.4 3.1 

 
Longevity 8.2 21.1 

  
10.3 9.8 2.0 

 
Fecundity/fertility 5.1 55.9 

  
11.5 0.3 0.8 

Trioxys pallidus Sex ratio 25.1 
  

25.5 22.7 14.5 0.5 

 
Longevity 0.0 

  
9.7 5.2 57.7 4.5 

 
Fecundity/fertility 25.2 

  
84.5 14.8 64.4 21.4 

Chrysoperla carnea Survivorship 80.9 97.1 69.5 72.3 100.0 17.9 14.2 

 
Time to maturity 

  
0.0 -9.0 

 
-12.4 -0.5 

 
Sex ratio 

  
11.5 -27.0 

 
10.2 -10.0 

 
Longevity 62.3 85.0 1.5 4.1 -14.8 -18.3 -14.7 

 
Daily fecundity 78.8 

 
3.4 70.1 1.5 11.5 31.9 

 
Fertility 4.1 

 
12.2 61.5 95.4 13.5 10.3 

 
Fecundity/fertility 79.6 

 
15.2 88.5 95.5 23.4 38.9 

Deraeocoris brevis Survivorship 3.7 25.9 18.6 100.0 100.0 37.0 18.6 

 
Time to maturity 0.7 0.7 -5.1 

  
-10.2 -2.5 

 
Sex ratio -48.9 -72.5 -9.9 

  
6.2 13.3 

 
Longevity -6.8 4.1 42.8 80.2 52.0 16.4 11.5 

 
Daily fecundity 22.4 11.8 77.6 

 
77.6 56.8 24.7 

 
Fertility 13.1 8.9 62.9 

 
90.2 78.2 36.4 

 
Fecundity/fertility 32.5 22.3 92.5 

 
97.9 91.5 53.7 

Hippodamia convergens Survivorship 85.1 92.0 64.4 
 

100.0 79.3 5.7 

 
Time to maturity 

  
-11.1 

  
-19.0 -4.8 

 
Sex ratio 

  
-20.0 

  
0.0 0.0 

 
Longevity 45.2 20.5 -13.7 

 
15.1 0.0 -13.7 



 
Daily fecundity 27.5 27.0 -18.3 

 
13.9 -4.4 -57.4 

 
Fertility 11.7 5.9 14.7 

 
86.8 -1.5 -1.5 

 
Fecundity/fertility 36.0 31.3 -0.9 

 
88.6 -5.9 -59.7 

Galendromus occidentalis Survivorship 24.0 27.0 100.0 98.0 94.0 100.0 68.0 

 
Daily fecundity 12.6 50.0 100.0 72.1 38.9 51.2 63.6 

 
Fertility 0.0 15.0 

 
0.0 23.9 23.8 0.0 

  Fecundity/fertility 12.6 57.5 100.0 72.1 53.5 62.8 63.6 

 

 

 

 

 



Table 3 

 

Functional group Natural enemy species r R0 T t2 

Insect parasitoid Aphelinus mali 0.131 7.64 15.56 5.30 

 

Trioxys pallidus 0.317 27.99 10.50 2.18 

Insect predator Chrysoperla carnea 0.177 146.09 28.08 3.91 

 

Deraeocoris brevis 0.085 18.10 33.98 8.13 

 

Hippodamia convergens 0.112 39.07 32.63 6.19 

Mite predator Galendromus occidentalis 0.157 11.53 15.57 4.41 

 

  



Table 4 

 

Natural enemy species Index 
Chlorantran

-iliprole 
Cyantran-

iliprole Spinetoram 
Lambda-

cyhalothrin Novaluron Sulfur 
Copper + 

mancozeb 

Aphelinus mali r 0.125 0.057 0.020 0.036 0.096 0.136 0.147 

 E(R0) 32.3 69.4 82.3 79.2 48.6 -19.9 -80.2 

Trioxys pallidus r 0.134 -0.106 -0.033 -0.149 0.296 -0.065 0.263 

 E(R0) 86.5 99.0 97.4 99.7 30.9 98.3 45.1 

Chrysoperla carnea r -0.107 -0.254 0.020 -0.174 0.042 0.176 0.166 

 E(R0) 99.9 100.0 99.0 100.0 97.4 12.1 38.3 

Deraeocoris brevis r 0.088 0.091 -0.003 -0.202 -0.158 0.029 0.071 

 E(R0) -6.0 -0.3 95.0 100.0 100.0 89.1 55.6 

Hippodamia convergens r 0.056 0.056 0.106 -0.546 0.018 0.080 0.122 

 E(R0) 88.3 86.1 26.5 100.0 95.5 62.9 -56.9 

Galendromus occidentalis r 0.142 0.106 -0.261 -0.320 0.005 -0.111 -0.009 

 E(R0) 12.1 56.6 100.0 99.9 90.6 98.6 92.5 
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