
ABSTRACT
Mathematical groups are used in physics, chemistry, 
statistics and cryptology. In this project, we create a 
concise data structure for groups that improves the speed 
and ease in which binary operations, like taking union and 
intersection, can be carried out. For the purpose of the 
project we will only consider certain finite abelian groups. 
We also conducted time analysis for each set operation.
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FUTURE WORK
During our initial research on group theory we had 
come across a paper by Cannon on the Todd-Coxeter 
and Schreier-Sims algorithms [1, 2]. More in-depth 
analysis of these algorithms may provide insight into 
obtaining decompositions for the groups that our 
data structure is currently able to take as input. 

BACKGROUND
Permutation Decision Diagrams (πDDs) is a data structure 
that stores a set of permutations [4]. Every permutation 
can be decomposed into a sequence of transposition. Every 
node in the data structure represents a transposition.

GOAL
Modify πDDs into a data structure storing the elements of 
a finitely abelian group in a concise way using the FTFGAG 
and the generators for cyclic groups. We call this data 
structure Group Decision Diagrams (GDD).

.

DESIGN
We use FTFGAG to decompose a finite abelian group into a  
unique series of cyclic group. The group G can be written as:

         
In the GDD, every node represents a generator. The GDD for 
the cyclic group from figure 4 is given in figure 5. Each branch 
from the generator node corresponds to increasing exponents 
from left to right. This means that ith child of the node with 
generator g in figure 6 has gi applied to it. In figure 5, this 
means that each child node is <2i>.I.

Figure 4. Cayley Table for  (axb)mod5 with generator <2>. 

The Fundamental Theorem of Finitely Generated Abelian 
Groups (FTFGAG) states that any finite abelian group can 
be expressed as a direct product of cyclic groups [3]. Just 
like permutations can be decomposed into a series of 
transpositions, a finite abelian group can be represented 
using the single generators for each cyclic group in its 
decomposition. 

TIME ANALYSIS

Thus, we were successfully able to implement the 
data structure in Python. We also implemented 
additional complex operations like multiply and apply 
for the groups. The apply operation is analogous to 
the dot product while multiplying is vector product. 
Based on our time analysis experiment shown in the 
table below, we can see that the data structure is 
efficient in carrying out union and intersection 
operations. Comparatively, multiply operation is 
slower and can be improved with future revisions.
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{(3, 5, 2, 1, 4)}Identity Permutation
 1, 2, 3, 4, 5
Current Permutation
 4, 3, 1, 5, 2
Index mapping: 1→3,

  2→5, 
  3→2,
  4→1, 
  5→4

Decomposition:
(3, 5, 2, 1, 4) = 
(2, 1)(3, 2)(4, 3)(5, 4)

Figure  3. Basic 
structure of a πDD. 

{(5,2,6,4,1,3), (5,2,6,4,3,1), 
(5,6,2,4,1,3), (5,6,2,4,3,1)}

1, 6

3, 6

1, 5

2, 4

1, 3

2, 5

1, 2

10

Figure  2. πDD of a 
single permutation

Figure  1. Permutation 
in transpositions 

x5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

20 = (1)mod5 = 1 
21 = (2)mod5 = 2
22 = (4)mod5 = 4

   g
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Figure 5.  GDD for cyclic group

INVARIANT OF DATA STRUCTURE
1. Each generator has a unique id and associated order that is 

used to arrange the nodes relatively in the structure.
2. Children of a node must have an id less than the node itself.
3. Each node in the tree must be unique, that is, two nodes 

cannot have the same order, id and children.
Union   

Intersection

Figure 7. G∪H when g=h, 

Figure 9. G∩H when g=h

Difference

Figure 11. G\H when g=h

GDD Depth Union Intersection Multiply Apply
2 4.19x104 2.81x104 7.72x105 1.35x105

3 2.61x105 5.88x104 5.21x107 1.61x106

4 1.78x106 9.02x104 3.96x109 5.33x106

5 1.93x106 8.15x104 3.71x109 2.50x106

Figure 9.  Average time taken (ns) over 100 runs for worst 
case for operations on GDD with different depths.

23 = (8)mod5 = 3
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Figure 6.  GDD for abelian group

Figure 8. G∪H when g<h

Figure 10. G∩H when g<h

Figure 12. G\H when g>h 

Figure 13. G\H when g>h 


