
ABSTRACT
Mathematical groups are used in physics, chemistry,
statistics and cryptology. In this project, we create a
concise data structure for groups that improves the speed
and ease in which binary operations, like taking union and
intersection, can be carried out. For the purpose of the
project we will only consider certain finite abelian groups.
We also conducted time analysis for each set operation.

Group Decision Diagrams (GDDs):
A Data Structure for Mathematical Groups

Acknowledgments

I would like to thank Union College Davenport Research
Fellowship and Scholars Program for supporting me.

References
[1] John Cannon. “Implementation and Analysis of the

Todd-Coxeter Algorithm”. In: Mathematics of
Computation 27.123 (1973), pp. 463–463. DOI:
doi:10.1090/s0025-5718-1973-0335610-5.

[2] Schreier. “Schreier-Sims Method”. In: Algorithms
for Permutation Groups Lecture Notes in
Computer Science

[3] Allan Clark. Elements of Abstract Algebra. Dover
Publications, Oct. 1984. ISBN: 0486647250.

[4] Shin-Ichi Minato. “πDD: A New Decision Diagram
for Efficient Problem Solving in Permutation
Space”. In: Theory and Applications of
Satisfiability Testing - SAT 2011 Lecture Notes in
Computer Science (2011),pp. 90–104. ISSN:
0303-2647. DOI: 10.1007/978-3-642-21581-09.

Akriti Dhasmana
Prof. Matt Anderson, Computer Science

FUTURE WORK
During our initial research on group theory we had
come across a paper by Cannon on the Todd-Coxeter
and Schreier-Sims algorithms [1, 2]. More in-depth
analysis of these algorithms may provide insight into
obtaining decompositions for the groups that our
data structure is currently able to take as input.

BACKGROUND
Permutation Decision Diagrams (πDDs) is a data structure
that stores a set of permutations [4]. Every permutation
can be decomposed into a sequence of transposition. Every
node in the data structure represents a transposition.

GOAL
Modify πDDs into a data structure storing the elements of
a finitely abelian group in a concise way using the FTFGAG
and the generators for cyclic groups. We call this data
structure Group Decision Diagrams (GDD).

.

DESIGN
We use FTFGAG to decompose a finite abelian group into a
unique series of cyclic group. The group G can be written as:

In the GDD, every node represents a generator. The GDD for
the cyclic group from figure 4 is given in figure 5. Each branch
from the generator node corresponds to increasing exponents
from left to right. This means that ith child of the node with
generator g in figure 6 has gi applied to it. In figure 5, this
means that each child node is <2i>.I.

Figure 4. Cayley Table for (axb)mod5 with generator <2>.

The Fundamental Theorem of Finitely Generated Abelian
Groups (FTFGAG) states that any finite abelian group can
be expressed as a direct product of cyclic groups [3]. Just
like permutations can be decomposed into a series of
transpositions, a finite abelian group can be represented
using the single generators for each cyclic group in its
decomposition.

TIME ANALYSIS

Thus, we were successfully able to implement the
data structure in Python. We also implemented
additional complex operations like multiply and apply
for the groups. The apply operation is analogous to
the dot product while multiplying is vector product.
Based on our time analysis experiment shown in the
table below, we can see that the data structure is
efficient in carrying out union and intersection
operations. Comparatively, multiply operation is
slower and can be improved with future revisions.

2, 1

4, 3

5, 4

3, 2

10

{(3, 5, 2, 1, 4)}Identity Permutation
 1, 2, 3, 4, 5
Current Permutation
 4, 3, 1, 5, 2
Index mapping: 1→3,

 2→5,
 3→2,
 4→1,
 5→4

Decomposition:
(3, 5, 2, 1, 4) =
(2, 1)(3, 2)(4, 3)(5, 4)

Figure 3. Basic
structure of a πDD.

{(5,2,6,4,1,3), (5,2,6,4,3,1),
(5,6,2,4,1,3), (5,6,2,4,3,1)}

1, 6

3, 6

1, 5

2, 4

1, 3

2, 5

1, 2

10

Figure 2. πDD of a
single permutation

Figure 1. Permutation
in transpositions

x5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

20 = (1)mod5 = 1
21 = (2)mod5 = 2
22 = (4)mod5 = 4

 g

G0
G1 Gn

….

 2

 1 1 1
Figure 5. GDD for cyclic group

INVARIANT OF DATA STRUCTURE
1. Each generator has a unique id and associated order that is

used to arrange the nodes relatively in the structure.
2. Children of a node must have an id less than the node itself.
3. Each node in the tree must be unique, that is, two nodes

cannot have the same order, id and children.
Union

Intersection

Figure 7. G∪H when g=h,

Figure 9. G∩H when g=h

Difference

Figure 11. G\H when g=h

GDD Depth Union Intersection Multiply Apply
2 4.19x104 2.81x104 7.72x105 1.35x105

3 2.61x105 5.88x104 5.21x107 1.61x106

4 1.78x106 9.02x104 3.96x109 5.33x106

5 1.93x106 8.15x104 3.71x109 2.50x106

Figure 9. Average time taken (ns) over 100 runs for worst
case for operations on GDD with different depths.

23 = (8)mod5 = 3

 0 1 n
 0 1 2 3

 1
Figure 6. GDD for abelian group

Figure 8. G∪H when g<h

Figure 10. G∩H when g<h

Figure 12. G\H when g>h

Figure 13. G\H when g>h

