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ABSTRACT

Latent heat fluxes (LHF) play an essential role in the global energy bud-

get and are thus important for understanding the climate system. Satellite-

based remote sensing permits a large-scale determination of LHF, which,

amongst others, are based on near-surface specific humidity qa. However,

the qa random retrieval error (Etot) remains unknown. Here, a novel ap-

proach is presented to quantify the error contributions to pixel-level qa of the

Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS,

version 3.2) dataset. The methodology makes use of multiple triple collo-

cation (MTC) analysis between 1995-2008 over the global ice-free oceans.

Apart from satellite records, these datasets include selected ship records ex-

tracted from the Seewetteramt Hamburg (SWA) archive and the International

Comprehensive Ocean-Atmosphere Data Set (ICOADS), serving as the in-situ

ground reference. The MTC approach permits the derivation of Etot as the sum

of model uncertainty EM and sensor noise EN , while random uncertainties due

to in-situ measurement errors (Eins) and collocation (EC) are isolated concur-

rently. Results show an Etot average of 1.1± 0.3 g kg-1, whereas the mean EC

(Eins) is in the order of 0.5 ± 0.1 g kg-1 (0.5 ± 0.3 g kg-1). Regional analyses

indicate a maximum of Etot exceeding 1.5 g kg-1 within humidity regimes of

12-17 g kg-1, associated with the single-parameter, multilinear qa retrieval ap-

plied in HOAPS. Multi-dimensional bias analysis reveals that global maxima

are located off the Arabian Peninsula.
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1. Introduction33

Besides short-wave and long-wave radiative fluxes, the heat transfer between ocean and atmo-34

sphere is composed of turbulent sensible (SHF) and latent (LHF) heat fluxes. On a global average,35

LHF represents the primary contributor for compensation of the ocean’s energy gain by radiation36

fluxes over the ocean (Schulz et al. 1997) and hence for the closure of the surface energy budget.37

LHF considerably influences the oceanic heat balance and represents a vital source in terms of al-38

tering the atmospheric circulation and the overall hydrological cycle on seasonal to multi-decadal39

timescales (Chou et al. 2004). The understanding of the underlying physical processes crucially40

depends on the ability to accurately measure the ocean-surface heat fluxes. The latest assessment41

report of the Intergovernmental Panel on Climate Change (IPCC), for example, underpins the role42

of heat transfer between ocean and atmosphere in driving the oceanic circulation. It stresses that43

flux anomalies can impact water mass formation rates and alter oceanic and atmospheric circula-44

tion (IPCC 2013).45

Thus, reliable long-term global LHF climate data records are needed to overcome this issue,46

serving as a verification source for coupled atmosphere-ocean general circulation models and cli-47

mate analysis (Schulz et al. 1997). Similarly, LHF datasets represent a substantial input component48

to assimilation experiments, such as the oceanic synthesis performed by the German contribution49

to Estimating the Circulation and Climate of the Ocean (GECCO, e.g. Köhl and Stammer 2008).50

Owing to a large spatial and interannual variability as well as spatial and temporal undersam-51

pling, Andersson et al. (2011) elucidate that in-situ LHF measurements remain troublesome over52

the global ocean. Conclusions within the AR5 assessment report (IPCC 2013) also mention the53

insufficient quality of in-situ observations when it comes to an assessment of turbulent heat flux54

changes. Although voluntary observing ships (VOS) provide the longest available in-situ record,55
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Gulev et al. (2007) stress that VOS-based surface fluxes suffer from uncertainties associated with56

the ship observations, applied bulk aerodynamic algorithms, and the approach used to produce57

surface flux fields. Owing to this, random sampling uncertainties in LHF amount to several tens58

of W m-2 in poorly sampled high latitudes (Gulev et al. 2007).59

Despite global coverage and high temporal resolutions, global atmospheric reanalyses have60

weaknesses as well as, e.g. associated with a lack of spatial detail (Winterfeldt et al. 2010). Re-61

analysis products are known to exhibit shortcomings in remote regions due to little in-situ ground62

reference data. In consequence, they are dominated by the atmospheric model (Gulev et al. 2007).63

In well-sampled regions, by contrast, the reanalysis fields are strongly constrained by observations.64

In order to overcome the addressed issues, high-quality remote sensing datasets are of sup-65

plementary need. Several of these are currently available, incorporating LHF-related parame-66

ters. They comprise, for example, data of the Climate Goddard Satellite-Based Surface Turbulent67

Fluxes Version 3 (GSSTF3, Shie et al. 2012), the French Research Institute for Exploitation of the68

Sea (IFREMER, Bentamy et al. 2003), the Japanese Ocean Flux Data Sets with Use of Remote69

Sensing Observations (J-OFURO2, Kubota et al. 2002), the SeaFlux Version 1 dataset (Clayson70

et al. 2015), and the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS)71

dataset (Andersson et al. 2010; Fennig et al. 2012). Their retrievals include a bulk aerodynamic al-72

gorithm to parameterize LHF in terms of observed mean quantities, i.e. bulk variables (e.g. Fairall73

et al. 2003).74

HOAPS is a completely satellite-based climatology of precipitation, evaporation, related turbu-75

lent heat fluxes, and atmospheric state variables over the global ice-free oceans. The usefulness76

of the HOAPS climatology has been tested among numerous intercomparison studies and promis-77

ing results have been published within Kubota et al. (2003), Bourras (2006), Klepp et al. (2008),78

Winterfeldt et al. (2010), and Andersson et al. (2011).79
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Bulk aerodynamic algorithms have a primary dependency on specific humidity qa. Its accuracy80

directly impacts the uncertainty of the derived LHF. The Global Climate Observing System (GCOS81

2010) has declared the near-surface specific humidity as an essential climate variable (ECV), in-82

dicating its prominent role in the context of climate analysis (Prytherch et al. 2014). However, the83

remote sensing of qa remains challenging. The retrieval process is complicated, as the measured84

signal originates from relatively thick atmospheric layers (e.g. Schulz et al. 1997). Several studies85

have highlighted the importance of the uncertainties in qa when investigating satellite-based LHF86

discrepancies (e.g. Andersson et al. 2011; Bentamy et al. 2013; Bourras 2006; Smith et al. 2011),87

implying a high potential for improvement. Furthermore, satellite validation analysis is per se dif-88

ficult due to the lack of knowledge of the ’truth’ (e.g. Zwieback et al. 2012) and the introduction of89

representativeness and collocation errors, owing to poor spatial coverages of in-situ measurements90

(Scipal et al. 2010).91

In order to improve our understanding of uncertainties in satellite products, the triple collocation92

(TC) technique (e.g. O’Carroll et al. 2008) has been developed and applied. TC is based on93

three individual datasets and allows to isolate uncertainties of the underlying datasets. The set94

of equations resulting from such a single TC analysis permits to solve for a maximum of three95

unknown errors. However, the amount of random uncertainties inherent to the SSM/I instruments96

(model error EM and noise error EN) as well as the collocation procedure (random in-situ error97

Eins and collocation error EC) equals to four.98

Within the framework of a random error characterization of HOAPS qa, it will be demonstrated99

how to overcome this issue by extending the traditional TC analysis of O’Carroll et al. (2008)100

to a multiple TC (MTC), based on two triplets of SSM/I and in-situ records. This allows the101

decomposition of the overall random uncertainty in qa into estimates of EM and EN . Their sum102

represents the random retrieval error Etot . Eins and EC are quantified analogously. The results103
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constitute a fundamental basis for a full error characterization of HOAPS LHF-related parameters,104

which will enhance HOAPS’ analysis potential in future scientific studies.105

Section 2 presents the applied data sources in more detail and introduces the MTC method.106

Section 3 shows results of the analyses, which include investigations of latitudinal and seasonal107

error dependencies as well as their hotspots. Findings are related to recent publications within108

Section 4, which also includes a qualitative comparison of the advantages and drawbacks of the109

applied data and the MTC approach.110

2. Data and Methodology111

a. Data112

1) HOAPS-S DATA RECORDS113

Apart from the sea surface temperature (SST), all HOAPS parameters are derived from inter-114

calibrated SSM/I (Special Sensor Microwave/Imager) passive microwave radiometers, which are115

installed aboard the satellites of the United States Air Force Defense Meteorological Satellite Pro-116

gram (DMSP). Therefore, HOAPS provides consistently derived global fields of freshwater flux117

related parameters, avoiding cross calibration uncertainties between different types of instruments.118

The current HOAPS version includes SSM/I records between 1987 and 2008, during which a total119

number of six instruments were in operational mode.120

The SSM/I measurements are characterized by a conical scan pattern, where the antenna beam121

intersects the Earth’s surface at an incidence angle of 53.1◦ and the swath width spans roughly122

1400 km. The radiometers measure emitted and reflected thermal radiation from the Earth’s sur-123

face and the atmosphere in form of upwelling microwave brightness temperatures (TB’s) at four124

different frequencies, namely 19.35 GHz, 22.2 GHz, 37.0 GHz, and 85.8 GHz. Whereas the 22.2125

6



GHz channel only considers the vertically polarized signal, the remaining three channels measure126

both horizontal and vertical polarized signals (Hollinger et al. 1990). The channel footprints vary127

with frequency, ranging from elliptic 43x69 km2 (cross-track/ along-track) at 19.35 GHz to rather128

circular 13x15 km2 at 85.5 GHz. Each instrument completes one orbit within 102 minutes, im-129

plying that approximately 14 orbits per day are performed, allowing for 82% of global coverage130

between 87.5◦S and 87.5◦N within 24 hours. Due to the inclined orbit of the satellites, a spatial131

coverage of 100% is reached after three days.132

Here, the focus lies on the HOAPS-S Version 3.2 data record (in the following HOAPS, An-133

dersson et al. 2010; Fennig et al. 2012), which contains the HOAPS geophysical parameters in134

the SSM/I sensor resolution. HOAPS-S is based on a pre-release of the CM SAF SSM/I FCDR.135

Its extensive documentation, including Product User Manual, Validation Report, and Algorithm136

Theoretical Basis Document, is available online (Fennig et al. 2013). Compared to HOAPS-3,137

HOAPS-3.2 has been temporally extended until 2008 and is based on a reprocessed SSM/I FCDR.138

This reprocessing included a homogenization of the radiance time series by means of an improved139

inter-sensor calibration with respect to the DMSP F11 instrument. Earth incidence angle normal-140

ization corrections were applied, following a method described by Fuhrhop and Simmer (1996).141

Starting with the most recent release (HOAPS-3.2), the HOAPS freshwater flux climatology is142

now hosted by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF),143

whereupon its further development is shared with the University of Hamburg and the Max Planck144

Institute for Meteorology (MPI-M), Hamburg.145

The HOAPS near-surface specific humidity qa relies on a direct, four-channel retrieval algorithm146

by Bentamy et al. (2003), which is based on a modified version of the two-step multi-channel re-147

gression model by Schulz et al. (1993) and its refinement by Schlüssel (1996). The underlying148

inverse model is based on linear regression between ship-based qa and TB, the former being lin-149
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early related to the integrated water vapor content. In comparison to earlier qa model versions,150

considerable regional and seasonal biases were removed due to revised regression coefficients.151

Compared to Schulz et al. (1993, 1997), Bentamy et al. (2003) achieved a bias reduction of 15%152

and registered an overall root mean square error (RMSE) of 1.4 g kg-1 (originally 1.70 g kg-1).153

From 1995 onwards, records of up to three simultaneously operating SSM/I instruments154

are available (see Figure 2 in Andersson et al. 2010). As the MTC method relies on multi-155

ple SSM/I being in operational mode concurrently, the analysis is restricted to the time period156

from 1995 to 2008, excluding data prior to 1995 due to a comparatively poor in-situ data coverage.157

158

2) SWA-ICOADS SHIP DATA RECORDS159

Hourly in-situ data originate from the marine meteorological data archive of the German Me-160

teorological Service (DWD), supervised by the Seewetteramt Hamburg (SWA, part of DWD). It161

comprises global high-quality shipborne measurements as well as data provided by drifted and162

moored buoys. In case of data gaps within the SWA archive, the in-situ data basis was extended163

at SWA by available International Comprehensive Ocean-Atmosphere Data Set (ICOADS) mea-164

surements (Version 2.5, Woodruff et al. 2011). These records contain hourly global measurements165

obtained from ships, moored and drifting buoys as well as near-surface measurements of oceano-166

graphic profiles.167

ICOADS estimates of qa are based on wet bulb temperature measurements, typically using mer-168

cury thermometers, which are often exposed in either (ventilated) screens or sling psychrometers169

(Kent et al. 2007). Depending on the period, the thermometers are also placed in aspirated and170

whirling psychrometers. qa is eventually derived by applying the psychrometric formula. More171

information on VOS metadata and sensor types is given in Kent et al. (2007).172
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Several quality checks were performed at SWA prior to the merged SWA-ICOADS data’s usage,173

which permitted a quality index assignment to each observation. The procedure is briefly described174

in the following.175

To ensure a maximum degree of reliance, the SWA-ICOADS dataset underwent a flagging pro-176

cedure based on a verification scheme. Investigated and possibly corrected features included a177

verification of the geographical position and, if given, the direction of travel. A subsequent cal-178

culation of the ship speed allowed for a consistency check of the spatial distances between sub-179

sequent measurements. Distances exceeding individually defined tolerance levels were discarded180

from further analysis. Next, climatological threshold checks were performed for the parameters air181

temperature, dew point temperature, sea surface pressure, SST, and wind speed. These thresholds182

were defined on the basis of the ERA-Interim dataset (Dee et al. 2011). Temporal outliers as well183

as repetitive values were identified and removed. Subsequently, inner consistency checks were184

carried out, which also involved an identification of unphysical relations between different param-185

eters. In a final step, spatial checks were applied to aforementioned parameters to reject values186

which exceeded a maximum distance (individually defined for each parameter) to neighboring ship187

reports. The final outcome of all consistency checks was converted to internationally recognized188

quality flags (see standards defined by the World Meteorological Organization (WMO)).189

Only ship records from the merged SWA-ICOADS database are selected for the subsequent190

analysis, in order to have a consistent, globally distributed data set as the ground reference. This191

decision is legitimate due to the vast amount of available in-situ measurements and prevents from192

blending data originating from different kinds of platforms. The approach of ship measurements193

(in-situ, as of now) as a ground comparison has been widely accepted and forms the basis of194

numerous other collocation analyses performed to date (e.g. Iwasaki and Kubota 2012; Jackson195

et al. 2006). To minimize their underlying error, only so-called ’special’ (amongst others research196
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vessels) and merchant vessels are extracted. Compare WMO (2013) for more information on the197

ship categorizations. In addition, only elements that appear to be correct (WMO Quality Flag 1)198

are considered during further analysis.199

For comparison, MTC analysis using only buoy records was performed, which did not change200

the magnitudes of the decomposed random errors noteworthy (not shown). This conclusion may201

not apply to systematic uncertainties, suggesting the inclusion of buoy records when it comes to202

HOAPS bias analysis.203

A height correction of the in-situ humidities to the HOAPS reference (10 m above sea level204

(ASL), assuming neutral stability) is not performed, although this could be done by means of VOS205

metadata (WMO 2013). The correction is not performed, as the introduced uncertainty, owing to206

the intermittent violation of the equivalent neutral stability assumption, may mask or even exceed207

the expected improvement associated with the bias correction. To qualitatively assess the impact208

of height adjustments of different complexity on Eins, an investigation of collocated ship-based qa209

values originating from match-ups of a subset of SWA-ICOADS and ERA-Interim data between210

1995 and 2004 was carried out. An average ship-based qa measurement height of 18 m was chosen211

(Kent et al. 2014). Over the Baltic Sea, which is representative for an extratropical ocean basin,212

the absolute qa correction to 10 m results in an increase of only 0.1 ± 0.2 g kg-1 (full stability213

correction) (0.1 ± 0.1 g kg-1 (neutral stability correction)), performed on the basis of a turbulence214

algorithm without SST correction (Bumke et al. 2014). This correction-induced qa increase lies215

within the uncertainty range suggested by Kent et al. (2014).216

Indeed, Jackson et al. (2009) found an increase of qa by more than 0.2 g kg-1 when comparing217

inversion-corrected AMMI (AMMIc) retrievals to original and subsequently to height-corrected218

ICOADS ship-based qa. However, it led to an even larger bias of -0.29 g kg-1 (0.47 g kg-1) and219

slightly larger RMSE in comparison to uncorrected in-situ measurements. This supports the ar-220
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gument that random variability is introduced by the height correction itself due to its dependency221

on the correction algorithm and associated (estimated) input bulk variables. Similar findings are222

published in Berry and Kent (2011), who argue that the height adjustment may be masked by nat-223

ural variability of qa (Figure 6 therein). A respective noise increase is also presented Prytherch224

et al. (2014). Kent and Berry (2005) show that the random error estimates are on average reduced225

by 8% (or 7%), if the full stability-dependent height correction is carried out (or assuming neutral226

stability). However, in comparison to the calculated total random error of 1.1 ± 0.1 g kg-1 pub-227

lished in Kent et al. (1999), this corresponds to an error reduction of just 0.1 g kg-1. This finding,228

combined with those presented in Jackson et al. (2009) and Berry and Kent (2011), justifies the229

conservation of the original in-situ qa within this work.230

b. Previous publications involving TC231

The need for TC-based error estimates related to different geophysical datasets was first realized232

by Stoffelen (1998), who suggested its application for the calibration of the European Remote-233

Sensing Satellite (ERS-1) scatterometer winds using wind speeds originating from the National234

Oceanic and Atmospheric Administration (NOAA) buoys and forecast model winds from the Na-235

tional Centers for Environmental Prediction (NCEP). Similarly, Caires and Sterl (2003) carried236

out TC analysis to validate significant wave height and wind speed fields from ERA-40 against al-237

timeter measurements of buoys, ERS-1, and the Ocean Topography Experiment (Topex/Poseidon,238

NASA). Janssen et al. (2007) applied the TC method for wave height analyses. The introduc-239

tion of the TC method into the field of satellite-based soil moisture research (Scipal et al. 2010)240

demonstrates the approach’s potential for a wide range of applications.241

The strategy of this study to apply MTC analysis to HOAPS qa follows that of O’Carroll et al.242

(2008), who collocated data from the Advanced Along Track Scanning Radiometer (AATSR),243
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Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), and buoy SST244

to successively derive the standard deviation of error on each observation type.245

c. MTC methodology246

The satellite error decomposition based on MTC analysis relies on match-ups of triplets involv-247

ing both SSM/I and in-situ records. These triplets are created on the basis of conventional double248

collocation in a first step, resulting in paired match-ups of HOAPS and ship qa records between249

60◦S and 60◦N. The collocated pairs are based on the so-called nearest neighbor approach, i.e.250

HOAPS qa pixels are assigned to respective ship observations closest in time and space.251

Ship records and up to three simultaneously available SSM/I instruments eventually allow for252

performing MTC analysis. A setup sketch of the triplets contributing to the MTC is shown in253

Figure 1 (left panel). Triplets incorporating two independent ship measurements and one HOAPS254

pixel represent the first TC setup (top left panel, V1 as of now), whereas a single ship record and255

two HOAPS pixels of independent SSM/I instruments form the second triplet structure (top right256

panel, V2 as of now). In case of V1, match-ups incorporating two separate measurements obtained257

from the same vessel are excluded from further analysis. Although representing a major constraint258

in terms of amounts of available data, this approach ensures a complete independence of both259

in-situ records. Figure 1 (right panel) shows the distribution of the overall V1 triplet amounts.260

Clearly, the in-situ data density is highest in mid-latitudinal, coastal regions.261

Temporal and spatial collocation thresholds are set to 180 minutes and 50 km, following a statis-262

tical investigation by Kinzel (2013). For this, the author analyzed temporal decorrelation lengths263

of hourly ship qa between 1995-1997, exemplarily for R/V Polarstern. The analysis was confined264

to the mid-latitudes, as these regions cover the tracks of extra-tropical storms, which are associated265

with largest fluctuations of LHF-related parameters in time (e.g. Romanou et al. 2006). Specif-266
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ically for qa, Kinzel (2013) obtained a temporal decorrelation scale of approximately six hours.267

Assuming an average ship speed of 15-20 km h-1, this resulted in a spatial decorrelation scale of268

90-120 km. These numbers are well above the chosen collocation thresholds.269

As the representation of various atmospheric states should be the same for both V1 and V2, TC270

V2 triplets are only considered, if their ship record and either one of the participating HOAPS271

pixels contribute to V1 as well.272

Triplets including outliers are rejected from further analysis on the basis of 3σ standard deviation273

tests. Ship measurements within V1 and V2 represent the in-situ ground reference during this274

filtering process.275

Subsequently, a bias correction with respect to the in-situ source is performed. Its importance276

for TC analysis is highlighted in e.g. O’Carroll et al. (2008). It implies that the results of the qa277

error decomposition exclusively contain random uncertainties, as the systematic error is removed.278

In preparation for the satellite error decomposition, the variances of differences between two279

data sources x and y, Vxy, are quantified, following O’Carroll et al. (2008):280

Vxy = var(x)+ var(y)−2 · cov(x,y). (1)

That is, Vxy is given by the sum of the individual variances, corrected by the error covariance. In281

case the errors of x and y are not totally independent, respective covariance terms differ from zero282

and hence impact the satellite error decomposition.283

At this stage, the MTC approach requires the assumption of an error model underlying every284

data source, which allows for expressing each term shown in Eq. (1) as a sum of supposedly285

contributing random errors. The following error model setup for ships (s) and satellites (sat) is286

formulated:287
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Es = Eins, (2a)

Esat = EM +EN . (2b)

The collocation error (EC) is neglected at this stage, as only those random error sources are listed288

in Eq. (2a) - (2b), which are always inherent to ship and satellite data.289

Recall that Eins, EM, and EN denote the random errors associated with the in-situ measurement,290

the satellite retrieval model as well as the sensor noise, respectively.291

Given three independent data sources per TC version, Eq. (1) can be applied six times, requiring292

contributions of EC. For this, the relative contribution of each data source to EC does not need to293

be specified for the MTC application and is thus arbitrarily assigned to either Eq. (2a) or Eq. (2b)294

before utilizing Eq. (1).295

On the basis of Eq. (2a) - Eq. (2b), the application of Eq. (1) yields the following variances of296

differences for TC V1 (Eq. (3a) - Eq. (3c)) and TC V2 (Eq. (4a) - Eq. (4c)):297

Vs1,s2 = 2(Eins)
2 +(EC)

2, (3a)

Vs1,sat = (Eins)
2 +(EM)2 +(EN)

2 +(EC)
2, (3b)

Vs2,sat = (Eins)
2 +(EM)2 +(EN)

2 +(EC)
2, (3c)

Vs,sat1 = (Eins)
2 +(EM)2 +(EN)

2 +(EC)
2, (4a)

Vs,sat2 = (Eins)
2 +(EM)2 +(EN)

2 +(EC)
2, (4b)

Vsat1,sat2 = 2(EN)
2 +(EC)

2. (4c)
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EM, EN , and EC are assumed to be satellite-independent. Regarding EM, this is straightforward,298

as the exact same algorithm is applied to all SSM/I measurements to retrieve qa. Concerning EN ,299

the SSM/I sensor sensitivities are shown in the aforementioned Validation Report (Figure 2 in300

Fennig et al. 2013). The referenced figure does not indicate a EN-dependency on the instruments.301

As to EC, the double and triple collocations rely on constant collocation criteria and the channel-302

dependent footprint sizes do not differ among the instruments.303

Given the magnitude of Vxy on the left-hand side of Eq. (3a) - Eq. (4c), the individual random304

errors can be quantified successively. In order to solve Eq. (4c) for EC, it is a prerequisite to305

calculate EN synthetically by means of an arbitrary daily HOAPS-S record of TB’s. For this, a306

random Gaussian noise with zero mean and a variance equal to the channel noise is simulated307

and subsequently added to the daily TB record. The assumption of Gaussian-distributed sensor308

sensitivities is widely accepted in literature and e.g. applied in Carsey (1992). EN represents the309

standard deviation of the difference between the original and the synthetically derived qa with a310

value of 0.3 g kg-1. As EN is a feature of the radiometer itself, it is independent of both platform311

and regime. Given EC, Eins is derived via Eq. (3a). Subsequently, both EC and EN suffice as312

input to solve Eq. (3b) - Eq. (4b) for EM. The resulting arithmetic mean of all four solutions is313

assumed to be the best estimate of EM. This is reasonable, as a separate analysis revealed that the314

standard deviations among the four EM solutions are in the order of 0.02 g kg-1 to 0.18 g kg-1 ,315

corresponding to only 1-16% of Etot (not shown).316

Due to the independence of the individual uncertainty components, the retrieval error Etot results317

from:318

Etot =
√

(EM)2 +(EN)2, (5)

which is dominated by EM due to the relatively small EN .319
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As expressed by Eq. (3a) - Eq. (4c), Etot cannot be isolated using a single TC approach, i.e.320

a system of only three equations. This demonstrates the advantage of the applied MTC analysis321

regarding a successful decomposition of all random errors inherent to HOAPS qa.322

323

In preparation for applying Eq. (1) - Eq. (5), all triplets contributing to the MTC analysis are324

sorted in an ascending order (with respect to ’sat’ in V1 and ’sat1’ in V2) and divided into 20 bins,325

respectively. All bins contain an equal amount of match-ups, whereas the amount contributing326

to V1 differs from that of V2. Consequently, the bin widths are not constant, ranging from 0.37327

g kg-1 to 1.86 g kg-1. The uncertainty decomposition using Eq. (1) - Eq. (5), including the bias328

correction, is carried out separately for each bin. The resulting bin-dependent error magnitudes329

shown in Section 3a and Section 3b are arithmetic means of ten individual error decomposition330

analyses, whereby 30% of bin data are randomly drawn to derive Vxy, respectively. More precisely,331

the decomposition is based on 18005 triplets per TC version per bin.332

3. Results of Random Error Decomposition333

First, the focus lies on the qa-dependent random uncertainty decomposition. To assess the re-334

gional dependency of the decomposed errors, a differentiation between tropics (0◦ - 30◦ N/S) and335

extratropics (30◦ - 60◦ N/S) is presented next. To investigate the temporal impact on the error336

statistics, winter (DJF), spring (MAM), summer (JJA), and autumn (SON) are considered sepa-337

rately. Furthermore, a multi-dimensional bias analysis approach helps to localize qa uncertainty338

hotspots in space.339
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a. qa-Dependent Random Error Decomposition340

Figure 2 shows the result of the HOAPS qa error decomposition as a function of qa itself. The341

retrieval error Etot (in red) converges to a minimum of approximately 0.7 g kg-1 for smallest qa342

(relative uncertainty of 23%) and a global maximum partly exceeding 1.5 g kg-1 (relative uncer-343

tainty up to 13%) for qa between 12-17 g kg-1. Its global average value is given by 1.1± 0.3 g kg-1
344

(14% of relative uncertainty).345

Due to the minor impact of EN on Etot (Eq. (5)), the satellite’s retrieval model uncertainty EM346

(shown in blue) closely resembles Etot throughout the range of qa and its mean is given by of 1.0347

± 0.3 g kg-1.348

The qa error decomposition further reveals that EC, shown in black, fluctuates around 0.5 g kg-1
349

for qa below 10 g kg-1, above which a positive trend causes EC to maximize locally (0.7 g kg-1)350

within a qa regime of 14-17 g kg-1. Its average value is given by 0.5 ± 0.1 g kg-1, representing a351

relative uncertainty of 7%. In comparison to Etot , the overall stability of EC is noticeable and was352

to be expected, as the collocation criteria were kept constant. However, its maximum for qa values353

of 14-17 g kg-1 indicates the largest uncertainty due to the collocation process and in consequence354

the MTC approach. This humidity regime is confined to rather narrow latitudinal bands over the355

subtropical ocean basins and extratropical fronts. These strong gradients point out the limits of the356

chosen collocation criteria. They become smaller in the vicinity of the equator, as is reflected in357

declining EC for largest qa.358

Whereas 0.4 ± 0.1 g kg-1 represents the mean of Eins (shown in yellow) for qa below 10 g kg-1,359

its average within (sub-) tropical surface humidity regimes is 0.9± 0.1 g kg-1. In the inner tropics,360

it even exceeds Etot . Overall, relative uncertainties range between 4-8%, emphasizing a linear361
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relationship between in-situ measurement uncertainties and the magnitude of qa. Its absolute362

average is given by 0.6 ± 0.3 g kg-1.363

The increase of Etot from 0.7 g kg-1 in low-humidity regimes up to 1.8 g kg-1 close to 14 g kg-1
364

and its subsequent gradual decay is also mirrored in Figure 3, showing the bias of qa (HOAPS365

minus in-situ) and its standard deviation as a function of HOAPS qa. Accordingly, it is evident366

that these standard deviations, which are shown as black bars, maximize for qa ranging between367

12-14 g kg-1 (≈ 2.3 g kg-1), similar to Jackson et al. (2009) (their Figure 6b). The smallest spread368

of 1 g kg-1 occurs for qa of 3 g kg-1. As in Figure 2, the spread of the qa bias clearly reduces to ≈369

1.7 g kg-1 (Figure 3) in tropical qa regimes, implying a reduction in Etot . The slope of the best-fit370

shown in Figure 3 is virtually zero, supporting the validity of the underlying retrieval model on371

a global scale. Yet, regime-dependent retrieval weaknesses exist. In contrast to Etot in Figure372

2, the bars shown in Figure 3 reflect the overall bin-dependent random uncertainty. Apart from373

the retrieval error Etot , it also incorporates the effects of EC and Eins. This can be considered as374

a disadvantage in the representation of Figure 3 and again strengthens the information content375

resulting from the MTC analysis (Figure 2), which allows for a successive error decomposition.376

An accumulation of Etot , EC, and Eins for the critical qa range in Figure 2 results in an overall377

random uncertainty of 2.2 g kg-1 (i.e. Esum), which closely resembles the observed equivalent of378

2.3 g kg-1 in Figure 3.379

Bentamy et al. (2013) and Roberts et al. (2010) demonstrate that their SSM/I qa retrievals exhibit380

an explicit SST-dependency. The authors show that an inclusion of SST into their neural network381

(Roberts et al. 2010) and multi-parameter (Bentamy et al. 2013) approach considerably reduces382

the noise of qa differences. To determine the overall impact of SST on the qa retrieval error within383

the underlying work, a SST bias correction with respect to the in-situ data was performed and384

the analyses presented in Section 2c were repeated. The results indicate that Etot is reduced by385
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just 2% within the critical humidity regime between 12-17 g kg-1 (not shown), suggesting a multi-386

paramater approach to be of secondary importance in this qa range. However, for small (3-5 g kg-1)387

and large (18-20 g kg-1) qa margins, the retrieval uncertainty is on average reduced by 9% and 5%,388

respectively. SST-related qa uncertainty hotspots (in an absolute sense) are found along the coasts389

of Western Australia and Northern Chile (SST ≈ 20◦C) , where the total random qa uncertainty390

associated with SST is up to 0.2 g kg-1, i.e. ≈ 10% of the underlying total uncertainty (not shown).391

b. Seasonal and Regional Random Error Decomposition392

The distribution of Etot (Figure 2) suggests that the underlying model for retrieving qa exhibits393

both strengths (small qa) and weaknesses (qa between 12-17 g kg-1), supporting the necessity of394

differentiating between different surface moisture and hence geographical regimes when it comes395

to qa error decomposition. To highlight regional error dependencies, Figure 4 exemplarily confront396

time series of decomposed errors during boreal winter (DJF) within the extratropics (30◦ - 60◦ N/S,397

left panel) and the tropics (0◦ - 30◦ N/S, right panel). Table 1 summarizes all decomposed error398

magnitudes, along with their standard deviation and relative contributions (to the basin-mean qa)399

as a function of region and season.400

Focusing on the extratropics first (left panel), the average value of Etot is 0.8 ± 0.1 g kg-1 (16%401

relative error). This order of magnitude is expected for an average qa of 5.2 g kg-1 ± 0.4 g kg-1
402

(Figure 2). The overall uncertainty introduced by Eins (by EC) is given by 0.3± 0.1 g kg-1 (5% rel.403

error) (0.6 ± 0.1 g kg-1 (11% rel. error)). A closer look at the different seasons for extratropical404

latitudes (Table 1) indicates that retrieval errors maximize during boreal autumn (SON, 1.1 ± 0.1405

g kg-1, yet only 13% rel. uncertainty). Etot associated with the largest average qa during boreal406

summer months (JJA, 10.0 g kg-1) remains 0.1 g kg-1 below the SON average. According to the407

constant increase in retrieval errors with increasing qa, as illustrated in Figure 2, this was not to be408
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expected. Strong positive outliers in boreal autumn Etot , specifically in 1997 during the evolving409

El Niño event, may explain this feature (see further below for explanation). As also suggested410

by Figure 2, Eins maximizes during boreal summer (JJA, 0.7 g kg-1), along with the temporal qa411

maximum in the course of a year. The local reduction in EC for qa values of 9-10 g kg-1, as seen412

in Figure 2, is well represented in the seasonal analysis. Hence, EC has a maximum of 0.7 g kg-1
413

in SON, whereas 0.6 g kg-1 are representative for extratropical boreal summer months.414

Comparing extratropical error characteristics to the tropical counterpart (right panel) clearly415

demonstrates the retrieval error dependency on boundary-layer moisture content. During boreal416

winter (Figure 4, right panel), the average tropical retrieval uncertainty is given by 1.6± 0.2 g kg-1
417

(11% rel. error), where the average of qa is 13.9 ± 0.8 g kg-1. This humidity range corresponds418

to the moisture regime of largest retrieval discrepancies (Figure 2) and explains why Etot is 0.2419

g kg-1 to 0.4 g kg-1 larger in comparison to the remaining seasons. During boreal winter, in-420

situ (collocation) uncertainties are on average 0.8 g kg-1 (0.1 g kg-1) larger in comparison to the421

extratropical counterpart, yet having relative contributions of only 7% (5%).422

The regional confrontation of decomposed errors shown in Figure 4 and Table 1 clearly mirrors423

the error dependency on the qa regime. In case of tropical latitudes, this goes along with interan-424

nual variability in error magnitudes, due to their pronounced sensitivity to qa, as is illustrated in425

Figure 2.426

In general, outliers within seasonal and regional time series could possibly be linked to strong427

El Niño and La Niña events, which are identified by means of the Oceanic Niño Index (Climate428

Prediction Center, NOAA), representing SST anomalies within the Niño-3.4 region (5◦S - 5◦N;429

170◦W - 120◦W). Such a link may exist for the tropical boreal autumn in 2007 (Etot 0.4 g kg-1
430

larger than seasonal average, not shown), associated with a moderate La Niña event. Anomalously431

low SSTs within the Niño-3.4 region, which are associated with these events, were already persis-432
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tent during the preceding eight months. This supports the hypothesis that anomaly patterns may433

have propagated towards the Atlantic Ocean (where the in-situ data density is highest) via atmo-434

spheric planetary Rossby Waves and may have caused a qa shift into humidity regimes associated435

with larger qa retrieval uncertainties. This mechanism may also be attributed to the tropical boreal436

winter (1998) and the extratropical boreal autumn (1997) (Etot being 0.2 g kg-1 larger than the437

seasonal averages, respectively), in line with the strong El Niño event established several months438

earlier. The effects of El Niño Southern Oscillation (ENSO) teleconnections on air-sea interaction439

on a global scale have been investigated by Alexander et al. (2002), for example.440

c. Regional Random Uncertainty Hotspots441

Figure 2 to Figure 4 demonstrate the behavior of the decomposed errors as a function of qa only.442

To localize true hotspots of Etot in space, however, the qa-dependent error magnitudes shown in443

Figure 2 cannot simply be transferred to a global map, knowing only the average near-surface444

humidity distribution. The Etot uncertainty pattern rather depends on the dominating sources of445

uncertainty, which are introduced by further atmospheric state variables. A specific region may446

for example be exposed to prevailing wind speeds, which enhance or dampen the Etot illustrated447

in Figure 2.448

To overcome this issue and hence capture the overall random qa uncertainty as a function of449

the simultaneous atmospheric state, the analysis shown in Figure 3 is expanded by deriving qa450

biases as a function of wind speed, SST, and water vapor path by means of double collocation (not451

shown). These three parameters are available from HOAPS and allow a distinction of different452

atmospheric regimes. As in Figure 3, this supplemental analysis results in bin-specific qa biases.453

Given all four one-dimensional bias analyses, a four-dimensional bias look-up table is constructed,454

where the dimensions correspond to qa, wind speed, SST, and water vapor path. Figure 5 (left455
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panel) shows a sketch of this table in three-dimensional space. Subsequently, all instantaneous bi-456

ases resulting from the double collocation procedure are assigned to one of the 204 = 160000 bins.457

If less than 100 bias values are assigned to a bin, its content is considered as non-representative458

and an interpolation is carried out along all dimensions. The overall random qa uncertainty for459

every bin (equivalent to Esum in Figure 2) is defined as the spread of all instantaneous biases un-460

derlying every bin. In a last step, these random uncertainties in qa are corrected for the relative461

contributions of Eins and EC (bin-dependent, according to Figure 2) to exclusively focus on the462

random retrieval error Etot . Applying all instantaneous HOAPS data to this four-dimensional ran-463

dom retrieval uncertainty table leads to a global qa random retrieval uncertainty distribution, which464

is shown in Figure 5 (right panel) for 1995-2008. Its area-weighted global average is 0.82 g kg-1.465

As can be seen, largest retrieval uncertainties (with the exception of the global maximum off the466

Arabian Peninsula and India) are found along subtropical bands of both hemispheres, where they467

reach values up to 1.5 g kg-1. More specifically, the maxima are located in regimes characterized468

by a mixture of trade and shallow cumulus with thin cirrus (Rossow et al. 2005; Oreopoulos and469

Rossow 2011), which seem to introduce an additional uncertainty within the qa retrieval. At the470

same time, the average random retrieval error of qa reduces towards the tropics, as is reflected in471

Figure 2 and Figure 3. Overall, the magnitudes are consistent with the total random uncertainties472

resulting from the error decomposition (Figure 2). This suggests that qa itself has the largest473

influence on qa-related Etot , whereas the impacts of wind speed, SST, and water vapor path are of474

secondary order on a climatological scale.475

The global qa random uncertainty maximum within the Arabian Sea (up to 1.7 g kg-1) is476

special, in as much as concurrent mean wind speeds remain below 5 m s-1 throughout most of477

the year (apart from boreal summer months, where monsoon-related wind speeds often exceed478

12 m s-1). Further analyses revealed that the spread of the qa bias as a function of wind speed479
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is largest for smallest wind speeds. This may be due to an enhanced decoupling of the vertical480

atmospheric column, introducing additional difficulties in the qa retrieval, which could explain481

the amplification of the qa-related Etot in this region.482

483

Summing up, the error characteristics show a clear regional (Figure 2, Figure 5 (right panel))484

and seasonal (Figure 4, Table 1) dependency. Total uncertainties are especially large in subtropical485

latitudes (Figure 5, right panel), particularly during boreal winter (DJF), when qa remains in a486

near-surface humidity range associated with largest qa retrieval uncertainties (12-17 g kg-1).487

4. Discussion488

a. qa Retrieval Uncertainties489

Figure 2 to Figure 4 suggest that the retrieval exhibits largest uncertainties for particular at-490

mospheric and oceanic conditions. Possible explanations for this retrieval performance will be491

discussed in the following.492

Note that all cited publications including RMSE estimates of qa retrievals neither explicitly per-493

form a bias correction with respect to the in-situ reference, nor have Ec and Eins been removed.494

In consequence, the resulting random uncertainty estimates (=̂ Esum) exceed the true random re-495

trieval error (=̂ Etot), which remains unknown. This highlights the benefit of the chosen MTC496

approach.497

Numerous qa retrievals have been presented to date and intercomparisons have been carried out498

in the past. The single-parameter, multilinear approach of Bentamy et al. (2003), which is used499

in HOAPS, considerably improved the accuracy of qa in comparison to former attempts presented500

in e.g. Liu (1986). The latter took precipitable water as a proxy for the qa retrieval. Revised501
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regression coefficients within Bentamy et al. (2003), based on a more representative in-situ dataset,502

led to an average reduction in both qa bias (15%) and its RMSE (≈ 20%), favoring its successful503

implementation and/or tuning in further studies (e.g. Andersson et al. 2010; Jackson et al. 2009;504

Kubota and Hihara 2008).505

A correlation coefficient of 0.96 between the integrated water vapor content (w) and the bound-506

ary layer humidity contribution (up to 500 m ASL) shown in Schulz et al. (1993) generally justifies507

the assumption of an underlying linear relationship between w and qa. However, this linear rela-508

tionship is challenged by Bourras (2006) (which in parts also applies to the algorithm of HOAPS),509

who elucidates two cases of vertical qa profiles, where this linear dependency breaks down and in510

consequence introduces large errors in qa. On the one hand, his considerations target the decou-511

pling of the boundary layer moisture from higher atmospheric water vapor contents, which may be512

identified by means of local minima of vertical correlation profiles between both parameters. On513

the other hand, Bourras (2006) specifically addresses regions of deep convection and associated514

retrieval deficiencies (see also Bentamy et al. 2013), where the assumption of most water vapor515

being confined to the boundary layer is violated.516

To overcome such retrieval errors, an inclusion of nonlinear terms within the retrieval algorithms,517

as presented in e.g. Jackson et al. (2009), can reduce the RMSE between remotely-sensed and518

in-situ records. Specifically, their AMMI (Advanced Microwave Sounding Unit (AMSU)-A and519

SSM/I) retrieval incorporates a quadratic term for the 52.8 GHz channel (not available in HOAPS).520

This channel not only provides somewhat more direct information on the lower troposphere, its521

quadratic weighting also allows for better describing the nonlinear relationship between lower522

tropospheric temperatures and water vapor.523

Furthermore, Bentamy et al. (2013) argue that single-parameter, multilinear regressions may be524

too simple to capture the underlying physical mechanisms. The authors show that qa seems to525
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exhibit an explicit SST-dependency when investigating qa biases between NOCv2.0 (Berry and526

Kent 2011) and SSM/I (their Figure 1). Including a SST- as well as a stability dependency (Tair527

minus SST) in their retrieval considerably reduces the noise (by up to 50%) of daily qa differences528

(in-situ minus SSM/I) at 0.25◦ resolution on a global scale. Main discrepancies are confined529

to extratropical southern latitudes. Large-scale biases (dry tropics, wet subtropics), which were530

evident in former qa retrievals, remain marginal within their multi-parameter approach.531

Roberts et al. (2010) also picks up the influence of SST on the representativeness of the SSM/I532

retrieval output for qa and presents a non-linear approach on the basis of a neural network. Apply-533

ing SST as a first-guess input parameter to the retrieval and accounting for the regime-dependent534

effect of high cloud liquid water (CLW) on TB’s, the authors demonstrate that biases (RMSE) of535

qa are reduced by 45% (27%) in comparison to e.g. Bentamy et al. (2003) (their Figure 5). The536

remaining bias (RMSE) is given by 0.16 g kg-1 (1.32 g kg-1). Regarding the RMSE, its magnitude537

agrees with the average Esum derived in this work (1.29 g kg-1). Especially for very high CLW, the538

latter tends to effectively remove low-level humidity information from the satellite signal, which539

applies to most, yet not all compared satellite qa datasets. Largest discrepancies between both ap-540

proaches are evident for negative lapse rates (i.e. inversions) along with elevated moisture above541

900 hPa. Similar conclusions involving the impact of inversions on TB’s are drawn in Jackson542

et al. (2006) (their Figure 3). Given traditional linear regression models, moist air masses aloft543

feign large boundary moistures and thus introduce large errors in TB and consequently qa. Roberts544

et al. (2010) present two case studies, for which the SST boundary condition is able to successfully545

distinguish inversion profiles from near-neutral or unstable stratifications. Regimes with damped546

SST associated with cold surface currents or upwelling regimes along with retrieval issues due547

to stratocumulus clouds (see Jackson et al. 2009; Smith et al. 2011) may be more effectively in-548

terpreted by their sophisticated retrieval. Furthermore, the authors demonstrate that warm SST549
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in conjunction with high-level subsidence and hence little moisture (as frequently observed over550

the North Pacific during boreal summer within the descending branch of the Hadley Cell) do not551

necessarily lead to large biases in qa, given their approach.552

In order to further quantify qa retrieval weaknesses, Iwasaki and Kubota (2012) developed two553

retrievals for estimating qa using Tropical Rainfall Measuring Mission Microwave Imager (TMI)554

TB data in comparison to ICOADS moored buoy data between 2003-2006. The essential differ-555

ence between both linear retrievals was the amount of contributing TMI channels and thus their556

complexity. The authors show that their products yield a smaller RMSE specifically in the trop-557

ics, compared to those published in Schlüssel et al. (1995) (SSM/I), Kubota and Hihara (2008)558

(AMSR-E), and Schlüssel and Albert (2001) (TMI). The authors hold the inclusion of the 85559

GHz polarized radiation for responsible, which is not included within the model of Bentamy et al.560

(2003) and hence HOAPS. This finding may be responsible for the negative bias along with largest561

RMSE within the subtropical high-pressure systems, which falls into critical qa range of 12-17562

g kg-1 (see Figure 3). Specifically for the subtropical highs, where CLW and rain rates remain563

small, the 85 GHz channels may include valuable boundary layer humidity information. However,564

one needs to keep in mind that their results are only representative for tropical regimes (due to the565

TMI orbit), in contrast to the approach of Bentamy et al. (2003).566

Due to inherent deficiencies in single-sensor qa retrievals (such as Bentamy et al. 2003), Jack-567

son et al. (2006) and Jackson et al. (2009) elucidate the advantage of a multi-sensor approach,568

which, apart from SSM/I, utilizes temperature and humidity sounders (AMSU-A and SSM/T-2,569

respectively). Aiming at better evaluating the lower-tropospheric temperature and moisture char-570

acteristics, the authors reduce the RMSE differences (in comparison to ICOADS VOS and buoy571

measurements) by up to 0.4 g kg-1, compared to single-sensor retrievals. This approach introduces572
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additional information provided by the microwave sounders for qa ranges of 16-20 g kg-1 and573

regimes of very low moisture content.574

Prytherch et al. (2014) recently published results of an intercomparison involving different575

SSM/I-based qa datasets and identified considerable discrepancies among the data records, where576

regional variations exceed 1 g kg-1 on an annual basis, despite relying on the same retrieval al-577

gorithm. Hence, differences among HOAPS, GSSTF3, and IFREMER, all of which rely on the578

algorithm of Bentamy et al. (2003), are bound to originate from varying data processing routines,579

intercalibration techniques, and quality controls. The different handling of hydrometeor contam-580

ination of the signal as well as humidity inversions are two procedures within these filtering rou-581

tines, which introduce departures among the resulting qa. In contrast to IFREMER e.g., HOAPS582

includes a humidity inversion correction, which is possibly the reason for the former being low-583

biased within regimes of smallest absolute qa (Figure 9b within Prytherch et al. 2014). On the584

other hand, effects of inter-satellite calibrations on the TB’s may explain discrepancies among qa585

based on HOAPS (intercalibration performed) and IFREMER (not subject to intercalibration).586

b. In-Situ Uncertainties587

Kent and Berry (2005) recall that VOS observations contain significant uncertainties and are of588

variable quality. They estimated random measurement errors in VOS between 1970-2002 using a589

semi-variogram approach, based on the ICOADS dataset (Woodruff et al. 1998). Their Figure 1d590

shows global maps of the uncorrelated uncertainty component of qa averaged over the whole time591

frame. The spatial distribution of random variability components ranges between 0.7 ± 0.1 g kg-1
592

(Extratropical North Atlantic) to 1.7 ± 0.4 g kg-1 (near the Arabian Peninsula). A further investi-593

gation of latitudinal error dependencies in Kent and Berry (2005) indicates that the random error594

component constitutes the largest part of the total observational error within tropical regions. In595
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contrast, the sampling error becomes considerably more important within the extratropics. These596

results imply that the random error component increases from larger (small qa) to lower (large qa)597

latitudes, as is also seen within Figure 2, with the exception of the inner tropics (Section 3).598

The estimates published in Kent and Berry (2005) for the lower qa boundary closely resemble the599

in-situ errors shown in Figure 2, given that most of the match-ups below 10 g kg-1 are constrained600

to extratropical northern latitudes along major shipping lanes (Bentamy et al. 2003). As discussed601

in Section 3a, moister regimes are subject to larger random in-situ errors, which agrees with results602

published in Kent and Berry (2005). Yet, their average random error in qa is 1.1 ± 0.1 g kg-1,603

which is ≈ 0.5 g kg-1 larger than the average estimate in this study (0.6 ± 0.3 g kg-1). This604

discrepancy may be due to the strict filtering of non-appropriate ship records prior to the MTC605

analysis. Furthermore, the amount of contributing match-ups displayed in Kent and Berry (2005)606

is considerably lower than the collocated triplets forming the basis of this work. Additionally,607

Figure 1 in Kent and Berry (2005) includes in-situ data of 32 years. The in-situ quality in early608

years is likely to have been below today’s measurement accuracies and particularly below the609

quality standard chosen for this study.610

Kent and Taylor (1996) and Berry et al. (2004), amongst others, investigated the impact of611

solar radiation on the uncertainty of ship-based qa. In this context, Berry et al. (2004) present a612

correction for radiative heating errors on the basis of an analytical solution of the heat budget for613

an idealized ship. They found a RMSE reduction of the air-sea temperature difference of 30% to614

≈ 0.5◦C, eventually reducing the RMSE of qa.615

The uncertainties introduced by different hygrometer types are explored by Kent et al. (1993) in616

the framework of the VOS Special Observing Project - North Atlantic (VSOP-NA), who suggest617

to apply an empirical correction to humidity measurements using marine screens. The authors618

argue that the latter tend to be high-biased in comparison to psychrometers, presumably due to619
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their poor ventilation. Such a correction is presented by Kent and Taylor (1995) for screen-based620

dew point temperatures. Screen humidity corrections are also applied within Kent et al. (2014)621

among an intercomparison study of in-situ and reanalysis qa.622

Jackson et al. (2009) also focus on hygrometer- and radiation-induced uncertainties, based on623

ICOADS observations and AMMIc qa retrievals. However, the authors conclude that both error624

sources contribute less than 0.05 g kg-1 to the overall uncertainty, suggesting their input with625

respect to the total error budget to be negligible.626

c. Applied Methodology627

Eq. (3a) - Eq. (4c) incorporate an error contribution associated with the collocation procedure628

(EC). As this work’s definition of EC is only related to spatial and temporal mismatches, it is not629

specifically differentiated between EC used in Eq. (3a) and Eq. (4c). However, it is likely that630

an additional random point-to-area uncertainty (error of representativeness, ER) is inherent to the631

MTC matchups. This is accounted for, in as much as Eins derived in Eq. (3a) is supplemented632

by a ER contribution. However, ER is not explicitly resolved, as this inhibits a complete error633

decomposition due to too many unknowns. Instead, the calculated Eins (Eq. (3a) and hence Eq.634

(3b) - Eq. (4b)) remains slightly larger than in theory, whereas EM becomes negligibly smaller.635

Although a quantification of ER is not possible, the derived decorrelation length scale in Kinzel636

(2013) considerably exceeds the diameter of a SSM/I footprint, which is the scale of interest637

regarding the point-to-area issue. It is therefore concluded that ER lies within the uncertainty of638

Eins and is therefore negligible in comparison to the overall variances of differences (see note on639

this in O’Carroll et al. 2008). Equipping in-situ data sources with random uncertainty estimates640

(prior to using them in context of retrieval validation analysis) is strongly recommended, as this641

would allow to explicitly derive ER.642
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One could also argue that the applied MTC method does not yield robust results for the critical643

qa regime, which is subject to limited amounts of triplets due to narrow shipping lanes in the644

subtropical ocean basins. To quantify the robustness of the variances, Scipal et al. (2010) estimated645

the impact of constraining the TC analysis to small subsets of simulated time series subject to646

random noise. Results indicate that less than 100 match-ups (=N) lead to systematic uncertainties647

of up to 5%, which does not influence the present analysis. Zwieback et al. (2012), however,648

argued that the relative error, i.e. the standard error relative to the quantity of interest, exceeds649

22% for N=100, assuming all error variances to be of similar size and the underlying noise to be650

normally distributed. If their Eq. (29) holds, at least 2000 match-ups are necessary to restrict the651

relative error contribution to 5%. For a single year on a seasonal basis, this may imply a reduced652

reliability of the MTC approach, as the tropical data coverage may temporarily fall below this653

target.654

The chosen collocation criteria are identical to those applied by e.g. Jackson et al. (2006),655

who also investigated qa using microwave satellite observations. However, modifications of the656

collocation criteria underlying this work were also carried out to treat the temporal deviation more657

strictly, removing collocated pairs where ∆t exceeded 60 minutes. Specifically for the critical658

qa regime of 12-17 g kg-1, the results do not indicate a reduction of the satellite retrieval error.659

Instead, the temporal restriction leaves even less match-ups in the already poorly sampled regions,660

which further increases the random uncertainty of the variance estimates (Scipal et al. 2010). It661

is therefore concluded that the originally chosen collocation thresholds of 180 minutes and 50662

km are adequate. Yet, large humidity gradients may occur along mid-latitudinal shipping routes,663

associated with frontal systems. However, these do not distort the error decomposition itself, as664

such outliers have been removed from the analyses (see Section 2c). A comparison of the error665

bar magnitudes shown in Figure 3 with Esum in Figure 2 yield absolute differences in the order666
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of only 5-10% throughout the whole qa range. Keeping in mind that the temporal threshold for667

match-ups shown in Figure 3 is only ± 1 hour, this further supports the assumption that ± 3 hours668

is a reasonable temporal decorrelation scale. In general, the decorrelation time scale cannot be669

chosen arbitrarily small in preparation for the MTC analysis, because the temporal difference of670

SSM/I overpasses of two different instruments is in the order of 2-3 hours. This depends on the671

combination of SSM/I instruments (e.g. Andersson et al. 2010). Consequently, TC V2 and hence672

the MTC analysis would often not be realizable if the temporal thresholds were set to e.g. ± 1673

hour.674

5. Conclusion and Outlook675

Latent heat fluxes (LHF) play a key role in the context of energy exchange between ocean and676

atmosphere and thus impact the global energy cycle. Due to insufficient spatial sampling of in-situ677

measurements, remote sensing represents an indispensable technique to monitor parameterized678

LHF in high resolution. However, their uncertainty estimates, which find expression in the satel-679

lite’s retrieval error Etot , are not sufficiently quantified to date, which complicates their use in680

context of model validation, trend and variability analyses as well as process studies.681

For the near-surface specific humidity qa, which represents a key geophysical input parameter682

to parameterized LHF, the aim was to decompose overall satellite-based random qa uncertainties683

into individual components to isolate the desired Etot .684

In this context, it was shown that the ordinary TC approach can be (and needs to be) extended685

by means of a novel, multiple TC (MTC) procedure, serving as a powerful tool to distinguish686

satellite-based random uncertainties associated with the underlying model (EM) and sensor noise687

(EN) from contributions of in-situ records (Eins) and collocation (EC). The MTC analysis was688
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specifically performed for the HOAPS-3.2 qa on pixel-level basis, based on an extensive match-up689

database of SWA-ICOADS ship records for the time period of 1995-2008.690

The robust results of the MTC analysis indicate that the random retrieval error Etot is on average691

1.1 ± 0.3 g kg-1, which is supplemented by averages of EC (0.5 ± 0.1 g kg-1) and Eins (0.5 ±692

0.3 g kg-1). EN was derived synthetically (0.3 g kg-1). A qa-dependent analysis shows that the693

retrieval has largest difficulties in the regime of 12-17 g kg-1, where Etot exceeds 1.5 g kg-1.694

Largest EC (0.7 g kg-1) also fall into this range, which is representative for the subtropical domain695

encompassing the global oceans. On the contrary, Eins increases rather linearly with qa, taking696

on values between 0.2 - 1.2 g kg-1. Local analysis on a global scale reveals absolute uncertainty697

maxima of approximately 1.7 g kg-1 off the Arabian Peninsula, where both qa and wind speed698

remain in ranges susceptible for large random qa errors (small wind speeds coupled to rather699

large, yet not tropical qa).700

Despite random in-situ measurement errors and possible deficits underlying the collocation ap-701

proach, the results suggest that the largest random qa uncertainties originate from the retrieval702

itself, which in case of HOAPS-3.2 is based on the linear, single-parameter regression retrieval703

by Bentamy et al. (2003). The MTC-based findings demonstrate how both regime-dependent re-704

trieval uncertainties and in-situ measurement issues can be effectively isolated. This will prove705

very helpful in further advancing the satellite-based qa retrieval to meet the desired qa quality706

requirements. As discussed in Section 4, HOAPS qa uncertainties could possibly be reduced by707

introducing new retrieval algorithms, which could rely on a multiple parameter approach and/or708

incorporate non-linear regression terms.709

Similar to HOAPS-3.2, previous qa retrievals have mostly been derived from regression analysis710

using training data sets of TB’s and in-situ point measurements. This implies that respective RMSE711

estimates typically include both Eins and EC and thus inhibit an explicit determination of the ran-712
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dom retrieval uncertainty. This again emphasizes the benefit of the uncertainty decomposition713

approach. Assigning random uncertainty estimates to all contributing data sources, as done within714

this work, allows to evaluate the satellite retrieval precision. If only Esum was given, a quantita-715

tive comparison between retrieval and in-situ random uncertainties to assess retrieval constraints716

cannot be carried out.717

A step towards higher-quality qa certainly also involves a more comprehensive in-situ validation718

dataset, in which all humidities are equally well represented. This task will be challenging, as719

the number of VOS is continuously declining (see Kent et al. 2014). Additionally, the ICOADS720

dataset does not contain call signs after December 2007 (Kent et al. 2013), which further hinders721

the validation of remotely sensed parameters, as platforms producing systematic measurement722

errors may no longer be excluded from error analyses.723

Future work aims at quantifying Etot of satellite-based wind speed and SST. Respective findings724

will help to derive Etot of the remaining LHF-related bulk parameters and hence the retrieval725

uncertainty of HOAPS evaporation.726

To better assess the quality of the satellite-based datasets, Prytherch et al. (2014) furthermore727

argue that grid box based qa uncertainty estimates would be extremely beneficial, which are not728

available to date. This approach is currently undertaken at DWD and first results will be published729

in the near future. As a total error assessment involves the investigation of random error contri-730

butions, the presented work can therefore be understood as a first step towards this effort. A full731

error characterization of all HOAPS freshwater flux related parameters will be implemented in the732

next official HOAPS climatology, which will be released in late 2016.733

Acknowledgments. The first author was funded by the German Science Foundation (DFG). Fund-734

ing for the second to fourth author was covered by EUMETSAT. The funding for the development735

33



and implementation of the collocation softwares was provided by the German Meteorological736

Service (DWD). The HOAPS-3.2 data was kindly provided by EUMETSAT Satellite Applica-737

tion Facility on Climate Monitoring (CM SAF). SWA-ICOADS data was gratefully obtained from738

SWA (DWD).739

References740
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TABLE 1. Results of the seasonally-dependent qa error decomposition (top: extratropics, bottom: tropics).

Next to HOAPS averages and their standard deviations (std) of qa, random errors associated with the retrieval

(Etot), collocation (EC), and in-situ source (Eins) [g kg-1] are shown. Relative contributions to the basin-mean qa

are given in brackets [%]. DJF = december-february, MAM = march-may, JJA = june-august, SON = september-

november.

929

930

931

932

933

decomposed errors / seasons DJF MAM JJA SON

Extratropics (30◦ - 60◦ N/S)

HOAPS qa (average + std) 5.2 ± 0.4 6.1 ± 0.6 10.0 ± 0.7 8.2 ± 0.4

Etot (average + std (rel. contribution)) 0.8 ± 0.1 (16%) 0.8 ± 0.1 (14%) 1.0 ± 0.1 (10%) 1.1 ± 0.1 (13%)

Ec (average + std (rel. contribution)) 0.6 ± 0.1 (11%) 0.5 ± 0.1 (7%) 0.6 ± 0.1 (5%) 0.7 ± 0.1 (7%)

Eins (average + std (rel. contribution)) 0.3 ± 0.1 (5%) 0.4 ± 0.1 (7%) 0.7 ± 0.1 (6%) 0.6 ± 0.1 (6%)

Tropics (0◦ - 30◦ N/S)

HOAPS qa (average + std) 13.9 ± 0.8 15.0 ± 1.0 17.4 ± 0.8 16.1 ± 0.7

Etot (average + std (rel. contribution)) 1.6 ± 0.2 (11%) 1.4 ± 0.3 (9%) 1.2 ± 0.1 (6%) 1.4 ± 0.3 (8%)

Ec (average + std (rel. contribution)) 0.7 ± 0.1 (5%) 0.7 ± 0.1 (4%) 0.8 ± 0.4 (4%) 0.7 ± 0.1 (4%)

Eins (average + std (rel. contribution)) 1.1 ± 0.1 (7%) 1.2 ± 0.2 (7%) 1.3 ± 0.1 (7%) 1.2 ± 0.1 (7%)
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FIG. 1. Left panel: Sketch of the applied MTC V1 and V2 in preparation for the qa error decomposition. The

red diamonds represent a single ship record. Depending on the MTC version, a ship record is being collocated

to a second, independent ship measurement and a HOAPS pixel (V1, left) or to pixels of two different satellite

instruments (V2, right). Temporal and spatial collocation thresholds between the center of a HOAPS pixel and

both in-situ sources (V1) as well as between in-situ measurement and both centers of the SSM/I records (V2)

were set to 180 minutes and 50 km (d1, d2), respectively. Right panel: Distribution of TC V1 triplets (#) between

1995-2008 throughout the global oceans. Note that the colorbar is nonlinear.
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FIG. 2. Decomposition of satellite- and MTC related qa error terms, based on MTC match-ups between

1995-2008, equatorward of 60◦N/S. The decomposition is based on 18005 triplets per TC version per bin, which

results in a total number of 720200 triplets. The x-axis values of the decomposed random uncertainties are the

bin-dependent arithmetic means of the satellite records, which constitute a part of the TC1 triplets. The strings at

the top indicate overall arithmetic means of the individual random error contributions. Esum represents the sum

of Etot , EC, and Eins (legitimate due to the independence of the individual uncertainty components) and allows

for a direct comparison to the error bars shown in Figure 3. Recall that EN was synthetically derived (compare

text for further description on this) and thus remains constant throughout the qa range. The in-situ component

is based on selected, quality-controlled ship measurements only. Standard deviations (std) of all decomposed

random uncertainties are not shown, as the bin-dependent decomposition is very stable and std maxima are in

the order of 0.02 g kg-1 only.
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FIG. 3. Non-normalized scatter density plot of qa bias (HOAPS minus in-situ measurements) [g kg-1], based

on global double collocations between 1995-2008. Again, the in-situ component is composed of selected,

quality-controlled ships only. The temporal match-up threshold was set to ± 1 hour, in contrast to Figure 2.

Black (transparent) squares indicate significant (insignificant) bin biases (at the 95% level). Their standard

deviations are given by the black bars.
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FIG. 4. Time series of decomposed qa-related errors [g kg-1] for wintertime (DJF) 1995-2008 within the

extratropics (30◦-60◦ N/S, left panel) and tropics (0◦-30◦ N/S, right panel), based on MTC analysis. Statistical

values shown on the upper left-hand side are based on the overall time period. Recall that the in-situ uncertainty

is only based on selected ship measurements. For the sake of simplicity, EN and Esum are not shown. Right

panel: As left, but for tropics (0◦-30◦ N/S)
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FIG. 5. Left panel: simple 3-dimensional sketch illustrating the procedure of assigning multi-dimensional

mean biases (red circle) and respective spreads (green error bar) to instantaneous HOAPS pixels of qa. The

black circles along the three axes exemplarily represent the concurrent atmospheric qa (x-axis), water vapor path

(y-axis), and wind speed (z-axis), respectively. Right panel: Average instantaneous random retrieval uncertainty

of HOAPS qa [g kg-1] for the time period 1995-2008. The illustrated estimates were derived from a four-

dimensional look-up table encorporating the spread of instantaneous qa biases [HOAPS minus in-situ], which

was corrected for qa-dependent contributions of EC and Eins (according to Figure 2). This table (its simpler,

3-dimensional version is shown on the left-hand side) was created to quantify the random retrieval uncertainty

of each HOAPS qa pixel, based on unique combinations of prevailing qa, wind speed, SST, and water vapor path

values. The averages are presented on a regular 1◦x1◦ grid.
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