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Chromium toxicity in Moringa oleifera Lam. 
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This study investigated the toxic effects of different Cr concentrations (Control, 5, 25 and 50 mg/L) on hydroponically 

cultivated M. oleifera seedlings. At the end of the application, certain biochemical variations and changes in Cr and nutrient 

content (K, Zn, Ca, Cu, Fe, Mg and Mn) of the plant roots and shoots were determined. M. oleifera seedlings accumulated 

high Cr concentrations in roots and shoots. As a result, Cr led to nutrient deficiency by affecting the intake and 

transportation of the necessary macro and micro elements. Increase in phenolic compound content and non-protein 

SH groups may indicate that they played a role in Cr toxicity. Furthermore, the increases in H2O2 and MDA levels clearly 

demonstrated that Cr toxicity induced oxidative stress in M. oleifera cells. 
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Chromium is the 7th most abundant element globally 

and has a molecular weight of 51.1 g1. Although it 

could be found with a valence between +2 and +6, it 

is commonly found in terrestrial environments in 

trivalent (CrIII) and hexavalent (CrVI) forms2. 

Moreover, CrIII form is less active and less toxic in 

nature and is usually found bound to organic matter in 

the soil and aquatic habitats3. However, it is highly 

toxic for animals and plants at high concentrations4,5. 

CrVI has a long residence time in surface and ground 

waters6. CrVI, unlike CrIII, has a carcinogenic effect 

and is considered group I carcinogen7. Contamination 

of soil and groundwater has been a serious concern 

for scientists for a long time because of Cr utilization 

in various anthropogenic activities. However, Cr has 

been given little attention in botany, unlike other toxic 

heavy metals such as cadmium, lead, mercury etc. 

The effect of Cr toxicity on plants is observed at 

many levels, ranging from yield reduction, leaf and 

root undergrowth to enzyme activities and inhibition 

of mutagenesis4. Cr and Cr compounds are used in 

several industrial fields such as drilling muds, 

refractory steel, catalytic production, electroplating 

cleaners and chromic acid8. Industrial use of 

hexavalent (CrVI) chromium compounds includes 

cooling tower water treatment, metal plating, post 

tanning and wood preservation. It was determined 

that these anthropogenic activities increased 

the bioavailability and biostability of Cr and led to 

widespread environmental contamination. 

Chromium compounds show high toxicity to plants 

by affecting growth and development in a negative 

way. Although there were not any adverse effect 

observed in some crops exposed to low levels of Cr 

(3.8 x 10-4 μM)9,10, it is toxic to most of the higher 

plants at 100 µM/kg dry weight11. 

Moringa oleifera Lam. is in Moringaceae family 

of plants and is an active malnutrition medicine. 

M. oleifera is highly nutritive due to the presence of

various basic phytochemicals in its leaves, pods and

seeds. M. oleifera can be cultivated at a temperature

of 25-35°C in several tropical and subtropical regions.

It grows on sandy or loamy soils with slightly acidic

and slightly alkaline pH and 250-3000 mm of net

precipitation12. Seed cultivation method is preferred

due to high germination rates. Seeds are expected to

germinate within 5-12 days after planting and

implanted in soil at a depth of 2 cm. It can also be

grown from 1 m long and 4-5 cm diameter cuttings;

however these plants may not develop a well-

established root system. Such plants tend to be

susceptible to the effects of drought and winds13.

M. oleifera leaves are rich in minerals such as K, Fe

and Ca, essential amino acids, vitamins and a number
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of glycosides14,15. Seeds have high (42%) fat content 

that could be used in medicine. 

The present study aimed to determine the toxic 

effects of various Cr concentrations (0, 5, 25 and  

50 mg/L) on M. oleifera seedlings cultivated under 

hydroponically controlled conditions. 
 

Materials and Methods 

Plant material and preparation procedure 

M. oleifera seeds were germinated in perlite under 

26±1°C and then seedlings were transferred to  

2 L plastic vessels with aerated nutrient solution  

(4 seedlings per vessel). Elemental composition of the 

nutrient was 0.88 mM K2SO4, 2 mM KCl, 2.0 mM 

Ca(NO3)2, 100 μM Fe-EDTA, 0.25 mM KH2PO4, 1 

mM MgSO4, 1 μM H3BO3, 0.5 μM MnSO4, 1 μM 

ZnSO4, 0.2 μM CuSO4 and 0.02 μM (NH4)6Mo7O24
16. 

Pure water was used for preparing the nutrient 

solution. The seedlings were grown in a climate 

chamber (Snijders Scientific, Netherlands) (light/dark 

regimes of 16/8 h, light level ~120 μE.m2.s-2, 

temperature 26±1°C). After seedlings were 

acclimatized for 7 days in nutrient solution, they were 

supplied with 0, 5, 25 and 50 mg/L Cr as K2Cr2O7 

(CrVI). Solutions applied were changed every two 

days. The seedlings were harvested after 10 days then 

seedlings roots washed with deionized water three 

times. Root, stem and leaves were separated and 

frozen at -80°C in order to perform biochemical 

analyses. 
 

Biochemical analyses 

Fresh seedling leaves were weighted and then they 

were homogenized in 80% acetone. The supernatant 

was separated and absorbances were read at 470, 645 

and 662 nm in a UV/VIS spectrophotometer. 

(CINTRA 202, Australia). The levels of chl-a and chl-

b and total carotenoids were calculated using the 

formula by Lichtenthaler and Wellburn17. Phenolic 

compound content of the seedling parts was 

determined using Folin–Ciocalteu’s reagent method 

by reading the absorbance at 765 nm wavelength 

according to the method by Ratkevicius et al.18. Gallic 

acid was used as a standard. Results obtained are 

expressed as mg of gallic acid equivalent (GAE)/g of 

fresh weight. H2O2 content was measured according 

to Sergiev et al.19. with minor modifications. After 

extraction with trichloro acetic acid (TCA) 0.1% and 

centrifugation, the supernatant was added to 1 M KI 

and 150 mM (pH 7.4) phosphate buffer. Then 

absorbance was read at 390 nm. Lipid peroxidation 

was analyzed by measuring the level of 

malondialdehyde (MDA), by a modification of the 

method by Zhou20. About 0.5 g fresh the seedling 

parts were homogenized in 5 mL 10% TCA, and the 

homogenate was centrifuged. The reaction mixture 

containing 2 mL extract and 2 mL TCA was heated at 

95°C for 30 min and reaction was stopped by using an 

ice-bath. The absorbance of the mixture was 

determined at 532, 600 and 450 nm with a UV/VIS 

spectrophotometer. Non-protein thiols were 

determined after supernatant was mixed with Ellman's 

reaction mixture [5 mM EDTA and 6 mM DTNB 5, 

5`-dithiobis (2-nitrobenzoic acid) in 150 mM 

phosphate buffer, pH 7.4]. The absorbance was taken 

after 20 min at 412 nm21.  
 

Data analysis 

All analyses were repeated four times. SPSS  

11.0 for Windows was used for the statistical analyses. 

The significance of differences was determined using 

the least significant difference (LSD) test. 
 

Results 

The present study aimed to determine the toxic 

effects of various Cr concentrations on M. oleifera 

seedlings cultivated under hydroponically controlled 

conditions. At the end of the application, it was found 

that the Cr content in seedling roots and shoots 

increased with the concentration of the application 

(Fig. 1A). Thus, it was found that the root Cr content 

at 5, 25 and 50 mg/L concentrations increased 37.2, 

42.9 and 55.1 (p<0.05) times when compared to the 

control, respectively. Similarly, shoot Cr content at 

the same concentrations increased by 12.0, 25.2 and 

48.1 (p<0.05), respectively. 

It was found that chromium application affected 

macro and micro nutrient intake and transportation in 

M. oleifera seedlings. It was found that root 

potassium (K) content, a macro element, increased 

8.7% with 5 mg/L Cr concentration (p>0.05), while it 

decreased 46.3% and 57.5% with 25 and 50 mg/L Cr 

concentrations, respectively (p<0.05). Similar 

findings were obtained with the shoots (Fig. 1B). The 

Ca content in M. oleifera seedling root and shoots 

increased with Cr application (Fig. 1C). The highest 

increases in roots and shoots were calculated as 

86.4% and 32.8% (p<0.05) with 50 mg/L Cr 

concentration, respectively. The Mg content in  

M. oleifera seedling root and shoots increased with  

Cr application (Fig. 1.D). The highest increase in root 

Mg content was determined as 25.2% (p<0.05) with  
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5 mg/L Cr concentration and 32.0% (p<0.05) with 50 
mg/L concentration in shoots. The variation in Cu 
concentration, a micro nutrient, decreased in all Cr 
concentrations in roots and shoots except 50 mg/L 
concentration in the shoots (Fig. 1E). The maximum 
decrease in root and shoots was determined as 33.3% 
(p<0.05) and 9.08% (p>0.05) in 25 mg/L Cr 
concentration when compared to the control, 
respectively. Although M. oleifera seedling root Fe 
content increased 17.9% and 8.1% (p<0.05) with  
5 and 25 mg/L Cr concentrations, respectively, it 

decreased 25.3% (p<0.05) in 50 mg/L concentration. 
Seedling shoot Fe content decreased in all 
concentrations (Fig. 1F). The seedling root Mn 
content increased with 5, 25 and 50 mg/L Cr 
concentrations by 33.4%, 40.9% and 55.3% (p<0.05), 
respectively. Shoot Mn content increased with  
25 mg/L Cr concentration and decreased with 50 
mg/L Cr (Fig. 1G). Seedling root Zn content 
increased up to 35.7% (p<0.05) with Cr application. 
In contrast, shoot Zn content decreased up to 15.4% 
(p> 0.05) (Fig. 1H). 

 
 

Fig. 1 — Effect of Cr application on element contents of M. oleifera seedling. Means with different letters are significantly different
from one another (n=3) (p<0.05). 
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The M. oleifera seedling leaf photosynthetic pigment 
contents decreased with Cr application (Fig. 2). 
Chlorophyll-a (Chl-a) content decreased by 1.9%, 5.8 
(p>0.05) and 15.7 (p<0.05) with 5, 25 and 50 mg/L Cr 
concentrations, respectively. Similarly, the highest 
decreases in Chl-b and carotenoid content in seedling 
leaves were calculated as 9.6% (p>0.05) and  
20.8% (p<0.05) with 50 mg/L Cr concentration, 
respectively. 

Certain biochemical changes were observed in  
M. oleifera root and shoot tissues as a result of  
Cr application. It was found that non-protein SH 
group content increased due to Cr stress. When 
compared to the control group, the highest increase in 
root and shoot non-protein SH group content were 
162.3% and 75.1% (p<0.05) with 50 mg/L Cr 
concentration, respectively (Fig. 3A). Total seedling 

root phenolic compound content decreased with Cr 
application. On the contrary, the shoot phenolic 
compound content increased up to 7.3% (p<0.05) 
(Fig. 3B). The seedling tissue hydrogen peroxide 
concentration, a reactive oxygen species, increased 
with Cr application (Fig. 3C). Root tissue hydrogen 
peroxide content increased to 1.17 (p> 0.05), 1.57 and 
2.36 (p<0.05) times in response to 5, 25 and 50 mg/L 
Cr concentrations, respectively when compared to the 
control. Similarly, the shoot hydrogen peroxide 
content increased to 1.9, 2.9 and 3.6 times with 5, 25 
and 50 mg/L Cr application, respectively. Also, root 
and shoot MDA content increased with Cr toxicity 
(Fig. 3D). The seedling shoot and root MDA content 
increased by 4.1 and 6.9 times with 50 mg/L  
Cr application, respectively. 
 
Discussion 

Chromium is not an essential element for plants. The 
first contact between a plant and chromium occurs 
during the uptake of this element. The uptake of this 
heavy metal is through the carriers used for the uptake 
of metals necessary for the metabolism of plant. The 
toxic effects of chromium are mainly observed during 
the uptake, transport and accumulation of the metal. 
The metabolic pathway where Cr (VI) is transported is 
an active mechanism, which requires carriers that 
transport basic anions such as sulfate22. 

It was found that significant Cr amounts were 
accumulated in plant tissues after Cr application in M. 
oleifera roots and shoots. However, due to the 
structural similarities between Cr and certain requited 

 
 

Fig. 2 — Effect of Cr application on photosynthetic pigment
contents. Means with different letters are significantly different
from one another (n=3) (p<0.05). 

 
 

Fig. 3 — Effect of Cr application on non-protein SH groups (A), total phenolics (B), H2O2 (C) and MDA (D) contents of 
M. oleifera seedling parts. Means with different letters are significantly different from one another (n=3) (p<0.05). 
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nutrients, it could affect the mineral nutrition of plants 

through a complex mechanism. Based on present study 

findings, Cr application led to a change in macro and 

micro nutrient content in M. oleifera seedlings. Root 

and shoot macro element Ca and Mg content increased 

with Cr application. While K content increased with 

low concentration Cr application, it was determined 

that it decreased with the application of 25 and 50 

mg/L Cr concentrations. M. oleifera seedling root Zn 

and Mn content increased with Cr application, while 

Cu and Fe content decreased in high Cr concentrations. 

In seedling shoots, it was found that Mn, Cu, and Fe 

content decreased with Cr application. Previous studies 

in the literature investigated the effect of Cr application 

on mineral nutrition. It was reported that K, Mg, P, Fe 

and Mn uptake decreased in soybean roots that 

included 9.6 µM Cr (VI) in nutrient solution23. Barcelo 

et al.24 reported that P, K, Zn, Cu and Fe transport in 

plant sections were inhibited when the pea plant was 

exposed to Cr in nutrient solution. Sujatha and Gupta25 

stated that irrigation with tannery effluent led to 

micronutrient deficiency in several agricultural plants. 

Thus, it can be suggested that chromium induced 

nutrient imbalance by affecting the uptake and 

transport of macro and micro nutrients in M. oleifera 

seedlings consistent with the previous study findings, 

Chromium application is an important factor that 

prevents photosynthesis in CO2 fixation, electron 

transport, photophosphorylation and enzyme activities. 

Several studies reported that photosynthetic pigments 

decreased with Cr exposure26,27. In the present study, it 

was determined that leaf pigment content of M. oleifera 

seedling decreased with Cr application. Impaired  

δ-aminolaevulinic acid dehydratase activity that led to 

reduced photosynthetic pigment levels was observed in 

chromium-treated plants28. This might be attributed to 

the toxic effect of chromium on chlorophyll biosynthesis 

of M. oleifera seedling through direct inhibition of 

photosynthesis29.  

Phenolic compounds are agents that play a role in 

the response to biotic and abiotic stressors30. In 

Jatropha curcas L., Cr treatment enhanced the 

phenolic content in all parts of the plant31. Various 

studies reported other heavy metals led to increases in 

phenolic compound levels in plants32,33. M. oleifera 

root and shoot tissue phenolic compound content 

increased with Cr administration. The present study 

findings suggested that phenolic compound 

accumulation was an outcome of the robust seedling 

mechanism that controls and adapts to Cr toxicity. 

Main SH groups in the structure of plants  

include cysteine, glutathione, phytochelatins and 

metallothionines. Most non-protein SH groups in 

plants include glutathione34. Glutathione is not only 

involved in the detoxifying of ROS but is also 

required for the synthesis of metal-binding properties 

such as phytochelatins35,36. M. oleifera seedling root 

and shoot non-SH group content increased with Cr 

administration. This increase was likely due to an 

increase in oxidative defenses or Cr-binding proteins 

of non-protein SH groups in Cr resistance in M. 

oleifera seedlings. 
It is known that oxidative stress is an important 

pathophysiological event37. Previous studies 
demonstrated that Cr administration induces reactive 
oxygen species (ROS), leading to oxidative stress38,39. 
Among the ROSs, hydrogen peroxide (H2O2) is a 
product of O2 with reduction of two electrons. H2O2 is a 
potentially reactive oxygen species, but not a free 
radical40. It is very dangerous since it could permeate 
cellular membrane and could reach cell compartments 
located far from the site of its formation41. Reactive 
oxygen species are known to damage cellular 
membranes by inducing lipid peroxidation42. The 
present study findings demonstrated that there was an 
increase in H2O2 and MDA levels in M. oleifera cells 
due to Cr application. The presence of these increases 
clearly demonstrated that Cr toxicity induced oxidative 
stress in the seedlings. 

 

Conclusion 

In conclusion, Cr application led to physiological 

and biochemical changes in M. oleifera seedling roots 

and shoots grown under controlled conditions.  

High Cr concentrations were observed in M. oleifera 

seedling roots and shoots. Thus, Cr induced nutrient 

irregularity by affecting the uptake and transport of 

the necessary macro and micro elements. Increases in 

phenolic content and non-protein SH groups may 

indicate that they might play a role in Cr toxicity. 

Furthermore, increases in H2O2 and MDA levels 

clearly demonstrated that Cr toxicity induced 

oxidative stress in M. oleifera cells. 
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