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Chapter 1

Introduction

This thesis deals with two games (Return and Move) for two players:
Alpha, who always goes first, and Beta, who always goes second.
Let us get an intuition with an example before we formally define
the game. We start by selecting a regular polygon, in this case, a
triangle. Next, we label each vertex with a number such that Vertex
1 is at the top, and the numbers continue sequentially clockwise.
Then we place a token on Vertex 1.

Alpha and Beta take turns using the symmetries of the triangle to
move the token to different Vertices. For the triangle, the symme-
tries (the possible moves) are three rotations - rotation by 0◦ (the
identity), 120◦, and 240◦ clockwise - and three flips, over Vertices
1, 2, and 3. Once we have the triangle and the symmetries of the
triangle (i.e. the group), the game follows as such:

1. We put a token on Vertex 1.
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2. Alpha chooses a symmetry, which may move to the token to
different vertex.

3. Beta chooses a different symmetry, and the token might move
again.

4. Play repeats like this, with each player choosing a symmetry
that has not already been selected, until there are not more
symmetries left.

For our first version of the game, Return, Alpha, wins only if the
token ends on Vertex 1. Beta, wins only if the token ends up some-
where else. For our second game, move, Beta wins only if the token
ends the game back at Vertex 1 and Alpha wins only if the token
ends up somewhere else. As an example of one round, Alpha might
start by rotating token around the triangle 240◦ clockwise, putting
the token on Vertex 3.

Beta might then flip the token over Vertex 2, putting the token back
on Vertex 1.
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The players continue until all symmetries have been used exactly
once. In this thesis, we seek to find out which player has a winning
strategy for each version of the game for all regular polygons. We
look at some examples of the game in Chapter 3.
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Chapter 2

Preliminaries

Before we define the game more formally, we need to have some
definitions. The symmetries of regular polygons are governed by
algebraic structures of groups.

Definition 1 (group). A nonempty set G is a group under an op-
eration iff G is closed under that operation and there exists e ∈ G
such that for all x ∈ G, xe = ex = x and there exists x′ ∈ G such
that xx′ = x′x = e and for all x, y, z ∈ G, (xy)z = x(yz).

In particular, we will be looking at dihedral groups. Most simply,
a dihedral group, Dn is the set of symmetries of a regular polygon
with n sides. Dn has n rotations and n mirror reflections, or flips.
A rotation, r is the smallest rotation of the polygon clockwise, such
that the marker at Vertex 1 is now at Vertex 2. A rotation ra is
that size of rotation a times, sending sending the marker at Vertex
b to Vertex a+ b. See this example of the rotation r2.
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Note that the counterclockwise rotation r−1 for a triangle is the
same as the rotation r2.

More generally, we will consider the clockwise rotation rj to be the
same as the counterclockwise rotation rn−j and all other equivalent
rotations, such as rj+kn for all k. For flips, we can call the flip which
fixes a Vertex j as the flip fj. For even n, the flip fj can also be
called the flip f(j + n/2), since Vertex j + n/2 would also be fixed
by fj. Likewise, the flip fj.5 can also be called the flip f(j +n/2).5.
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We will briefly use cycle notation to define the effect an element
of a dihedral group has on the vertices of a polygon. For example,
(1, 2, 3, 4) describes an element of a group that moves

• Vertex 1 to Vertex 2,

• Vertex 2 to Vertex 3,

• Vertex 3 to Vertex 4,

• and Vertex 4 to Vertex 1.

This would describe a 90 degree rotation of the square. Similarly,
an element (2, 5)(3, 4) would describe an element that fixes 1 (since
it is not listed), swaps Vertices 2 and 5, and swaps Vertices 3 and
4; this describes f1 for the regular pentagon.

Let G be a dihedral group of order 2n, denoted Dn. Then G =

〈r, f〉 where r = (1, 2, . . . , n) and f =
∏bn/2c

i=1 (1 − i, 1 + i). Recall
that the product rf = fr−1.

We will use the following notation for the flips in Dn.

• fj :=
∏bn/2c

i=1 (j − i, j + i), a flip that fixes j, and

• fj.5 :=
∏n/2−1

i=0 (j − i, j + i + 1), a flip that fixes no element of
{1, . . . , n}, maps j to j + 1, and only exists if n is even.

An example of the flip f1.5.
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We will be using exponentiation notation to describe what each
group element does to the token. For instance, we would say the
following for example above:

• 1f1.5 = 2

• 2f1.5 = 1

• 3f1.5 = 4

• 4f1.5 = 3

Note that jfj = j for all integers 1 ≤ j ≤ n for all Dn, since fj is
defined to fix j.

We can now define the game.
Let G be a dihedral group. We define two games on G for two

players. We defined the players as Alpha and Beta, where Alpha is
the first player to move in the game. In both games, the game starts
with X0 := ∅ and g0 := e, the identity of G. On the i + 1st move,
the player picks hi+1 from G \Xi, defines Xi+1 := Xi ∪ {hi+1}, and
defines gi+1 := gi · hi+1. The first game is called Return, and Alpha
wins exactly when 1g|G| = 1, and Beta wins only when 1g|G| 6= 1,
that is, the product of all the elements in order returns Vertex 1
to itself. The second game is called Move, and Alpha wins exactly
when 1g|G| 6= 1, and Beta wins only when 1g|G| = 1. More simply,
each round of the game looks at one possible sequence of all the
elements of G multiplied together.

Note that the game results in a product of elements, and the two
players are working to determine the sequence of the elements, with
the winner determined by whether the resultant move fixes 1. If
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the group is abelian, then the players choices don’t matter. So the
non-abelian-ness makes it interesting, and it means that the players’
choices matter. Take for example, f2 and r2 in D3. Does the order
in which we play these two elements matter? The resultant move of
f2r

2 is f3, and the token lands on 2.

However, the resultant move of r2f2 is f1, and the token lands on 1.

So the order in which the elements are played matters.

2.1 Helpful lemmas

Later, we’ll need to know what resultant move we get when we pair
flips.

Lemma 2. Let G = D2n. Then

1. fjfj+1 = r2 if n is odd

2. fjfj+2 = r4 if n is odd

3. f`f`+n/4 = rn/2 if n is even

for all j ∈ {1, 2, . . . , n} and for all ` ∈ {m/2 | m ∈ Z, 2 ≤ m ≤
2n+ 1}
Proof. First, note that the product of two flips is a rotation, since
each flip can be written as frj

′
, fjfk = frj

′
frk

′
= ffr−j

′
rk

′
=

r−j
′+k′ .
To determine which rotation, consider what happens to j under

fjfj+1:
jfjfj+1 = jfj+1 = j + 2

10



since fj fixes j and fj+1 permutes j and j + 2.
Similarly:

jfjfj+2 = jfj+2 = j + 4

since fj fixes j and fj+2 permutes j and j + 4. Thus, fjfj+2 = r4.
Now let k = ` + n/4 and assume that n is even. Note that ` is

either an integer, or an integer plus 0.5. First, let’s consider the case
when ` is an integer. Then `f`fk = `fk . Depending on whether k is

an integer or an integer plus 0.5, fk =
∏n/2

i=1(`+n/4− i, `+n/4 + i)

or fk =
∏n/2−1

i=0 (`+ n/4− i, `+ n/4 + i). The relevant transposition
is when i = n/4: (`+n/4−n/4, `+n/4 +n/4) = (`, `+n/2). Then
`fk = `(`,`+n/2) = `+ n/2. Thus, f`fk = rn/2.

For when ` is not an integer, `−0.5 is an integer. Then (`− 0.5)f`fk =
`.5fk . Likewise, depending on whether k is an integer or an in-

teger plus 0.5, fk =
∏n/2

i=1(`.5 + n/4 − i, `.5 + n/4 + i) or fk =∏n/2−1
i=0 (`.5 + n/4 − i, `.5 + n/4 + i). The relevant transposition is

when i = n/4: (`.5 + n/4− n/4, `.5 + n/4 + n/4) = (`.5, `.5 + n/2).
Then `.5fk = `.5(`.5,`.5+n/2) = `.5 + n/2. Thus, f`fk = rn/2.

Next, we can examine what happens when we switch the order
of the flips.

Lemma 3. Let G = D2n and fx,fy ∈ G be flips. If fxfy = rj for
some j, then fyfx = r−j.

Proof. Let G = D2n and fx,fy ∈ G be flips. Since the product of two
flips is a rotation, there exists j such that 0 ≤ j < n and fxfy = rj.
Note that (fxfy)(fyfx) = fx(fyfy)fx = fxfx = e, so fxfy and fyfx
are inverses. Thus, if fxfy = rj, then fyfx = r−j, since rj and r−j

are inverses.

Next, we want to show the relationship between a rotation and
fixing Vertex 1.

Lemma 4. For Dn, If g|G| = ra, then g|G| fixes 1 iff a ≡ 0 mod n.

Proof. Let g|G| = ra. Then there exists rb ∈ Dn for 0 ≤ b < n such
that ra is the same as rb. That is, a ≡ b mod n. Since rb only fixes
1 when rb = e, that is, when b = 0, then r±a fixes 1 only when a ≡ 0
mod n. Thus, g|G| fixes 1 only when a ≡ 0 mod n.
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Definition 5. We will sometimes want to look at a strategy that ei-
ther Alpha or Beta could play. In this case, we will define the player
implementing the strategy as Player and the other player as Oppo-
nent. In all cases, {Player,Opponent} will equal {Alpha,Beta}. That
is, we define Player and Opponent such that if Alpha is Player, then
Beta is Opponent, and if Alpha is Opponent, then Beta is Player.

Before we generalize our results to all dihedral groups, we will
look at some examples in the next chapter.
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Chapter 3

Examples of Games

In this chapter, we will examine several concrete examples of how
games could go. The purpose of these examples is to help the reader
develop intuition about the game, as well as to demonstrate the ideas
that we will prove later in a more concrete environment. We will
look at examples involving the triangle, square, regular pentagon,
and regular hexagon.

3.1 Example of a Triangle

For the triangle, there are 6 moves to make: 3 rotations and 3 flips.
We’ve defined these as e, the identity, or the rotation by zero degrees,
r1, the clockwise rotation by 120◦, and r2, the clockwise rotation by
240◦. The flips are f1, which switches 2 and 3 while fixing 1, f2,
fixing 2, and f3, which fixes 3. Let’s examine one possible outcome

13



for the Return version of the game, where Alpha wants the marker to
end up back at 1. Alpha might rotate the token around the triangle
by playing r2, putting the token on Vertex 3.

After that, Beta rotates the token around the triangle, playing r1

putting the token back on Vertex 1. Note that the two rotations
played are inverses of each other, so the product of those two rota-
tions is e.

Alpha’s goal is to end the token on 1, so they select e, leaving the
token on 1.
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After that, Beta selects f1, which still leaves the token on Vertex 1.
The product of the last two moves is f1.

Alpha might then flip the token over Vertex 2, putting the token on
Vertex 3.
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Beta only has one move left, the flip over 3, leaving the token on
Vertex 3.

Beta wins this time. Notice that Beta paired f2 with f3 to make r2.
The product of all the moves in this order resulted in f1r

2, which
did not fix 1. We will generalize this strategy in Chapter 4 to show
that this strategy can work in Dn for all n ≡ 3 mod 4.

3.2 Triangle, Move Variation

For Move, where Alpha wants the token to land not on Vertex 1,
suppose Alpha wants to try a different strategy than Beta used.
We’ll see later why this is a bad idea. Alpha starts with f2, which
which puts the token on Vertex 3.

Beta chooses f1, which puts the token on Vertex 2. The product of
these two flips is r1.
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Alpha, seeing the token not on Vertex 1, chooses e. We’ll see later
that this was a bad move.

Beta might then rotate the token around the triangle, playing r2,
putting the token on Vertex 1.

After that, Alpha rotates the token around the triangle, playing r1,
putting the token back on Vertex 2. Notice that since r2 and r1 are
inverses, Alpha’s move “undoes” Beta’s move. So the product of all
the moves is r1 ∗ e ∗ e = r1
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Beta only has one move left, the flip over 3, putting the token on
Vertex 1.

The product of all the moves in this order is r1 ∗ f3 = f1, which
does not fix 1. Since the token landed on 1, Beta wins Move. We
get a simple, yet important, insight from this example. When we
had a different sequence of moves from the previous example and
the token ended on Vertex 1, rather than Vertex 3, illustrating that
player choice matters. We’ll see later that Alpha could have won
this game if they used Beta’s strategy of pairing up the rotations
and flips to get a final product of f1r

±2.
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3.3 Example of a square

The possible moves for D4 are the four rotations—e, r1,r2,r3—and
the four flips: f1, f1.5, f2, f2.5. For Return, Beta is going to try a
strategy where they pair up the rotations with other rotations and
the flips with other flips. Beta decides to pair up flips such that
for any flip Alpha plays, Beta will pick the flip that results in the
product of those two flips being rn/2 which is the 180◦ rotation. If
Alpha plays a rotation, Beta will play that rotation’s inverse, to
make the product e. Alpha starts with f1.

Beta chooses f2, putting the token on Vertex 3. The product of f2
and f3 is r2
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Alpha then plays r2 to put the token back on 1.

Since r2 is its own inverse, Beta chooses e, since e is also its own
inverse.

The product of those two moves is r2. So the product of the moves
played so far is r2r2 = e. Alpha then plays r1.
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Beta chooses r3, since r3 = r−1, the inverse of r1, which puts the
token back on 1.

Alpha plays f2.5, moving the token to Vertex 4.

Beta plays f1.5, moving the token to Vertex 3. So the product of the
moves played so far is e ∗ r2 = e.
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Beta won. Notice how the product of the pairs of moves that Beta
picked were all rn/2 or e. Since there were an odd number of 180◦

rotations, the token did not land back on 1. We’ll show later that
for an even n, we can always pair up the flips and rotations of Dn

in that way.

3.4 Square and Split Pair

Suppose Alpha wanted to use that pairing strategy for the Move
variation. What might that look like? Alpha has to go first, so Alpha
chooses e. Before, e was paired up with r2. If Beta doesn’t pick r2

next, this pair will be split apart, with other moves in between them.
We can refer to this idea as a split pair.

Suppose Beta chose f1.
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Alpha chooses f2 to fit with their strategy, putting the token on
Vertex 3.

This means that the product of moves played so far is e ∗ r2 = r2.
Beta plays r2, which has no inverse.
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After all, the pair to r2 was e, and Alpha already played e. Since
they have to pick something, Alpha picks f1.5, which puts the token
on vertex 2. This means that unless Beta plays f2.5 right now, the
pair f1.5 and f2.5 will be another split pair.

The product of moves played so far is r2 ∗ r2 ∗ f1.5 = f1.5. Beta then
plays r1, putting the token on Vertex 3.

Alpha chooses r3, since r3 = r−1, the inverse of r1, which puts the
token back on 2.
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The product of moves played so far is r2 ∗ r2 ∗ f1.5 ∗ e. Beta plays
the final move, f2.5, moving the token to Vertex 3.

The product of moves played at the end was r2∗r2∗f1.5∗e∗f2.5 = r2.
Since the token didn’t land on Vertex 1, Alpha won. Even though
the pairs e and r2 and f1.5 and f2.5 were split up and had some
rotations in between, the final game still ended up the same. We’ll
prove later that this idea of ignoring split pairs works in general.

3.5 Example of a pentagon

For the Return game, Beta remembers that pairing up flips and
rotations has worked out well before, so Beta plans to pair up the
flips and rotations just like they did for the triangle. So Beta decides
to pair up rotations with their inverses, f1 with e, f2 with f3 and
f4 with f5. We’ll see why keeping the same strategy for the triangle
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will not work for the pentagon. Since we’re pairing moves up, we can
look at the resultant moves of their pairs, as opposed to individual
moves. Alpha starts with f2, so Beta plays f3, giving a resultant
move of r2. We’ll see later that this was a bad move on Beta’s part.

Alpha plays with f5, so Beta plays f4, giving a resultant move of
r−2 = r3.

Alpha plays r2, which Beta pairs with r−2 = r3 to get a resultant
move of e. The token is still on 1.
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Alpha plays r4, which Beta pairs with r−4 = r1 to get a resultant
move of e.

Finally, Alpha plays f1, so Beta plays e. The resultant move is f1.

27



The product of all the moves was r2r−2f1 = f1. The token ends
on Vertex 1, so Alpha wins Return. Because the resultant moves
of Beta’s pairs for the flips were an even number of rotations r±2,
Alpha was able to get the final product to one which fixed Vertex 1.

3.6 Pentagon, take 2

Let’s try Return again. Since that strategy didn’t work, Beta decides
to pair up f2 with f5 and f3 with f4 instead. We’ll show later that
this is a much better plan. Alpha plays f1, so Beta plays e. The
resultant move is f1.

Alpha plays r2, so Beta plays r−2 = r3. The resultant move is e.
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Alpha plays f3 and Beta plays f4 the resultant move is r2.

So the product of moves played so far is f1r
2. Alpha plays f5 and

Beta plays f2. The resultant move is r4.
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Alpha plays r4, so Beta plays r−4 = r1. The resultant move is e,
leaving the token on Vertex 2.

The product of all the moves at the end was f1r
2r4 = f1r

2 The dif-
ference between this example and the previous example was Beta’s
pairing strategy. Where before, we had one rotation of r2 and one
of r−2, this time, we had one rotation of r2 and one of r4. No com-
bination of ±2± 4 will equal 0, so we’ll show later that Alpha can’t
win when Beta uses this strategy.

3.7 Example of a hexagon

For the return game, Alpha decides to pair up all the moves to give
them all resultant moves of the 180◦ rotation or e. Note that this is
the same strategy that was used for the square. If this works, this
would be the first strategy that lets Alpha win the Return game.
Alpha starts with e, leaving the token on 1.
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Beta plays r2, so Alpha pairs that with r−2 = r4 to get a resultant
move of e.

Beta plays r3.
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But r3 is its own inverse, so Alpha picks f1. The product of moves
this far is r3f1.

Beta plays r1, so Alpha pairs that with r−1 = r5 to get a resultant
move of e.
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Beta plays f2.5, but Alpha already played f2.5’s pair. This completes
that “split pair”.

The product of moves this far is r3f1f2.5 = r3r3 = e. So Alpha plays
f1.5.
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Beta plays f3.5, so Alpha plays f2 to give a resultant move of r3. So
the product of moves so far is f1.5r

3.

The only move left is for Beta to play f3, the pair to f1.5.

The product of moves at the end is f1.5r
3f3. Since r3 is in the

center, f1.5r
3f3 = r3f1.5f3 = e. Even with all the split pairs, Alpha’s

strategy worked out to be four rotations by 3, bringing us back to

34



1, which means that Alpha won Return by pairing up flips and
rotations to give us an even number of rotations of rn/2. We’ll show
in the next chapter that this strategy will always work out.
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Chapter 4

Formal Results

4.1 General Strategy

Now we can determine who will win for any Dn, and more interest-
ingly, why. We begin with a general strategy. We want to show that
either player can make the product of the resultant moves of their
pairing strategy

g|G| = (rn/2)n/2+1

if n is even, and
g|G| = f1r

M

if n is odd, where specifically M = b1 +
∑(n−3)/2

i=1 ai for some b1 ∈
{±b} and ai ∈ {±2}. We do this by a paring strategy, like those
seen in the examples. For any n, we start by pairing up inverse
rotations to get a resultant move of e. For the evens, we pair all
remaining moves such that the resultant move is always rn/2. This
results in exactly n/2 rotations of rn/2 from the flips and one rotation
of rn/2 from pairing e with rn/2. For the odds, we pair flips in
such a way that we get either an odd number of rotations r±2 or
an odd number of rotations r±2 and one rotation r±4. First, we
demonstrate that g|G| will equal a permutation of the product of
pairs, by showing that there exists a strategy for either player to
pair up the elements as required. An important part of the lemma
is showing that regardless of if Player has to go first, in a sense
creating the split pairs we saw in the examples, Player can still force
the product to be g|G| = (rn/2)n/2+1 if n is even, and g|G| = f1r

M if
n is odd. Finally we show that regardless of the order in which the
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pairs are played, the product is still of the form g|G| = (rn/2)n/2+1 if
n is even, and g|G| = f1r

M if n is odd.

Lemma 6. Let n > 1, G = Dn, F denote the set of flips, and
F ′ = F ∪ {e, rn/2} if n is even and F ′ = F ∪ {e} if n is odd. Let a
and b be integers such that a = n/2 = b if n is even and a = 2 and
b ∈ {2, 4} if n is odd. Suppose that F ′ can be partitioned into sets
{xi, x′i} of size 2 for 0 ≤ i ≤ |F ′|/2− 1 such that

1. {x0, x′0} is {e, f1} if n is odd and {e, rn/2} if n is even,

2. x1x
′
1 ∈ {r±b}, and

3. xix
′
i ∈ {r±a} for 2 ≤ i ≤ |F ′|

2
− 1,

Then either player can ensure that the game ends with

g|G| = fF1 r
M

where F = 1 and M = b1 +
∑(n−3)/2

i=1 ai for some b1 ∈ {±b} and
ai ∈ {±2} if n is odd and F = 0 and M = (n/2)n/2+1 if n is even.

Proof. Let n > 1, G = Dn, F denote the set of flips, and F ′ =
F ∪ {e, rn/2} if n is even and F ′ = F ∪ {e} if n is odd. Let a and
b be integers such that a = n/2 = b if n is even and a = 2 and
b ∈ {2, 4} if n is odd. Suppose that F ′ can be partitioned into sets
{xi, x′i} of size 2 for 0 ≤ i ≤ |F ′|/2− 1 such that

1. {x0, x′0} is {e, f1} if n is odd and {e, rn/2} if n is even,

2. x1x
′
1 ∈ {r±b}, and

3. xix
′
i ∈ {r±a} for 2 ≤ i ≤ |F ′|

2
− 1,

Let Player be the player who will make g|G| = fF1 r
M . Let Oppo-

nent be the other player. Let K = |F ′|/2.
First, we determine if there is a strategy for each player to make

the game end with g|G| =
∏K−1

i=0 yσ(i) where yσ(i) ∈ {xix′i, x′ixi}. This
means that we want to show that there is a strategy for either player
to make the game end as some permutation, σ, of the product of
pairs xi and x′i. Note that for some σ, yσ(i) = xix

′
i or yσ(i) = x′ixi.

We will denote each player’s choice as hi on the ith term. So
g|G| =

∏2n−1
i=1 hihi+ 1 If Player is Alpha, the game starts with Player
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defining h1 := rn/2 if n is even and h1 := f1 if n is odd. Following
this, Player follows the following strategy after Opponent defines
hi, where Xi is defined to be {h1, . . . , hi}, the set of previously-
played elements. To account for split pairs, define k0 = 1, which
will be used in the recursive definition below. We recursively do
the following strategy after k` has been defined, such that ` is the
number of times a pair has been split at that point and hk` is the
move when the split pair is played.

1. If Opponent defines hi = rj for some j 6= e, n/2, then Player
defines hi+1 := r−j. In this case, hihi+1 = e.

2. If Opponent defines hi ∈ {xj, x′j} for some j 6= k`, then Player
defines hi+1 to be the element in {xj, x′j} \ {hi}. In this case,

hihi+1 ∈ {r±2, r±b}.

3. When Opponent defines hi to be in {xk` , x′k`}, then hi is the pair
to a move already played. If F ′ 6⊆ Xi then a flip remains, and
so Player defines hi+1 = xj, where j is the smallest subscript
such that xj 6∈ Xi. If F ′ ⊆ Xi, then no flips remain and Player
defines hi+1 to be rj, where j is the smallest positive integer
such that rj 6∈ Xi. Then we define k`+1 = i+ 1.

This continues until the elements are exhausted.
If Player is Beta, then k1 is never defined, and we have

g|G| =
n∏
i=1

h2i−1h2i,

where h2i−ih2i = e if h2i−1 is a rotation other than e or rn/2, and is in
{xjx′j, x′jxj} for some j otherwise. This is sufficient to conclude that

g|G| =
∏K−1

i=0 yσ(i) for some permutation σ and yj ∈ {xjx′j, x′jxj}.
If Player is Alpha, we get a sequence k0, k1, . . . , k` defined from

above for some `, the number of times a pair was split, such that
the game is the product of products of split pairs {xkj , x′kj with the
product of mj pairs between them.

So

g|G| =
`−1∏
j=0

hk2j(

mj∏
i=m0

h2ih2i+1)hk2j + 1
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and since each product of pairs is a rotation, (
∏mj

i=m0
h2ih2i+1) =

r±cj , we see that

g|G| =
`−1∏
j=0

hkjr
±cjh2ih2i+1) =

`−1∏
j=0

hkjh2ih2i+1)r
±cj

and likewise,

g|G| = (
`−1∏
j=0

hk2jhk2j+1(

mj∏
i=m0

h2ih2i+1))

Thus, g|G| is a permutation of the product of pairs and so

g|G| =
`−1∏
j=0

yσ(i)

for some permutation σ and yj ∈ {xjx′j, x′jxj}.
We will now demonstrate that

∏K−1
i=0 yσ(i) for some permutation

σ of {0, 1, 2, . . . , K − 1}, where yσ(i) ∈ {xix′i, x′ixi} = fF1 r
M , where

F = 1 and M = b1 +
∑(n−3)/2

i=1 ai for some b1 ∈ {±b} and ai ∈ {±2}
if n is odd and F = 0 and M = n/2)n/2+1 if n is even. This means
that regardless of the permutation, the product of pairs will equal
g|G| = fF1 r

M . First, if n is even, then all yi = rn/2, which is in the

center, so will yield the desired result of g|G| = (rn/2)n/2+1, since
K = |F ′|/2 = (n+ 2)/2 = n/2 + 1 in this case. If n is odd, we have

that
∏K−1

i=0 yσ(i) is a product of yσ(i). Let m be such that σ(m) = 0.
Then yσ(m) = f1, and

g|G| =
K−1∏
i=0

yσ(i) =

(
m−1∏
i=0

yσ(i)

)
(y0)

(
K−1∏
i=m+1

yσ(i)

)
.

Since all yσ(i) for i 6= m are rotations,
∏m−1

i=0 yσ(i) = rd for some d,
so
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g|G| =
K−1∏
i=0

yσ(i)

=

(
m−1∏
i=0

yσ(i)

)
(y0)

(
K−1∏
i=m+1

yσ(i)

)

=

(
m−1∏
i=0

yσ(i)

)
(f1)

(
K−1∏
i=m+1

yσ(i)

)

= rdf1

(
K−1∏
i=m+1

yσ(i)

)

= f1r
−d

(
K−1∏
i=m+1

yσ(i)

)

= f1

(
m−1∏
i=0

y−1σ(i)

)(
K−1∏
i=m+1

yσ(i)

)
,

Since yi ∈ {r±2, r±b} for i 6= 0, we conclude that y−1σ(i) ∈ {r±2, r±b}
for i 6= m. Since there is exactly one yi ∈ {r±b} with the others in
{r±2}, we conclude that

g|G| = f1r
b1+

∑K
i=2 ai

in this case, where b1 ∈ {±b} and each ai ∈ {±2}.
Then either player can ensure that the game ends with

g|G| = fF1 r
M

where F = 1 and M = b1 +
∑(n−3)/2

i=1 ai for some b1 ∈ {±b} and
ai ∈ {±2} if n is odd and F = 0 and M = n/2)n/2+1 if n is even.

Corollary 7. If Player has a winning strategy for Return, then
Opponent has a winning strategy for Move.

Proof. Suppose Player has a winning strategy for Return such that
Player can make g|G| = (f1)

F rM . Then Opponent can also make

g|G| = (f1)
F rM . If 1g|G| = 1(f1)F rM = 1, Alpha wins Return and
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Beta wins Move. If 1g|G| = 1(f1)F rM 6= 1, then Alpha wins Move and
Beta wins Return.

These two lemmas can give us the results we need for each Dn.

4.2 Results

Theorem 8. Let G = D2n, and suppose that n ≡ 3 mod 4. Then
Beta has the winning strategy for Return and Alpha has a winning
strategy for Move.

Proof. Let P denote {{e, f1}} ∪ {{f2j, f2j+1} | 2 ≤ j ≤ n−1
2
}. By

Lemma 2, P partitions the set of flips with the identity such that
xix
′
i = r2 for all {xi, x′i} ∈ P , provided {xi, x′i} 6= {e, f1}. Thus, we

may let a = 2 = b in the language of Lemma 6 to conclude that Beta

ensures that the final element is f1r
M for some M = b1+

∑(n−3)/2
i=1 ai,

where b1, ai ∈ {±2}.
We will now demonstrate that M 6≡ 0 mod n. First, note that

|M | ≤ 2 + ((n− 3)/2)(2) = 2 + (n− 3) = n− 1 < n,

so rM can only be trivial if M = 0. However, M is a sum of 1 +
(n − 3)/2 terms, all of which are ±2. Since n ≡ 3 mod 4, there
are an odd number of terms, so there cannot be an equal number
of positive terms and negative terms. Therefore, M 6= 0, and rM is
a nontrivial rotation. Then 1g|G| = 1f1r

M
= (1f1)r

M
= 1r

M 6= 1, so
Beta has a winning strategy for Return if n ≡ 3 mod 4. Since Beta
has a winning strategy for Return, Lemma 7 tells us that Alpha has
a winning strategy for Move.

Theorem 9. Let G = D2n, and suppose that n ≡ 1 mod 4. Then
Beta has the winning strategy for Return and Alpha has a winning
strategy for Move.

Proof. Let G = D2n, and suppose that n ≡ 1 mod 4. Let P denote

{{e, f1}, {f2, fn}} ∪ {{f2j−1, f2j} | 2 ≤ j ≤ n− 1

2
}.

By Lemma 2, P partitions the set of flips with the identity such
that xix

′
i = r2 for all {xi, x′i} ∈ P , provided {xi, x′i} 6= {e, f1, f2, fn}.
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Thus, we may let a = 2 and b = 4 in the language of Lemma 6 to
conclude that Beta ensures that the final element is f1r

M for some

M = b1 +
∑(n−3)/2

i=1 ai, where b1 = ±4 and ai ∈ {±2}. We will now
demonstrate that M 6≡ 0 mod n. Since

|M | ≤ 4 + ((n− 3)/2)(2) = 4 + (n− 3) = n+ 1 < 2n,

there are only three possible values for M such that M ≡ 0 mod n,
those being M = ±n or M = 0. First, note that M is the sum of
even numbers, so M is even and thus, M 6= ±n , thus, rM can only

be trivial if M = 0. However, since (n− 3)/2 is odd,
∑(n−3)/2

i=1 ai 6=
±4, Therefore, M 6= 0, and rM is a nontrivial rotation. Then 1g|G| =
1f1r

M
= (1f1)r

M
= 1r

M 6= 1, so Beta has a winning strategy for
Return if n ≡ 1 mod 4. Since Beta has a winning strategy for
Return, Lemma 7 tells us that Alpha has a winning strategy for
Move.

Theorem 10. Let G = D2n, and suppose that n ≡ 0 mod 4. Then
Beta has the winning strategy for Return and Alpha has a winning
strategy for Move.

Proof. Let G = D2n, and suppose that n ≡ 0 mod 4. Let P denote

{{e, rn/2}, {fj, fj+n/4}} | 1 ≤ j ≤ n− 1

4
}.

Lemma 6 tells us that Beta can ensure that g|G| = rn/2 when n/2

is even. Then 1g|G| = 1r
n/2 6= 1, so Beta has a winning strategy

for Return if n ≡ 0 mod 4. Since Beta has a winning strategy for
Return, Lemma 7 tells us that Alpha has a winning strategy for
Move.

Theorem 11. Let G = D2n, and suppose that n ≡ 2 mod 4. Then
Alpha has the winning strategy for Return and Beta has a winning
strategy for Move.

Proof. Let G = D2n, and suppose that n ≡ 2 mod 4. Let P denote

{{e, rn/2}, {fj, fj+n/4}} | 1 ≤ j ≤ n− 1

4
}.

By Lemma 6, we have that g|G| = rn/2(n/2)+1. Since (n/2) + 1 is
even, this is to say that g|G| = e, which fixes 1. Alpha has a winning
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strategy. Then 1g|G| = 1e = 1, so Alpha has a winning strategy
for Return if n ≡ 2 mod 4. Since Alpha has a winning strategy
for Return, Lemma 7 tells us that Beta has a winning strategy for
Move.
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Chapter 5

Future Research

The next step for this work is to examine other nonabelian groups.
For example, we could examine the quaternion group, Q8. The
quaternion group is a group with 8 elements, Q8 = {e, i, j, k,−e,−i,−j,−k}
such that e is the identity and (−e)2 = e, i2 = j2 = k2 = ijk = −e.
In general, looking at families of permutation groups, like symmetric
groups, and alternating groups would be a logical next step for this
project.

Besides looking at different groups, we could also consider alter-
ations to the rules of the game, for example, where elements of G
can be played more than once, the goals of the players change from
landing the token on Vertex 1 to landing the token on any even
Vertex, or introducing a third player.
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