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Multi-Sensor Image Registration, Fusion and Dimension Reduction

Jacqueline Le Moigne

With the development of future spacecraft formations comes a number of complex
challenges such as maintaining precise relative position and specified attitudes, as well as
being able to communicate with each other. More generally, with the advent of spacecraft
formations, issues related to performing on-board and automatic data computing and
analysis as well as decision planning and scheduling will figure among the most
important requirements. Among those, automatic image registration, image fusion and
dimension reduction represent intelligent technologies that would reduce mission costs,
would enable autonomous decisions to be taken on-board, and would make formation
flying adaptive, self-reliant, and cooperative. For both on-board and on-the-ground
applications, the particular need for dimension reduction is two-fold, first to reduce the
communication bandwidth, second as a pre-processing to make computations feasible,
simpler and faster.

At the same time, continuity of the data as well as extrapolation among several scales,
temporal, spatial, and spectral, are key components of many remote sensing applications,
and these properties are provided by integration and seamless mosaicking of multiple
sensor data, via image registration and image fusion.

 Image Registration

In this work, “image registration” is defined as a feature-based “precision correction,” in
opposition to a model-based “systematic correction.” In our experiments, we assume that
the data has already been systematically corrected according to a navigation model. The
goal of a precision-correction algorithm is to utilize selected image features or control
points to refine the geo-location accuracy given by the systematic model within one pixel
or a sub-pixel. Currently, there is a large quantity of potential image registration methods
that have been developed for aerial or medical images and that are applicable to remote
sensing images [1,2]. But there is no consolidated approach to select the most appropriate
method for a remote sensing application, given the type of data, the desired accuracy and
the type of computational power available with respect to timing requirements. The intent
of our work is to survey, design, and develop different components of the registration
process and to evaluate their performance on well-chosen multi-sensor data.

As a general definition, automatic image registration of satellite image data is the process
that aligns one image to a second image of the same scene that was acquired at the same
or at different times by different or identical sensors. One set of data is taken as the
reference data, and all other data, called input data (or sensed data), is matched relative
to the reference data. The general process of image registration includes three main steps:

• Extraction of features to be used in the matching process.
• Feature matching strategy and metrics.
• Data re-sampling based on the computed deformation (sometimes replaced by

indexing or fusion.

1

Le Moigne: Multi-Sensor Image Registration, Fusion and Dimension Reduction

Published by OHIO Open Library, 2003



Many choices are available for each of the previous steps [1,2]. Our work [3-12] has
mainly been dealing with features such as gray levels, edges, and wavelet coefficients,
and matching them using either cross-correlation, Mutual Information or a Hausdorff
distance as a similarity metrics, and exhaustive search or optimization techniques as
search strategies.

Our earlier work utilized cross-correlation as a similarity metrics to compare features
such as gray levels, edges, and Daubechies wavelet coefficients using mono-sensor data
[4]. Results showed that, as expected, edges or edge-like features like wavelets were
more robust to noise, local intensity variations or time-of-the day conditions than original
gray level values. At the same time, orthogonal wavelet-based registration was usually
faster although not always as accurate than a full-resolution edge-based registration. This
lack of consistent accuracy of orthogonal wavelets seemed to be due to their lack of
translation-invariance. To study the effects of translation and rotation-invariance of
wavelets, we conducted two studies:
(1) The first study [11] quantitatively assessed the use of orthogonal wavelet sub-bands as
a function of features’ sizes. The results showed that:
• Low-pass sub-bands are relatively insensitive to translation, provided that the features
of interest have an extent at least twice the size of the wavelet filters (this result is in
accordance with the Nyquist's criterion).
• High-pass sub-bands, although still useable for registration, are more sensitive to
translation.
(2) The second study [6] investigated the use of an over complete frame representation,
the “Steerable Pyramid” [13]. It was shown that, as expected and due to their translation-
and rotation- invariance, Simoncelli’s steerable filters performed better than Daubechies’
filters. Rotation errors obtained with steerable filters were minimum, independent of
rotation size. Noise studies also reinforced the results that steerable filters showed a better
robustness to larger amounts of noise than orthogonal filters.

All previous work focused on correlation-based methods used with an exhaustive search.
One of the main drawbacks of this method is the prohibitive computation times when the
number of transformation parameters increases (e.g., affine transformation vs. shift-only),
or when the size of the data increases (full size scenes vs. small portions, multi-band
processing vs. mono-band). To answer some of these concerns, we investigated different
types of similarity metrics and different types of feature matching strategies. In this
study, five different algorithms were developed and compared. The features that were
utilized were original gray levels and wavelet features. The different metrics were
correlation, mutual information [14] and a Partial Hausdorff distance [15]. The strategies
were exhaustive search, optimization and robust feature matching.

The multi-sensor dataset used for this study was acquired by four different sensors over
one of the MODIS Validation Core Sites, the Konza Prairie in Kansas, United States, and
included:

• IKONOS Bands 3 (Red) and 4 (Near-Infrared), spatial resolution of 4 meters per
pixel.
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• Landsat-7/ETM+ Bands 3 (Red) and 4 (Near-Infrared), spatial resolution of 30
meters per pixel.

• MODIS Bands 1 (Red) and 2 (Near Infrared), spatial resolution of 500 meters, per
pixel.

• SeaWiFS Bands 6 (Red) and 8 (Near Infrared), spatial resolution of 1000 meters
per pixel.

Compatible spatial resolutions were obtained by performing recursive decimation by 2 of
the wavelet transform. Overall, all results obtained by the 5 algorithms were similar
within 0.5 degrees in rotation and within 1 pixel in translation.

Then, subpixel registration capabilities of some of the previous algorithm components
were assessed by registering a coarse image to a fine image at the resolution of the fine
image. For this purpose, we utilized a multiphase filtering technique, in which all
possible phases of the fine image are registered with respect to the coarse image.  Each
different phase is filtered and down-sampled to the coarse resolution.  The phase that
gives the best registration metric gives the registration to the resolution of the fine image.
We registered this data using two different criteria, normalized correlation and mutual
information. The results showed that both correlation and mutual information have an
overall accuracy of about 0.5 pixels with a 0.25 pixel accuracy for same-band data.

Another way to look at the data is to analyze the self-consistency of the
measurements. For this analysis, we considered 3 images and computed the (x,y)
offset of one of the images from the other two in two different ways (i.e., [Image1
to Image 2] and [Image1 to Image3 to Image 2]). If the registrations are self-
consistent, the answers should be the same. In this experiment, we showed that
correlation and mutual information exhibited self-consistency within 1/8 pixel.

 Image Fusion

After an accurate multi-sensor registration, the complementary information provided by
different sensors with multiple spatial and spectral resolutions can be integrated through
image fusion. This is the focus of the following investigation, characterization and
mapping of land cover/land use of forest areas, such as the Central African rainforest.
This task is very complex, mainly because of the extent of such areas and, as a
consequence, because of the lack of full and continuous cloud-free coverage of those
large regions by one single remote sensing instrument. In order to provide improved
vegetation maps of Central Africa and to develop forest-monitoring techniques for
applications at the local and regional scales, we are studying the possibility of utilizing
multi-sensor remote sensing observations coupled with in-situ data. Fusion and clustering
of multi-sensor data are the first steps towards the development of such a forest
monitoring system. Our first experiments involve the fusion of SAR and Landsat image
data of the Lopé Reserve in Gabon [18].
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Figure 1 - Wavelet-Based Image Fusion

Similarly to previous fusion studies [16,17], our fusion method is wavelet-based. Figure 1
illustrates the wavelet-based fusion idea, where high- and low-resolution data are
independently decomposed using a multi-resolution wavelet. Then, components from
both decompositions are combined during the reconstruction phase to create the new
fused data. In this scheme, low-frequency information of the lowest spatial resolution
data (e.g., Landsat or MODIS data) are combined with high-frequency information of the
highest resolution data (resp., SAR or JERS data) in order to take simultaneous advantage
of the higher spatial and spectral resolutions. In this study, the same Daubechies filter
size 4 was used for both decomposition and reconstruction phases and for both types of
data. But we are now investigating the use of different filters for decomposition and
reconstruction as well as for high- and low-resolution data that would better preserve the
spatial, spectral and textural properties of the data. The fusion stage is followed by
unsupervised classification, first to validate our fusion method, and then to obtain a
vegetation map of the area of interest. The classification obtained after fusion of SAR and
Landsat is then compared to the classification obtained from Landsat data alone.  Results
are shown in Figures 2 and 3, where dark green, light green, orange, light blue, pink, and
dark blue represent respectively Mountain Forest, Mixed Forest, Okoume Forest,
Savanna, Fern Savanna, and Burnt Savanna. Qualitatively, we can see that the results are
similar, but that the fused clustering shows more localized details with differentiation of
the different types of savannas in the right side of the image and a different clustering of
Mountain Forest versus Mixed Forest in the left side of the image. These results will be
evaluated quantitatively, once in-situ data become available.
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Figure 2 - Landsat Classification Figure3 - Fused Data Classification

 Dimension Reduction

The introduction of hyperspectral instruments results in a large increase of remote
sensing data volumes. Dimension reduction of such data, by filtering out redundant
information, can reduce data volumes and speed up further processing, such as supervised
or unsupervised classification. Considering such data increases, and anticipating the
ultraspectral instruments of the future, we investigated existing methods such as the
Principal Component Analysis (PCA) and its implementation on a parallel architecture
like the COTS-based Beowulf architecture. We also looked at a parallel adaptive PCA
[19], and we developed a new wavelet-based dimension reduction method [20].

 Adaptive and Parallel Principal Component Analysis

Due to its conceptual simplicity, Principal Component Analysis (PCA) is the most widely
used among dimension reduction techniques. The general idea of this process is to project
the data in a different coordinate system and to obtain a lower dimension that provides a
compact and uncorrelated representation of the data. The first principal component (PC1)
has the largest percentage of the overall data variance, also representing the "information
content." The following principal components, from component number 2 to n, contain a
decreasing percentage of total data variation.

Because of the high computational demands of PCA, its implementation on a parallel
processor needs to be addressed. Two basic methods for performing the PCA
computations are considered: the power method and the Jacobi method. The power
method computes the eigenvalues one by one starting with the largest one (which is
associated with the PC that contains most of the information), then moving to the next
largest and so on. The power method, therefore, offers the opportunity to only compute
the eigenvalues and the PCs that correspond to a desired level of information content.
The Jacobi method computes all eigenvalues at once, and therefore may require a higher
execution time. But, in a parallel implemention, the Jacobi method scales better than the
power method when a larger number of the PCs are computed. Thus, for cases where a
relatively small level of information content is needed, the power method could work
faster, while, when a higher level of information content is needed, the Jacobi method
should be used instead.

As a consequence, we developed an adaptive algorithm that quickly reduces the
dimensionality of hyperspectral data by adaptively selecting which of the two methods to
use, depending on the number of PC’s needed or equivalently depending on the desired
level of information content. Experimental results not only show scalability, but also
demonstrate that the execution time of this application has been brought to feasible levels
using a cost-efficient high performance computer, a Pentium-based Beowulf System.
Both algorithms and the adaptive method were tested on hyperspectral data obtained from
the AVIRIS imaging spectrometer, with a spatial resolution of 17m x 17m and a spectral
resolution of 224 channels. As a parallel architecture, we used a Beowulf machine

5

Le Moigne: Multi-Sensor Image Registration, Fusion and Dimension Reduction

Published by OHIO Open Library, 2003



developed at NASA/Goddard, the HIVE (Highly-parallel Integrated Virtual
Environment), which consists of four sub-clusters containing a total of 332 processors. In
this work, we use a sub-cluster with 2 dual-Pentium Pro host nodes, and 66 dual-Pentium
Pro PCs (132 processors) working as compute nodes.

As an illustration, Figure 4 shows the timing and specific crossing point (in terms of
information content) at which one or the other of the algorithms, Jacobi or Power, needs
to be selected.

Time and Information Content
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21 99.85638 96.74 sec 94.71 sec

Figure 4 - Timing and Switching Decision for the AVIRIS Data (Sequential
Implementation)

In implementing the parallel algorithms, special attention was given to the fact that
communication bandwidth and latency in clusters do not compare favorably with
processing speed. For example, computing the mean in the master node and broadcasting
it is more efficient than computing the mean in parallel. Table 1 shows the execution time
for 2, 4, 8, and 16 processors. For the same underlying hardware, the specific crossing
point differs based on the data set. The general implication for the adaptive algorithm is
that a threshold of 99 percent information content can be used, and will ensure that the
adaptive algorithm is performing at or around the optimal execution time for computing
the desired PCs.

PEs PCs IC (%) Parallel Time Parallel Time

Power-Based Jacobi-Based
2 3 99.11751 4.482 4.526

4 99.40379 5.509 4.676
4 18 99.88254 5.303 5.313

19 99.88767 5.651 5.466
8 22 99.90222 3.645 3.693

23 99.90674 3.888 3.783
16 23 99.90674 3.859 3.978

24 99.91116 4.738 3.79

Table 1 – Execution Time on the Hive;PEs  =  Number of Processors; PCs  =
Number of Principal Components; IC    =  Information Content (in percent)
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A Wavelet-Based Dimension Reduction Technique

The principle of this wavelet-based method is to apply a discrete one-dimensional
wavelet transform to hyperspectral data in the spectral domain and at each pixel. Figure 5
shows an example of the actual signature of one class (Corn-notill) for 192 bands of an
AVIRIS dataset, and different levels of wavelet decomposition of this spectral signature.
When the number of bands is reduced, the structure of the spectral signature becomes
smoother than the structure of the original signature, but the signal still shows the most
important features for several levels. Once the 1-D wavelet decomposition is applied to
each pixel signature, the wavelet coefficients yield a reduced-dimensional data set that
can be used for applications such as supervised classification.

Figure 5 - An example of the Corn-notill spectral signature and different levels
 of wavelet decomposition

From a complexity point of a view, the wavelet-based reduction method yields the
order of O(MN), where N is the number of bands and M is the number of pixels in
the spatial domain. On the other hand, the total estimated complexity of PCA is
O(MN2+N3), which shows that the computation efficiency of a wavelet reduction
technique is superior to the efficiency of the PCA method.

Validation of the wavelet-based reduction is performed using supervised
classification with 1992 AVIRIS data of the northern part of Indiana (US). The
results (Table 2) show that our new wavelet-based reduction technique provides a
greater computational efficiency as well as a better overall classification accuracy
than the widely used PCA method. For this dataset and the Maximum Likelihood
(ML) classification, it is shown that the Wavelet Reduction gives 79% overall
accuracy for the third level of decomposition, while PCA only gives 77.5% for an
equivalent 24 PCs for the ML classification or 81% versus 79% for an equivalent
48PC's. The same trend was seen with another AVIRIS dataset. The two other
classification methods, Minimum Distance and Parallelepiped, used for comparison
purpose, are sometimes chosen over the Maximum Likelihood classification
because of their speed, but are known to be much less accurate than the ML
classification.
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Table 2
Different types of classifications of PCA vs. wavelet, different levels of

decomposition (IndianPines’92)

In summary, both analytical assessment of time complexity and experimental
results of classification accuracy have proven that the 1-D wavelet-based dimension
reduction technique is an efficient method in reducing dimensionality of
hyperspectral data. Its performance, assessed through classification accuracy, is
comparable and often superior to the PCA method performance.
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