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Abstract 

The study investigated the behaviour of asphalt concrete mixes for aggregate gradations, according to the Iraqi specification 

using the Bailey method designed by an Excel spreadsheet. In mixing aggregates with varying gradations (coarse and 

fine aggregate), The Bailey method is a systematic methodology that offers aggregate interlocking as the backbone of the 

framework and a controlled gradation to complete the blends. Six types of gradation are used according to the bailey 

method considered in this study. Two-course prepared Asphalt Concrete Wearing and Asphalt Concrete binder, the 

Nominal Maximum Aggregate Sizes (NMAS) of the mixtures are 19 and 12.5 mm, respectively. The total number of 

specimens was 240 for both layers (15 samples) for each Chosen Unit Weight (CUW). The Marshall Test results show the 

increase in stability and decrease in flow and bulk density when the rise in CUW for both courses. In volumetric properties, 

VMA increases when the increase in CUW. When an increase in CUW air void increases gradually. The permanent 

deformation for the coarse aggregate (95, 100, 105% CUW) has more resistances than the fine aggregate (80, 85, 90%) 

wearing and binder coarse. The CUW (105%) blend of wearing, and binder course has a high value of stability and 

resistance to permanent deformation (11.9, 11.1 kN). The CUW above mentioned is considered a good design aggregate 

structure and produces improvement to the Marshall properties, leading to better performance for pavement roads and 

higher resistance to distresses. 

Keywords: Bailey Method; Volumetric Properties; Marshall Test; CUW. 

 

1. Introduction 

Asphalt mixtures are consisting of parts of fractured rock adhesive together by asphalt content. It’s a very simple 

material. Hot mix asphalt, as a structure material, is much more complex than it looks. Highway engineers also refer to 

asphalt mixture’s skeleton when they consider the function of aggregate. Compressive strength and movement resistance 

under truckloads come from the aggregate. The packing properties of aggregates are considered by the Bailey Method 

for gradation selection. The aggregate gradation considers one of the mixture’s key features, which affects the volumetric 

properties of the asphalt mix [1]. Robert Bailey Originally developed the Bailey method of the Transportation 

Department of Illinois (IDOT). The system recommends a solid aggregate skeleton for rutting resistance and sufficient 

mineral aggregate voids for good durability. District 5 of the IDOT has used the method since the early 1980s, and IDOT 

encouraged using the method throughout the 1990s [2]. 
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Many experiments on the Bailey graduation method have been conducted. A mixture design procedure based on and 

adapted to the Bailey Method for designing mastic asphalt (SMA) in stone has led to excellent rutting properties [3]. 

Results of a Bailey Method study in Oregon for the design and testing of dense-graded HMA suggested that an evaluation 

of the adapted Bailey Method should be additional zed in the development and selection of dense-graded mixture tests 

for design [4]. Many studies were designed to relate HMA aggregate gradation to permanent deformation resistance. 

Laboratory research shows that mixtures that are larger and with the same air void content 4% are typically more resistant 

to permanent deformation than mixes prepared for smaller aggregate particles, based on the influence of variable 

maximum size on rutting potentials and other properties of aggregate asphalt mixtures [5]. Fine gradations or mixtures 

with sanded products have been more susceptible to permanent deformation [6]. 

1.1. Coarse and Fine Aggregate  

The conventional concept of coarse aggregate that any particle retained on the sieve 4.75 mm. Any aggregate passing 

the Sieve 4.75 mm (clay material, silt, and sand) is known as a fine aggregate. For (9.5 and 25-mm) blends, the same 

sieve size is used. In the Bailey process, the terms coarse and fine are more applicable to the estimation of packing. The 

aggregate interlock is given by the combination of aggregates in different measurement mixtures. The definitions of the 

Bailey Method are: 

 Coarse Aggregate: Large aggregates of particles that produce voids if placed in a unit volume. 

 Fine Aggregate: The aggregate particle fills the voids produced by the coarse aggregate in the mixes, as shown in 

Figure 1. 

 

Figure 1. Sieve analysis of course and fine aggregate [2] 

A mixture with a small CA ratio typically requires a stronger fine aggregate to satisfy the necessary volumetric 

properties. Furthermore, a CA ratio below the basic range in Table 1 might suggest a mixture that might separate. In 

general, that agreed to gap-grade mix, with CA ratio rise to reach the 1.0 Void in Mineral Aggregate (VMA) will rise. 

However, the aggregate portion is “unbalanced” when the value comes from 1.0 because the aggregate size’s interceptor 

tries to manage the coarse aggregate backbone. This combination will not be as vulnerable to segregation.  

The coarse portion of the fine aggregate (FAc) produces voids filled with the fine portion of fine aggregate (FAf). 

The ratio is commonly accepted to be below 0.50, as high values normally show a too significant (FAf) blend volume. 

If the FAc proportion was smaller than the set of principles values recommended in Table 3, gradation must be avoided 

if the FAc ratio exceeds 0.50. Aggregate gradation plays an important role in mixture performance against large 

distresses like rutting, durability, and fatigue. Cracking also influences the working properties of the mixture [7-9]. 

Table 1. Recommended ratio for aggregate mixes [10] 

NMPS 37.5 mm 25.0 mm 19.0 mm 12.5 mm 9.5 mm 4.75 mm 

CA Ratio 0.80 - 0.95 0.70 - 0.85 0.60 - 0.75 0.50 - 0.65 0.40 - 0.55 0.30 - 0.45 

FAe Ratio 0.35 - 0.50 

FAf Ratio 0.35 - 0.50 

Note: NMPS=Nominal Maximum Particle Sizes; CA=Course Aggregate; FA= Fine Aggregate; FAe Ratio: ratio 

of the fine part of the fine fraction to the total fine part of the fine fraction. 
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1.2. Bailey Method 

Coarse aggregate and fine aggregate are typically separated using the standard sieve size that is usually among (4.75-

2 mm). In Bailey, a separate definition of “course” and “fine” is used concerning their volumetric properties inside the 

aggregate mixture. Large particles create a void when packed together in the mixture, while fine particles fill the void. 

So, the definition relates to the overall category of the maximum total size of the mixture (NMAS). The limited Sieve 

between coarse and fine, called Primary Control Sieve (PCS), is present in the following equation : 

𝑃𝐶𝑆 = 0.22 × 𝑁𝑀𝐴𝑆                                                                                                                                                      (1)            

In that relation, (NMAS) is used to describe the scales of the coarse aggregate particles, while PCS is used to describe 

the scales of the intergranular voids that are proportionate to coarse particles. 

Many researchers, e.g.  (Kim et al., 2006) [11], who used packing theories, suggested a value of 0.22. This value is 

suggested by the Bailey method as a mean of particle diameter ratios ranging from 0.15 (round particles) to 0.29 (flat 

particles), as seen in Figure 2 [12]. 

 

Figure 2. Two-Dimensional Aggregate Packing by bailey [12] 

 The average conditions of asphalt concrete mixtures consisting of particles of various shapes, strength, and textures 

were found in Equation 1. Single sizes are defined as “coarse” or “fine” if the PCS pass is below 50% or above. Half 

NMAS(HS) can evaluate the packing properties of the coarse portion of the aggregate mixture. The HS classifies 

particles in the PCS as “pluggers” (larger HS-retained particles) or “interceptors” (smaller particles passing on the HS). 

The coarse aggregate ratios regulate these two fractions’ equilibriums, Equation 2: 

𝐶𝐴 =
𝑷𝐻𝑆−𝑷𝑃𝐶𝑆

100−𝑷𝐻𝑆
                                                                                                                                                                 (2) 

P represents the percentage to the defined Sieve; raising the CA ratio means raising the interceptors, which typically 

increases the void in mineral aggregate (VMA) because the interceptors are too large to meet in the void created by a 

large portion. The packing properties of the fine portion of the aggregate mixture can be analyzed considering that the 

PCS passing itself is a “new” mixture of fine and coarse portions. The secondary control sieve (SCS) is generally 

considered the NMAS of the new mix and, therefore, a new break and is equally 0.22 times the value of a PCS. The fine 

portion of a fine aggregate can be divided into a coarse and a fine portion. The Tertiary Control Sieve (TCS) is also the 

closest to 0.22 times SCS values. The balance between the various factions of the fine aggregate is defined as the ratio 

of Fine Aggregate Coarse (FAc) and Fine Aggregate Fine (FAf) that defined as the Equations 3 and 4:   

FA𝑐 =
𝑷𝑠𝑐𝑠

𝑷𝑝𝑐𝑠
                                                                                                                                                                       (3) 

FAf =
𝑷𝑡𝑐𝑠

𝑷𝑠𝑐𝑠
                                                                                                                                                                        (4) 

P represents the percentage to the defined Sieve; increased FA ratios typically minimize VMA and air void (AV) 

because the small portion increases the packaging potential. For the determination of the fine-graded mixes (CUW < 90 

per cent), just the passing to the PCS is determined because only the fine aggregate carry the load and control void in 

mineral aggregate, only the, Therefore, the characteristic sieves and the ratios must be redefined, provided that the 

original PCS is the new NMAS [2]. The primary purpose of this study has been to evaluate the laboratory efficiency of 

asphalt concrete blends of aggregate structures that have been constructed and evaluated using aggregate blending and 

analysis methods. In all of the aggregate structures in this study, the Bailey method of aggregate gradation analysis was 

used.  
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2. Materials and Methods  

The flowchart methodology of this research is available in the Figure 3. The crushed coarse aggregate was from 

Badra in Waist governorate in Iraq. Specification (SCRB R/9, 2003) [13], The coarse aggregate sizes varied from 3/4 in 

(19 mm) to No.4 sieve (4.75 mm) for carrying, and the fine aggregate ranged from No.4 (4.75 mm) to No.200 (0.075 

mm) Sieve retained. Tables 2 and 3 show the coarse and fine aggregate relative gravity and absorption tests performed 

by ASTM C-127 and 128. While Figures 4 and 5 exhibited the selected gradation for wearing and binder course, 

respectively. Penetration grade (40-50) of asphalt cement is used, prepared from Dhi Qar governorate in Iraq. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flowchart of the Work Program 

2.1. Design Mix of Bailey Method  

The LUW and RUW are used to determine the Chosen Unit Weight (CUW), which determines the volume of coarse 

aggregate in a mixture. The volume of fine aggregate in a fine-graded mixture exceeds the volume of voids in the coarse 

aggregate structure. Since the fine aggregate primarily carries the load, the strength of the fine aggregate becomes much 

more important. For fine-graded mixes, we suggest (80, 85, 90) per cent LUW. A coarse-graded mix uses the coarse 

aggregate skeleton to carry more of the load and uses some of the strength from the fine aggregate, for coarse-graded 

mixes suggest a CUW in the range of (95, 100, 105) per cent LUW. 

Table 2. Physical Properties of Coarse Aggregate. 

Type of CA Property Coarse Aggregate 

CA1 

Bulk Specific Gravity 2.621 

Apparent Specific Gravity 2.669 

Percent of Water Absorption % 0.7 

CA2 

Bulk Specific Gravity 2.674 

Apparent Specific Gravity 2.754 

Percent of Water Absorption % 1.1 

CA3 

Bulk Specific Gravity 2.738 

Apparent Specific Gravity 2.806 

Percent of Water Absorption % 0.9 

Asphalt Cement Filler Aggregate  

Determine of: 

Rodded unit weight; 

Loose unit weight; 

Physical properties of fine aggregate; 

Physical properties of coarse aggregate. 

Select gradation of CUW  

80, 85, 90, 95, 100, and 105% 

Choose the desired 

percentage of -0.075 mm 

Marshall Mix Design 

Discussion  

Stability, Flow  

Repeated Load Test (PRLS) 

 

Experimental Work 
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Table 3. Physical Properties of Fine Aggregate 

 

 

 

 

 

 

 

Figure 4. Selected gradation for bailey method wearing course 

 

Figure 5. Selected Gradation for bailey method binder Course 

2.2. Aggregate Ratios Coarse Graded 

A blend with a small CA ratio generally needs a stronger fine aggregate to meet the required volumetric properties, 

with CA ratio rise to reach the 1.0 void in mineral aggregate (VMA) will rise. However, the aggregate portion is 

“unbalanced” when the value comes from 1.0 because the aggregate size’s interceptor tries to manage the coarse 

aggregate backbone. This combination will not be as vulnerable to segregation. Tables 4 to 7 show the Aggregate ratios 

for wearing and binder course. The coarse portion of the fine aggregate (FAc) produces voids filled with the fine portion 
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of fine aggregate (FAf). The ratio is commonly accepted to be below 0.50, as high values normally show a too significant 

(FAf) blend volume. If the FAc proportion was smaller than the set of principles values recommended in Table 1, 

gradation must be avoided if the FAc ratio exceeds 0.50.  

Table 4. Aggregate ratios for wearing course (coarse graded) 

Type 
Aggregate ratios 

CA FAc FAf 

CUW80% 0.684 0.465 0.435 

CUW85% 0.611 0.469 0.443 

CUW90% 0.527 0.482 0.471 

CUW95% 0.522 0.477 0.46 

CUW100% 0.527 0.482 0.471 

CUW105% 0.504 0.488 0.484 

Table 5. Aggregate ratios for binder course (coarse graded) 

Type 
Aggregate ratios 

CA FAc FAf 

CUW80% 0.66 0.498 0.378 

CUW85% 0.647 0.475 0.393 

CUW90% 0.611 0.391 0.464 

CUW95% 0.622 0.422 0.435 

CUW100% 0.611 0.391 0.464 

CUW105% 0.603 0.359 0.498 

Table 6. New control sieve for wearing course (fine graded) 

Type 
Aggregate ratios 

CA FAc 

CUW80% 0.561 0.435 

CUW85% 0.559 0.443 

CUW90% 0.551 0.471 

CUW95% 0.555 0.46 

CUW100% 0.551 0.471 

CUW105% 0.55 0.484 

Table 7. New control sieve for binder course (fine graded) 

Type 
Aggregate ratios 

CA FAc FAf 

CUW80% 0.774 0.378 0.433 

CUW85% 0.755 0.393 0.457 

CUW90% 0.698 0.464 0.553 

CUW95% 0.718 0.435 0.518 

CUW100% 0.698 0.464 0.553 

CUW105% 0.684 0.498 0.589 

2.3. Preparation of Marshall Specimens 

A cylindrical specimen was used for the Marshall specimens (Figure 6). With a height 63.5 mm (2.5 ± 0.05 inch) and 

diameter 102 mm (4 inch). The hotplates were heated to the middle of (120-150 °C) Marshall mould, hammer for 

compaction, and spatula. Before conducting the mixture, the bottom of the mould held a sheet of non-absorbent paper 

cut into size. Afterwards, the mould was heated, and the asphalt mixture was placed in the preheated mould and then 

heated with a spatula ten times round and 15 times around the inner surface. The non-absorbent piece of paper in size 

was then placed on the mixture top. The mixture temperature was (150 °C) just before compaction. Put the mould on 

the seat pedestal, and (75) blows were applied on top and bottom of the sample with a 4.535 kg weight slipper and a 

457.2 mm (18 inch) free drop. Let the moulded specimen cooled one day at room temperature and automatically jacked 

out of the mould. The total number of specimens was 240 for both layers (15 specimens) for each chosen unit weight 

(CUW) (90 total specimens of CUW) for Marshall test, Theoretical Maximum Specific Gravity (30 specimens). 
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Figure 6. A group of Prepared Specimens 

2.4. Stability and Flow  

This method involves determining the resistance to plastic flow of cylindrical specimens of the asphalt mixture on 

the lateral surface formed by the Marshall device (Figure 7). The overall load carried by a compact sample measured at 

60 °C was typically the marshal stability at the load rate of 2 inches per minute. In addition to Marshall’s stability, the 

flow was measured. The flow was proportional to the vertical deformation of the specimen. High values of flow normally 

mean that the plastic blend has been permanently deformed throughout traffic. In contrast, lower flow values may show 

a mixture of higher void and insufficient durability of asphalt and one which may experience premature cracking due to 

fragility during pavement life. The stability and flow are calculated according to ASTM D-1559 [14]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Marshall Test Apparatus 

2.5. Repeated Load Test 

Axial load tests on samples were performed using (PRLS). The device utilized for this reason is illustrated in detail 

by Al-Bayati (2006) [15]. The tests were accomplished on the cylindrical samples, height (4 inches) and (4 inches) 

diameter, arranged for every mixture one sample (Figure 8). The repeated compressive stress was subjected to the 

sample, and the permanent deformation was determined under the various load repeats. The repeated load test protocols 

used for this research are described as follows: Place the sample in a test chamber at the appropriate temperature for two 

hours to be tested and distribute the temperature to allow inside the chamber. 

After completing the test sample “set up” of the test apparatus, the dial indicator was fixed to zero reading. The 

pressure was calibrated to the stress level specified. The timer (port and port of repository) is also set to the loading and 

rest periods needed. A recording video is in the right place to show the view of the dial indicator ready to be recording .

The experiment starts by repeated axial stress and recording the reading of permanent deformation. 

When the test is completed after 10000 load repetitions (or any number when the sample failed early for load 

repetitions), the recording is terminated. The specimen is removed from the test chamber. 

The data analyses of deformation include: 

1. Determining the following load repetitions of the permanent deformation: (1, 10, 50, 100, 200, 300, 400, 500, 600, 

700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000…) or until the sample failed. 

2. The permanent strain (𝜀𝑝), calculated based on Equation 5: 

𝜀𝑝 =
𝑃𝑑 ×10

h
                                                                                                                                                                       (5) 

Where; 𝜀𝑝= axial permanent microstrain; 𝑝𝑑= axial permanent deformation, ℎ=height of sample.  
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3. Resilient deformation is calculated as the load is replicated from 50 to 100. 

4. The resilient strain (𝜀𝑟) and resilient modulus (𝑀𝑟) are calculated as Equation 6: 

𝜀𝑟 =
𝑟𝑑 ×10

h
                                                                                                                                                                       (6) 

Where 𝜀𝑟 = axial resilient microstrain; 𝑟𝑑= axial resilient deformation.  

Resilient modulus: 

𝑀𝑟 =
σ 

εr
                                                                                                                                                                           (7) 

Where; 𝑀𝑟= Resilient modulus (psi); 𝜎 = repeated axial stress (psi); 𝜀𝑟= axial resilient strain (in/in). 

   

Figure 8. Apparatus for the PRLS and test samples 

3. Results and Discussions  

3.1. Optimum Asphalt Content  

Five percentages are used (4, 4.5, 5, 5.5, and 6%) to obtain the (OAC) for Marshall Mix design wearing and binder 

course of bailey method. The highest OAC founded in CUW, 80% (5.2%) wearing course, and (5%) in the same CUW 

of binder course because the aggregate gradation is immediately relating to (OAC). The finer the mixing gradation has 

a large surface area. The larger the binder volume used to cover the particles (Asphalt Institute, 2014) [16] Tables 8 and 

9 show the Optimum Asphalt Content for wearing and binder coarse. 

3.2. 4.2 Marshall Stability  

All the gradations were found to have more than adequate stability. CUW (80%) has low stability (9.2 kN). This 

value increases the CUW rises to the up to reach (11.9 kN) in CUW (105%). While, the stability of course binder record 

(8 kN) in CUW (80%), this value arises to (9.5 kN) in CUW (90%) and then values decreases gradually to reach (11.1kN) 

in CUW (105%) with the coarse gradations providing the high-value stability and the low producing with fine gradations. 

Figure 9 presents Marshall stability for wearing and binder coarse for bailey method Mixtures in different CUW. 

Figure 9. Marshall Stability for bailey method Mixtures for wearing and binder course 
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3.3. Marshall Flow 

Marshall flow is also affected by gradation; The Bailey method raised the flow number of a finer to more than the 

number of coarser blends. The figure presents the Marshall flow for bailey method Mixtures for both wearing and binder 

course. The CUW (80%) that considers a fine grade, therefore. The value was a maximum of 4.3 mm, and this value 

decreases when an increase in CUW reaching 3.3 mm in CUW (105%). The analysis for all the data showed the flow 

for the binder course has the same behaviour; the flow decreases when CUW increases, as shown in the Figure 10.  

Figure 10. Marshall Flow for bailey method Mixtures for wearing and binder course 

3.4. Bulk Density  

The relationship between the Bailey Method’s ratios and the dry bulk densities generally supports the arguments 

provided in the Bailey Method regarding changes in VMA ratios and the Bailey Method. Reducing the CA ratio can 

usually reduce VMA (increasing Bulk density) [4]. Figure 11 exhibits the relationship between Bulk density and CUW 

for wearing and binder course. The Bulk density in CUW (80%) was (2.326), corresponding (16.2%) of VMA. This 

value increase in conjunction with a decrease in the VMA value (fine grade); on the other hand, for binder course also 

have the same behaviour, in CUW (80%) was (2.318) corresponding (16.2%) of VMA, the Bulk density opposite VMA 

for coarse and fine gradation. 

Figure 11. Bulk Density for bailey method Mixtures for wearing and binder course 

3.5. Air Voids 

The Bailey method of gradation selection takes into consideration the packing properties of aggregates. The process 

parameters are directly related to the mineral aggregate (VMA) voids, air voids, and compaction properties [17]. Figure 

12 illustrate Air void for both wearing and binder course for bailey method Mixtures. For wearing coarse CUW (80%) 

it considers a fine grade recorded a percent (2.6%), this ratio is increasing in CUW (85%) (3.6%), and increasing slightly 

to become (4%) in CUW (90%) and increase gradually to reach (5.8%) in CUW (105%). For coarse binder CUW (80%) 

have (3.6%), this value increases slightly to reach (4%) in CUW (85%) and increase gradually to reach (6%) in CUW 

(105%).  

2.25

2.26

2.27

2.28

2.29

2.3

2.31

2.32

2.33

80 85 90 95 100 105

B
u

lk
 D

en
si

ty
 (

g
m

/c
m

3
) 

Chosen Unit Weight (%)

Wearing

0

1

2

3

4

5

6

80 85 90 95 100 105

F
lo

w
 (

m
m

)
Chosen Unit Weight (%)

Binder

0

1

2

3

4

5

6

80 85 90 95 100 105

F
lo

w
 (

m
m

)

Chosen Unit Weight (%)

Wearing

2.25

2.26

2.27

2.28

2.29

2.3

2.31

2.32

2.33

80 85 90 95 100 105

B
u

lk
 D

en
si

ty
 (

g
m

/c
m

3
) 

Chosen Unit Weight (%)

Binder



Civil Engineering Journal         Vol. 7, No. 05, May, 2021 

836 

 

Figure 12. Air Voids for bailey method mixtures for wearing and binder course 

3.6. Voids in the Mineral Aggregate 

Voids in the mineral aggregates (VMA) of a compacted asphaltic mixture include the air voids and the voids filled 

with the effective asphaltic binder. Specifications require a minimum VMA to ensure that the aggregate particles are 

coated with the binder at a thickness that ensures the mixture durability [18]. The low void in the mineral aggregate did 

not lead to finely graded mixtures to durability or crushing problems [19]. For wearing coarse CUW (80%), it considers 

a fine gradation has a percent (16.2%), this ratio increases gradually in CUW (105%) (coarse gradation) to reach 

(17.7%). For coarse binder CUW (80%) have (16.2%), this value increases slightly to reach (16.7%) in CUW (85%) 

and increase gradually to reach (17.1%) in CUW (105%). VMA void mineral aggregate (VMA) increases when CUW 

increases for fine and coarse for wearing and binder course (Tables 8, 9). Similar findings were reported by Jebur and 

Alhaddad [20]. Figure 13 shows lower and high values for void mineral aggregate.  

  

Figure 13. Void in mineral aggregate for bailey method Mixtures for wearing and binder course 

Table 8. Optimum asphalt content mixture type for wearing coarse 

Chosen unit weight 

for bailey method 

O.A.C (%) by Wt. of 

Total Mix 

Bulk Density 

(gm/cm3) 

Stability 

(kN) 

Flow 

(mm) 

Air Voids 

(%) 

VMA 

(%) 

VFA 

(%) 

CUW (80%) 5.2 2.326 9.2 4.3 2.6 16.2 84.4 

CUW (85%) 5.1 2.315 9.6 4 3.6 16.4 75 

CUW (90%) 5 2.3 9.8 3.6 4 17 74 

CUW (95%) 5 2.296 11 3.5 4.5 17.2 70 

CUW (100%) 4.9 2.284 11.2 3.5 5 17.5 68 

CUW (105%) 4.8 2.28 11.9 3.3 5.8 17.7 65 

 

 

0

1

2

3

4

5

6

7

80 85 90 95 100 105

A
ir

 v
o

id
 (

%
)

Chosen Unit Weight (%)

Binder

0

1

2

3

4

5

6

7

80 85 90 95 100 105

A
ir

 v
o

id
 (

%
)

Chosen Unit Weight (%)

Wearing

15

15.5

16

16.5

17

17.5

18

80 85 90 95 100 105

V
M

A
 (

%
)

Chosen Unit Weight (%)

Wearing

15

15.5

16

16.5

17

17.5

18

80 85 90 95 100 105

V
M

A
 (

%
)

Chosen Unit Weight (%)

Binder



Civil Engineering Journal         Vol. 7, No. 05, May, 2021 

837 

 

Table 9. Optimum asphalt content mixture type for binder coarse 

Chosen unit weight 

for bailey method 

O.A.C (%) by Wt. of 

Total Mix 

Bulk Density 

(gm/cm3) 

Stability 

(kN) 

Flow 

(mm) 

Air Voids 

(%) 

VMA 

(%) 

VFA 

(%) 

CUW (80%) 5 2.318 8 4.8 3.6 16.2 78 

CUW (85%) 5 2.314 8.3 4 4 16.5 75 

CUW (90%) 4.9 2.308 9.5 3.7 4.1 16.7 73 

CUW (95%) 4.9 2.305 10.2 3.6 4.5 16.7 70 

CUW (100%) 4.8 2.297 11 3.5 5 16.9 66 

CUW (105%) 4.8 2.289 11.1 3.2 6 17.1 63 

3.7. Repeated Load Test 

The PRLS is characterized as the study of permanent deformation after certain stress and frequency in the sample. 

Initially, the test was performed under standard stress conditions of 100 kPa and 1800 cycles. The results showed no 

variation in deformation, which makes it impossible to determine. Axial stress and the number of cycles were increased 

to 300 kPa and 500 cycles, respectively. The axial stress and number of cycles were raised to 300 kPa and 500 cycles to 

treat these small differences and better simulate high pressures in the field. Each cycle consisted of a 1-second load 

period and 1-second rest at a temperature of 40 °C. The standard test outcome is based on three steps: primary, secondary 

and tertiary, which are the relation between the total permanent strain accumulated and the cycle number as presents 

in Figure 14.  The permanent strain accumulates quickly during the primary stage. A permanent strain growth rate per 

cycle starts slowing until a constant value is achieved, indicating the beginning of the second stage. Then the specimen 

begins again to grow, and the rate of stress accumulation begins to grow rapidly, where the tertiary stage begins [21]. 

Some specimens were highly resistant to permanent deformation and did not reach the tertiary stage. Figure 15 presents 

the results of permanent deformation for asphalt mixture selection. The results show the fine aggregate mixes less 

effective and resistant to permanent deformation and the coarse aggregate mixes show the high value of permanent 

deformation. Such behaviour of materials comply with the findings of Yaghoubi and Mansourkhaki (2010) study [22].  

 
 

Figure 14. The three Stages of PRLS 
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Figure 11. Accumulated Permanent Strain resulted from PRLS 

4. Conclusion  

The bailey method is a practical approach to help the designer control and understand the volumetric properties and 

HMA compatibility. Providing a good starting point for mixture design and have more gradation depending on aggregate 

ratios that may be suitable for different conditions and compaction. Void Mineral Aggregate (VMA) decreases when 

CUW increase for fine gradation (80, 85, 90%). void mineral aggregate (VMA) increases when CUW increase for coarse 

gradation (95,100, 105%). Marshall stability decrease when the increase in CUW for both courses. Marshall flow 

increases when increasing in CUW for both courses. The coarse aggregate (95, 100, 105 CUW) more resistances to 

permanent deformation than fine aggregate for wearing and binder coarse. The CUW (80%) blend of the wearing course 

and CUW (90%) of the binder course have a high value of stability (9.2, 8.6 kN), respectively. So, the CUW considers 

a good design structure.  
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