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On Probabilities in the MWI

Abstract. Quantum Mechanics notoriously faces a measurement problem, the
problem that the unitary time evolution, encoded in its dynamical equations, to-
gether with the kinematical structure of the theory generally implies the non-existence
of definite measurement outcomes. There have been multiple suggestions to solve
this problem, among them the so called many worlds interpretation that originated
with the work of Hugh Everett III [24, 28]. According to it, the quantum state
and time evolution fully and accurately describe nature as it is, implying that un-
der certain conditions multiple measurement outcomes that are seemingly mutually
exclusive can be realized at the same time – but as different ‘worlds’ contained
in a global, quantum mechanical structure, sometimes referred to as ‘the multi-
verse’ [81]. The many worlds interpretation has, however, been confronted with
serious difficulties over the course of its development, some of which were solved
by the advent of decoherence theory [46, 66]. The present thesis critically investi-
gates the state of play on a key remaining problem of the many worlds interpreta-
tion, the problem of the meaning and quantification of probabilities in a quantum
multiverse. Recent attempts of deriving the pivotal statistical ingredient of quan-
tum mechanics, Born’s rule, from either principles of decision theory [21,78–81] or
from quantum mechanics alone, supplemented with a few general premises about
probability [86, 87] are analyzed and their premises are scrutinized. It will be ar-
gued that, though both approaches yield promising results, they both ultimately fail
to clearly establish the validity of Born’s rule in the context of the many worlds in-
terpretation. It is hence suggested that further research on this problem is indicated.
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1 Introduction On Probabilities in the MWI

1 Introduction

Quantum Mechanics (QM) is one of science’s greatest success-stories. It has produced nu-
merous successfully confirmed predictions to unforeseen accuracy, and spawned off numerous
technical implementations of different kinds, thereby giving rise to what many have thought
of as nothing short of two separate scientific revolutions, rooted in electronics and informa-
tion technology respectively [4, 48]. Yet while the formalism of QM has found completion in
the form of standard, non-relativistic QM as well as (special) relativistic quantum field theory
(QFT), up to date there is considerable debate about how to interpret the quantum formalism.
In the following, we review the basic structure of the theory and subsequently introduce what
has come to be known as the measurement problem (MP). We will here restrict our attention to
non-relativistic QM, since we take it that the issues arising from the MP transfer seamlessly to
QFT, due to the appearance of superpositions of field configurations therein [8, 73].

1.1 The Quantum Postulates and Basic Properties of QM

The fundamental structure of non-relativistic QM can be summarized in the form of at least the
following postulates:

(I) A quantum system S is associated with a Hilbert space H and its state at time t is repre-
sented by a vector |ψ(t)〉 ∈ H .

(II) If |a〉 , |b〉 ∈ H represent states, then so does any linear combination |ψ〉 = λ |a〉 +

µ |b〉 , λ, µ ∈ C, not prohibited by a superselection rule.

(III) A physical observable A is represented by a Hermitian operator Â onH and the values of
A for S are represented by the numbers in the spectrum of Â.

(IV) The temporal evolution of the vector |ψ(t)〉 associated with S is governed by the (time
dependent) Schrödinger equation (SE): ı~ ∂

∂t |ψ(t)〉 = Ĥ|ψ(t)〉. Ĥ is the Hamilton operator,
representing the total energy of the system S.1

(V) An observable A has value a on S iff the state of S is given by |a〉, with Â |a〉 = a |a〉.

(VI) If S is in a state represented by the (normalized) state vector |ψ(t)〉, A is an observable for
S and |a〉 is a state such that Â|a〉 = a|a〉, then Pr|ψ(t)〉

A (a) = | 〈a|ψ(t)〉 |2 gives the probability
of finding value a for A on S in some measurement procedure for A.

(II) is usually called the superposition principle, (V) the eigenvalue-eigenstate link, (VI) Born’s
rule. (I) can be generalized to situations where the quantum state, resulting from some state
preparation method, is uncertain, and where a whole range of states |ψ j〉 are known to result with
respective statistical weights p j, representing (idealizations of) relative frequencies. In this case,
the state is given by S’s density operator (loosely speaking: density matrix) ρ̂S =

∑
j p j |ψ j〉〈ψ j|,

with
∑

j p j = 1. States of this sort are called mixed, those represented by (ket-)vectors |ψ〉
pure.2 Born’s Rule generalizes to Prρ̂A(a) = Tr(ρ̂P̂a) in these cases, where P̂a projects onto

1Throughout we will use ı to refer to the imaginary unit, to avoid confusions with indexing.
2A pure state density matrix is just a projector |ψ〉〈ψ| onto the subspaceHψ ⊂ H spanned by |ψ〉.
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1 Introduction On Probabilities in the MWI

the subspace of H spanned by the eigenvectors of eigenvalue a for Â, Tr(Ô) =
∑

j 〈 j|Ô| j〉 is
the trace operation,

{
| j〉

}
j∈I an orthonormal basis (ONB) of H , and I some indexing set which

we deliberately leave rather unspecified. The SE can then be generalized to the von Neumann
equation

∂

∂t
ρ̂(t) = −

ı

~
[Ĥ, ρ̂(t)] . (1)

So far so good. But upon closer inspection, these postulates appear somewhat odd. In par-
ticular, the superposition principle (together with (V)) implies that systems can be in physical
states where for a whole bunch of obervables, they do not possess definite values. Indeed, this is
fundamentally rooted in the structure of the theory, since any state |ψ〉 can always be expanded
as a a superposition

∑
j β j |ϕ j〉 in some suitable basis of H , and the |ϕ j〉 may be eigenstates

of some suitable observable. The superposition principle is crucial the theory’s extraordinary
predictive power though, and to date this is not suitably reproduced by any more ‘classical’
theory [12, 44].

In virtue of (IV), the quantum mechanical time evolution is linear, whence it preserves super-
positions over time. More precisely, it is provided in terms of unitary operators, i.e., operators
which satisfy ÛÛ† = Û†Û = 1. To see this, note that if Ĥ is time-independent, one straightfor-
wardly has

ı~
∂

∂t
exp

(
−
ı

~
Ĥt

)
|ψ(0)〉 = Ĥ exp

(
−
ı

~
Ĥt

)
|ψ(0)〉 , (2)

whence it must hold, in accord with (IV), that

exp
(
−
ı

~
Ĥt

)
|ψ(0)〉 = |ψ(t)〉 . (3)

This theme is invariant under a shift 0 7→ t0 to some arbitrary, fixed (temporal) starting point,
whence we can identify

exp
(
−
ı

~
Ĥ · (t − t0)

)
=: Û(t; t0) (4)

as a general (unitary) time shift operator.3 More precisely, Ĥ is the infinitesimal generator of
time translations, because if we assume that there is some (linear) operator D̂ such that

|ψ(t + ε)〉 = (1 + D̂ε + O(ε2)) |ψ(t)〉 , (5)

i.e., whose exponential translates the state by some small amount ε = t f − t in time, we have

|ψ(t + ε)〉 − |ψ(t)〉
ε

= (D̂ + O(ε)) |ψ(t)〉 , (6)

and letting ε −→ 0, we obtain the Schrödinger equation for the choice D̂ = − ı
~
Ĥ.4

Unitarity also implies that the time evolution is completely deterministic and reversible, since

3For a time-dependent Hamiltonian Ĥ(t) =
p̂2

2m + V(t), the theme generalizes to ˆ̃U(t; t0) = τ̂ exp
(
− ı
~

∫ t
t0

Ĥ(t) dt
)
,

where τ̂ is a time ordering operator whose effect can be written as τ̂Ĥ(t1)Ĥ(t2) = Θ(t1 − t2)Ĥ(t1)Ĥ(t2) + Θ(t2 −
t1)Ĥ(t2)Ĥ(t1) [71].

4The von Neumann equation can be derived in an analogous fashion from the Heisenberg picture, where operators
such as the density matrix evolve under the unitary time evolution as ρ̂(t + τ) = Û†(τ)ρ̂(t)Û(τ).
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1 Introduction On Probabilities in the MWI

given any initial state |ψ(t0)〉, its future states are fully determined by the set of Hamilto-
nians that apply to it over time, and since the evolution can always be ‘undone’ by an op-
erator Û†. Unitary operators are also norm preserving, meaning that if |ψ̃〉 = Û |ψ〉 then
〈ψ̃|ψ̃〉 = 〈ψ|Û†Û |ψ〉 = 〈ψ|ψ〉. This implies that probabilities, as defined by the Born rule,
are conserved over time as well.

That this linear and unitary time evolution, in concert with (II) and (V), does not generally
lead to definite outcomes—i.e., definite values of observable physical quantities, including po-
sitions, speeds, and the like—as we should expect from experimental practice and everyday life
experience, can be seen by appeal to a simple toy example (cf. [9]). Consider a spin- 1

2 system
in a magnetic field B = B · nz (here treated classically). Then the spin magnetic moment µ of
the system will couple to the field, and the interaction part of the Hamiltonian is given by

Ĥint = −µB = −
γ~B

2︸︷︷︸
=:ε

σ̂z, (7)

where γ = g e
2m is the gyromagnetic ratio, g ≈ 2, and σ̂z �

(
1 0
0 −1

)
a Pauli matrix.5 This

Hamiltonian has eigenstates |↑z〉 and |↓z〉 of eigenvalue ±ε. Assume, however, that the system
was prepared – e.g. by blocking one beam in a suitable Stern-Gerlach-arrangement – with its
spin pointing up along the x-axis, |↑x〉 = 1

√
2
( |↑z〉 + |↓z〉) � 1

√
2

(
1
0

)
, which by (II) adequately

defines a state of the system, and that we subject it to the time evolution given by the interaction
Hamiltonian. In matrix representation, we then have

Û(t) = exp
(
−
ı

~
Ĥintt

)
�

∞∑
n=0

1
n!

(
−
ıεt
~

)n
(
1 0
0 −1

)n

=

=

∞∑
n=0

1
2n!

(−1)n
(
εt
~

)2n
(
1 0
0 1

)
− ı

∞∑
n=0

1
(2n + 1)!

(−1)n
(
εt
~

)2n+1
(
1 0
0 −1

)
=

=

(
e−ı

ε
~ t 0

0 eı
ε
~ t

)
. (8)

Applying this to |↑x〉, we arrive at

|ψ(t)〉 �
(
e−ı

ε
~ t 0

0 eı
ε
~ t

)
1
√

2

(
1
1

)
=

1
√

2

(
e−ı

ε
~ t

eı
ε
~ t

)
�

1
√

2

(
e−ı

ε
~ t |↑z〉 + eı

ε
~ t |↓z〉

)
=

e−ı
ε
~ t

√
2

(
|↑z〉 + eı

∆ε
~ t |↓z〉

)
,

(9)
with ∆ε = ε − (−ε) = 2ε. The system now appears to be oscillating between the two states
|↑x〉 , |↓x〉 up to an overall phase of e−ı

ε
~ t, so that in virtue of (V), at times t , n2π~

ε
, n ∈ Z, it

assumes no value for observable µx at all, where µ̂x := ε
Bσ̂x. According to Born’s rule, (VI),

one will respectively measure ±ε/B for the magnetic moment (and the spin) being up or down
in x-direction with probabilities

Pr|ψ(t)〉
µx

(+ε/B) = | 〈↑x|ψ(t)〉 |2 = cos2
(
ε

~
t
)
, (10)

5We use � to denote a choice of representation.
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1 Introduction On Probabilities in the MWI

Pr|ψ(t)〉
µx

(−ε/B) = | 〈↓x|ψ(t)〉 |2 = sin2
(
ε

~
t
)
, (11)

where |↓x〉 = 1
√

2
( |↑z〉− |↓z〉). The probability of finding one of the respective states thus equally

‘oscillates’ in time, with frequency ω = ε
~
. It appears that for most of the time, the system is not

in any definite state w.r.t. observable µx at all, but only assumes, for any given time t, a definite
value upon measurement—in a predictable but stochastic manner.

Unitary operators pervade QM as a formal representation of state transformations throughout.
An operator that represents shifts in position can be given by Û(x) = e−

ı
~xp̂; one that rotates

a wavefunction (the position representation of a state vector) by an angle θ by Û(θ) = e
ı
~nθL̂

(L̂ the angular momentum operator). But these operators do not produce states which contain
definite values for all observables, as is equally present in the SE. The fact that we find a given
system to yield, however, a definite value upon a suitable measurement, and that the objects we
encounter in everyday life appear to have rather definite speeds and positions, say, leads to the
so called measurement problem. We will outline its formal subtleties in more detail below, but
we should first make the notion of measurement more precise for the present context.

1.2 Measurements in QM and the Measurement Problem

Generally speaking, there are multiple intricacies in spelling out what a measurement is. In-
tuitively, the word includes someone, a conscious agent or ‘observer’, who executes a certain
procedure on a physical system to determine (a selection of) its physical properties, i.e. the
values for certain observable magnitudes (observables) as they pertain to the system, by physi-
cally interacting with it with the aid of suitable equipment. Stated thusly, one can, in principle,
determine three stages of this process:

1. interaction of the system under investigation with the equipment,

2. interaction of the observer with the equipment,

3. registration of a value (measurement result) by the observer.

Formally modeling these three stages respectively, however, we arrive at rather different views
of the measurement process. From the point of view of the observer, in the third stage the
system appears to have evolved as

|ψ〉 −→
P̂a |ψ〉

‖P̂a |ψ〉 ‖
, 6 (12)

if observable A is measured to have value a and its state before the measurement was |ψ〉 (on
account of the eigenvalue-eigenstate link). That this is the actual evolution a system undergoes
in suitable circumstances was explicitly postulated, in addition to (I)-(VI), by Dirac [25] and
von Neumann [77] in their respective seminal works. This postulate usually goes by the name
projection postulate. We will refer to (I)-(VI) plus the projection postulate as ‘the standard
formulation’, as it is basically the way that QM is used in practice.

6The norm ‖ · ‖ of a ket-vector is defined as ‖ |φ〉 ‖ :=
√
〈φ|φ〉.
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1 Introduction On Probabilities in the MWI

In the above case, the measurement is represented by a family
{
P̂o j

}
j∈I of orthogonal projec-

tors (P̂o j P̂ok = δ jkP̂o j) that satisfy
∑

j P̂o j = 1, with P̂o j the projector onto the (not necessarily
one dimensional) subspace of j-th eigenvalue for observable O. Such sets are called projec-
tor valued measures (PVM) and the associated (projective) measurements are repeatable in the
sense that P̂2

o j
= 1. Up to degeneracy, they uniquely single out a definite pure quantum state.

A generalization of the projection postulate to situations of non-repeatable measurements (e.g.
measuring a photon’s position by a silvered screen [58]) is Lüders’ Rule [51] in its most general
form [42]:

ρ̂ −→
M̂mρ̂M̂†

m

Tr(M̂mρ̂M̂†
m)

(13)

Here, the operators M̂m are called measurement operators, and they satisfy M̂†
mM̂m = Êm,7 with{

Êm
}
m∈J a positive operator-valued measure (POVM), and where the ms represent outcomes not

uniquely indicative of a particular pure quantum state. The POVM is defined by the properties
that

∑
m Êm = 1 and 〈ψ|Êm|ψ〉 ≥ 0,∀ |ψ〉 ∈ H ,∀m ∈ J and can generally be understood as a

coarse-graining over projectors that need not preserve the orthogonality constraint, e.g. in virtue
of the known statistics of an ancillary system, coupled to the system under investigation [58,60].

The first stage of the process as we have identified it above, however, is entirely different
in nature. It describes an interaction between two physical systems (sometimes also referred
to as a premeasurement interaction [15, 66]) and should hence be describable by a suitable
interaction Hamiltonian. That this is indeed possible was first discovered by von Neumann [77],
and the argument has been restated in various forms (e.g. [46, 56]). One version [56] proceeds
by defining a (symbolic) ‘pointer momentum’ P̂ for the measuring device M, that satisfies a
canonical commutation relation [X̂, P̂] = ı~ with the (symbolic) ‘pointer position’ X̂. Suppose
now that the ‘pointer’ (which could equally be a counter or an arrangement of light bulbs or
what have you) is in a ready state |X0〉, and is shifted by the interaction with S to a value
indicative of S’s state |o j〉 (an eigenstate of observable O). Assuming, as a kind of idealization,
that the effect of the interaction on the system is negligible, i.e., that its state stays almost the
same, the interaction should effect an evolution |o j〉|X0〉 −→ |o j〉|X j〉, with the pointer’s state
|X j〉 indicative of the system’s state |o j〉. In fact, this – or a slightly loosened version thereof,
where merely a probabilistic coupling is required [15] – is constitutive of what counts as a
(good) measurement of a quantity; that the state of the apparatus is suitably calibrated with the
state of the system measured.

With Ĥint := −λ~
∆t (Ô ⊗ P̂), where λ indicates strength and duration of the interaction, one now

obtains Û(∆t) = eıλ(Ô⊗P̂) as the unitary operator effecting the state transition, and formally finds

Û(∆t) |o j〉|X0〉 = |o j〉 eıλ(o jP̂) |X0〉 = |o j〉|X0 − λo j〉 , (14)

using the commutation relation between X̂ and P̂, and the formal analogy between the position-
shift operator (cf. the previous section) and the operator eıλ(o jP̂). The output of M will generally
be a function of the physical value pertaining to M in virtue of the interaction, and the choice
f (X j) := X0−X j

λ
= o j establishes the desired joint evolution outlined above [56].

7We here assume the Hilbert space to be separable, whence we can always assume the existence of such operators
M̂m, in virtue of the square-root lemma [36].
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However, if the system is in a superposition |φ〉 =
∑

j α j |o j〉 w.r.t. the observable measured,
then the evolution proceeds as

Û(∆t) |φ〉|X0〉 =
∑

j

α j |o j〉 eıλ(o jP̂) |X0〉 =
∑

j

α j |o j〉|X j〉 , (15)

so that M has evolved into a superposition of states as well, entangled with the state of S.8

Above, we have assumed the ideal case where the state of S does not change as a function of
the interaction, but in the non-ideal case, the evolution may be assumed to proceed in a similar
fashion as

|φ〉|X0〉 =
∑

j

α j |o j〉|X0〉
Û
−→

∑
j,k

α jk |o j〉|Xk〉 =
∑

k

α̃ j |õ j〉|X j〉 , (16)

with |α̃k|
2 ≈ |αk|

2 and |õk〉 ≈ |ok〉 so that all that differs is a (small) change in the state of the
system [14].9

This formally establishes the measurement problem, since now there is no definite out-
come to be read out by the observer. This is, of course, equally the underlying difficulty of
Schrödinger’s world-famous cat-example [69], in which the evolution would proceed (symbol-
ically) as | 〉 | 〉 → α | 〉 | 〉 + β | 〉 | 〉. Suggested solutions to this problem come with
vastly different implications about physical reality. Upon accepting (15) or (16) as well as (12),
one is especially lead to wonder about stage 2 of the measurement process. This lead E. P.
Wigner, in particular, to speculate about the impact of consciousness on physical reality [82].

Historically, the dominant solution to the MP was the denial of the possibility to treat mea-
suring devices quantum mechanically, i.e., the denial of the above analysis of stage 1. This is
an integral part of the so called Copenhagen interpretation, which subsumes various ideas of
the founding fathers of QM, in particular of Bohr and Heisenberg. As a consequence, the inter-
action between observer and apparatus could (and would have to) be described entirely in the
terms of everyday language and classical physics [38], whence stage 2 would not pose a special
problem (for analysis, at least). But it is neither univocally clear what exactly should count as
‘the’ Copenhagen interpretation [40], nor what any version of it ultimately says about physi-
cal reality at the atomic scale or at the level of interaction between the classical and quantum
‘realms’. In fact, David Mermin once coined a famous dictum to summarize his understanding
of the Copenhagen interpretation: “Shut up and calculate!” [54]

Such an attitude may be healthy for engineers and possibly to some extent also for certain
stages of the discovery of new physical theories; and it is certainly warranted to the extent
that QM predicts statistical expectations perfectly well, in terms of PVMs and state vectors or

8Recall that any vector of the form
∑

j,k α j,k |φ
(1)
j 〉|ψ

(2)
k 〉 from a tensor product space H1 ⊗ H2 is called entangled

if there are for any basis at least two coefficients α j,k, αm,`, ( j, k) , (m, `) which are non-zero, i.e. if it can-
not be written as a product state |φ(1)

j 〉|ψ
(2)
k 〉. That any such state can be rewritten in a “bi-orthogonal” form∑d

j=1 α j |φ
(1)
j 〉|ψ

(2)
j 〉 with

{
|φ(1)

j 〉
}d1

j=1
,
{
|ψ(2)

j 〉
}d2

j=1
ONBs of H1 and H2 respectively and d = min

{
d1, d2

}
, is a con-

sequence of the Schmidt-decomposition theorem [36]. In infinite dimensions this generalizes to a Fock space
representation, such as in the two-mode squeezed state |φλ〉 =

√
1 − λ2 ∑∞

n=0 λ
n |n〉|n〉 [39].

9In the worst case, the system gets destroyed though, and for these cases one merely requires the apparatus
states to carry, after the interaction, information about the state of S before its destruction; i.e.: |φ〉 |X0〉 →∑

k αk(o j) |Xk(o j)〉, where in general |Xk(o j)〉 , |o j〉 |Xk〉 [79].
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1 Introduction On Probabilities in the MWI

POVMs and density matrices. But at the same time this appears highly unscientific, at least if
one subscribes to a view of science according to which it primarily strives for content-rich and
true statements, laws, and theories [70]. It is thus understandable why many physicists have
felt uncomfortable with the Copenhagen-attitude. In his 1957 thesis [24, 28], Hugh Everett
III proposed an alternative view that – besides initial suspicion – enjoys much attention today,
and has (apparently) even become one of the most popular interpretations of QM [68, 72].
However, this interpretation still faces foundational problems, in particular, how to adequately
accommodate the probabilities predicted by Born’s Rule. Below, we will first give a brief
outline of the state of play of the MWI; the remainder of the thesis will confront and analyze
the prospect of incorporating Born’s rule into it.

10



2 The Many Worlds Interpretation On Probabilities in the MWI

2 The Many Worlds Interpretation

The central assumption of Everett’s approach is that the unitary dynamics fully and adequately
describes the evolution of the quantum state. There is no actual sudden and abrupt change of
the system as described by (12). This, however, means that there can be no definite outcomes
in the sense of (V), as required in stage 3 of the measurement process. But then, in turn, at least
the illusion of such must arise in virtue of something else.

In fact, Everett [24] had the observer O end up entangled with system S and apparatus M as
well, with a sequence [. . .] of respective memories indexed to O’s state vector |ξ j〉:10

|ψS∗M∗O〉 =
∑

j

α j |o j〉|X j〉|ξ0,[...]〉 −→
∑

j

α j |o j〉|X j〉|ξ j,[...,o j]〉 . (17)

Thus in contrast to Wigner’s or the Copenhagen proposal, stage 2 of the measurement process
is here construed as a physical evolution exactly like that of stage 1. The world thus described is
one unitarily evolving quantum mechanical state vector, where everything is (or becomes) en-
tangled with everything else. The registration of one particular, definite outcome by O however,
which, to recall, is familiar not only from experimental practice but also from primitive ev-
eryday life ‘measurements’, requires that the terms in this global superposition state constitute
dynamically more or less independent ‘branches’ or ‘worlds’, containing different observers
with different memory records. This later earned Everett’s approach the name many worlds
interpretation (MWI).

In essence, the MWI constitutes a fully deterministic version of QM which aims at solving
the MP (section 1.2) by removing the need for one particular outcome where the theory seems
to suggest the non-existence of such. It has been objected though, that neither do these ‘worlds’
appear naturally in the formalism of QM, nor is the assumption of classical-looking worlds
always warranted. Central to these objections is the so called preferred basis problem (cf.
[2, 66]), which results from the fact that a simple change of basis leads to a physically different
situation. In a joint superposition state of a simple spin-system S and apparatus M, say, where
M has been suitably entangled with S to register the respective spin-values in both ‘worlds’,

|ψS∗M〉 =
1
√

2
( |↑z〉 + |↓z〉) |X0〉 −→

1
√

2

(
|↑z〉|X↑z〉 + |↓z〉|X↓z〉

)
, (18)

it is no difficult task to rewrite the final state as

1
√

2

(
|↑x〉|X↑x〉 + |↓x〉|X↓x〉

)
, (19)

whence in any of the two worlds in the final state of (18), the spinful system could still be con-
strued to be in a superposition w.r.t. z-spin, and M would be in a superposition w.r.t. results for
z-spin now as well. Most importantly, any reasonable notion of ‘classicality’ requires the exis-
tence of states of definite (or at least: sufficiently narrow) position, not arbitrary superpositions
thereof. As is well known though, Heisenberg discovered free narrow wave packet states to be

10We here introduce the otherwise unspecified symbol ∗ to refer to the combination of systems into composites.
A first approach as to how to fill such a symbol with more meaning can be found in [33].
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2 The Many Worlds Interpretation On Probabilities in the MWI

dynamically unstable and to spread enormously within seconds [37]. This and similar problems
have been countered to the satisfaction of most MWI-theorists by the advent of decoherence
theory. We will hence review its basic elements in the following section.

One may ask, at this point, what the reasons are to even accept an interpretation like this.
It clearly introduces unobservable surplus structure into the theory, unobservable additional
‘worlds’ that evolve independently of ours (whatever ‘ours’ means in the present context). But
we have seen that at least the ‘spreading of superposition by entanglement’, as it were, arises
naturally as a consequence of applying quantum kinematics and dynamics at the level of ap-
paratus and observers. This, in fact, is what many Everettians (adherents of the MWI) such as
David Wallace think is one of the central virtues of the MWI:

The ‘Everett interpretation of quantum mechanics’ is just quantum mechanics itself,
‘interpreted’ the same way we have always interpreted scientific theories in the past:
as modelling the world. [81]

Interpreting QM “the same way we have always interpreted scientific theories” includes, for
Wallace, reserving “no fundamental role for the notions of ‘measurement’ and ‘observation’.”
(The emphasis is his.)

Indeed, it has been taken that one major concern in Everett’s original thesis was that the
theory be capable of yielding its own interpretation [23]. Another major concern of Everett, that
is typically also mentioned as good a reasons to accept the MWI, was the application of QM
to relativistic/gravitational – i.e., cosmological – problems [28]. Zurek, for instance, describes
the MWI as “a natural choice for quantum cosmology, which describes the whole Universe
by means of a state vector.” [85] And similarly DeWitt: “Everett’s view of the world is a very
natural one to adopt in the quantum theory of gravity, where one is accustomed to speak without
embarassment of the ‘wave function of the universe.’” [22]

But for the MWI to really count as a suitable interpretation, it has to yield, as stated before,
(a) at least the impression of definite values for dynamical quantities, in proper measurement
procedures or otherwise, and (b) the empirical consequences of the standard formulation which
grossly (if not exclusively) rest on Born’s rule, (VI). That the empirical predictions so strongly
depend on the Born rule can be easily seen: it is used in the prediction of interference patterns,
averages of quantities used to confirm QM, and correlations peculiar to the QM formalism
[10, 27] and not reproducible, in a satisfactory way, by any more classical theory [12, 44]. Our
discussion of decoherence in the next section deals with (a); (b) will occupy the rest of the
thesis.

2.1 Elements of Decoherence Theory

The foundations of Decoherence theory were discovered and outlined by H. D. Zeh in 1970 [83],
and later developed further by Zurek [84], and with contributions by E. Joos, C. Kiefer, and
others (cf. [46]). Decoherence essentially describes the vanishing of interference terms, the
selection of a suitable preferred basis, and hence the ‘emergence of classicality’ due to the
interaction of a system with its environment.

The general setup is as before, but this time the system is assumed to be surrounded by a
non-negligible environment E of other systems. This is, of course, the suitable setup for almost

12



2 The Many Worlds Interpretation On Probabilities in the MWI

all realistic examples, and sufficient isolation from E, which usually first has to be prepared
in a laboratory, is a crucial prerequisite for demonstrating, say, quantum interference in larger
molecules [3] or similar subtle quantum phenomena. Including environment states |Ξ j〉, the von
Neumann evolution yields:

|ψS∗M∗E〉 =
∑

j

α j |o j〉|X j〉|Ξ0〉 −→ |ψ
′
S∗M∗E〉 =

∑
j

α j |o j〉|X j〉|Ξ j〉 . (20)

However, upon requiring that the environmental states are sufficiently distinguishing between
different ‘pointer positions’ and system states, 〈Ξ j|Ξk〉 ≈ 0, one now finds that the reduced
density matrix for S ∗M is of the form

ρ̂S∗M = TrE(ρ̂S∗M∗E) =
∑

i, j

αiα
∗
j |oi〉〈o j| ⊗ |Xi〉〈X j|Tr

(
|Ξi〉〈Ξ j|

)
=

=
∑

i, j

αiα
∗
j |oi〉〈o j| ⊗ |Xi〉〈X j|

∑
k

〈φk|
(∑
`,`′

β(i)
` β

( j)∗
`′ |φ`〉〈φ`′ |

)
|φk〉 =

=
∑

i, j

αiα
∗
j |oi〉〈o j| ⊗ |Xi〉〈X j|

∑
k

β(i)
k β

( j)∗
k =

=
∑

i, j

αiα
∗
j |oi〉〈o j| ⊗ |Xi〉〈X j| 〈Ξ j|Ξi〉 ≈

∑
j

|α j|
2 |o j〉〈o j| ⊗ |X j〉〈X j| (21)

where ρ̂S∗M∗E = |ψ′
S∗M∗E

〉〈ψ′
S∗M∗E

|, and we have used the expansion |Ξ j〉 =
∑
` β

( j)
` |φ`〉 in an

orthonormal basis
{
|φ`〉

}
`∈I of HE. Thus, upon assuming that the environmental states are suf-

ficiently distinguishing between (joint) apparatus and system states, the quantum mechanically
entangled system approximately transforms into something that looks like a statistical ensemble
of systems prepared in eigenstates of the observable measured by M, more precisely, into what
is called an improper mixture [20].

Crucially, the preferred basis of states |o j〉 thus established is not introduced ad hoc, but de-
termined by the interaction between the systems S ∗M and E, namely as that basis of states
which is robust under the interaction with E, because all superposition (off-diagonal) terms
w.r.t. the basis of pointer states |X j〉 will be damped almost to zero in virtue of 〈Ξ j|Ξk〉 ≈ 0.
Stated differently, the preferred basis is the one in which the environmental interaction Hamil-
tonian takes on the desired diagonal form [46,66], i.e., a basis of eigenstates of observables that
commute with the interaction Hamiltonian [85].

Decoherence theory also implies that Heisenberg’s spreading of the wave packet vanishes,
and wave packet states generally maintain a narrow localization under all realistic conditions
[46, 66]. This is shown by considering a system S with a suitably narrow wave packet state
|ϕ〉 =

∫
d3xϕ(x) |x〉 and particles in initial quantum states |χi〉 scattered off of it, constituting

the environment E for S. For illustrative purposes, think of a dust grain in outer space, scattering
cosmic photons. This process will be described by a (unitary) scattering operator Ŝ , and on each
of the kets |x〉 in the continuous superposition state |ϕ〉, this will have the effect

|x〉|χi〉 −→ Ŝ |x〉|χi〉 . (22)

Now using that |x〉 = e−
ı
~xp̂ |x = 0〉 and that 1 |0〉 = e−

ı
~xq̂e

ı
~xq̂ |0〉, where q̂ is the momentum

13



2 The Many Worlds Interpretation On Probabilities in the MWI

operator for |χi〉, we can rewrite this as

e−
ı
~x(p̂+q̂)Ŝ |0〉 e

ı
~xq̂ |χi〉 , (23)

assuming that
[
Ŝ , (p̂ + q̂)

]
= 0, i.e., that the interaction is invariant under translations of the

total system S ∗ E. Assuming further that, due to its comparatively large mass, the dust grain’s
position is hardly affected by the interaction, we can rewrite this as

e−
ı
~x(p̂+q̂) |0〉 Ŝ e

ı
~xq̂ |χi〉 = |x〉 e−

ı
~xq̂Ŝ e

ı
~xq̂︸        ︷︷        ︸

=:Ŝx

|χi〉 ≡ |x〉|χx〉 , (24)

meaning that the photons will carry away information about the position of the dust grain. The
total density matrix right after the interaction can thus be given as

ρ̂ =

∫
d3x

∫
d3x′ ϕ(x)ϕ∗(x′)︸       ︷︷       ︸

=:ρ(x,x′)

|x〉〈x′| ⊗ |χx〉〈χx′ | , (25)

and by tracing out E again, one obtains the dependence

ρ(x,x′) −→ ρ(x,x′) 〈χx′ |χx〉 (26)

which describes the influence of E on S after some scattering time τ.
The scattering operator is typically introduced [11] by considering the states |ϕ〉 to be asymp-

totically free, i.e.,
lim

t→±∞
Û(t) |ϕ〉 = lim

t→±∞
Ûfree(t) |λ±〉 , (27)

with

Û(t) = exp
(
−
ı

~
Ĥt

)
, Ĥ =

p̂2

2m
+ Ĥint, Ûfree(t) = exp

(
−
ı

~

p̂2

2m
t
)

(28)

and where |λ±〉 are eigenstates of the free Hamiltonian p̂2

2m . The state |ϕ〉 at t = 0 is related to
these by

|ϕ〉 = lim
t→±∞

Û†(t)Ûfree(t) |λ±〉 =: Ω̂± |λ
±〉 .11 (29)

With these operators, the scattering operator can be defined as Ŝ := Ω̂
†
−Ω̂+, meaning that it de-

scribes the scattered state |ϕ〉 as evolving form an asymptotically free state back into an asymp-
totically free state after the scattering process. More precisely, if there is no interaction Ĥint, we
have Ŝ = 1. This is a good reason to introduce the transition operator

ıT̂ := Ŝ − 1 (30)

the squares of whose matrix elements for free states describe transition probabilities (the imag-
inary unit is written out in front for convenience).

11The limits in these operators are not generally well-defined mathematically; but they can be made sense of
physically nonetheless [11].

14
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Using these insights (and a few ‘tricks’), one can demonstrate [66] that

〈χx′ |χx〉 = 〈χi|Ŝ
†

x′ Ŝ x|χi〉 = . . .

. . . = 1 −
∫

d3q µ(q)
h3

V

∫
d3q′

(
1 − e

ı
~ (x−x′)(q−q′)

)
| 〈q|T̂ |q′〉 |2, (31)

with
∫

d3q µ(q) = 1 (µ(q) a momentum space density), and
{
|q〉

}
q∈Q a basis of definite momen-

tum states, box-normalized in V . Thus, the vanishing of interference (off-diagonal) terms in the
density matrix of the post-scattering dust grain, signifying the loss of measurability of quantum
superposition, crucially depends on the transition probability | 〈q|T̂ |q′〉 |2. By considering an
expansion of Ŝ [11], one can motivate that 〈q|T̂ |q′〉 should take on the form

〈q|T̂ |q′〉 =
i

mh
δ(Eq′ − Eq) f (q, q′), (32)

where f (q, q′) is called the scattering amplitude (h is Planck’s constant). In virtue of the appear-
ance of δ2(Eq′ − Eq) in the squared modulus of (32), the evaluation of the transition probability
requires (again) a little trick, namely, interpreting a mathematical limit as a very large value.
This is done by appeal to the integral representation of the Dirac delta:

δ2(Eq′ − Eq) = δ(Eq′ − Eq) lim
τ→∞

1
h

∫ τ/2

−τ/2
dt ei(Eq′−Eq)t =

= δ(Eq′ − Eq) lim
τ→∞

1
h

∫ τ/2

−τ/2
dt ≈ δ(Eq′ − Eq)

τ

h
(τ � τ0), (33)

where we have introduced a typical time τ0 required for a single scattering event as reference,
and used that δ(Eq′ − Eq) = 0 for Eq′ , Eq. The expression thus derived can be interpreted as
the transition probability growing linearly in time for sufficiently large τ.

With Eq =
q2

2m =
q2

2m , we can construe the remaining Dirac delta δ(Eq′ − Eq) = δ(q′ − q)m
q as

enforcing momentum conservation. Setting also

µ(q) d3q ≡
1

N/V
%(q)

dΩ dq
4π

, (34)

with %(q) a number density for (incoming) particles with magnitude of momentum q, N/V the
total number of environmental particles in V , and dΩ the differential solid angle in momentum
space, we can now rewrite (31) as

〈χx′ |χx〉 = 1 −
τ

N

∫
dq %(q)

q
m

∫ ∫
dΩ dΩ′

4π

(
1 − e

ı
~q(nq−nq′ )(x−x′)

)
| f (qnq, qnq′)|2. (35)

This describes the situation for a single scattering event though, which is unjustified in virtue
of the appeal to τ � τ0, whence µ(q) should be renormalized to N (getting us rid of the factor
1/N). However, recall that ρ(x,x′; t = 0) 〈χx′ |χx〉 = ρ(x,x′; t = τ). Thus,

ρ(x,x′; τ) − ρ(x,x′; 0) =
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= −ρ(x,x′; 0)τ
∫

dq %(q)
q
m

∫ ∫
dΩ dΩ′

4π

(
1 − e

ı
~q(nq−nq′ )(x−x′)

)
| f (qnq, qnq′)|2

⇔
ρ(x,x′; τ) − ρ(x,x′; 0)

τ
= −F(x − x′)ρ(x,x′; 0), (36)

where we have introduced the decoherence factor

F(x − x′) :=
∫

dq %(q)
q
m

∫ ∫
dΩ dΩ′

4π

(
1 − e

ı
~ q(nq−nq′ )(x−x′)

)
| f (qnq, qnq′)|2. (37)

Taking the limit τ −→ 0, we obtain the DEQ

∂

∂t
ρ(x,x′; t) = −F(x − x′)ρ(x,x′; 0), (38)

which is solved by an exponential in F(x − x′), i.e.:

ρ(x,x′; t) = ρ(x,x′; 0)e−F(x−x′)t. (39)

For particular physical interactions, F(x − x′) can also be given a more concrete form. For
instance, in the limit of large (de Broglie) wavelengths λ � |x − x′| of the scattered particles,
where |x −x′| describes the distance over which the dust grain may be in a coherent superposi-
tion in spite of the interaction, F(x − x′) can be derived to be of the form Λ(x − x′)2, where Λ

is a constant calculated in virtue of the effective total scattering cross-section of the interaction.
Then τD := 1

Λ(x−x′)2 defines a decoherence time, so that off-diagonal terms vanish exponentially
for times t � τD [46,66]. These times are typically very small for all macro- or mesoscopic ob-
jects; our dust grain, for instance, would decohere within a second due to the cosmic microwave
background alone, if |x − x′| is in the order of 10 µm [66].

A crucial step in the above derivation was to take the limit τ −→ 0, which may seem inap-
propriate, given that we have required τ � τ0. But we can reasonably stipulate that we are
interested in timescales much larger than τ, whence the limit is still physically meaningful.
Granted, some aspects of the derivation may appear a little hand-waving, but decoherence the-
ory has produced multiple successfully confirmed predictions, notably the works by Haroche
et. al. (e.g. [13]) that were even regarded as worthy of a Nobel Prize, and the equally impressive
experiments by Zeilinger et. al. [3], mentioned before.

Since decoherence suppresses interference terms for sufficiently large systems embedded in
an environment, it effectively leads to a superselection rule. To recall, two vectors |ψ〉 , |φ〉 are
said to be separated by a selection rule if 〈ψ|Ĥ|φ〉 = 0 (Ĥ the Hamiltonian), i.e. transitions from
one state to the other are inhibited by the dynamical evolution as given by Ĥ. They are said to be
separated by a superselection rule, if for all physically realizable observables A with operator Â,
it holds that 〈ψ|Â|φ〉 = 0. By appeal to the density matrix, it becomes clear that this implies that
no superpositions of the form |ξ〉 = α |ψ〉 + β |φ〉 exist (at least not in any observable fashion):
With 〈ψ|Â|φ〉 = 0, one has 〈ξ|Â|ξ〉 = |α|2 〈ψ|Â|ψ〉 + |β|2 〈φ|Â|φ〉 which would equally result from
Tr

(
ρ̂Â) for ρ̂ = |α|2 |ψ〉〈ψ| + |β|2 |φ〉〈φ| a proper mixture, so that actual coherent superpositions of

|ψ〉 and |φ〉 cannot be observed [32].
Decoherence now imposes what Zurek [84] has coined an environment-induced superselec-

tion rule (or ‘einselection-rule’), since “the interaction with the environment forces the system
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to be in one of the eigenstates of the pointer observable, rather than in some arbitrary superpo-
sition of such eigenstates.”

We have hence found reasons, from within QM, as to why superpositions of macroscopic
objects are never observed in practice (i.e., no proper ‘Schrödinger-cats’), why there is a kind
of ‘preferred basis’, i.e., a basis of states representing more or less definite values in one of
which the system will be found, and we have seen that even small objects such as dust grains
end up quickly in quite definitely localized states, not in ‘superpositions of different positions’,
i.e., not ‘fully localized here and there at once’.12

Still, decoherence only achieves that—it does not effect a change of type (12), leading to one
particular, definite outcome. There appears to be no transition from the coexistence of multiple
alternatives to the existence of merely one of them, no transition from an ‘and’ to an ‘or’ [10].
In fact, the change mimics one from an arbitrary quantum state to a mixture of eigenstates
of a certain observable, which was equally studied by von Neumann [77]. However, the final
state is an improper mixture, which does not arise merely from epistemic uncertainty about the
consequences of a preparation method, but rather from disregarding a part of the total system
(S ∗M ∗ E) [20]. In summary, decoherence alone does not solve the MP, but it certainly aids to
free the MWI, upon its assumtion, of a bunch of its problems.

In fact, decoherence straightforwardly accounts for the existence of the desired independent
branches or worlds, since if interference terms between components of a global wavefunction
vanish, then these can indeed be thought of as independent branches. More illuminatingly,
this is sometimes explained by appeal to the decoherent histories-formalism [30]. To wit, one
can define a time-dependent PVM

{
P̂k(t j)

}
k∈J, in virtue of the Heisenberg picture, so that every

element of the PVM is of the form

P̂ j
k ≡ P̂k(t j) := e

ı
~ Ĥt j P̂ke−

ı
~ Ĥt j , (40)

(we ignore possible time-dependence of Ĥ for convenience here). Then a sequence P̂ j
kP̂ j−1

m . . . P̂0
`

of such projectors from j + 1 respective time-dependent PVMs (with times decreasing from left
to right) defines a history operator Ĉα for the history α of a system described by some quantum
state |ψ〉 at t = 0. Applying this operator to |ψ〉 leads to

Ĉα |ψ〉 = e
ı
~ Ĥt j P̂ke

ı
~ Ĥ(t j−1−t j)P̂me

ı
~ Ĥ(t j−2−t j−1) . . . e

ı
~ Ĥ(t0−t1)P̂`e−

ı
~ Ĥt0 |ψ〉 . (41)

In the standard formalism, this could be interpreted as the system being successively projected
(by suitable measurements) onto states |φk〉 , |φm〉 , . . ., and evolving unitarily for time intervals
∆tn = tn − tn−1 in between. Two histories α, β can then be said to be branching in case for
any given |ψ〉 and time t j, P̂ j

kP̂ j−1
m |ψ〉 , 0 and P̂ j

kP̂ j−1
` |ψ〉 , 0 implies that P̂ j−1

m = P̂ j−1
` , or in

words: “there is a unique way to connect projectors at later times to projectors at earlier times
[...].” [81].

Effectively this means that the histories α, β described by Ĉα, Ĉβ will agree on the past up to
time t j. The expression D(α, β) = 〈ψ|Ĉ†αĈβ|ψ〉 then defines a decoherence functional, and a set
H of histories can be said to be decoherent (relative to |ψ〉) if any two (classically) incompatible

12Note also that a not-too-narrow Gaussian in position space of course Fourier-transforms into a comparatively
narrow Gaussian in momentum space. So both, momentum and position, will be quite definite.
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histories γ, δ ∈ H satisfy D(γ, δ) = 0.13 Crucially now, there is a theorem which, by appeal
to these quantities, establishes “that branching entails decoherence and (up to possible coarse-
grainings) vice versa [...].” [81] So the vanishing of interference terms leads to a structure which
‘looks like’, or can be interpreted as, a set of histories of the universe, evolving independently
from one another, from a certain (branching-) point on.

These results are certainly impressive in a sense, and they give some credibility to the MWI.
Whether decoherence should indeed be interpreted as sanctioning the validity of the MWI
though, depends on the MWI’s total plausibility – and that also strongly depends on its capabil-
ity do deal with problem (b) from section 2, the need to reproduce the empirical predictions of
the standard formulation that follow in virtue of its statistical content.

2.2 The Problem of Probabilities in the MWI

A

A1

A2

B

t0 t1

t2

Figure 1: Branching structure with unequal dis-
tribution of an event over branches at different
times.

The problems assessed in the previous sec-
tion and allegedly solved by decoherence are
hence not the only difficulty for the MWI.
Possibly the deeper problem is that of the
meaning and measure of probability in the
MWI. Most importantly, decoherence cannot
possibly aid in deriving Born’s rule from gen-
eral properties of QM, because partial tracing,
the core ingredient of decoherence theory, is
employed exactly because it is the unique
function of a density matrix that preserves
all statistical averages for operators pertain-
ing only to the system not traced out, i.e., operators of the form ÔA ⊗ 1B for a density matrix
ρ̂A∗B traced over B [58]. Hence, partial tracing is crucially motivated by the probabilistic con-
tent of QM, or, in other words: presuposes the Born rule, thus making any proof of the rule that
appeals to partial tracing circular.

It is clearly tempting to accuse the MWI straightforwardly of incompatibility with the Born
probabilities, since each of the worlds that emerges out of the decoherence process is treated
as equally ‘real’, i.e., as plainly existent. Then all probabilities at all times should be uniform
over the worlds or branches thus defined, and hence the Born rule should be wrong in cases
where the expansion coefficients are unequal. The most straightforward safeguard against this
objection would be to interpret the amplitudes as representing multiplicities, i.e., the fractions
of worlds in which a given value is realized in a branching process. But it has been found, by
David Wallace in particular [81], that there is something fundamentally wrong with a simple
counting of branches. For consider a ‘branching-structure’ such as in figure 1, where in all the
A-worlds, one has obtained a coin, say, at t1, and in the B world this is not so. If one identifies the
probability14 p(coint1≤t<t2) of having a coin for the specified times with the fraction of branches

13In fact, one may distinguish different degrees of decoherence here, since D(α, β) is complex valued, so that one
can make a difference between the whole functional vanishing or only the real or imaginary part [46]. These
details do not matter for the present context though.

14Here and in what follows, we use p to denote an arbitrary probability assignment; the indexed Pr-symbol intro-
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on which one has the coin, then this would clearly be 1
2 . However, in all A-worlds, the having

of the coin remains constant, so that for times t ≥ t2, this probability becomes 2
3 . But by the law

of total probability, one would have

p(coint2≤t) = p(coint2≤t|coint1≤t<t2) · p(coint1≤t<t2)+

+ p(coint2≤t|no coint1≤t<t2) · p(no coint1≤t<t2) = 1 ·
1
2

+ 0 ·
1
2
,

2
3
.  (42)

In principle one could attempt to solve this difficulty by introducing different probabilistic re-
lations for branching structures such as the Everettian multiverse. The reply of certain Ev-
erettians [81], however, is that there is not even a ‘natural grain’ of worlds, and hence no well-
defined basis for counting them at all, or, as Wallace puts it:

the branching structure is given by decoherence, and decoherence does not deliver
a structure with a well-defined notion of branch count. Very small changes in how
the decoherence basis is defined, or the fineness of grain that is chosen for that
basis, will lead to wild swings in the branch count. Insofar as a particular mathe-
matical formalism for decoherence does deliver something that looks like a branch
count (and many do not), that something is a mathematical artefact of no physical
significance. [81]

The problem with this is elucidated even more clearly by Dawid and Thébault:

Since there is no unique way to specify at which stage two branches have fully
decoupled and therefore must be counted separately, it is impossible to specify one
definitive branching structure for a quantum process. This in turn implies that no
definitive probabilistic conclusions can be drawn from branch counting since the
number of branches is inherently indeterminate. [18]

It is clear that a more sophisticated treatment of probabilities is required for the MWI. In fact,
one could raise worries about the very meaning of ‘probability’ in the deterministic universe
that the Everettian envisions (we will call this ‘the conceptual problem’). It is tempting to
answer this worry (and to some extent this has been done [81]) by replying that the meaning
of ‘probability’ is generally unclear. Formally, there is no such problem, and the notion of
probability can be accounted for by the Kolmogorov axioms. Probability is here defined as
a function p that maps from an algebra (sometimes also called a field) A over a set Ω, the
samples space, into the interval [0, 1]. The algebra is a collection A ⊆ P(Ω) of subsets of Ω

which includes the empty set ∅, Ω itself, and is closed under finite or countable unions15 and
under taking complements. The function p : A → [0, 1] is then called a probability function or
probability measure in case it satisfies

(i) p(A) ≥ 0, ∀A ∈ A,

(ii) p(Ω) = 1,

duced before is reserved for the quantum probabilities.
15In the latter case one speaks of a σ-algebra [62].
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2 The Many Worlds Interpretation On Probabilities in the MWI

(iii) p(
⋃N

j=1 A j) =
∑N

j=1 p(A j), ∀A j ∈ A in case A j ∩ Ak = 0 for i , k.

In (iii), we have either N ∈ N or ‘N = ∞’ (in the latter case, (iii) is called ‘σ-additivity’)
[63]. This more or less covers the formal basis of probability theory. But this formal function
or measure p is of course used by scientists to represent something; the A ∈ A are usually
construed as representing events, and there is a whole host of differing views of what that
‘something’ is which p represents.

Possibly the broadest dichotomy is that between epistemic and objective probability. Ob-
jective conceptions of probability include relative frequencies of occurrences of certain types
of events, limits of relative frequencies in random sequences over infinite domains, long-run
propensities as tendencies of types of experiment to bring about a certain outcome, or single-
case propensities as tendencies of individual experiments or events to bring about a certain
outcome. Epistemic conceptions of probability include degrees of belief (of a real or ideal
agent) in some hypothesis, and degrees of confirmation of a hypothesis [70].

But none of these views is entirely free of problems. To give an example: probabilities as
limits of relative frequencies require an account of what counts as a random sequence, because
otherwise all kinds of probabilities could be fabricated by a suitable ordering. Such an account
was, indeed, worked out by von Mises [75]; but von Mises crucially had to rely on the existence
of a ground sequence s from which general random sequences would be defined in terms of
‘admissible’ place selections. And it has (among other things) been objected that “there is not
just only one physically possible infinite random sequence; there are many, indeed uncountably
many. It seems arbitrary to pick out one of them and declare it to be the ‘ground sequence.’” [70]
Moreover, it is worthy of question how an ideal mathematical concept such as the limit value
of some sequence connects to actual experience, or whether it even connects to reality at all in
some cases [ibid.].

A similar review of problems could be given w.r.t. other conceptions of probability as well.
But we are here concerned with probabilities in the MWI and why there is a special conceptual
problem there. This special problem is that probability always reflects a kind of subjective
uncertainty or objective indeterminateness, and even if we had a suitable notion of probability
for a classical setting, this would not help for the MWI, since the quantum state could (in
principle) be perfectly known and then there could be no uncertainty at all (nor would there be
indeterminateness, of course) as to what outcome would occur, or with what frequency; they
would all certainly occur with frequency 1.

In what follows, our primary concern will first be with the problem of connecting the numer-
ical values predicted by Born’s rule, and so successfully confirmed in experimental practice to
the MWI (call this ‘the quantitative problem’). To this end, we will consider two influential
approaches to deriving the Born rule from general principles (of QM and otherwise), and with-
out the circularity involved in decoherence-based approaches. Subsequently, the discussion will
elaborate on the conceptual problem to the extent in that it is associated with both derivations.
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3 Deutsch & Wallace: Probabilities from Decision Theory

A purported proof of the Born rule that has drawn much attention among philosophers of physics
is that first discovered by Deutsch [21]. The strategy here is to demonstrate that rational decision
makers in an Everettian multiverse will behave as if the Born rule was true. Deutsch’s approach
has subsequently been analyzed, extended, and modified by Wallace [78–81]. More precisely,
the general aim of all versions is to show that the Born rule provides a unique measure over
worlds or branches on which a decision maker, aware of QM, should base his decisions to count
as rational. It remains open to debate whether Wallace’s (and a fortiori Deutsch’s) reading of
decision theory is plausible after all, and can hence support the inclusion of probabilities into
the MWI on decision theoretic grounds.

3.1 Decision Theory: Basic Notions & Concepts

Since all versions of the proof (Deutsch’s and Wallace’s) are based on decision theory, this re-
quires us to review a few basic concepts of the latter. We will here heavily rely on the exposition
of Wallace [78], where the crucial concepts established by von Neumann and Morgenstern [76],
Savage [65], and others have been preselected according to their relevance to the debate.

Crucially, the setup relies on a set A of acts that can be thought of as pairs a = (M, π),
where M is a chance setup, a situation where any out of a given set of events might occur but
it is impossible to tell which (e.g., the rolling of dice), and π is a payoff function that maps
from a set SM of states compatible with M (the ‘possible results in M’) into their consequences
C ⊇ ran(π).16 The events whose occurrence is uncertain are regarded as subsets of SM, whence
the power set P(SM) :=

{
E|E ⊆ SM

}
of SM constitutes the event space. π is typically (though

not necessarily) made sense of in terms of the rewards of a bet, so that, e.g., π(two sixes) =

reward Xe (X some precise amount). But this ‘bet’ may equally be any kind of situation that
includes decisions under uncertainty, and the reward need not be monetary. It is also assumed
that the acts can be ordered according to the preferences of a decision maker, so that for a, b ∈
A, a ≺ b iff the agent (decision maker) would prefer b over a. This may include indifference, ',
as to certain acts, so that � defines a weak total order onA (i.e., it holds for all a, b ∈ A in some
order or in both, is transitive: a � b & b � c ⇒ a � c, reflexive: a � a, and antisymmetric:
a � b & b � a⇒ a ' b).

A requirement for an agent to be rational then usually is that she should prefer an act a to an
act b if (for her) the (expected) utilities u of these two acts satisfy u(a) > u(b). Utility of course
needs a definition, which may be given as

u(a) :=
∑
x∈SM

p(x|M)π(x), where a = (M, π). (43)

u is construed as a measure of how useful the consequences of a are for the agent; p(·|·) is
just some conditional probability measure, or, more carefully, some ‘decision weight’. So the
utility of playing a game of dice, say, is evaluated by considering how probable any given
result of a throw is, and what the consequences of the occurrence of the particular results are

16We here take it that π is real valued, for convenience, i.e., that C ⊆ R. But one could also introduce an additional
map that assigns real values to the consequences [78].
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(money received, joy of winning, loss of money...). The average of these consequence-values or
‘payoffs’ w.r.t. the probability measure then yields a utility value for the game. But of course the
theory should also be transferable to situations where the reward is not money, and the situation
is more than just a game (cf. [78] for examples).

In this definition, however, there are two ‘variables’ to be filled, namely the occurring prob-
ability measure, and the utility function itself. However, it makes sense to connect the two by
defining either through the other. This is sometimes accomplished by considerations of betting
behavior, so that p is supposed to reflect a degree of belief or confidence in a given outcome.
But one might also take the definition of u as a direct indicator as to the role of p. What the
Deutsch-Wallace proof provides, in the version that we are considering here, is a uniqueness
theorem that p is the Born probability if (M, π) is a ‘quantum game’ (defined below), given
some decision theoretic axioms effectively constraining u.17 It is thereby shown that rational
agents competent in QM behave as if the Born rule was true. This is viewed, in turn, as a
justification of the Born rule that is compatible with the MWI.

3.2 The Deutsch-Wallace Proof

To derive the Born rule with the aid of decision theoretic principles, it is of course necessary
to introduce QM notions into the language of decision theory. In fact, the chance setup M can
be identified with the measurement of some observable O with operator Ô, and SM with the set
of states of the measuring apparatus, i.e., pointer positions, light bulb configurations, ... and
so forth, which can be mapped onto (identified with) eigenvalues o j of Ô. The measurement is
performed on some quantum state |ψ〉 and the o j will in turn be mapped onto consequences (pay-
offs) by a suitable π. Thus the ordered triple (|ψ〉 , Ô, π) formally defines a quantum game g, the
analogue of an act. Of course such games are abstract formal entities that may be implemented
physically in various ways (for instance, spin experiments can typically be used in analogy to
polarization experiment). Agents will be considered indifferent between two different physical
realizations of the same triple (|ψ〉 , Ô, π), as is postulated as an axiom by Wallace [78].

Indifference, ', in fact defines an equivalence relation, as can be easily seen from the prop-
erties of � as introduced above. Using this insight, Wallace [78, 79] proves the following two
equivalences:18

Theorem 3.1 (Equivalence theorem).

1. (|ψ〉 , Ô, π) ' (|ψ〉 , f (Ô), π ◦ f −1) (‘payoff equivalence’; PE),
where f maps the eigenvalues σ(Ô) of Ô into R.

2. (|ψ〉 , Ô, π) ' (Û |ψ〉 , Ô′, π′) (‘measurement equivalence’; ME),
where Û is a unitary operator, ÛÔ = Ô′Û, and π and π′ give the same payoffs for the

17Wallace [78] indeed argues that it is “foundationally [...] far more satisfactory” to first derive the uniqueness
of p and then fix u. He has also presented various alternative ways of deriving the Born rule from different
sets of decision theoretic axioms [79–81]. We will focus on the direction u ⇒ p and a version of the proof
as originally presented by Deutsch [21], since this is the most straightforward way and fully sufficient for our
discussion.

18Wallace [79] actually proves three equivalences, but we do not need the third one, and it implies a questionable
appeal to ‘Born-weights’.
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eigenvalues σ(Ô) and σ(Ô′) of Ô and Ô′ respectively.19

The proofs of 1. and 2. both essentially boil down to analyzing the physical processes
involved, and we will omit full proofs for either of them (see [79] for further reference). To
briefly sketch the ideas: In 1. it is exploited that f (Ô) maps the eigenvalues of Ô to some interval
of R, and if the payoff is ‘shifted back’ accordingly (π 7→ π ◦ f −1) then this is equal to a simple
relabeling of the outcome states, without any physical change. In 2., the two states |ψ〉 , Û |ψ〉
are construed to be elements of different spacesH ,H ′ repsectively, and it is demonstrated that
one can repeat the same physical process (with identical payoffs) utilizing states from eitherH
orH ′ as states of an auxiliary system (i.e., usingH⊗H ′), so that neither is physically preferred
(or rather: both can be viewed as physically identical), in virtue of the possibility of reordering
the tensor product or a mere relabeling. (�)

Crucial to the actual proof of the theorem is also the composition of games into more complex
games. This is done [21, 79] by letting consequences of games be further games, so that, “[f]or
instance, we might measure the spin of a spin-half particle, and play one of two possible games
according to which spin we obtained.” [79]

We mentioned at the conclusion of the last section that the utility function u needs to be
suitably constrained in order to derive the Born rule (prove its uniqueness). The constraints that
are used are the following:20

Dominance (DOM). If for all o ∈ σ(Ô), π(o) ≥ π′(o) then u( |ψ〉 , Ô, π) ≥ u( |ψ〉 , Ô, π′).

Substitutivity (SUB). If gcomp is a compound game formed from g by substituting some of g’s
payoffs c j, . . . c j+k by games g j . . . g j+k such that u(gi) = ci, j ≤ i ≤ j + k, then u(gcomp) = u(g).

Additivity (ADD). For k ∈ R it holds that u( |ψ〉 , Ô, π + k) = u( |ψ〉 , Ô, π) + k.

Zero-Sum (ZS). For some given π, let π̄(o) = −π(o),∀o ∈ dom(π). Then u( |ψ〉 , Ô, π̄) =

−u( |ψ〉 , Ô, π).

DOM and ZS should be easily acceptable. Of course a game with greater payoff is more
useful to an agent, where we remember that ‘payoff’ should not be taken to literal (in the sense
of money), and hence may depend on the specific agent to the same degree as does utility.
And zero-sum basically defines negative utility; so if an agent looses something she considers
valuable (the payoff), then the act leading to the loss will do her harm/have negative use for her.
To SUB one might object that, in real life, the playing of the subsequent games g j . . . comes with
extra effort for the agent (instead of receiving the payoffs directly), so substitutivity is at least
not ‘self evident’. But of course, the payoff may be so adapted that it compensates the additional
cost; e.g., if one plays a game of dice and instead of receiving a reward of 5e, one is offered to
play a card game where the potential reward is 10e instead, this might be considered equally
worthwhile. ADD basically says that a certain additional payoff to a given game is as useful as
another game in which the payoff is always higher. This requires, of course, that payoffs and

19Note that Û may connect different Hilbert spaces, and in case it maps a Hilbert space onto itself, the condition
simplifies to (|ψ〉 , Ô, π) ' (Û |ψ〉 , ÛÔÛ†, π′) [79].

20We again loosely follow [79] with terminology and formulation.
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utilities can be straightforwardly compared or equated; but this is plausible, since utilities are
computed as a weighted sum of payoffs, so they should be quantified in a comparable fashion.21

There is no use in fixating on these assumptions in particular though, since (as mentioned
before) Wallace has offered proofs from different (arguably weaker) assumptions. We shall
hence later assess more general concerns about the decision theoretic approach. Assuming also
that two equivalent games g ' g′ have the same utility (Wallace calls this ‘physicality’), which
constitutes basically a conceptual/definitional link between ‘'’ and ‘u’, one can now prove the
following theorem:

Theorem 3.2. For a value function u which is additive, substitutive, and satisfies dominance
and zero-sum and a quantum game g = ( |ψ〉 , Ô, π), u(g) is uniquely given by

u(g) =
∑

o∈σ(Ô)

〈ψ|P̂o|ψ〉 π(o) =
∑

o∈σ(Ô)

PrψO(o)π(o).

Proof. As a gross simplification, we generically set π ≡ idÔ, i.e., the payoff is the identity map
on σ(Ô). This is possible without loss of generality, since by PE, we can map this situation onto
any other by a mere ‘relabeling’. The proof can then be given in six stages (i-vi) [79] (we mark
the conclusion of each stage by ‘�’).

(i) Consider a game where |ψ〉 = 1
√

2
( |o1〉 + |o2〉). Then from ADD we have

u( |ψ〉 , Ô, idÔ) + k = u( |ψ〉 , Ô, idÔ + k).

Defining f (o) = o + k, we have f −1(õ) = õ − k (õ ∈ ran( f )), and according to PE (and ‘physi-
cality’), we thus get

u( |ψ〉 , Ô, idÔ) + k = u( |ψ〉 , Ô, idÔ + k) = u( |ψ〉 , Ô + k, idÔ),

where Ô + k is understood as defined on the values in σ(Ô). Using PE in the same fashion in
combination with ZS yields

u( |ψ〉 ,−Ô, idÔ) = u( |ψ〉 , Ô, īdÔ) = −u( |ψ〉 , Ô, idÔ).

Thus overall we have
u( |ψ〉 ,−Ô + k, idÔ) = −u( |ψ〉 , Ô, idÔ) + k. (◦)

Now let f (o) := −o + o1 + o2 and distinguish the following cases:
(a) Ô is non-degenerate and σ(Ô) is invariant under f (e.g., σ(Ô) =

{
±1

2

}
). Then there is a Û f

such that Û f ÔÛ†f = f (Ô) (since f is invertible and Ô is not ‘rescaled’), and |ψ〉 = 1
√

2
( |o1〉+ |o2〉)

is left invariant by Û f . But then by ME we have

u( |ψ〉 ,−Ô + o1 + o2, idÔ) = u( |ψ〉 , Ô, idÔ).

21In [21], this version of the additivity is proved from an additivity assumption on the payoffs. No harm comes
from assuming the additivtiy for u though.
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Thus, using (◦) with k = o1 + o2, we have

u( |ψ〉 , Ô, idÔ) = −u( |ψ〉 , Ô, idÔ) + o1 + o2 ⇔ u( |ψ〉 , Ô, idÔ) =

=
1
2

(o1 + o2) =
∑

o∈σ(Ô)

〈ψ|P̂o|ψ〉 π(o).

(b) Ô is degenerate or σ(Ô) is non-invariant under f . Then by ME one obtains an equivalent
game through some transformation Ô 7→ ÛÔÛ† =: Ô′, s.t. Ô′ agrees with Ô on the span of{
|o1〉 , |o2〉

}
and is 1

2 (o1 + o2)1 otherwise. The result then follows analogously for the equivalent
game (except if o1 = o2, in which case the result follows trivially). �

(ii) Let N = 2n, n ∈ N \ {0}, |ψ〉 = 1
√

N

∑N
j=1 |o j〉. We prove by induction on n ≥ 2 (n = 1 is

covered by (i)) that u( |ψ〉 , Ô, idÔ) = 1
N (

∑N
j=1 o j).

• Base step: for n = 2, we have |ψ〉 = 1
2

∑4
j=1 |o j〉. Now define

|A〉 :=
1
√

2
( |o1〉 + |o2〉), |B〉 :=

1
√

2
( |o3〉 + |o4〉), Q̂ :=

o1 + o2

2
|A〉〈A| +

o3 + o4

2
|B〉〈B| .

Then |ψ〉 = 1
√

2
( |A〉+ |B〉), and gQ̂ := ( |ψ〉 , Q̂, idQ̂) can easily be seen to have value 1

4

∑4
j=1 o j by

(i). We now distinguish two cases:
(a) Either the observer finds himself in the A-branch, and receives o1+o2

2 . By SUB, the observer
is now indifferent between immediately receiving o1+o2

2 and playing gA := ( |A〉 , Ô, idÔ), since
by (i) and definition of |A〉, u(gA) = 1

2o1 + o2 which is the payoff.
(b) The same applies in the B-branch with gB := ( |B〉 , Ô, idÔ) and o3+o4

2 .
The total value of playing gQ̂ with gA and gB substituted for payoffs is thus equally 1

4

∑4
j=1 o j.

But this game is physically realized by the same process as ( |ψ〉 , Ô, idÔ).

• Induction hypothesis: Let, for some n, u( |ψn〉 , Ô, idÔ) = 1
2n (

∑2n

j=1 o j), where |ψn〉 = 1
√

2n

∑2n

j=1 |o j〉.

• Inductive step: We repeat the procedure of the base step for |ψn+1〉 = 1
√

2n+1

∑2n+1

j=1 |o j〉, by

defining a suitable observable Q̂n+1 =
∑2n

j=1 o j

2n |A〉〈A| +
∑2n+1

j=2n+1 o j

2n |B〉〈B| with

|A〉 :=
1
√

2n

2n∑
j=1

|o j〉 , |B〉 :=
1
√

2n

2n+1∑
j=2n+1

|o j〉 , |ψn+1〉 =
1
√

2
( |A〉 + |B〉),

and using the i.h. and (i) and SUB again. �

(iii) Now let N = 2n, n, a1, a2 ∈ N\{0}, where a1 +a2 = N, and |ψ〉 = 1
√

N
(
√

a1 |o1〉+
√

a2 |o2〉).
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Then define Q̂ :=
∑N

j=1 q j |q j〉〈q j| over an N-dimensional Hilbert spaceHN , and

f (q j) =

o1 if 1 ≤ j ≤ a1,

o2 else.

Also, let (without loss of generality) dom(Ô) = span
{
|o1〉 , |o2〉

}
and V̂ : dom(Ô) → HN be

defined s. t.

V̂ |o1〉 =
1
√

a1

a1∑
j=1

|q j〉 , V̂ |o2〉 =
1
√

a2

a2∑
j=a1+1

|q j〉 .

Then we have f (Q̂)V̂ = V̂Ô, and from PE, ME, we get ( |ψ〉 , Ô, idÔ) ' (V̂ |ψ〉 , f (Q̂), id f (Q̂)) '
(V̂ |ψ〉 , Q̂, f ◦ idQ̂). Since V̂ |ψ〉 is an even superposition and we receive a1 · o1 and a2 · o2 in the
last game, by definition of f , this yields u( |ψ〉 , Ô, idÔ) = 1

N (a1o1 + a2o2). �

(iv) Next, we let 1 > a ∈ R+, |ψ〉 =
√

a |o1〉 +
√

1 − a |o2〉. Let also a = lim
n→∞

an for decreasing

an =: An
2n , An ∈ N \ {0},∀n ∈ N (i.e., we approximate a by a series of numbers that are dense in

R+). We then define, for each n,

|ψn〉 :=
√

an |o1〉 +
√

1 − an |o2〉 , |φn〉 :=
√

a
an
|o1〉 +

√
1 −

a
an
|o2〉 ,

and gn := ( |ψn〉 , Ô, idÔ), g′n := ( |φn〉 , Ô, idÔ); g is then just the same game on |ψ〉. Since
an ∈ Q,∀n ∈ N, we get from (iii) that u(gn) = ano1 + (1 − an)o2. Without loss of generality
we set o1 ≤ o2, so that by DOM we can say that u(g′n) ≥ o1. Call g−n the game whose utility
is exactly o1. Then by SUB we receive a game equivalent to gn by substituting g−n for o1 in gn

and we then know by DOM that utility of the game resulting from substituting g′n instead is at
least u(gn). But substituting |φn〉 for |o1〉 in |ψn〉, we obtain

√
a |o1〉 + (

√
an − a +

√
1 − an) |o2〉

which, in the n −→ ∞-limit is just |ψ〉. So we can see that u(g) ≥ u(gn),∀n ∈ N, that is,
u(g) ≥ ao1 + (1 − a)o2. Through an analogous argument on an increasing series of an, we can
establish that u(g) ≤ ao1 + (1 − a)o2, whence u(g) = ao1 + (1 − a)o2. �

(v) For α, β ∈ C, so that |α|2+|β|2 = 1, and |ψ〉 = α |o1〉+β |o2〉, we write α = |α|eıϕ1 , β = |β|eıϕ2 ,
and transform Ô and |ψ〉 by Û = e−ıϕ1 |o1〉〈o1| + e−ıϕ2 |o2〉〈o2|. Then Û |ψ〉 = |α| |o1〉 + |β| |o2〉, and
ÛÔÛ† = Ô. But then by ME, we have g := ( |ψ〉 , Ô, idÔ) ' (Û |ψ〉 , Ô, idÔ) =: g̃, and u(g̃) is just
|α|2o1 + |β|2o2 by (iv). So u(g) = |α|2o1 + |β|2o2. �

(vi) We can generalize (v) to |ψ〉 =
∑

j α j |o j〉 and u( |ψ〉 , Ô, idÔ) =
∑

j |α j|
2o j, in analogy to

the generalization from (i) to (ii). �

3.3 Discussion (i)

The proof presented above is rather seamless, and we take it that this is a deductively valid
argument from the decision-theoretic premises to its conclusion. The same has been judged (by
critics [53]) about Wallace’s other version(s) of the proof. But that an argument is deductively
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valid entails nothing about the truth of its premises. That is to say, if one finds the conclusion of
the theorem to be highly implausible for good reasons, this merely implies that at least one of the
premises from which the conclusion follows must have been wrong all along. As philosophers
sometimes put it: one’s modus ponens is another’s modus tollens.

So how reasonable is it that believers in the MWI will apply the Born rule to guide their
actions? Harsh criticism has in fact been advanced against such a conclusion. The first thing
to notice here (which also lies at the heart of the criticism) is the rather intricate connection
between the different ‘observers’ in a branching process. For if an observer O makes an x-
spin measurement on a system prepared as |↑z〉, then she will end up, according to the MWI,
entangled with the state of the spin. The precise form of the entangled state will be determined
by the dynamical properties of the interaction (by decoherence), but of course the subjective
experience of O will inevitably be such that she either experiences measuring |↑x〉 or |↓x〉, as is
also assumed by Deutsch and Wallace. However, there will then be two observers that emerge
out of this entangling process, which we will call O↑x and O↓x . Then which of the two observers
is O after the measurement-interaction? Which is the ‘rightful heir’ of O’s conscious memory?

The answer clearly must be either ‘none’ or ‘both’, because there is no sense in which either
O↑x or O↓x is preferred (in the QM formalism at least).22 This ultimately means that there is no
clear sense in which any of the two can count as the successor of O, and that hence O has no
good reason to identify her wishes and desires with those of either O↑x or O↓x [7].

The problem that is dawning here is that O cannot even evaluate the utility of measuring either
|↑x〉 or |↓x〉, because O will not measure anything; O↑x and O↓x will, and there is no clear sense
in which either of them is ‘really’ O. More precisely, O cannot have any uncertainty about
whether she will become O↑x or O↓x (because she will become both/neither), so the squared
amplitude must be reinterpreted in some way, to make sense in the decision theoretic context.23

It has been suggested by L. Vaidman [74] and H. Greaves [34, 35] to interpret the Born rule-
decision weights as a caring measure, a measure of how much one cares about what happens to
any of one’s future selves.

Greaves [35] has argued that this is even feasible for the context of confirmation of scientific
theories, since a caring measure satisfies, by some standards, the same requirements for con-
firmation that probability does. In particular, Greaves appeals to Bayesian confirmation theory,
according to which rational agents must update their beliefs in the truth of a hypothesis H in the
form of probabilistic conditionalizing on new evidence. Thus, say a hypothesis H is believed
to some degree p(H) prior to learning evidence E. This may be understood in terms of betting
behavior, as was indicated in section 3.1. Then if an agent updates her believes at all, but does
not update them by conditionalizing, i.e., according to

pE(H) = p(H|E) =
p(E|H)
p(E)

p(H), 24 (44)

22An alternative is to associate a multitude of ‘minds’ or consciousnesses with any system that is physically capable
of carrying consciousness at all (complex biological organisms, according to current knowledge), which also
opens up an alternative way of associating probabilities with measurement outcomes [2]. But then one still
needs advanced dynamics for the interrelations between the successive multitudes of consciousnesses that are
spawned off in measurement-like situations [50].

23For a diverging opinion see [64]. The arguments presented therein have, however, been countered by Greaves
[34] in a way that we here hold to be satisfactory.

24This is a version of Bayes’ theorem, which follows straightforwardly from the definition of conditional proba-
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then a ‘diachronic Dutch book’ can be made against her, i.e., one can devise a series of bets that
she is certain to loose, in virtue of her updating rule diverging from (44).

Greaves then argues that the Born rule-caring measure can do the same in a branching multi-
verse: it offers a unique means for determining betting quotients at which one would be willing
to accept a certain bet without the possibility of a ‘Dutch book’, with the prospect now being
sure losses to all of ones future selves, on all branches. I.e., the ‘Born probability’ quantifies
to what degree O cares about the gains and losses of O↑x and O↓x in certain bets whose payoffs
depend on observing either |↑x〉 or |↓x〉. And it does so in the unique way that avoids sure losses
to all future selves (O↑x and O↓x).

But regardless of whether Greaves’s analysis is correct, it has been argued that agents could
– and indeed should – equally well care about their future selves in fashion that defies the
Born rule as a suitable ‘caring measure’, in the multiverse. The alternative caring measures
suggested are typically intended as a reductio ad absurdum, i.e., as a mere counterexample,
demonstrating that rationality does clearly not dictate the Born probabilities (and therefore,
at least one of the decision-theoretic assumptions must be wrong, or rather: does not reflect
rationality). Albert [1], for instance, has argued that one could equally use a ‘fatness measure’
to quantify the future well-being of the future versions of one’s self, i.e., that one could care
more greatly about branches in which there is ‘more of oneself’. A measure that takes notice of
that could be established – in a fashion that avoids quantifying how many future selves exactly
there are, i.e., avoids the need for a problematic counting strategy – by multiplying the Born
weights with a measure of one’s own ‘fatness’ (e.g. ones mass [81]). As Albert argues, it does
not seem irrational to care more about those branches where there is ‘more of oneself’.

It is doubtworthy that caring more about more mass is indeed rational. But one need not even
invoke such cynical means as the ‘fatness measure’ to see that something must be wrong with
the decision-theoretic approach. A key issue that points in this direction is that the Everettian,
aware of the branching, could also well care about some outcome of a game that concerns all
of the future selves. Such a possibility is discussed by Wallace [81] and Maudlin [53], but with
unequal conclusions. Let us imagine [53, 81] a student who would really like to study physics
and history, but only has the (financial, cognitive) capacities to study either of the two ‘in any
one branch’. Let us also say that she is a firm Everettian and has reasons to settle for physics,
but that she meets an experimental physicist who offers her (for 10e, say) to make an x-spin
measurement on |↑z〉, based on whose outcome she can reconsider (i.e.: stick to physics if |↑x〉

is observed, and switch to history if |↓x〉 is observed). From an Everettian standpoint, it seems
perfectly rational for the student to accept this bargain, since she will become O↑x and O↓x , at
least in two separate branches, and hence come as close as it gets to fulfilling her dream of
studying both subjects. Granted, O↑x and O↓x do not share a joint consciousness, so this is not
exactly the situation desired. But we have argued that there is no clear reason for the student
before the measurement to identify with either O↑x or O↓x on the MWI. Thus in virtue of her
Everettian beliefs, this may indeed count as ‘as close as it gets’.

But if she would indeed take this deal, then she would not use the branch weights or the Born
rule-‘caring measure’ to base her decision on. Thus there are good reasons to believe that the
behavior of rational Everettians does not always conform to the Born rule. It is also clear that
the student would be grossly irrational in a non-Everettian universe, since she would either pay

bility as p(X|Y) = p(X,Y)/p(Y) [70].
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10e for reaffirmation of a decision she has already made, or simply loose 10e to decide for
something she had deemed slightly less desirable.

The problems raised here become most pressing when transferred to matters of life an death.
For consider a malfunctioning nuclear power plant, and the staff faced with two options: (a)
send 12 workers to certain death to prevent a meltdown or (b) perform a procedure that depends
on a quantum mechanical process with a Born probability of 0.9999 of avoiding disaster and
0.0001 of sending everyone (1000 people, say) to death. If one is not an Everettian, it seems
perfectly reasonable to rely on the Born rule and chose (b). But for Everettians, option (a)
indeed seems much more reasonable, because upon choosing (b), there will be branches that
include the deaths of 1000 people [53].

Assuming that it is the case that the MWI is true, we may have to adapt our intuitions about
such moral dilemmas, and find actions to be reasonable that we would not have found rea-
sonable before. But that does not change the fact that there are cases where it seems decisively
rational for Everettians not to rely on the Born rule to guide their actions (as the student-example
straightforwardly shows). So one of the premises of the Deutsch-Wallace proof must clearly be
false.

Maudlin [53], indeed, has also put the finger on the relevant premise, a prerequisite not made
explicit but used in multiple instances in the above proof, and stated explicitly in Wallace’s
advanced version of it [81]. Namely, outcomes are still treated as mutually exclusive in the
whole decision-theoretic approach to deriving the Born rule. But there is a clear sense in which
this assumption is not warranted in the MWI anymore, whence, as Maudlin has piercingly
put it: “Wallace’s [and Deutsch’s – FB] decision theory has been set up in its axioms to rule
out a rational agent acting in a way that takes Everettian quantum mechanics seriously.” (The
emphasis is Maudlin’s.)

For completeness’s sake, we note that Wallace [81] has responded to the problem posed
by the student-example by invoking a principle he calls ‘diachronic consistency’, according
to which (roughly) an agent will not suddenly change his preferences after a branching event,
i.e., maintain consistent values for acts over time. Wallace now argues that choosing to ‘split’
can violate diachronic consistency since the version of the student who would end up studying
history could always switch back without hurting his ‘counterpart’ in the other branch. But it is
hard to see how this response applies, since if the goal is to have two versions of oneself, one
who studies history and one who studies physics, then this would clearly forestall switching
back [53].

A second reply by Wallace is that this is not even a counterexample because the decision-
problem is now a different one, and, in case one does not switch back, “the utility you are
assigning to (history-after-process) is higher than the utility you assign to (physics-against-
process), and indeed higher than (physics-without-process). The different situations in which
you end up doing history count as different rewards.” [81] Against this, Maudlin has (concisely)
countered that it misses the point, since “[i]t is the outcome, not the process, that matters. In
the relevant sense, a ‘split life’ is a different outcome than either non-split life would be, and
the agent simply prefers this outcome and would pay a premium for it. Such behavior is a
‘counterexample to the Born rule’, i.e. to using the branch amplitudes as weights in decision
theory for calculating an expected utility.” [53] (The emphasis is Maudlin’s.)
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4 Zurek: Probabilities from QM Alone?

The forgoing discussion has highlighted difficulties of the decision-theoretic approach to justify-
ing (or formally deriving) the Born rule. An intriguing alternative was opened up by Zurek [86],
who found a method of deriving the Born rule from the remainder of QM and without direct
appeal to decision theory or the like. However, close scrutiny of the actual proof shows that
Zurek also has to assume more than meets the eye, in particular about probabilities and how
they enter into the formalism. Moreover, no clear view of how to interpret the probabilities is
offered, and this, in fact, again raises potential trouble for the MWI. Below, we will first ana-
lyze the derivation itself in the detailed form presented in [87], and then discuss objections to
the approach and its purported implications.

4.1 Introducing Envariance

Zurek’s proof crucially rest on a feature he calls ‘environment-assisted invariance’, or short:
envariance, a feature of entangled states that is defined as follows [86].25

Definition 4.1 (Envariance). Let |ψS∗E〉 ∈ H = HS ⊗HE be a joint state of a system of interest
S and its environment E, and let ÛS = ûS ⊗ 1E be a unitary operator acting solely on the space
HS. Then |ψS∗E〉 is called envariant under ÛS iff there is an ÛE = 1S ⊗ ûE, acting solely onHE,
s. t.

ÛEÛS |ψS∗E〉 = |ψS∗E〉 .

We will follow Zurek’s practice in calling operators envariant on given states if all the states
are envariant under them. For now we also assume all Hilbert spaces to be of finite dimension,
so that one should think of summation indices as ranging from 1 to some suitable N ∈ N. The
infinite and continuous cases will be considered subsequently.

Informally, envariance means that operations performed on the system can entirely be undone
by operations performed on the environment alone. This feature is quite peculiar to QM, and,
as mentioned above, it occurs in virtue of entangled states. To see this, consider some state

|ψS∗E〉 =
∑

j

α j |σ j〉|ε j〉 (45)

in Schmidt decomposition (cf. footnote 8), with the |σ j〉 S’s states and the |ε j〉 E’s. Now ÛS

may have the effect
ûS |σ j〉 = eıϕ j |σ j〉 , (46)

on each |σ j〉, i.e., of inducing a particular phase ϕ j on each of the states respectively. This can
be completely undone by

ûE |ε j〉 = e−ı(ϕ j+2πm j) |ε j〉 , (47)

for m j ∈ Z,∀ j, since the phases ϕ cancel, and e−ı2πm j = 1, for the given choices of m j [86, 87].
In fact there is the following lemma about the form of such envariant operators.

25Even though the term is introduced more ‘casually’ by Zurek, we take it that he intends an explicit definition.
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Lemma 4.2 (Codiagonalizability). An operator ÛS = ûS ⊗ 1E is envariant on a state |ψS∗E〉 =∑
j α j |σ j〉|ε j〉 (where |σ j〉 ∈ HS, |ε j〉 ∈ HE,∀ j) iff ûS can be given in the (codiagonal) form

ûS =
∑

j

exp
(
ıϕ j

)
|σ j〉〈σ j| . (†)

Proof.
Direction “⇒”: If ûS is of the form (†), ÛS can always be undone by some ÛE = 1S ⊗ ûE with

ûE =
∑

j

exp
(
−ı(ϕ j + 2πm j)

)
|ε j〉〈ε j| m j ∈ Z,∀ j. (?)

Direction “⇐”: Assume that ûS cannot be given as (†). Then

ÛS |ψS∗E〉 =
∑

j

α j |ûSσ j〉|ε j〉 =
∑

j

α j |σ̃ j〉|ε j〉 =: |ηS∗E〉 ,

where by assumption ∃ j∀ϕ : eıϕ |σ̃ j〉 <
{
|σ j〉

}
j∈J. Since ÛS is supposed to be envariant on

|ψS∗E〉, there must be a ÛE = 1S ⊗ ûE s. t.

ÛE |ηS∗E〉 = |ψS∗E〉 .

But ÛE only has an effect on HE, so it cannot effect a mapping |σ̃ j〉 7→ |σ j〉 for the |σ̃ j〉 not
contained (up to phase) in

{
|σ j〉

}
j∈J. Contradiction. �

Moreover, one can easily see that the environment E is not uniquely defined, since plugging
in an apparatus M, the state

|ψS∗M∗E〉 =
∑

j

α j |σ j〉|µ j〉|ε j〉 (48)

is obviously envariant in the same sense for manipulations

ÛM = 1S ⊗
(∑

j

exp
(
−ı(ϕ j + 2πm j)

)
|µ j〉〈µ j|

)
⊗ 1E (49)

of the apparatus states |µ j〉; and in principle, a larger environment can always be defined (de-
pending on the resources in the universe of course) on which the undoing operation is per-
formed [87].

In principle, the phases can be understood as generated by the eigenvalues ω j =
E j

~
up to ~

of some Hamiltonian whose eigenstates are those of the Schmidt decomposition, multiplied by
duration t of the evolution described by the Hamiltonian. I.e., ϕ j = ωS

j · tS and −ϕ j − 2πm j =

ωE
j · tE, where the eigenvalues are essentially arbitrary, up to their interrelatedness on S and

E [86].
However, for certain states, there is an interesting subclass of envariant operations:

Lemma 4.3 (Envariance under swaps). A state |ψS∗E〉 =
∑

j α j |σ j〉|ε j〉 is envariant under a
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swap
ûS(i� k) ⊗ 1E =

(
eıϕi,k |σi〉〈σk| + e−ıϕi,k |σk〉〈σi| +

∑
i, j,k

|σ j〉〈σ j|
)
⊗ 1E (�)

iff it holds that |αi| = |αk|.

Proof.
Direction “⇒”: The swap is ‘undone’ by a counterswap onHE:

ûE(i� k) = e−ı(ϕi,k+ϕi−ϕk+2πmik) |εi〉〈εk| + eı(ϕi,k+ϕi−ϕk+2πmik) |εk〉〈εi| +
∑
i, j,k

|ε j〉〈ε j| ,

mik ∈ Z. (50)

Direction “⇐”: Assume that |ψS∗E〉 is envariant under (�) and |αi| , |αk|. Then we get states
αk |σi〉 , |σi〉 , αi |σk〉 , |σk〉 whence we cannot restore the original state by merely acting
unitarily on |εi〉 , |εk〉. Contradiction. �

The existence of swaps is not in contradiction to the codiagonalizability lemma 4.2, since
one can equally prove the⇒-part by appeal to the Hadamard basis of the subspace of two states
being swapped, i.e., the basis of equal- and opposite-sign superposition with equal coefficients,
in which the swap is diagonal and hence effectively of the form exposed in (†) [87].

Swaps of course exchange the i-th and k-th sate of |ψS∗E〉. If |ψS∗E〉 is of the ‘even’ form

|ψS∗E〉 =
∑

j

|α|eıϕ j |σ j〉|ε j〉 , (51)

the state is envariant under arbitrary and simultaneous (or ‘total’) swaps of all system states.
We note at this point that the restriction to unitary operators figures crucially in the proofs of

the two lemmas, since an exchange of two states |σi〉 , |σk〉 that implies changing the moduli as
|αi| 7→ |αk|, |αk| 7→ |αi| could be undone by a non-norm preserving transformation that exchanges
the environment states |εi〉 , |εk〉 and simultaneously reduces their norms as |αk| 7→ |αk| · |αi|/|αk|

and |αi| 7→ |αi| · |αk|/|αi| respectively.

4.2 Deriving the Born Probabilities

The last insight of the previous section, that entangled states with equal moduli for (some) all
terms are envariantly swappable, is considered the “cornerstone” of his derivation by Zurek [87].
Next to this, he assumes three premises, which he thinks of as interpretation-neutral “facts”,
and which he believes only to clarify the notions of “state” and “(sub)system”, as they are used
ubiquitously in the debate [ibid.]:26

Premise 1 (UAct). To represent the alteration of the state of a system S by a unitary operator û,
û must act on the Hilbert spaceHS of that system.

26Note that we give paraphrases of these, not quotes, as we shall do with other ingredients of Zurek’s proof. ‘UAct’
may stand for the need of an action of a unitary on a system’s space to alter its state, ‘SEnc’ for properties and
probabilities being encoded into a system’s state, and ‘SInc’ for the inclusion of them system’s state in the joint
state with the environment.
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Premise 2 (SEnc). All measurable quantities pertaining to a system S and their respective
probabilities are fully and exclusively specified by S’s state.

Premise 3 (SInc). The state of a subsystem S j included in a larger system S = S1∗. . .∗S j∗. . .∗SN

is fully and exclusively specified by the state of S.

We have given these premises names for further reference and in virtue of their importance
for all subsequent steps. They clearly include presuppositions about probabilities and states and
how they relate to QM. To some degree though, they merely capture certain intuitions about the
meanings of such terms as “state” or “(sub)system” as they are used in QM. But we should later
still assess how plausible the premises of Zurek’s proof are, and this will include an indirect
assessment of the three.

Before proceeding to the Born rule now, Zurek first proves the following theorem:

Theorem 4.4 (Phase independence). For an entangled global state of system S and environment
E, all measurable quantities pertaining to S and their probabilities are independent of the phases
ϕ j in the Schmidt representation |ψS∗E〉 =

∑
j eıϕ j |α j| |σ j〉|ε j〉.

Proof. By premise 1, a phase transformation must be a unitary operator ÛS acting on HS of
S. In Schmidt representation, all such phase transformations are of the form (†), and hence
envariant. By that token, the phase transformation can be undone by an operation ÛE = 1S ⊗ ûE

as in (?), acting onHE, which, again by premise 1, cannot affect the state of S.
Since this restores the state |ψS∗E〉, however, by premise 3 the state of S must be restored

as well. Once more by premise 1, this means that S must have remained in the same state
throughout the operation ÛEÛS. Thus, by premise 2, the statement holds. �

The gist of this result is that S’s state and the probabilities in question must be fully deter-
mined by the set of pairs

{
(|α j|, |σ j〉)

}
j∈J. This is an important conceptual step, and the proof of

the theorem is instructive for the remainder of the discussion.
Subsequently, Zurek establishes the following theorem:

Theorem 4.5 (Equal probabilities for equal coefficients). The probabilities for states |σk〉 , |σ`〉

in a Schmidt state |ψS∗E〉 =
∑

j α j |σ j〉|ε j〉 of a system S and its environment E which have
coefficients of equal modulus |αk| = |α`| = |α| are all equal.

The proof of this theorem requires, however, either of the three following additional premises,
which all function as bridging principles for establishing (or connecting) values of probabilities:

Premise 4(a). If swaps of two orthonormal states in a joint state |ψS∗E〉 leave the state of S

unchanged, the probabilities for the outcomes associated with these states must be equal.

Premise 4(b). If the state of S in |ψS∗E〉 is left unchanged by all conceivable unitary transforma-
tions acting on a subspace H̃S ⊂ HS, then the probabilities for all outcomes of a measurement
associated with the states in an ONB of H̃S are equal.

Premise 4(c). The outcomes associated with states in a tensor term of some Schmidt decom-
position are perfectly correlated, i.e., if σ j is measured on |ψS∗E〉 =

∑
j α j |σ j〉|ε j〉, ε j will be

measured with probability 1 as well (and vice versa).
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The proof from 4(a) is straightforward:

Proof. (a) Theorem 4.5 is implicitly of a conditional form (if we have a Schmidt state with equal
coefficients, then...), so we assume the antecedent (the if-part) and prove the consequent (the
then-part). Thus assume a Schmidt state with at least two equal-modulus coefficients. Since
swaps are envariant on the subspace of these states (lemma 4.3), we get from an analogous
reasoning as in theorem 4.4 that they leave the state unchanged, whence, by modus ponens on
4(a), we get the desired consequent. �

The proof from 4(b) is more involved and requires the following lemma:

Lemma 4.6 (Envariance under partial swaps). Let S :=
{
|σ j〉

}K
j=1, S̃ :=

{
|σ̃ j〉

}K
j=1 be two or-

thonormal bases that span an even subspace HS ⊂ HS, i.e., a space of states on which the
Schmidt state |ψS∗E〉 has equal moduli for all coefficients. Then |ψS∗E〉 is also envariant under
swaps of all states in

{
|σ j〉

}K
j=1 for those in

{
|σ̃ j〉

}K
j=1 (‘partial swaps’).

Proof. By its definition, a partial swap (restricted toHS) is of the form

ûS(S� S̃) =
∑
|σ j〉∈HS

|σ̃ j〉〈σ j| .

The restriction |ψS∗E〉 of |ψS∗E〉 toHS satisfies

|ψS∗E〉 ∝

K∑
j=1

eıϕ j |σ j〉|ε j〉 .

Since S̃ is an ONB forHS, we get that

|ψS∗E〉 ∝

K∑
j=1

eıϕ j
( K∑
`=1

|σ̃`〉〈σ̃`|
)
|σ j〉|ε j〉 =

K∑
`=1

|σ̃`〉
( K∑

j=1

eıϕ j 〈σ̃`|σ j〉|ε j〉
)

︸                    ︷︷                    ︸
=:|ε̃`〉

. (‡)

The |ε̃`〉 satisfy

〈ε̃i|ε̃k〉 =
( K∑

j=1

e−ıϕ j 〈σ j|σ̃i〉 〈ε j|
)( K∑

`=1

eıϕ` 〈σ̃k|σ`〉 |ε`〉
)

=

=

K∑
j,`=1

eı(ϕ`−ϕ j) 〈σ̃k| |σ`〉〈σ j||σ̃i〉 〈ε j|ε`〉︸ ︷︷ ︸
=δ j`

= 〈σ̃k|σ̃i〉 = δik,

in virtue of |ψS∗E〉 being a Schmidt state (i.e.,
{
|ε j〉

}K
j=1 =: E being an ONB of HE, the E-

analogue of HS). Thus, the RHS of (‡) is just the same state rewritten in a different Schmidt
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decomposition, and
ûE(E� Ẽ) =

∑
|ε j〉∈HE

e−ıϕ j |ε̃ j〉〈ε j|

defines a partial counterswap onHE, where Ẽ :=
{
|ε̃ j〉

}K
j=1. �

Since all conceivable unitaries onHS are in fact such partial swaps – i.e., changes of basis of
HS – including ‘trivial’ ones, that merely rotate the states within some basis, the proof from 4(b)
now follows immediately:

Proof. (b) If we again assume the antecedent of theorem 4.5, then the states of equal modulus
define a subspace HS with the properties required for lemma 4.6 to apply. By lemma 4.6, all
unitaries onHS leaveHS unchanged, whence by 4(b), the theorem follows. �

Finally, the proof from 4(c) proceeds in a relatively straightforward manner again:

Proof. (c) From the perfect correlation, we get that

p(σ j|ε j) = 1 =
p(σ j,ε j)

p(ε j)
⇒ p(σ j, ε j) = p(ε j)

p(ε j|σ j) = 1 =
p(ε j,σ j)

p(σ j)
⇒ p(σ j, ε j) = p(σ j)

⇒ p(ε j) = p(σ j).

Now consider a swap of states |σk〉 , |σ`〉 in a Schmidt state |ψS∗E〉 =
∑

j α j |σ j〉|ε j〉, and denote
the probability for finding outcomes σk, σ` in |ηS∗E〉, which is |ψS∗E〉 after the swap, by p̃(σk/`)
respectively. Then from 4(c) and the transitivity of identity, we also have

p̃(σk/`) = p(ε`/k) = p(σ`/k).

For |ψS∗E〉 a state with equal-modulus coefficients (we choose these to be the k-th and `-th), as
required by the antecedent of theorem 4.5, we can counterswap to restore |ψS∗E〉. Again using
UAct and the fact that |ψS∗E〉 is restored without consecutive action on S’s Hilbert space after
the swap, we can conclude from SInc that S’s state is untouched by the swap. Using now SEnc,
we can conclude that

p̃(σ`/k) = p(σ`/k),

and using the transitivity of identity again, we get

p(σ`/k) = p(σk/`)

as desired. �

For an even state (with all N moduli equal), this of course means that p(σk) = 1/N,∀1 ≤ k ≤
N, assuming that there are no ‘hidden’ sates that do not figure in the decomposition.

By considering the general case where the moduli of the coefficients need not be equal at all,
Zurek proves the Born rule for finite dimensions (dim(H) = N ∈ N).

Theorem 4.7 (Born’s rule for finite dimensions). For any Schmidt state |ψS∗E〉 =
∑N

j=1 α j |σ j〉|ε j〉,
N ∈ N it holds that p(σ j) = |α j|

2.
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Proof. The proof appeals to the fact that the environment is not uniquely defined (cf. section
4.1). It proceeds in two stages/by case distinction:

(i) Consider a state |ψS∗E〉 where one can rewrite the coefficients α j as
√

m j

M eıϕ j , with m j,M ∈
N,∀1 ≤ j ≤ N. Then |ψS∗E〉 obtains the form

|ψS∗E〉 ∝

N∑
j=1

√
m jeıϕ j |σ j〉|ε j〉 .

Now we introduce a third system C, either extracted from E or (by definition of E) not included
in it from the outset, and which may be thought of as representing the measuring device. Then
the joint state becomes

|ψS∗E∗C〉 ∝

N∑
j=1

√
m jeıϕ j |σ j〉|ε j〉|ζ j〉 ,

|ζ j〉 the C-states. Now additionally assume the space HC to be of sufficient dimensionality so
that the |ζ j〉 can be expanded in (or ‘fine-grained’ into) subspaces of dimension m j as

|ζ j〉 =
1
√m j

r j∑
i=r j−1+1

|ci j〉 ,

where the r j are chosen such that r j = r j−1 + m j, r0 = 0. Also, consider C to be such that the
joint evolution of C and E proceeds as

|ε j〉|ci j〉 −→ |ei j〉|ci j〉 , (52)

with 〈ei j |e`k〉 = δi j`k , i.e., where the (larger) environment ‘monitors’ the state of C (the measuring
device). Given the expansion of the |ζ j〉, we can hence rewrite |ψS∗E∗C〉 as

|ψS∗E∗C〉 ∝

M∑
i j=1

eıϕi j |σ j(i j)〉|ei j〉|ci j〉 , (53)

where M now appears as the upper limit of the N intervals of magnitude m j, as defined by the
fine-graining (M =

∑N
j=1 m j), and j(i j) = j for every r j−1 < i j ≤ r j. It now follows from theorem

4.5 that p(ci j) = 1
M , and since this goes for all m j values on C for σ j(i j), we get

p(σ j) =
m j

M
= |α j|

2, (54)

as required by Born’s rule.
(ii) In case there are no such m j ∈ N, one can always approximate the |α j| by defining bounds√
m̌
M < |α j| <

√
m̌+1

M where M, m̌ ∈ N, since Q is dense in R, and hence get the same results as in
(i) by letting M −→ ∞ (i.e., by ‘increasing the fineness of the grain’ in the above procedure). �

The intermediate assumption in this proof, thatHC allows for the required fine-graining, can
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(for now) be understood in the sense that C is chosen to be ‘rich enough in resources’ such
as to map the state of the system measured to sufficient accuracy to keep track of frequencies.
For instance, no less than the states of a spin-3/2 system with |s = 3

2 ; m = 3
2〉 � (1, 0, 0, 0)t, . . .

would do to accomplish this task for a single spin-1/2 system with |↑〉 �
(

1
0

)
, |↓〉 �

(
0
1

)
, in an

unequal superposition √
3
4 |↑〉+

1
√

4
|↓〉, say. The continuum limit in case (ii) can then be read as an

idealization, in the sense that the only thing ‘measurable’ in an actual experiment is a relative
frequency anyway, and that a sufficiently complex apparatus is needed to deliver frequencies
that approximate the real (irrational) numbers predicted by the Born rule to a satisfactory degree.

However, there is of course another limit involved in QM, namely the limit of dim(H) = ℵ0

or dim(H) = ℵ1, i.e., |ψ〉 =
∑∞

j=1 α j |φ j〉 or |ψ〉 =
∫

dλα(λ) |λ〉.27 To formally include these
cases, Zurek argues as follows. In a (separable) Hilbert space of countable dimension, one can
write, for a given value δ and the Hilbert space of C finite-dimensional, the state of S ∗ E ∗ C as

|ψS∗E∗C〉 =

Nδ∑
j=1

α j |σ j〉|ε j〉|c j〉 + δ |rNδ+1〉|cNδ+1〉 , (55)

where the residual state |rNδ+1〉 summarizes all the remaining states of S ∗ E from j = Nδ + 1
up to “N = ∞”. The α j in both the finite sum and the residual may be assumed as ordered
according to the magnitude of |α j|. Then δ −→ 0 as Nδ −→ ∞. Since Born’s rule holds for the
two finite terms,

∑Nδ

j=1 α j |σ j〉|ε j〉|c j〉 and δ |rNδ+1〉|cNδ+1〉, and the total probability must add up to
one, it follows that the conditional probability of getting one of the outcomes in the first sum is
given by

p(σ j| j ≤ Nδ) =
|α j|

2

1 − |δ|2
Nδ→∞
−−−−−→ |α j|

2. (56)

The continuous case proceeds in a similar manner by approximating

ψ(x) ≈ Ξ(x) =
∑

k

ψkχ∆k
(x), (57)

which may be a sum or a series, depending on the behavior of ψ, and where χ
∆k

(x) is the
characteristic function for ∆k = [k∆x, k∆x + ∆x) (∆x some fixed interval on the real line), i.e.,
χ

∆k
(x) = 1 for x ∈ ∆k, 0 else. ψk is given by

ψk =
1

∆x

∫
∆k

ψ(x) dx , (58)

i.e., ψ(x) averaged over ∆k. The χ∆k(x) do not really form a basis of L2(R), as can be given in
terms of Hermite polynomials [45], but they obviously satisfy 〈χ

∆k
|χ

∆k′
〉 = δkk′∆x, so they can

at least be normalized by including a factor (∆x)−1/2.
The approximation may again be taken as implying the existence of a remainder r(x) :=

27Strictly speaking, the latter case of course requires a Gelfand triple or ‘rigged’ Hilbert space, rather than a proper
Hilbert space [19].
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ψ(x) − Ξ(x), where one immediately sees that

〈Ξ|r〉 =

∫
R

Ξ∗(x)r(x) dx =

∫
R

Ξ∗(x)ψ(x) dx − 〈Ξ|Ξ〉 =

=

∫
R

∑
k

1
∆x

∫
∆k

ψ∗(x′) dx′ χ
∆k

(x)ψ(x) dx − 〈Ξ|Ξ〉 =

=
∑

k

1
∆x

∫
∆k

ψ∗(x′) dx′
∫

∆k

ψ(x) dx − 〈Ξ|Ξ〉 =

= ∆x
∑

k

ψ∗kψk − 〈Ξ|Ξ〉 = 0. (59)

Realizing that
〈Ξ|Ξ〉 =

∑
k

|ψk|
2∆x = 〈ψ|ψ〉 − 〈r|r〉 = 1 − |δ|2, (60)

where |δ|2 vanishes for ∆x −→ 0, which justifies considering |ψk|
2∆x as an approximation to

|ψ(x)|2 dx, the argument now proceeds in analogy and by appeal to the foregoing results, applied
to the ‘pseudo-Schmidt’ state

|ΨS∗E∗C〉 =
√

∆x
∑

k

|ψk|eıϕk
|χ

∆k
〉

√
∆x
|εk〉|ck〉 , (61)

so that |ψk|
2∆x = p(x ∈ ∆k). The Born rule may thus be considered to be proved for this case as

well. Moreover, it generally holds for some chosen ki < k f and Γ := ∆ki ∪ . . . ∪ ∆k f , that

k f∑
k=ki

|ψk|
2∆x =

∫
Γ

|ψ(x)|2 dx , (62)

so that Born’s rule for expressions of the form Prψx (x ∈ Γ) – which are arguably the only em-
pirically meaningful statements for the continuous case – is justified in this limit even more
straightforwardly.28

4.3 Discussion (ii)

The foregoing proof of the Born rule is, again, deductively seamless. However, we must wonder
whether (A) its premises are suitably justified, and (B) in how far the result really supports the
MWI. Regarding (B), we first note that Zurek’s derivation strongly requires the applicability of
entangled (Schmidt-) states for S∗E on a formal and on a conceptual level, and therefore prima
facie proceeds within an inherently MWI-friendly framework [6,17]. As regards (A), there have
indeed been multiple critical assessments [6, 17, 57, 67] of Zurek’s earlier paper [86] in which
the proof was presented in a less explicit manner. We will assess some of the issues below, but
first make a few more general observations.

28We here leave aside the subtleties briefly discussed in [87] that arise for functions that are not sufficiently smooth
over small scales.
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A first important observation is the following. The proof of the Born rule requires theorem
4.5, and, following Zurek, we have outlined three possible ways to derive this theorem. It
appears from our analysis that the dervation via premise 4(b) is the ‘least costly’, since here, in
fact, no actual use is made of premise 2 (SEnc).29 But this appearance comes out flawed upon
closer inspection, since premise 4(b) is actually the least plausible, and therefore in greatest
need of justification. For it is a conditional statement, stating a relation between basis changes
in a Hilbert space and probabilities, which appears rather unmotivated.

Strictly speaking, 4(b) tells us that, if we can arbitrarily change the basis in some particular
subspace of a system’s Hilbert space, then we should think of all states in any given basis of
that space – or rather, the outcomes associated with these – as equiprobable. But why exactly
should we do such a thing? Note that we are here not merely ‘fiddling around’ with the states
within one particular basis that represents meaningfully interpretable outcomes; the entire basis
is replaced by another one. It is completely elusive why this should imply that the states in the
one basis that we have found to be meaningful are equiprobable. Only in the special case where
one reassigns the coefficients (i.e., effectively the phases) among states in that particular basis
without effecting a change in the total state of the system (as defined in virtue of premises 1 and
3) one could make a case that these basis states should turn up equally likely in a measurement,
since the environment should be ‘indifferent’ as to their occurrence. And that is premise 4(a).

In fact, Zurek construes his ‘envariance under swaps’ as a kind of objectivization of the
principle of indifference, i.e., the principle of assigning equal probability to any out of a set of
mutually exclusive and exhaustive events about which there is nothing known but their names
or labels [43]. According to Zurek, the QM probabilities arise not out of a subjective lack of
knowledge as to which state of a system actually obtains, but instead out of a precise knowledge
about the total state |ψS∗E〉 and the symmetries implied thereby. It is not really clear though
what this means, or what concept of probability is endorsed here. It is meaningless to suppose
that the environment be literally indifferent as to the outcomes of an experiment, since the
environment is not an agent with expectations, so it does not even satisfy necessary requirements
for exhibiting indifference. But if this indifference is meant to apply to an observer in virtue
of known symmetries, then this still needs further explanation. For if an agent A is indifferent
(say) between sitting on either of two chairs, a and b, put in a particular position, because they
are equally comfortable – i.e., because the situation is ‘symmetric under chair-swaps’ – then
this indifference still arises in virtue of two different outcomes for A.

It has been objected [57] that Zurek claims to elucidate the origin of probabilities in QM,
but that he does no such thing and really has to insert probabilities by hand. It is doubtful
though that Zurek is truly guilty of that mistake, as should be clear form our analysis of the
(revised, more detailed exposition of the) proof, where SEnc is assumed to even associate states
of systems with probabilities at all, as well as one of the premises 4(a)-(c) as a bridging principle
to arrive at values. Moreover, Schlosshauer and Fine have noted that this is a feature of any
probabilistic theory: “we cannot derive probabilities from a theory that does not already contain
some probabilistic concept; at some stage, we need to ‘put probabilities in to get probabilities
out.’” [67] So what Zurek establishes – and arguably only claims to establish – is that if QM is
associated with probabilities in the first place, then these follow the Born rule.

29The reader will find that we have well used the other two premises (UAct, SInc) to apply the formal representa-
tions of the notions ‘state’ and ‘unchanged’ in the proof.
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But this in turn means exactly that Zurek’s proof does not at all answer the question as to
the meaning of ‘probability’ in the MWI, but instead equally requires us to answer it. Upon the
above line of reasoning, we are faced with a choice between premises 4(a) and 4(c), so we must
assess the plausibility of these by supplying a suitable meaning to the word ‘probability’ as it
occurs in them. Note, however, that the quantitative problem is also at best solved partially by
the proof, since both of these premises put in values by hand—albeit only to the extent that they
must be equal.

Intriguingly, Carroll and Sebens [16] have offered a proof of the Born rule which is very close
to that of Zurek, but which supplements a more definite meaning to the probabilities. Based on
the work of Vaidmann [74], Carroll and Sebens understand the probabilities as the self-locating
uncertainty an observer has in the short time span τunc between physical measurement and con-
scious observation, i.e., between steps 2 and 3 of the measurement process, as we have identified
them in section 1.2. They then base their version of the proof on what they call an epistemic
separability principle, which (in essence) states that the probabilities an observer assigns to
measurement values on S in a Schmidt-state |ψS∗E〉 during τunc should remain invariant under
actions ÛE = 1S ⊗ ûE – so essentially on Zurek’s premise 1, supplemented with a normative
claim about probability assignments for (rational) agents.

Crucially, they also repeat the central step of Zurek’s proof for the unequal amplitude case,
i.e., multiply the number of states on a part of the environment (the system C in Zurek’s deriva-
tion) so that their number will equal the value of the enumerator for amplitudes that are square
roots of rational numbers. However, Carroll and Sebens make a much clearer concession as to
the meaning of this procedure than does Zurek, namely (for the case where enumerators have
the ratio

√
2/1), this procedure “reduces the problem of two branches with unequal amplitudes

to that of three branches with equal amplitudes” [16] But here we are back to a form of branch
counting and its associated problems that we elaborated on in section 2.2. And indeed, Zurek
also refers to the system C he appeals to in the unequal amplitude-case as a counterweight
counter [87].

It may be, though, that this is merely a formal step by Carroll and Sevens, as they later
write: “In our approach, the question is [...] how the various future selves into which you will
evolve should apportion their credences. Since every one of them should use the Born Rule,
it is justified to talk as if future measurement outcomes simply occur with the corresponding
probability.” (The emphasis is theirs.) Here we are back to normative claims about how to
assign credences to events instead, and hence ultimately to decision theoretic concerns, the
appeal to which we have found clearly wanting above. Thus if the introduction of additional
branches to arrive at the Born probabilities is merely a formal trick, then we lack good reasons
as to why the Born rule should be our guiding principle to rational credences in the suitable
contexts after all. Only if there is a well defined number of branches for which the agent can be
uncertain as to which one he is on, he can reasonably “apportion his credences” in concert with
the Born rule. Taking the counting strategy seriously is a necessary requirement for Carroll and
Sebens’ reasoning to make sense.

Again, the plausibility of premises 4(a) and 4(c) strongly depends on the meaning of ‘prob-
ability’. If probability is an estimator for the relative frequency with which a given type of
event will be observed in a temporally ordered sequence of equal experiments (which at the
very least it should be in the context of QM), why should two states whose swap leaves the
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total state of S unchanged (in the envariance-sense) be ‘equiprobable’ (premise 4(a))? The most
reasonable answer seems to be that observes in both situations, the swapped and the unswapped
one, will observe the results associated with the two states with unaltered frequencies. And
why should they do so, given that the MWI is true? That still needs a physical explanation à la
“because there will be equal fractions of observers who all observe these outcomes in both of
these situations”, which in turn requires a well defined branch count.

Premise 4(c) opens up a quite different option though. If we take it that this is the actual
content of a state such as |ψS∗E〉 =

∑
j α j |σ j〉|ε j〉, that there is a peculiar kind of correlation

between possibly observed states of systems and their ‘environments’, and not that the world
is a ‘global superposition’ in which all outcomes occur, then we do not have to answer the
questions raised before. QM is just that kind of a theory, a theory that describes correlations in
the behavior of certain systems which otherwise behave stochastically. It is clear that we have
left the context of the MWI with this interpretation of 4(c), and we are thus back to confronting
(B). It is hence not at all clear that the result does support the MWI.

In fact, Barnum [6] has offered a version of Zurek’s proof, based on a no-signaling constraint.
If the environment E is a spatially remote system and one could manipulate the probabilities for
outcomes of measurements on S by merely acting on E (with ÛE = 1S⊗ûE), then this would open
up the possibility for faster-than-light signaling, known to be associated with casual paradoxes
and the like [52]. Moreover, the existence of strong or rather close-to-perfect correlations in
states |ψS∗E〉 where S and E are spacelike separated systems is of course well known from the
violations of Bell inequalities [5, 10]. We hence take it that 4(c) is the most plausible out of the
three, because it has the clearest empirical support. But for reasons given before, this in turn
means that Zurek’s derivation of the Born rule does not (strongly) support the MWI after all.

In addition, we have diagnosed Zurek’s proof to crucially rely on unitary transformations.
But why does QM implement state transformations by unitary operators? The preservation of
superposition could be one suitable reason, since the superposition principle is a quite unique
feature of QM (with suitable meaning attached to kets), contributing massively to its success.
But preservation of superposition could also be achieved by other linear transformations, not
just unitary ones. The clearest reason why unitary operators pervade QM is that they are norm
preserving. And why should they be norm-preserving? So that probabilities are conserved
and never exceed unity.30 Note the analogy to accusations of circularity in decoherence-based
proofs: we cannot rely on decoherence because it relies on partial tracing and partial tracing is
inevitably motivated probabilistically. But then we should not rely on unitarity either, because
unitarity is invoked to ensure norm preservation and norm preservation is inevitably motivated
probabilistically [41].

Based on these arguments, Zurek’s proof may be interpreted as one way of explicating the
implicit probabilistic content of a – rather special – probabilistic theory, and as thereby deriving
only the precise form of the rule according to which the probabilities contained in the theory
should be assigned (Born’s rule). This view does not fit well with the MWI though, according
to which “every outcome with nonvanishing support in the wave function will occur (in some
branch) with probability one.” (The emphasis is that of Carroll and Sebens.) [16]

30An analogous argument is presented by Mohrhoff [57], but the present author was first made aware of it by his
main supervisor, Dr. Klesse. Moreover, in [41] it is shown how statistical considerations crucially figure as
reasons for the unitarity of state transformations in QM.
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5 Conclusions

We have analyzed, in this thesis, a central problem of the MWI, the problem of what ‘prob-
ability’ means in a branching multiverse and how it enters the QM formalism. As we have
demonstrated, the two parts of the problem are closely related, because any purported proof of
the Born rule must appeal to premises that convey meaning to the word ‘probability’. It would
be a mistake to believe that, in a context where interpretation is at stake, a formal proof, devoid
of meaning can at all explain how probability enters into the MWI.31 In any case it must be
elucidated why, in a fully deterministic universe which is ‘all wavefunction’ and in which the
appearance of multiple classical worlds arises in virtue of the joint dynamics of systems and
their environments, certain observations are made by conscious observers with a certain fre-
quency. That is, it is of crucial importance to recapture the statistical predictions of QM within
the interpretational framework set by the MWI, since they constitute its “empirical heart” [49].

We have here considered two approaches to including probabilistic content into the MWI.
But we have argued, in the first case, that the assumptions which the proof takes as premises
are unreasonable, given what its result postulates, and in the second case, that the result is best
interpreted not as supporting the inclusion of probabilities into the MWI, but as one way to
demonstrate that QM is an inherently probabilistic theory.

In the first case, we have followed Maudlin’s objection that in all existing version of a proof
of the Born rule from merely decision-theoretic premises, these must be set up such that a
decisively Everettian form of rationality is forestalled from the outset, namely, caring about
what happens to all future versions of oneself. It hence appears to be rational for Everettians to
exactly not conform to the Born rule at times.

In the second case, we have demonstrated that questionable counting strategies are crucially
involved in deriving the Born rule. And we have argued that, in virtue of the crucial role
of unitarity and correlations in Zurek’s proof, the best way to make sense of the proof and
simultaneously avoid the aforementioned problems is a way that does not support the MWI at
all.

But maybe all hope is not lost, and one can too make sense of counting strategies, and hence
rescue one version of Zurek’s proof as supporting the MWI. The suggestion would be to find
a suitable natural grain, giving rise to a suitable branch count, in a way that is compatible
with decoherence. One could, for instance, argue that there is such a thing as a natural grain,
exactly at the level where probabilities become relevant. Namely, probabilities (whatever they
‘really are’) are used by conscious agents to make predictions about their future experience,
and any physical system that can support consciousness requires (we may take it) a minimum
of complexity. That minimum of complexity might suffice to ‘naturally coarse grain’ the ‘wave
function of the universe’, i.e., might impose a superstructure onto it, allowing for a counting
strategy as employed in the Zurek/Carrol and Sebens-approach. Zeh [83], in his original paper
on decoherence, has suggested that the MWI corresponds to “a ‘localization of consciousness’
not only in space and time, but also in certain Hilbert-space components [...].” So maybe a
natural grain can be provided by appeal to the minimal complexity (and hence ‘macroscopicity’,

31A similar opinion is expressed by Kent [47], who writes: “Wherever one thinks of the scientific status of many
worlds quantum theory, one cannot reasonably [...] think it is so obvious how to translate equations into
statements about a many-worlds reality that arguments and explanations are redundant.”
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implying a certain grain) that is required of a physical system to carry conscious experience.
Suppose, for instance, that a few neurons were sufficient to support consciousness. Then that
would still mean a tremendous number of atoms, jointly in decohered states at any instance of
a conscious observer’s stream of perception.

Alternatively, one attempt to could come from the natural grain within conscious experience.
In analyzing Zurek’s strategy of fine-graining the system C such as to keep track of the fre-
quency of a certain outcome, we have argued that the use of real numbers must be treated as
an idealization anyway, since irrational frequencies cannot be observed in any conceivable ex-
periment. So maybe the natural grain is provided by the minimum of coarse-graining that is
required to support a conscious perception (an actual ‘outcome’). Suppose, for example, that the
system is in some non-trivial superposition state |ψ〉 =

∫
dxψ(x) |x〉, and that it is measured for

its position. Then the maximal accuracy to which its position can be determined by a conscious
observer is a kind of ‘box state’ χ

Γ
(x) (with Γ ⊂ R3) like that used by Zurek in the treatment of

probability densities, because there is a natural lower limit for conscious distinguishability of
positions (of a visually perceivable pointer, indicative of the system’s position, say). Of course,
one could object here that R3 can be sliced up into boxes in an arbitrary way; but a non-arbitrary
slicing will always be provided by the diameters of the actual experimental setup, at least once
a coordinate frame is chosen.

These two perspectives on the relation between conscious experience and physical complex-
ity or ‘coarseness’ constitute tentative hints in a direction that may raise hopes for invoking
counting strategies after all. But it is not clear that they are compatible with decoherence and
the ‘branching structure’ it implies. Rae e.g. believes that

if the likelihood of observing a particular result is proportional to the number of as-
sociated branches, the complexity introduced by decoherence should actually result
in the outcome of a measurement being completely unpredictable. The situation is
similar to chaos in classical mechanics or to turbulence in hydrodynamics, whose
onset certainly does not lead to increased predictability. [61]

Moreover, the suggestions above do not at all address the problem that the ‘branching dynamics’
defy the rules of ordinary probability calculus (cf. the example of the law of total probability in
section 2.2). So in summary, it is not clear that any such strategy can be applied after all. Addi-
tionally, conscious observation would here play a fundamental role in understanding QM again,
so that a central virtue of the MWI (as it is taken by many) clearly vanishes: that it removes
the need to fundamentally appeal to ‘consciousness’ or ‘observation’ in the interpretation of the
theory.

In the light of the forgoing arguments, we are, at present, lead to judge that the status of
probabilities in the MWI remains at best unclear. But what about the other virtues that we
have laid out in section 2? What about, first of all, Wallace’s claim that the MWI is just QM
interpreted properly? Maudlin has here argued that this suggestion is in error, for the entire
success of QM rests on its application in the standard formulation (i.e., with definite outcomes
and probabilities for those). But the standard formulation, Maudlin has argued,

is a set of (somewhat vague) rules, a recipe more than a perfectly sharp algorithm,
that allows one to make predictions. [...] But since the recipe does not have the
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form of a description of the world [...], there is just nothing that counts as ‘taking
it literally’. If someone gives me a recipe—a set of directions—for making a fluffy
omelet [...], and the recipe turns out to be highly reliable and always to get good
results, I might well wonder why. But it makes no sense to suggest that I can answer
that question by just ‘taking it literally’. [53]

Indeed, it is doubtworthy that the MWI should count as ‘just QM taken literally’. The ex-
tension of unitary dynamics and Hilbert space kinematics to measuring devices and observes
clearly is a step beyond the original application of the formalism, beyond the ‘recipe’. And we
have argued that QM may be construed as a fundamentally probabilistic theory, exactly in virtue
of the unitarity of the dynamics.

What, however, about the application of QM to cosmological scales and problems? We
mentioned, in section 2, that to some physicists the MWI is the ‘natural’ framework for doing
quantum cosmology. But this opinion is not ubiquitously shared across physics either. For
instance, Fuchs and Peres have argued that

We have experimental evidence that quantum theory is successful in the range from
10−10 to 1015 atomic radii; we have no evidence that it is universally valid. [...]
Indeed, a common question is whether the universe has a wavefunction. There are
two ways to understand this. If this ‘wavefunction of the universe’ has to give a
complete description of everything, including ourselves, we [...] get [...] meaning-
less paradoxes. On the other hand, if we consider just a few collective degrees of
freedom, such as the radius of the universe, its mean density, total baryon number,
and so on, we can apply quantum theory only to these degrees of freedom, which
do not include ourselves and other insignificant details. This is not essentially dif-
ferent from quantizing the magnetic flux and the electric current in a SQUID while
ignoring the atomic details. [29]

The point is that QM can of course always be applied to the cosmos in an instrumental
fashion, i.e., as a kind of recipe, as Maudlin has called it, for handling certain aspects of the
universe. To be sure, this raises many daunting questions as to why we have to resort to a
formalism so strange as that of QM to describe these aspects of our universe, and in particular,
how to interpret decoherence. But the philosophical implications of this should be no ‘stranger’
than is the MWI itself, and there are no serious ‘non-strange’ alternatives available.

What, then, are the alternatives to the MWI? We have argued above that ‘the Copenhagen
interpretation’, beloved by physicists though it may be, is an ambiguous term, something that
mostly offers a recipe as to how to use the formalism in certain well-defined situations. There
are, of course, Bohmian mechanics [26] and objective collapse interpretations [31, 59], both of
which also interpret QM ‘realistically’, i.e., as describing the world as it actually is. But these
alternatives come with ‘unnecessary’ modifications of the formalism (so far without testable
consequences) and they are just as much associated with individual difficulties as is the MWI.
Other trends (such as Qbism [55]) attempt to make sense of the ‘Copenhagen-spirit’ while
adopting less of a mere ‘shut up and calculate’-attitude, but it remains to be seen whether this
is a fruitful project either. In any case, the present investigation suggests that the MWI cannot
clearly be favored among its rivals as long as the problem of probabilities persists. And, as the
author hopes to have shown, at present it clearly does.
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