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Zusammenfassung

Wir untersuchen die geometrischen und topologischen Restriktionen, die
eine polare Blätterung der Kodimension nicht kleiner als zwei einer pos-
itiv gekrümmten, einfach zusammenhängenden, kompakten riemannschen
Mannigfaltigkeit auferlegt. Angelehnt an ein Resultat von Fang, Grove und
Thorbergsson über polare Wirkungen auf ebensolchen Mannigfalitigkeiten
assoziieren wir einen Kammerkomplex zur Blätterung und zeigen, dass dieser
im Falle der Abwesenheit von Punktblättern, unter gewissen technischen
Voraussetzungen, von einem sphärischen Gebäude überlagert wird, das iso-
morph ist zu dem Gebäude im Unendlichen eines nicht-kompakten sym-
metrischen Raumes. Dies impliziert, dass die gegebene Mannigfaltigkeit den
Homöomorphietyp eines kompakten symmetrischen Raumes vom Rang eins
hat. Dabei verwenden wir in entscheidender Weise Resultate zur lokalen Ho-
mogenität von singulären riemannschen Blätterungen. Im Fall von Punkt-
blättern wenden wir direktere Methoden an um den Diffeomorphietyp bzw.
den Kohomologiering der Mannigfaltigkeit zu bestimmen.

Abstract

We investigate the geometric and topological restrictions imposed by a polar
foliation of codimension no less than two on a positively curved, simply con-
nected, compact riemannian manifold. Inspired by a result of Fang, Grove
and Thorbergsson on polar actions on such manifolds we associate to the
foliation a chamber complex and show that in absence of point leaves this is
covered by a spherical building, which under certain technical assumptions
is isomorphic to the building at infinity of a non-compact symmetric space.
This implies that the given manifold has the homeomorphism type of a com-
pact symmetric space of rank one. We crucially employ results on the local
homogeneity of singular riemannian foliations. In the case of point leaves
we apply more direct methods to determine the diffeomorphism type or the
cohomology ring of the manifold, respectively.
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CHAPTER 1

Introduction

The exploitation of symmetries or, more generally, certain degrees of ho-
mogeneity, is a standard approach to investigating the geometry and topol-
ogy of a given manifold. This is mathematically expressed by the concept
of (isometric) group actions, with an important example being the isometric
action of a Lie group on a riemannian manifold. Such an action is called polar
if it admits a family of immersed submanifolds, the sections, such that these
are everywhere perpendicular to the orbits and every point of the manifold
is contained in one of them. Such actions have been shown to be closely re-
lated to symmetric spaces, i.e. riemannian manifolds whose isometry group
contains geodesic reflections in every point (cf. [Da]). The terminology is
supposedly inspired by the principal example provided by polar coordinates
in euclidean space, which can be identified with an action by the rotations
around the origin, yielding the azimuthal coordinates, together with a fam-
ily of copies of the real line emanating radially from the origin, yielding the
radial coordinate. The radial rays meet all rotation orbits perpendicularly
and play the role of the sections for the action of the rotation group. Notice
that the orbits have different dimension, in particular the orbit of the origin
is only the origin itself and any neighbourhood of the origin contains the
entire orbits of points close to it. Thus, local knowledge of the action around
the origin yields global information on the structure of the orbits. This is a
general phenomenon that we will investigate further below.
Given an action of a Lie group on a manifold, one can "forget" the homo-
geneity by considering the orbits of the action as a "smooth" partition of the
manifold into submanifolds, called leaves or foils, which yields the concept
of a (singular) foliation. The notion of smoothness for this will be made
precise in Chapter 2. When a group acts isometrically then its orbits remain
at constant distance from each other and geodesics once perpendicular to
the orbits remain such for all times. This concept can be translated to the
case of partitions by submanifolds, too, yielding the notion of a transnormal
system.
The objects we will be considering will be a conjunction of these two con-
cepts, called singular riemannian foliations that turn out to be smooth,
locally equidistant partitions by submanifolds (whose dimension may vary,
with those of lower than maximal dimension being called singular). If one
additionally requires the existence of sections as for polar actions, one ob-
tains the notion of singular riemannian foliations with sections or, as we will
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2 1. INTRODUCTION

call them, polar foliations.
One may ask what information on the geometry and topology of the manifold
can be recovered from the purely geometric information provided by such a
foliation, in contrast to the more algebraic information provided by a group
action. It turns out that singular (riemannian) foliations, while not globally
homogeneous, admit certain types of local or partial homogeneity. The idea
to maintain is that, where an isometric group action yields general metric
control along the orbits, a singular riemannian foliation yields such control
only everywhere locally and only in the direction perpendicular to the leaves,
called the transverse direction. The restriction of the riemannian metric of
the ambient manifold to the distribution orthogonal to the tangent spaces
of the leaves at every point is analogously called the transverse metric and
in fact, as shown by Molino in [Mo], the structure of a singular riemannian
foliation is, at least locally, fully determined by a given transverse metric,
i.e. the foliation is "oblivious" to non-isometric deformation in the direction
of the leaves. In the case of a polar foliation the transverse metric control
means local metric control of the transverse submanifolds, the sections. Ex-
ploiting this will be crucial for our endeavours.
In [FGT] Fang, Grove and Thorbergsson proved the remarkable result that
a simply connected, positively curved, compact manifold equipped with a
polar action of cohomogeneity at least two is equivariantly diffeomorphic to
a compact rank one symmetric space with a polar action. The symmetric
spaces of rank one are the spheres Sn, projective spaces CPn and HPn, as
well as the Cayley projective plane OP 2.
The aim of this thesis will be to obtain a generalisation of this result, as far
as possible, to the inhomogeneous case of a polar foliation of codimension
at least two on a riemannian manifold with the same properties as above.
The first step in this will be to establish local homogeneity along the leaves,
using the module of vector fields everywhere tangent to the foliation, or the
flows of such vector fields, respectively. It turns out that these vector fields
are "too many" in such that multiplying such a vector field with any smooth
function yields another such vector field. In order to avoid such unwanted
deformations along the leaves we will linearise the foliation along each leaf
and obtain a (possibly infinite dimensional) action on its normal bundle
which via the exponential map will yield locally defined isometries between
the sections along the leaf. Furthermore, considering only those vector fields
that vanish in a given point, we obtain an in fact finite dimensional Lie group
acting orthogonally on the normal space to the leaf of the point.
In the case of polar actions it is well known that the sections carry groups
generated by reflections, i.e. isometries having a fixed point set of codimen-
sion one and acting as a geodesic reflection on its orthogonal complement.
Crucial results by Alexandrino and Töben imply that in the case of polar
foliations one obtains at least a pseudogroup generated by local reflections,
and in many cases even a full group, acting on each section. We will en-
deavour to show that under our assumptions the latter is in fact the case,
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which yields a cell decomposition, given by the connected components of the
complement of the "mirrors" of the reflections. The prerequisite of codimen-
sion two allows us to exploit the positivity of the sectional curvature in the
transverse direction. Together with the group of reflections this poses strong
restrictions on the geometry of the sections, yielding

Proposition. Let F be a polar foliation on a compact, positively curved
riemannian manifold M . Then any section Σ is diffeomorphic either to a
sphere or a real projective space.

This will be proved in Section 2.2.
It turns out that the reflection group of each section is (up to a lifting to its
universal cover) a Coxeter group making its cell decomposition (covered by)
a Coxeter complex. Such a group is characterised by a certain graph whose
nodes represent the generators of the group and whose edges are non-trivial
whenever two generators do not commute. If a reflection commutes with all
other generators its action splits off trivially as acting on a one-dimensional
factor and requiring there to be no isolated nodes in the group’s graph (or
Coxeter diagram) is thus equivalent to asking that the Coxeter complex be
made up of components of dimension at least two, which will be a prerequi-
site for our result below.
The union of all such complexes from sections yields a chamber complex
whose underlying point set is the entire manifold, which we will show to be
covered by a highly regular kind of simplicial complex, a (spherical Tits)
building, if the codimension is sufficiently high and there are no point leaves.
This complex has a priori only a length space topology that "sees" only
movement along sections, but can be equipped with a topology that is com-
patible with that of the foliated manifold. This will allow us to employ re-
sults of Burns and Spatzier ([BSp]) and their generalisations by Grundhöfer,
Kramer, van Maldeghem and Weiss ([GKMW]) that establish a connection
between the underlying point set of the building and the sphere at infinity
of a non-compact symmetric space, which in turn will allow us to show:

Theorem. A compact, simply connected, positively curved riemannian
manifold with a linearisable polar foliation of codimension at least three,
whose Coxeter diagram has no isolated nodes, is homeomorphic to a compact
rank one symmetric space equipped with an orbit equivalent polar foliation.

Chapter 3 will be dedicated to this.
Finally we will investigate in Chapter 4 the – rather different – case when
the foliation exhibits point leaves. Here we will be relying heavily on the
aforementioned concept that a small neighbourhood of such a maximally
singular point contains a large amount of information on the entire foliation.
Exploiting this we show, under the additional assumption of a constantly
curved section

Theorem. Let M be a compact, positively curved, simply connected
manifold with a polar foliation F of codimension at least two. If the set of
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point leaves is non-empty and there exists a spherical section with constant
curvature, then M is equifoliately diffeomorphic to a round sphere.

In the case that a section is a projective space one obtains a certain
fibration of the unit sphere at the point leaf, which will yield information on
the cohomology structure of the ambient manifold:

Theorem. A simply connected, compact, positively curved riemannian
manifold M , equipped with a polar foliation of codimension at least two ad-
mitting a projective section of constant curvature, has the cohomology of a
projective space if there is a point leaf. More precisely: The unit sphere at
the point leaf fibres over its cut locus. If the fibres are 1-spheres, then M is
a 2m-dimensional manifold with the cohomology of CPn, if the fibres are 3-
spheres then M is a 4m-dimensional manifold with the cohomology of HPn,
and if the fibres are 7-spheres then M is a 16-dimensional manifold with the
cohomology of the Cayley plane OP 2.

Chapter 2 will mostly be dedicated to establishing the technical tools
used to study our given foliation. Precise definitions of all above mentioned
concepts will be given throughout the thesis as they occur.

Acknowledgement: I would like to express my gratitude to Professor Thor-
bergsson for his continuous support over the course of my studies and many
a helpful discussion that helped shape the thoughts presented in this thesis.



CHAPTER 2

Praeliminaria

In this chapter we wish to introduce important concepts and examine
general properties of singular riemannian foliations that will be essential
tools in our subsequent endeavours.
Throughout this thesis manifolds will be considered to be smooth (C∞),
complete and connected.

2.1. Singular Riemannian Foliations

The fundamental concept of this thesis, that of a singular riemannian
foliation, can be regarded as both a generalisation of two more special con-
cepts and a conjunction of two more general concepts, all of which shed a
certain light on it. The two more special concepts are that of a riemann-
ian foliation, introduced by Reinhart in [Re] as "foliations with bundle-like
metrics", and the decomposition of a riemannian manifold by the orbits of
an isometric action. The former decomposes the manifold into submanifolds
of constant dimension that are locally equidistant but not necessarily homo-
geneous. The latter yields a decomposition into equidistant, homogeneous
submanifolds but not necessarily of the same dimension, as the dimension of
the stabiliser subgroups of the action may differ.
The two more general concepts are that of a singular foliation, introduced
independently by Sussmann ([Su]) and Stefan ([St]), and that of a transnor-
mal system, due to Bolton ([Bo]), both of which we shall define below:

Definition 2.1 (Singular Foliation). A partition F of a differentiable
manifold M into connected immersed submanifolds of not necessarily con-
stant dimension, the leaves, is called a singular foliation if the set ΞF :=
{X ∈ C∞(M,TM)|Xp ∈ TpFp} spans TFp, where Fp is the unique im-
mersed submanifold passing through p.

Sussmann and Stefan proved that such partitions arise as integral mani-
folds from distributions if the vector fields in question form a locally finitely
generated subalgebra of X(M). The definition implies that the leaves can be
realised as the unions of broken flow curves of the tangent vector fields, so
we also refer to this property as Transitivity.

Definition 2.2 (Transnormal System). A partition F of a differentiable
manifold M into connected submanifolds of not necessarily constant dimen-
sion, the foils, is called a transnormal system if M admits a riemannian
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6 2. PRAELIMINARIA

metric g with respect to which any geodesic, that meets one leaf orthogo-
nally, meets all leaves orthogonally.

This property is also referred to as Transnormality.

Definition 2.3 (Singular Riemannian Foliation). Let (M, g) be a rie-
mannian manifold, that is partitioned by a system F of connected immersed
submanifolds of not necessarily constant dimension, the leaves, satisfying
both Transitivity and Transnormality, then (M,F , g) will be called a singu-
lar riemannian foliation (SRF).

We will mostly just refer to F as the singular riemannian foliation on
M and as in Definition 2.1 denote the module of vector fields everywhere
tangent to the leaves by ΞF .
For the general theory of (singular) riemannian foliations we refer to [Mo],
especially chapter six therein. It has been subject to discourse whether
Transnormality already implies Transitivity, and even though the exposition
in [Mo] claimed the contrary, no counterexamples have been found so far
and the question remains open. While we shall be dealing exclusively with
singular riemannian foliations it therefore still seems appropriate to examine
the properties of the two concepts separately, where possible.
A geodesic that is at one point perpendicular to a leaf and hence by transnor-
mality perpendicular to all leaves it meets will be called a transverse geodesic.
In the same vein we call the restriction of the metric g to the normal bundle
νF of the foliation the transverse metric of the foliation.
We refer to the leaves of maximal dimension as regular leaves and to those
of lower dimension as singular leaves. The codimension of the regular leaves
will be called the codimension of the (singular) foliation and denoted by
codim(F). The points lying on regular or singular leaves are referred to as
regular or singular points respectively. The set of points on regular leaves
is denoted by Mr and called the regular stratum. Similarly we denote by
Msi the sets of points on singular leaves of dimension si and call these the
singular strata of dimension si. In order to etablish some more about this
subdivision of M we need some preceding considerations first, though.

Definition 2.4 (Plaques). Let F be a partition of a riemannian manifold
into immersed submanifolds and p a point of the underlying manifold. For a
neighbourhood U of p we call the connected components of the sets Fq ∩ U
for all q ∈ U the plaques of F in U .

Definition 2.5 (Local Equidistance). The foils of a partition F (of a rie-
mannian manifold M) into immersed submanifolds are called locally equidis-
tant, if for every p ∈M and every suitably small tubular neighbourhood TP
of a suitably small neighbourhood P of p in Fp the distance between every
two plaques in TP is constant along these.

Lemma 2.6. The foils of a transnormal system are locally equidistant.
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Proof. Let p, q be points of M contained in different foils. Then any
geodesic realising the distance between p′ ∈ P := Fp ∩Bε(p) (for sufficiently
small ε) and another plaque of F in Bε(p) is perpendicular to the latter
and thus also to Fp, i.e. it realises an extremal length between the two
foils. Thus all geodesics have locally extremal lengths and therefore locally
constant lengths. It follows that locally all geodesics realising a distance
between a point of one foil and a plaque of the other foil have the same
length, which is the (local) distance between the two foils. �

Lemma 2.7. For every relatively compact plaque P of a singular rie-
mannian foliation F there exists a well-defined projection πP : TP → P from
a tubular neighbourhood of P onto P .

Proof. Choose the tubular neighbour TP so small that for every point
q ∈ TP there is a unique transverse geodesic γq parametrised by arc length
linking q to P . As P is relatively compact and leaves are locally equidistant
we can find such a neighbourhood. Then q 7→ γq(d(q, P )) defines the desired
projection. As geodesics depend smoothly on their starting point and the
distance to P is smooth around P this is a smooth map. �

Consider the exponential map restricted to the normal ε-disc bundle νεP
of such a plaque. Then q 7→ exp−1

πP (q)(q) defines a smooth inverse, mapping a
tubular neighbourhood of radius ε back to the respective normal disc bundle.
Hence we have obtained a diffeomorphism between the normal ε-disc bundle
and a small tubular neighbourhood of the plaque, which we shall call the
plaque exponential and denote it by expP . Note that in the case of compact
leaves one may choose the plaque to be the entire leaf.

Definition 2.8 (Homothetic Transformations). Consider for any plaque
P of a given singular riemannian foliation the linear map ηλ on νP given by
multiplication with a non-zero scalar λ. Using the plaque exponential above
we obtain a diffeomorphism hλ of a suitably small tubular neighbourhood of
P by setting hλ := expP ◦ ηλ ◦ exp−1

P . We call hλ the homothetic transfor-
mation with factor λ, where we will often omit the reference to the factor
for simplicity of expression.

The plaque exponential sends normal rays to geodesics starting perpen-
dicular to the plaque and by transnormality these remain perpendicular to
the plaques they meet. We can hence identify the distance tubes around a
plaque with its normal sphere bundles of the respective radii.

Lemma 2.9 (Homothetic Transformation Lemma). The homothetic trans-
formations associated to a singular riemannian foliation map plaques to
plaques.

Proof (see [Mo], p. 193). We need to show that the plaque of the
image of a point is the image of the plaque of that point. To that end, con-
sider a plaque P , a point y ∈ TP and λ sufficiently small so that hλ is defined
on TP . Let yλ be the image of y under hλ. As plaques are equidistant Py, P
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and Pyλ remain at constant distance from each other. By construction the
geodesic segments linking P, y and yλ all lie on the same transverse geodesic,
or equivalently stated, they satisfy equality in the triangle inequality.
Now let y′ be any other point of Py. Link it to P and Pyλ by geodesics
realising the distances between the plaques. Since these are perpendicular
to the two plaques they are also perpendicular to Py itself by transnormality.
These two geodesics together with the one linking the endpoint of the second
(and hence Pyλ) to P satisfy, by equidistance, the same triangle inequality
as those linking y, yλ and P . But as seen above this is a strict equality and
the broken geodesic formed by the two segments is in fact one normal geo-
desic starting on P and containing both y′ and the endpoint of the geodesic
linking it to Pyλ . It follows that the latter endpoint is the homothetic image
of y′. As homotheties are diffeomorphisms it follows that the plaque of the
image of y is the image of the plaque of y. �

As a consequence of the homothetic transformation lemma we have the
following propositions by Molino (Proposition 6.3 and the following consid-
erations in [Mo]):

Proposition 2.10. For every relatively compact plaque P of a singular
riemannian foliation there is a small tubular neighbourhood, such that every
geodesic emanating perpendicularly to P and tangent to a stratum of M
remains in that stratum at least until it leaves the tubular neighbourhood.

Proposition 2.11. The regular stratum of a singular riemannian folia-
tion is an open and dense subset of the ambient manifold M and the singular
strata have codimension at least 2.

We will now examine how a given singular riemannian folation (M,F)
gives rise to a linear, homogenous foliations on the normal bundles of its
relatively compact plaques P that corresponds to the foliation on a tubular
neighbourhood of P via the plaque exponential. The procedure of linearising
a vector field as shown in [MR] will be crucial for this.
For X ∈ ΞF let φt denote the associated flow. Then dφt defines a bundle
automorphism of TM |P . With π denoting the projection TM |P → νP we
have that π◦dφt|νP defines a bundle morphism of νP , which we shall call the
linearised flow associated to X. As ΞF is involutive, dφt maps TP onto itself
and since dφt is an isomorphism the image of νP must thus be transversal
to TP , whence π ◦ dφt restricts to an automorphism of νP .
Let us examine the vector field on νP associated to it. To that end consider
a neighbourhood U of a point p in P chosen such that the tangential bundle
restricted to U is trivial. We choose coordinates on a tubular neighbourhood
of U as follows. Via the plaque exponential expP the tubular neighbourhood
T U is diffeomorphic to a neighbourhood of the zero section in νU and on the
latter we have a local trivialisation ψ : νU → U × Rk as well as coordinates
x̃ = (x̃1, ..., x̃m) on U itself. Then x̃×IdRk◦ψ ◦ exp−1

P : T U → Rm×Rk defines
the desired coordinates in which U is mapped to an open subset of Rm×{0}
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and the fibres of the tubular neighbourhood (seen as a metric disc bundle
over U) to open subsets of {x}×Rk. We will denote the components of these
coordinates as (x, y) = (x1, ..., xm, y1, ..., yk) where the first m components
coincide with the coordinates x̃ on U when restricted to it, i.e. when y = 0.
In these coordinates write the given flow and vector field as

φt = (φt1(x, y), ..., φtm+k(x, y))

X =

m∑
i=1

ai(x, y)∂xi +

k∑
j=1

bj(x, y)∂yj .

As X is tangent to U ⊂ P we have bj(x, 0) = 0, a fact that will be of
use later in the discussion. Applying the defining equation for the flow we
obtain by comparison of coefficients that for i = 1, ...,m and j = 1, ..., k

.

φti = ai ◦ φt and
.

φtm+j = bj ◦ φt,
where the dot denotes the time derivative. Let us calculate the vector field
X l on νP associated to φ′t := π ◦ dφt|νP now: The map x̃× IdRk ◦ ψ yields
coordinates ((x̃, 0), (0, v)) on νP |U ⊂ TM , where the first zero corresponds
to the restriction to U and the second to the restriction to the normal bundle.
These coordinates are compatible with the coordinates chosen for the tubular
neighbourhood of U , i.e. we have expP ((x̃, 0), (0, v)) = (x, y). With x|U = x̃
it follows that

π ◦ dφt|νP ((x̃, 0), (0, v)) = ((φt1(x, 0), ..., φtm(x, 0), 0, ..., 0), π(Jφt(0, v))),

where π ◦ Jφt(0, v) =



0 · · · 0 · · · 0
...

. . .
...

...
∂φtm+1

∂x1
· · · ∂φtm+1

∂y1
· · · ∂φtm+1

∂yk
...

...
. . .

...
∂φtm+k

∂x1
· · · ∂φtm+k

∂y1
· · · ∂φtm+k

∂yk





0
...
0
v1
...
vk


=

(
0, ..., 0,

k∑
1

∂φtm+1

∂yi
vi, ...,

k∑
1

∂φtm+k

∂yi
vi

)T
and hence

X l ◦ φ′t =
m∑
i=1

.

φti(x, 0) ∂x̃i +
k∑
i=1

k∑
j=1

∂
.

φtm+i

∂yj
(x, 0) vj ∂vi

=
m∑
i=1

ai ◦ φt(x, 0) ∂x̃i +
k∑
i=1

k∑
j=1

∂bi ◦ φt

∂yj
(x, 0) vj ∂vi

=
m∑
i=1

ai ◦ φt(x, 0)∂x̃i +
k∑
i=1

k∑
j=1

∂bi
∂yj

(φt(x, 0))

(
k∑
l=1

∂φtm+j

∂yl
vl

)
∂vi ,
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where the last step follows by the chain rule and the fact that as bi(x, 0)

vanishes identically we have ∂bi
∂xj

(x, 0) = 0.

Consider on the other hand the vector field X̃ on νP obtained by lifting X
via the plaque exponential to the normal bundle:

X̃ =

m∑
i=1

ai ◦ expP ((x̃, 0), (0, v)) ∂x̃i +

k∑
i=1

bi ◦ expP ((x̃, 0), (0, v)) ∂vi ,

where we have used that ∂xi , ∂yi and ∂x̃i , ∂vm+i respectively are expP -related.
This vector field is tangent to the foliation exp−1

P F , which by construction
is invariant under the normal homothetic transformations ηλ. Using the fact
that ∂xi is invariant under homotheties we obtain that the vector field

d(η−1
λ ) ◦ X̃ ◦ ηλ =

m∑
i=1

ai ◦ expP ((x̃, 0), (0, λv)) ∂x̃i

+

k∑
i=1

bi ◦ expP ((x̃, 0), (0, λv))
1

λ
∂vi

is still tangent to the leaves of exp−1
p F and so is the limit X̃0 for λ → 0

which yields to

X̃0 =

m∑
i=1

ai ◦ expP ((x̃, 0), (0, 0) ∂x̃i +

k∑
i=1

k∑
j=1

∂bi
∂yj
◦ expP ((x̃, 0), (0, 0))vj ∂vi

=

m∑
i=1

ai(x, 0) ∂x̃i +

k∑
i=1

k∑
j=1

∂bi
∂yj

(x, 0)vj ∂vi .

With the result for the coordinate representation of φ′t we have obtained
above it follows that

X̃0 ◦ φ′t =

m∑
i=1

ai ◦ φt(x, 0) ∂x̃i +

k∑
i=1

k∑
j=1

∂bi
∂yj
◦ φt(x, 0)

(
k∑
l=1

∂φtm+j

∂yl
vl

)
∂vi

= X l ◦ φ′t.
Thus by uniqueness X̃0 = X l and the latter is tangent to the leaves of
exp−1

p F .
As the leaves remain at constant distance to the zero section (or P respec-
tively) the flow φ′t preserves the norm on the normal bundle. By construction
it is linear as the composition of a differential and a vector bundle projection
and we can apply polarisation to obtain that it in fact leaves the transverse
metric invariant. We have hence proven the following

Proposition 2.12. Let (M,F) be a riemannian foliation with a rela-
tively compact plaque P , then for each X ∈ ΞF the linearised flow φ′t acts
as a linear, orthogonal transformation of the normal bundle νP whose orbits
are tangent to the leaves of exp−1

P F .
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Corollary 2.13. If in the above setting P is compact the set Φ′ of
linearised flows on νP is a subgroup of O(νP ).

Denote by lin the operator that assigns to eachX ∈ ΞF the field obtained
from the associated linearised flow φ′t and by IP the set of smooth functions
M → R vanishing on P . The following proposition gives a description of the
kernel of lin.

Proposition 2.14. The kernel of lin is the Lie-ideal generated by the
set IPΞF = {fX|X ∈ ΞF , f |P = 0}. In particular we have a Lie-algebra
ΞF/IPΞF exponentiating via the linearised flows to a group acting isometri-
cally on νP and whose orbits are mapped into the leaves of F by the plaque
exponential.

Proof. Consider a vector field of the form fX, where X is tangent to
the foliation and f vanishes on P . Then in coordinates

fX(x, y) =

m∑
i=1

f(x, y)ai(x, y)∂xi +

k∑
j=1

f(x, y)bj(x, y)∂yj

and thus

lin(fX) =

m∑
i=1

f(x, 0)ai(x, 0)∂x̃i

+
k∑
i=1

k∑
j=1

(f(x, 0)
∂bi
∂yj

(x, 0) + bi(x, 0)
∂f

∂yj
(x, 0))vj ∂vi

= 0,

since both f and the bi vanish at (x, 0) for all x, or in other words, on the
plaque P .
On the other hand an element of the kernel, written in coordinates as above
must satisfy ai(x, 0) = 0 for all i = 1, ...,m and hence can be written as a
sum of tangent vector fields multiplied by functions vanishing on the plaque.
The rest of the proposition follows by the observation that the quotient Lie-
algebra acts effectively on the normal bundle via exponentiating to linearised
flows and exponentiates to a subgroup of O(νP ). �

Definition 2.15. We call the pseudogroup generated by linearised flows
of ΞF along a leaf L the normal holonomy pseudogroup of L and denote it
by η(L).

Remark 2.16. As the local coordinate vector fields ∂xi tangent to a leaf
of the foliation everywhere coincide with their linearisations along the given
leaf the latter is always also a leaf of the exponential image of the linearised
foliation. Hence the leaves of the exponentiated linearised foliation around
a leaf are of no smaller dimension than the leaf itself.
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Note that the dimension of the linearised leaves may be smaller than that
of the leaves of the infinitesimal foliation on the normal bundle. Taking the
suspension of an inhomogeneous foliation on a sphere by S0 yields an example
where the linearised foliation at either of the poles must be strictly finer than
the infinitesimal foliation, as the former is homogeneous (see below) while
the latter is isomorphic to the inhomogeneous foliation. This motivates the
following

Definition 2.17. A foliation F on a manifold M is called linearisable
at p ∈M if the linearised foliation on νpFp coincides with the pull-back of F
via the normal exponential map. It is called linearisable if it is linearisable
at every point in M .

Consider now for a point p ∈M the set ΞpF of vector fields vanishing at
p as well as the set Ip of smooth functions M → R vanishing at p. From our
previous considerations it is clear that lin(ΞpF ) = ΞpF/IpΞF acts effectively
on νpFp as a subgroup of O(νpFp) via its flows. The orbits of this action
are again tangent to the (normal) exponential preimages of the leaves of F
around p, which implies that for regular points this action must be discrete
and in fact trivial as the group acting is connected. We make the following

Definition 2.18. The action of ΞpF/IpΞF on νpFp will be called the
infinitesimal isotropy action of F at p. We will denote ΞpF/IpΞF by Fp and
call it the infinitesimal isotropy group at p.

This definition of ours represents the special case of the infinitesimal
isotropy defined in [AZ] for a singular riemannian foliation.
Notice, however, that the stabiliser of a given point p under the action of the
normal holonomy pseudogroup of its leaf may be larger than the infinitesimal
isotropy: A smooth loop at p that lies within Fp which is not homotopic to
the constant curve at p may induce an isometry of νpFp with discrete, non-
trivial orbits. (In other words, the infinitesimal isotropy is the connected
component of the identity in the stabiliser of a given point.) We call regular
leaves with non-trivial stabiliser exceptional and principal otherwise. Every
neighbourhood of an exceptional leaf contains a discrete non-trivial orbit,
as the stabiliser acts linearly. Hence exceptional leaves are isolated in the
regular stratum. The stabiliser of a singular point p acts linearly and or-
thogonally with orbits of positive dimension on the normal space νpFp. For
it not to be contained in SO(νpFp) it would have to contain a reflection, but
that reflection would fix a hypersurface, which would imply that the (un-
countably many) regular orbits traced in this corresponded to exceptional
leaves. As exceptional leaves are isolated this cannot happen and thus the
stabiliser of a singular point always coincides with its infinitesimal isotropy.
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2.2. Polar Foliations

A singular riemannian foliation F is said to have sections if for every reg-
ular point p the set expp(νpFp) is a complete, totally geodesic immersed sub-
manifold. The intersection of a convex set around p with a section through
p will be called a local section at p. The intersection of a tubular neigh-
bourhood of Fp with expp(νpFp) is called the slice at p. It can be written
as the union of all local sections containing p (cf. Proposition 2.1 in [Al2]).
The dimension of a section coincides with the codimension of the singular
foliation and is thus the same for all sections.
An important class of examples for this are the orbit decompositions of polar
actions of a Lie group on a riemannian manifold and in particular the adjoint
action on a compact Lie group by a compact subgroup, where in the latter
case the sections are the maximal tori of the group. Another class of examples
are isoparametric foliations of euclidean space, which arise as the level sets
of isoparametric maps, where a smooth map f = (f1, ..., fm) : Rn+m → R is
called isoparametric if

• f has a regular value
• the "first and second differential parameters", 〈∇fi,∇fj〉 and ∆fk,
are constant on the level sets of f for all i, j, k (hence the name),
• [∇fi,∇fj ] is a linear combination of ∇f1, ...,∇fm where the coeffi-
cients are constant on the level sets of f for all i, j.

In [Al2] Alexandrino proved a remarkable "Slice Theorem" showing that
isoparametric foliations are a universal local model for singular riemannian
foliations with sections:

Theorem (Theorem 2.10 in [Al2]). Let F be a singular riemannian
foliation with sections on a complete riemannian manifold M and Sp the
slice at a point p ∈ M . Then the restriction of F to Sp is diffeomorphic to
an isoparametric foliation on an open set of Rn, where n is the dimension of
Sp.

In analogy to the homogeneous case we also refer to singular riemannian
foliations with sections (sometimes abbreviated as s.r.f.s.) as polar (singu-
lar) foliations, where we will in general omit the mention of "singular". (If
needed we will explicitly refer to a foliation as "regular" if it has no singular
leaves.)

From now on we will fix our manifold M to be compact, simply con-
nected and positively curved. Furthermore the singular riemannian foliation
F will be assumed to have sections and be of codimension at least two. This
has several consequences which we shall endeavour to exhibit below.

As a first easy observation we note that the curvature of M is bounded
away from 0 due to compactness. The sections as totally geodesic submani-
folds of dimension ≥ 2 inherit this curvature bound and are thus compact by
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the theorem of Bonnet-Myers. We also obtain immediately that the flows of
the elements of ΞF are globally defined and thus the elements of the normal
holonomy pseudogroup of a leaf L are in fact defined on all of L, yielding a
normal holonomy group as a subgroup of O(νL).
Consider the strata of M as traced in a section Σ. Then any geodesic any-
where tangent to the intersection of a stratum with Σ is everywhere con-
tained in Σ due to total geodesicity and thus perpendicular to the leaves
of the singular points where it touches the singular stratum. It is hence by
Proposition 2.10 traced entirely in that stratum in a neighbourhood of the
singular leaves it meets. The connected components of the singular stratum
as traced in a section are thus totally geodesic. It follows in particular that
the singular points on a transverse geodesic are either isolated or all of its
points. As a corollary of the Slice Theorem in [Al2] one moreover obtains
that the singular stratum as traced in a local section consists of a finite
union of hypersurfaces. The union of all local sections contained in a given
section Σ constitutes an open cover which by compactness has a finite sub-
cover consisting of local sections σi, each containining finitely many (open
subsets of the) totally geodesic hypersurfaces forming the singular stratum.
Hence there can be only finitely many such hypersurfaces in total and we
have proven:

Lemma 2.19. For any section Σ of a polar foliation F of codimension
at least two on a compact, positively curved manifold M the intersection
of Σ with the singular strata is a finite union of totally geodesic, compact
hypersurfaces.

We furthermore have that the regular stratum as traced in a section is
an open and dense subset of that section if the ambient manifold is complete
(see [Al3]) and the following:

Proposition 2.20 (Theorem 1.2 in [Ly]). If F is a polar foliation on a
simply connected manifold then all leaves are closed.

Since M is compact this implies that the leaves are compact themselves
and we can apply

Proposition 2.21 (Theorem 1.5 in [AT]). If F is a polar foliation on
a simply connected manifold such that the leaves are compact then:

• The quotient M/F , i.e. the space of leaves, is a Coxeter orbifold.
• Any connected component Ω of the intersection of the regular stra-
tum with a section is homeomorphic to the quotient Mr/F and its
closure in the section is homeomorphic to M/F , both via the canon-
ical projections.
• Any such Ω is a convex subset of M .

The second item implies that the intersection of every regular leaf with
any such Ω is unique and thus there can be no exceptional leaves:
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Corollary 2.22. Let F be a polar foliation on a simply connected,
compact riemannian manifold M , then all regular leaves are principal leaves,
i.e. they have trivial normal holonomy.

We now wish to introduce a notion that is somewhat analogous that of
an equivariant normal field in the case of a group action. Recall that such a
field is defined to be a normal field ξ along an orbit of the action such that
for any group element g we have ξg(p) = dgp(ξp).

Definition 2.23. A vector field ξ which is normal to the foliation is
called an equifoliate normal field if for any X ∈ ΞF with flow φt it satisfies
the condition

ξφt(p) = π ◦ dφtp(ξp),
where π is the projection to the horizontal distribution νF .

Proposition 2.24. Let L be a principal leaf of a singular riemannian
foliation (M,F) and p ∈ L. Then on any sufficiently small neighbourhood U
of p in L there exist dim νpL linearly independent equifoliate normal fields.

Proof. Let v1, ..., vk be a basis of νpL. We choose U so small that every
point q ∈ U can be written as φt(p) for some flow of a vector field X ∈ ΞF .
Define ξi on U by ξiφt(p) = π ◦ dφtp(ξip) and ξip = vi. It remains to prove that
ξi is well-defined. Assume φt1(p) = φt2(p) holds for two flows φt1, φt2. Then
φ−t1 ◦φt2(p) = p. and thus the linearised flow π ◦ dφ−t1 ◦ dφt2 acts on νpL as an
element of the infinitesimal isotropy group. But the latter is trivial as L is a
principal leaf and so π ◦ dφ−t1 ◦ dφt2 = IdνpL which implies π ◦ dφt1 = π ◦ dφt2
and thus ξi is well-defined. �

Lemma 2.25. Let ξ be an equifoliate normal field along a principal leaf
L of a polar foliation (M,F). Then ξ is parallel with respect to the normal
connection ∇⊥.

Proof. Consider an equifoliate normal field ξ along a principal leaf L,
p a point in a plaque P ⊂ L. Extend ξp to vector field on a small neighbour-
hood of p in the respective local section and then extend this vector field
equifoliately along the foliation to a vector field on a small tubular neigh-
bourhood of L which by abuse of notation we will also denote by ξ. This is
well-defined by iterating the proof of Proposition 2.24 over sufficiently small
neighbourhoods covering L. Let furthermore X ∈ ΞF be chosen such that
its pull-back via the plaque exponential exp⊥ coincides with its linearisa-
tion X∗ along L. Such fields can easily be constructed by pushing forward
the linearisation of any other X ′ ∈ ΞF via exp⊥ and by Remark 2.16 they
still everywhere span TL. Hence considering such fields will be sufficient for
proving parallelity of ξ along L. Considering X as a normal field along any
appropriate section Σ we have the Weingarten formula

∇ξX = −AΣ
Xξ +∇νΣ

ξ X,
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where the Weingarten tensor AX vanishes as the sections are totally geodesic,
and hence ∇ξX is identical to its Σ-normal part, i.e. tangent to the foliation.
Let furthermore ξ∗ be the pull back of ξ via the plaque exponential. This
is a vector field on νL which is everywhere tangent to the fibres. The flows
of the linearised vector fields can be written as Φt = π ◦ dφt where φt is the
flow of an appropriately chosen X ∈ ΞF . Since they are linear isometries
their differentials are obtained by composition with d exp⊥ and its inverse
from the left and right respectively. In toto we have

dΦt = (d expP )−1 ◦ π ◦ dφt ◦ d expP .

With q = expP (Φt(0p)) = φt(p) it follows that

dΦ−t0φt(p)
(ξ∗0φt(p)) = (d expP )−1 ◦ π ◦ dφ−t

◦ d expP ((d expP )−1 ◦ ξ ◦ expP (0q))

= (d expP )−1 ◦ π ◦ dφ−t((ξ ◦ expP (0q))

= (d expP )−1 ◦ π ◦ dφ−t(ξφt(p))
= (d expP )−1(ξp), as ξ is equifoliate,
= ξ∗0p .

This allows us to compute

[X∗, ξ∗]0p = lim
t→0

1

t
(dΦ−t0φt(p)

(ξ∗0φt(p))− ξ
∗
0p) = lim

t→0

1

t
(ξ∗0p − ξ

∗
0p) = 0.

Since X∗, ξ∗ and X, ξ respectively are expP -related, we have

[X, ξ] = (expP )∗[X
∗, ξ∗] = 0 along the leaf L,

and so ∇Xξ = ∇ξX− [X, ξ] = ∇ξX, which is tangent to the foliation by our
above argument. It follows that ∇⊥Xξ = 0 for all X ∈ ΞF as above, which
readily implies ∇dt

⊥
ξ = 0 along any curve contained in L. �

Remark 2.26. Let p be a point on a principal leaf and σ a local section
containing p. Any smooth curve c : I → Fp with c(0) = p can locally
be written as the flow curve of a vector field tangent to the foliation by
transitivity. As the leaves are compact we obtain a linear isometry φc :
νpFp → νc(1)Fp as the composition of finitely many elements of the normal
holonomy group of Fp. This can be exponentiated to a diffeomorphism
ϕc : σ → Imϕc, where the image Imϕc = expc(1)(φc(exp−1

p (σ))) is again a
local section by construction. Since φc respects the leaves of the infinitesimal
foliation on the normal bundle, so does ϕc with the leaves of the foliation
around Fp. The distance between two points ϕc(q), ϕc(q′) ∈ σ′ is realised by
a transverse geodesic and hence equal to the distance between their respective
plaques, but the same holds for the distance between q, q′ ∈ σ, which implies
that ϕc preserves distances and is hence an isometry of the local sections
along Fp.
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In [Al2] Alexandrino constructs on every local section a pseudogroup
of singular holonomy consisting of foliate isometries. The construction of
the isometries, as seen in the proof of Proposition 3.1 ibidem, is done by
parallel transport along regular leaves. As we have shown above the local
isometries of a given section obtained from exponentiating the isometries
of the normal bundle where the leaves intersect the section can be written
as such a parallel transport and are hence contained in the pseudogroup
constructed by Alexandrino whenever there is a local section containing both
the domain and image.

Definition 2.27. We shall write WΣ for the pseudogroup generated by
all partial isometries ϕc obtained from curves c tangent to the regular leaves
of the foliation with c(0), c(1) ∈ Σ for a given section Σ and call it the polar
pseudogroup of Σ.

Annotation. As we will see below this coincides with the generalised
Weyl pseudogroup referred to by Alexandrino and Töben (cf. [AT], [Tö]).

By construction all elements of WΣ are foliate, i.e. they preserve the
leaves of the foliation. According to Proposition 3.3. in [Al2] this pseu-
dogroup contains the (local) reflections in the singular hypersurfaces. Here
by reflection we mean an isometry that fixes a set of codimension one and
whose differential acts as multiplication by −1 on the normal bundle of the
fixed point set. Since the singular hypersurfaces are compact there exists
a small tube of constant radius around each hypersurface Λ within which
every point is linked to Λ by a unique shortest geodesic, which thus meets Λ
perpendicularly. We can therefore extend any reflection to this tube around
its corresponding hypersurface by mapping each of the short normal geodesic
segments starting on Λ to the one with initial velocity multiplied by −1. As
they are the fixed point sets of reflections we thus also call the singular hy-
persurfaces the mirrors of Σ.

Consider now the connected components C of the regular stratum traced
in a given section Σ, which we will suggestively call chambers. By Proposition
2.21 they are convex and intersect each regular leaf in a unique point. If it
is not already defined there, the convexity allows us to extend any element
ϕ of WΣ at least to the chambers intersecting its domain.

Lemma 2.28. An element ϕ of WΣ that maps a regular point p into its
own chamber is the identity on its domain.

Proof. As the regular stratum is open ϕ must map a small open neigh-
bourhood containing only regular points into the chamber containing p. The
intersections of regular leaves with chambers are unique, though, and thus
ϕ must map this open neighbourhood identically onto itself. Hence its dif-
ferential at p is the identity, but ϕ being an isometry this causes it to be the
identity on all of its domain. �
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Lemma 2.29. Outside of their intersections the mirrors separate two lo-
cally unique chambers.

Proof. It is clear that a globally compact hypersurface locally separates
its ambient space into at most two (global) components. It thus remains to
be seen that for a sufficiently small open neighbourhood V of a singular point
lying on a unique mirror H the components of V \H do not lie in the same
chamber. Assume the contrary, then the local reflection in V maps an open
set of that chamber back into the chamber itself. However, by Lemma 2.28
this means that the reflection is the identity, which is a contradiction. �

Proposition 2.30. The pseudogroup WΣ is generated by the reflections
in the singular hypersurfaces.

Proof. Consider ϕ ∈ WΣ and an arbitrary regular point p ∈ Σ. Link
p to ϕ(p) by a smooth curve γ in Σ, which will meet the singular stratum
only in isolated points, as it starts tangent to the regular stratum. Since
the intersections of the mirrors are of codimension at least two in Σ we
can perturb γ such that it only meets the singular stratum outside of the
intersections of the mirrors. Let r1, ..., rl denote the reflections in the mirrors
crossed by γ when moving from p to ϕ(p) and write Ci inductively for the
chamber obtained from Ci−1 by applying ri, starting with C0 the chamber
containing p. Choose 0 = t0 < t1 < ... < tl = 1 such that γ(ti) ∈ Ci. With
Lemma 2.29 it then follows inductively that ri ◦ ... ◦ r1(p) lies in the same
chamber as γ(ti) and hence rl ◦ ... ◦ r1(p) ∈ Cl which also contains ϕ(p).
The composition ϕ ◦ r1 ◦ ... ◦ rl thus maps C0 to itself and is the identity by
Lemma 2.28, which completes the proof. �

We call the intersections of the mirrors with the closure C of a chamber
the (codim 1-)faces of C. Their mutual intersections traced in C are then
referred to as the faces of subsequently higher codimensions. We can in
particular label the faces of C by the reflections that fix them, where the
interior C is labelled by the empty set as the "codim 0-face". This yields a
cell decomposition of Σ where the open chambers are the cells of maximal
dimension and thus in particular have the same dimension. The faces of a
chamber (or more generally any cell) are then all sub-cells contained in it.
Thus we have the following

Proposition 2.31. The partition by the mirrors equips a given section
Σ with the structure of a labellable chamber complex and the pseudogroup
WΣ acts transitively on the set of chambers of this complex.

We will denote this complex by C(Σ,WΣ).

Lemma 2.32. All open chambers of the complexes C(Σ,WΣ) for all sec-
tions Σ ⊂ M are isometric to each other. Furthermore their closures are
isometric as metric spaces.

Proof. Open chambers are convex by Proposition 2.21 and thus any
element of a given pseudogroup WΣ can be extended at least on the open
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chambers having non-empty intersection with its domain. We know thus by
the above proposition that all chambers in a given complex C(Σ,WΣ) are
isometric. It now suffices to note that a regular leaf meets every section and
the holonomy pseudogroup of any regular leaf therefore provides an isometry
between any fixed chamber and at least one chamber in every section. Since
being isometric to each other is an equivalence relation this completes the
argument for the open chambers. For the statement about the closures it
suffices to note that the singular strata are totally geodesic and thus the
closed chambers remain convex as metric spaces. �

In order to see that these complexes are not trivial it suffices to prove

Lemma 2.33. A polar foliation on a complete, positively curved manifold
must have singular leaves.

Proof. Assume the contrary, then the foliation is regular and by The-
orem 1.3 in [Wa] the leaves must be totally geodesic. Since the foliation
is polar and sections can only intersect in singular leaves this means that
the sections form another totally geodesic foliation, orthognal to the original
foliation. It follows that the manifold everywhere locally splits as a metric
product, which implies that the sectional curvature on planes spanned by a
vector tangential to the original foliation and a vector orthogonal to it must
vanish. This contradicts the positive curvature. �

The question arises whether the pseudogroup WΣ can be extended to a
group of isometries, generated by reflections and acting on Σ. Töben proved
in [Tö] (cf. p. 21f. ibidem) that WΣ is covered by a group W̃Σ containing
the reflections in the lifts of the mirrors to the universal cover of Σ. This
lifted group contains the deck transformations of the covering Σ̃ → Σ and
the obstruction to pushing this group action down to Σ is the non-normality
of the deck transformation group in W̃Σ. We will make active use of this in
the proof of the following

Proposition 2.34. Let F be a polar foliation on a compact, positively
curved riemannian manifold M . Then any section Σ is diffeomorphic either
to a sphere or a real projective space and the polar pseudogroup WΣ extends
to a group of foliate isometries generated by reflections, acting on Σ.

Proof. We know by Lemma 2.33 that F has singular leaves. Hence
there exists at least one singular hypersurface Λ ⊂ Σ with an associated
reflection r acting on a small tubular neighbourhood TεΛ which we may con-
ceive as the exponential image of the normal ε-disc bundle. As curvature
is strictly positive the distance function to Λ on Σ is strictly concave (cf.
[Wu]). Thus the connected components of Σ \ TεΛ are locally convex and
contain a unique point at maximal distance from Λ (sometimes referred to
as the "soul point"). By the Soul Lemma (Corollary 1.10 in [Gr]) the com-
ponents are diffeomorphic to the normal bundle of these soul points and thus
are diffeomorphic to open balls.
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Consider first the case where Σ \ Λ has two components. Then Σ is diffeo-
morphic to the gluing of two open balls along Λ and thus homeomorphic to
a sphere. (In general it might still be only a twisted sphere.) Thus we know
that Σ is simply connected and hence its own universal cover. By the work
of Töben mentioned above we then know that WΣ extends to a group of
foliate isometries generated by reflections. In particular the reflection r can
be extended globally onto Σ, allowing us to repeat the argument given for
the homogeneous case (section of a polar action) in the proof of Proposition
2.3 in [FGT]: Choose a diffeomorphism ψ from the upper hemisphere S+

of the standard sphere S to one of the connected components of Σ \ Λ, say
Σ+, as provided by the Soul Lemma. This diffeomorphism is constructed
using the flow lines of a gradient-like vector field on Σ+ induced by the dis-
tance function to the soul point, and thus may be chosen such that the north
pole is mapped to the soul point and the flow lines are the images of radial
geodesics around the north pole in a neighbourhood of the soul point and of
normal geodesics in a tubular neighbourhood of Λ. Let ρ denote the reflec-
tion in the equator of the standard sphere, bounding S+. Then we define a
diffeomorphism Ψ : S → Σ by Ψ(x) = ψ(x) if x ∈ S+ and Ψ(x) = rψρ(x) if
x ∈ S−.
Now consider the case where the complement of Λ has only one component.
It follows that the boundary of the tubular neighbourhood TεΛ is diffeo-
morphic to the boundary of an open ball, i.e. a sphere. The local reflec-
tion r acts freely and isometrically on this sphere and the metric projection
π : ∂(TεΛ) → Λ is thus a covering of Λ with involutive deck transformation
r. Thus Λ and by Seifert-van Kampen Σ have fundamental group Z2. By the
work of Töben we can lift WΣ to a reflection group on the two-fold universal
cover Σ̃, which by the argument from the previous paragraph is diffeomor-
phic to a standard sphere. We note now, that any local reflection in WΣ

has two lifts into W̃Σ, one which is a reflection in a lifted mirror, and one
which acts as the deck transformation a on the mirror and as a rotation on
the connected components of its complement. Each of these lifts preserves
the mirror and hence a commutes with any lifted reflection, whence the deck
transformation group 〈a〉 is normal in the lifted group. It follows that we can
push down W̃Σ to obtain an extension of WΣ to a group acting on the sec-
tion. Again, this allows us to repeat the argument given in [FGT] similar to
the above paragraph, yielding a diffeomorphism from the standard sphere to
the universal cover of Σ which is now in particular equivariant with respect
to the antipodal map on the standard sphere and the deck transformation
on Σ̃. It thus descends to a diffeomorphism RP k → Σ. �

As the polar group preserves leaves the reflections must map mirrors to
mirrors. Since there are only finitely many mirrors the polar group must in
particular be finite.

Lemma 2.35. The quotients Σ/WΣ and M/F coincide and any two re-
flections generate a dihedral group.
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Proof. The first part is a simple consequence of the second bullet in
Proposition 2.21 and Proposition 2.31. By Theorem 1 in [Fr] the mirrors of
any two reflections must intersect at some point, as the ambient manifold
Σ is positively curved. The second part now follows from the first bullet in
Proposition 2.21 and that the mirrors project to the boundary of the Coxeter
orbifold M/F . �

This yields directly the following result obtained by Fang, Grove and
Thorbergsson in [FGT] in subsequence of the analogon of Proposition 2.34,
where the respective proof uses the homogeneity of the foliation only to
obtain the dihedral group we have obtained in the previous lemma and oth-
erwise relies entirely on the geometric properties of the mirrors and positive
curvature:

Lemma 2.36 (Lemma 2.5 in [FGT]). If Σ is a sphere of dimension k
with group WΣ, then

• the intersections of mirrors are spheres.
• there are at most k + 1 chamber faces and the intersection of all of
them is Fix(WΣ).
• if there are k + 1 chamber faces then the closure of any chamber is
a k-simplex and the fixed point set of WΣ is empty.
• if there are l + 1 < k + 1 chamber faces, then the closure of any
chamber is a join of an l-simplex with Fix(WΣ).

One obtains from this an analogous description of the chambers for the
case where Σ is a projective space by considering the universal cover Σ̃
equipped with the group generated by all those lifts of reflections r ∈ WΣ

that are reflections in the lifted mirrors. It then suffices to note that the
chambers in Σ are isometric to those in Σ̃ and that the former are obtained
from the latter by identifying the orbits of the decktransformation in the
boundary of the closed chambers.
Notice that the lifted reflection group described above will in general be
smaller than the group W̃Σ considered by Töben, as the latter always con-
tains the deck transformation while the former may not. We will denote the
former by WΣ for distinction.
One furthermore has the following result from [FGT], which complements
the description of the fixed point set of the action ofWΣ given in the previous
lemma for the spherical case by the one for the projective case:

Lemma 2.37 (Proposition 2.8 in [FGT]). Let M be a positively curved,
simply connected, compact manifold with a polar foliation and Σ a section
of it. If Σ is a projective space, then the chambers are simplices, the group
of reflections in the lifted mirrors in Σ̃ contains the deck transformation and
the fixed point set is a subset of the vertices of any (and thus every) chamber.

The above results imply that the polar group of a spherical section and
the lifted polar group on the universal cover of a projective section are reflec-
tion groups on simply connected spaces and thus Coxeter groups, i.e. they
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are generated by reflections, any two reflections form a dihedral group and
there are no other relations between the generators. Any such group can
be presented in the form 〈r1, ..., rl|(rirj)mij 〉. For finite Coxeter groups the
orders mij of the dihedral groups form a positive definite matrix and the
matrix uniquely determines the Coxeter group. Furthermore we can rep-
resent the group by a (weighted) graph, where each node corresponds to a
generator and any two nodes ri, rj are linked by an edge, weighted with mij ,
if mij ≥ 3, and not linked by an edge if the order of their dihedral group is
2. A Coxeter group together with a vector space (or, equivalently, its unit
sphere) on which it acts linearly is called a Coxeter system. Such a system
is called irreducible if it cannot be written as a product of proper subgroups
acting each on proper subspaces (or sub-spheres), and reducible otherwise.
It is irreducible if and only if its associated graph is connected. The graph is
also referred to as the Coxeter diagram of the complex. We refer to the book
by Davis ([Da]) for these results and a general treatise of Coxeter groups.

We have the following theorem due to Fang, Grove and Thorbergsson:

Proposition 2.38 (Theorem 2.11 in [FGT]). For a simply connected,
compact, positively curved manifold with a polar foliation the action of each
polar group WΣ is differentiably equivalent to a linear action on a round
sphere or real projective space and each section admits a metric of constant
curvature invariant under the polar group.
In particular the chamber complex C(Σ,WΣ) (for the spherical case) respec-
tively C(Σ̃,WΣ) (for the projective case) is a Coxeter complex.

Remark 2.39. In the homogeneous case described in [FGT] Fang, Grove
and Thorbergsson furthermore prove that the entire manifold admits a metric
adapted to the foliation by the orbits of the polar action G y M such that
the sections are all positively curved. This is achieved by employing a result
of Mendes ([Me]) that allows to lift a WΣ-invariant metric on a section Σ
to a G-invariant metric on M . No such result for the inhomogeneous case is
known to us. In the light of the recent interesting results on smooth basic
functions obtained by Mendes and Radeschi in [MR] it may seem reasonable
to hope, though, that a similar extension result for metrics can be obtained
for polar foliations in general.

As a final point in this chapter consider the isotropy action at a point
p of a polar foliation F . Recall from Definition 2.18 that this is the action
of the infinitesimal isotropy Fp, consisting of linearised flows of those vector
fields vanishing at p, on the normal space νpFp.

Proposition 2.40. The isotropy action of a linearisable polar foliation
F at a point p on a compact, simply connected manifold M is a polar action
by a compact, connected Lie-Group.

Proof. By Proposition 2.20 and the compactness of M we know that
the leaves are compact. Since they are traced in the distance tubes around
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Fp and their exponential preimages coincide with the orbits of the isotropy
action by linearisability the latter are compact. As the infinitesimal isotropy
Fp is connected and acts effectively it is compact, too, and by its linear,
isometric action a subgroup of the Lie group O(νpFp). Thus it is a closed
subgroup and a Lie group itself.
It remains to be seen that the action is polar. Let Σ be a section through p
and X any element of ΞF and φt its flow. As the sections are totally geodesic
and X is everywhere orthogonal to Σ we know that the shape operator AX ,
i.e. the Σ-tangential part of the endomorphism∇X : TpM → TpM , vanishes.
We wish to see that the linearised flow curves π ◦ dφt(v) are orthogonal to
TpΣ for every v ∈ νpFp. For that it suffices to examine dφt(v) as the TpFp-
component of it is orthogonal to TpΣ by the polarity of F . Consider therefore
a curve γ in M with .

γ(0) = v and:

dt|0dφ
t(v) = dt|0ds|0φ

t(γ(s))

=
∇

dt
|0∂s|0φ

t(γ(s))

=
∇

ds
|0∂t|0φ

t(γ(s))

=
∇

ds
|0Xγ(s) = ∇vX ⊥ TpΣ,

which shows, that for any section Σ the tangent space TpΣ is a section for
the isometric action of the infinitesimal isotropy Fp. �

Remark 2.41. Notice that, since the leaves of points in the stratum of
p are of the same dimension as Fp, the orbits of their exponential preimages
under the isotropy action at p must again be of the same dimension as the
orbit of the origin in νpFp, which is zero. It follows that Fp acts trivially
on the tangential space to the stratum of p. As the action is linear and
isometric it is furthermore uniquely determined by the orbits on the unit
sphere in νpFp. Together this yields that the isotropy action is completely
determined by the action of Fp on S⊥p , the unit sphere normal to the stratum
of p in νpFp, which is a polar action with sections TpΣ ∩ S⊥p .



CHAPTER 3

Chamber Systems and Buildings

In this chapter we will study a combinatorial structure on the manifold
M induced by the actions of the reflection groups on the sections of the polar
foliation and show how this places strong restrictions on the geometry of M .
As before we will be considering the positively curved, simply connected,
compact manifold M with a polar foliation F of codimension at least two.

3.1. Chamber Systems

Consider the chamber systems C(Σ,WΣ) for every section of the polar
foliation and define C(M,F) as their union. Since every point of M lies in
a section this yields a cell decomposition of M , inheriting the chamber com-
plex structure from the complexes on the sections. Curves in this chamber
complex are all broken transverse curves in M , i.e. all piecewise smooth
curves such that each smooth segment lies in a section (or, more generally,
is perpendicular to any leaf it meets). In [Wl] Wilking defines the dual foli-
ation of a singular riemannian foliation by the sets of all points that can be
connected by broken transverse curves and then proceeds to show

Proposition 3.1 (Theorem 1 in [Wl]). For any singular riemannian
foliation on a complete, positively curved manifold the dual foliation has only
one leaf.

Since all chambers are isometric as length metric spaces by Lemma 2.32
this induces a length metric space structure on C(M,F), which by the above
result by Wilking is path-connected and whose geodesics (in the metric sense)
are broken transverse geodesics (ofM). The topology induced by this length
metric will be called the thin topology on C(M,F). It will in the course of our
considerations be complemented by a thick topology to recover the topology
of M and identify M with its chamber complex.
If k is the codimension of the foliation then all open chambers are subsets
of M of dimension k. We say that two chambers in C(M,F) are adjacent if
they share a common (k − 1)-face, as defined in Section 2.2.

Remark 3.2. Notice that for every p ∈M the action of the infinitesimal
isotropy Fp on S⊥p is polar (see Proposition 2.40) and the sphere normal to
the stratum is compact, simply connected and, as a round sphere, positively
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curved. Hence all results obtained for C(M,F) also apply to the chamber
complex C(S⊥p , Fp).
This in particular implies that Fp acts transitively on the set of chambers of
C(S⊥p , Fp), as Fp is transitive on the leaves of its orbit foliation and each leaf
intersects each chamber. Moreover, the exponential map carries (suitably
scaled) chambers of C(S⊥p , Fp) to the intersection of all chambers contain-
ing p with a small distance sphere around p. It follows that the chambers
containing p are in one-to-one correspondence with the chambers of its in-
finitesimal isotropy action.

As a first result on C(M,F) we have

Lemma 3.3. The complex C(M,F) :=
⋃

Σ C(Σ,W ) is labellable.

Proof. We choose a labelling on a given (closed) chamber C as fol-
lows: Choose an indexing I = {0, 1, 2, ..., l} of the mirrors in the section Σ
containing C and assign to a face the label i1, ..., im if and only if it is the
intersection of all the thusly indexed mirrors with C, with the chamber itself
being labelled by the empty set. As the intersection of each leaf with any
chamber is unique by Proposition 2.21 we can define a retraction of chamber
complexes from C(M,F) to C by

p 7→ Fp ∩ C.
By construction this is an adjacency preserving chamber map that is the
identity on C. Following Appendix C of Chapter 1 in [Br] we can pull back
the labelling on C via this retraction to a labelling on all of C(M,F). �

The label of any sub-cell of C(M,F) is also called its type and the map
typ : C(M,F)→ I that assigns to every point the label of the smallest sub-
cell containing it is called the type map. Having chosen a labelling by a set
I we then also refer to a sub-cell as being of cotype J for a J ⊂ I if its type
equals I \ J .
By a gallery we mean any sequence of chambers C1, ..., Cm such that Cj
and Cj−1 are adjacent. If their common face has type ij we also specify
them to be ij-adjacent and refer to the gallery as being of type i1 · · · im or
of type J , where J = {i1, ..., im}. The connected components of the set of
chambers that can be connected by galleries of type J , J ⊂ I, are called
the J-residues of a given complex. The complex is called connected if it
has only one I-residue. For any point p we denote by res(p) the residue of
type typ(p) containing p and more generally we speak of an m-residue, or a
residue of rank m, if the cardinality of the indexing set J is m. Remark 3.2
thus implies that (up to identification under expp) the infinitesimal isotropy
Fp acts transitively on res(p).
We have the following important result:

Proposition 3.4. IfM is a simply connected, positively curved, compact
riemannian manifold with a linearisable polar foliation F , then the chamber
system C(M,F) is connected.
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The proof of this proposition is completely parallel to that in the homo-
geneous case shown in [FGT] (Theorem 3.1 ibidem), where our infinitesimal
isotropy group Fp will replace the isotropy of the polar group action in the
homogeneous case.

Proof. We will proceed inductively by the dimension of the chambers
in C(M,F).
For any two chambers C,C ′ in C(M,F) choose points p, p′ in their interiors.
By Proposition 3.1 we can find a broken transverse geodesic γ linking them.
As the regular stratum as traced in each section is open and dense we can
choose γ such that its intersections with the singular stratum are isolated on
it, and if necessary deform it such that it meets the singular stratum per-
pendicularly (though still with velocity 1). Let {ti}i=1,...,m denote the times
at which γ(ti) is singular. It follows that at any such point the one-sided
derivatives .

γ
+

(ti),−
.
γ
−

(ti) are contained in the unit sphere S⊥γ(ti)
normal

to the stratum of γ(ti). They are hence interior points of two chambers in
the chamber complex C(S⊥γ(ti)

, Fγ(ti)) generated by the polar action of the
infinitesimal isotropy Fγ(ti), whose chambers are of strictly lower dimension
than those of C(M,F). By assumption these lower dimensional complexes
contain galleries linking the chambers containing the two derivatives of γ.
Exponentiating these yields a gallery in C(M,F) linking the chambers con-
taining γ(ti − ε) and γ(ti + ε) (for sufficiently small ε) and thus in toto a
gallery from C to C ′.
If the chambers are of dimension one, then any broken transverse geodesic
yields the desired gallery as its isolated singular points are identical with the
zero-dimensional faces separating the chambers traversed by it, and which
are hence subsequently adjacent. This provides the induction anchor. �

Conjoining the above result with Remark 3.2 we can prove the following

Proposition 3.5. Let M be a positively curved, simply connected, com-
pact manifold with a linearisable polar foliation F of codimension k, then (the
exponential images of) the orbits of the isotropy actions of any collection of
points representing the (open) (k − 1)-faces of the chambers of C(M,F) are
the leaves of the foliation.

Proof. Let p be any point inM and consider an arbitrary point q ∈ Fp.
Let C,C ′ be chambers containing p and q respectively. By Proposition 3.4
we can find a gallery joining C to C ′. The elements Cj of the gallery are
subsequently adjacent along (k−1)-faces. Choose in every (k−1)-face a point
pj , such that p1 is contained in a face of C and pm in a face of C ′. Note that
the (exponentiated) action of each Fpj can by convexity be extended to all
open chambers incident to the face of pj and can by continuity be extended
to its closure. Since Fpj acts transitively on res(pj) for each j we can find
an element of Fp1 mapping p to a point in C1 and proceeding inductively
we obtain a sequence of elements of the Fpj whose consecutive application
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to p maps p into C ′ and by uniqueness of the leaf-chamber intersection thus
to q. Since we already know that the orbits of the infinitesimal isotropy are
mapped into the leaves of F by the exponential maps at the respective points
this completes the proof. �

Remark 3.6. Combining Proposition 3.4 and the proof of Proposition
3.5 above one sees that every gallery can be described as consecutively "fold-
ing" chambers onto the following chamber by an element of the infinitesimal
isotropy of a point in their common face.

As a further application of Proposition 3.4 we can now describe the
relation between the various fixed point sets of the polar groups WΣ and the
set of point leaves of the foliation F .

Proposition 3.7. Let M be a simply connected, compact, positively
curved manifold with a linearisable polar foliation F of codimension at least
two. Then for any section Σ the set MF of point leaves is a subset of the
fixed point set of WΣ y Σ with equality if there exists a spherical section.

Proof. Since the polar groups WΣ preserve leaves the inclusion follows
immediately. Now suppose there is a section Σ ∼= Sk and WΣ y Σ has
non-empty fixed point set. By Lemma 2.36 this is a subsphere S ⊂ Σ and
contained in every chamber of C(Σ,WΣ). Let without loss of generality the
complex C(M,F) be labelled by the set I indexing the reflections acting on
Σ. The type map thus sends all points of S to I. Let C ′ be any chamber
adjacent to a chamber C of C(Σ,WΣ), then they share a common (closed)
face, which must contain S as it is in particular fixed by the reflection in
WΣ corresponding to the mirror containing the face. Hence S ⊂ C ′ and
since its type is of the same cardinality as the number of reflections in the
chamber faces it must be fixed by the polar group acting on the section
containing C ′. By Proposition 3.4 we can proceed inductively along galleries
emanating from C to see that all sections contain S as their fixed point set.
(In particular all sections are spheres, since projective sections do not admit
spherical fixed point sets.) Now any leaf of F passing through an element
of S must intersect any other chamber in a point with the same type, but
the set of type I in any chamber is S itself and so the leaf must be a point,
implying Fix(WΣ) = MF for every section Σ. �

Corollary 3.8. It follows that if MF = ∅ then all chambers of C(M,F)
are simplices.

We shall from now on consider the case where there are no point leaves.
The contrary case will be dealt with in Chapter 4.

3.2. Buildings

The aim of this section will be to see how the chamber complex C(M,F)
gives rise to a spherical building, a concept we shall define below, which in
turn will yield information about the homeomorphism type of M .
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Definition 3.9 ((Spherical) Building). A simplicial complex ∆ together
with a family {δα}α∈A of subcomplexes, the apartments, is called a (spheri-
cal) building if

• every subcomplex δα is a (spherical) Coxeter complex,
• every two simplices of ∆ are contained in at least one common
apartment δα, and
• for every two simplices a, b in ∆ both contained in the two apart-
ments δα, δβ there is an isomorphism of chamber complexes δα → δβ
fixing a and b.

Notice that in particular any Coxeter complex is a building in its own
right, even though a "trivial" one. The books by Brown ([Br]) and Ronan
([Ro]) may serve as further reference on buildings, where we note that in
our above definition we follow the exposition in [Br] which gives more of a
geometric intuition. It was shown in [Ti2] that every spherical building has
a unique maximal system of apartments, so we may omit the reference to it
henceforth. There is an equivalent, combinatorial-group theoretic definition
as given in [Ro], which may prove more convenient for technical considera-
tions:

Definition 3.10 (Alternative Definition of (Spherical) Building). Let
W be a (finite) Coxeter group with generating reflection ri indexed over a
set I. Then a chamber system ∆ over I is called a building if every proper
face is contained in at least two chambers and there is aW -distance function
δ : ∆ × ∆ → W such that δ(x, y) = ri1 · · · rij if and only x and y can be
connected by a gallery of type i1, ..., ij , where ri1 · · · rij cannot be expressed
as a shorter combination of reflections.

The underlying simplicial complex of a building is also referred to as its
geometric realisation.

Remark 3.11. For a riemannian, simply connected, semisimple symmet-
ric space G/K the action of the isotropy groupK on TeKG/K by differentials
is called an s-representation. This can be identified with the adjoint repre-
sentation of K on p ∼= TeKG/K, where g = k+p is the Cartan decomposition
of the Lie algebra of G corresponding to the symmetric pair (G,K). This
representation, endowed with the metric given by the negative of the Killing
form, is polar, with sections the maximal abelian subalgebras of p. Hence
we can consider its restriction to the unit sphere S(p). This gives rise to
a chamber complex which admits the intersections of the maximal abelian
subalgebras with the unit sphere as a system of apartments, making it into
a spherical building (see [Fn], 3.4.2). By work of Dadok ([Da]) every polar
representation of a compact Lie group without fixed points, restricted to the
unit sphere, is orbit equivalent to an s-representation and thus its associated
chamber complex on the unit sphere is in fact a spherical building.

The following example of a building will be of particular use to us:
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Example 3.12. Consider now a symmetric space N specifically of non-
compact type, i.e. it is the quotient of a non-compact, semisimple, connected
real Lie group U by a subgroup K that up to a central factor is a maximal
compact subgroup. As the centre is a normal subgroup of K (see [He]) we
may w.l.o.g. assume the centre to be trivial and K to be compact with-
out changing N . There is a U -invariant metric on N such that it may be
identified with the identity component of the isometry group of N for that
metric. One defines an equivalence relation on all geodesics in N by saying
that two geodesics are equivalent if they have finite Hausdorff distance form
each other. One can show that each equivalence class of geodesics has a
unique representative meeting a given point and so the set S∞ of equiva-
lence classes of geodesics is homeomorphic to the unit sphere at any point
in N , the action by U extends to it in a continuous way and S∞ is called
the sphere at infinity of the non-compact symmetric space N . The action of
the isotropy groups of U at every point on the tangent spaces is again polar
and the sections project to the sphere at infinity as apartments of a building
equivalent to that associated with the action of the isotropy group of a point
on its unit tangent sphere (see above and [Ji] for further reference).

An m-covering of chamber complexes is defined to be a morphism of
chamber complexes (i.e. a map preserving the chamber structure) which is
an isomorphism on every J-residue with |J | ≤ m.
As in the case of topological coverings there is the notion of a universal m-
covering, whose uniqueness follows from the usual universal property that it
covers all other m-coverings. It’s existence follows by a similar construction
as the set of homotopy classes of galleries, where by a homotopy of galleries
we mean a finite sequence of so-called elementary homotopies. The latter are
defined as the passage from a gallery Γ = Γ0Γ1Γ2 to a gallery Γ′ = Γ0Γ′1Γ2

such that Γ1,Γ
′
1 lie in the same residue of rank 2 and have the same initial

and final chambers. Notice that in buildings any two galleries are homotopic
and hence they are simply connected in the sense of combinatorial coverings
(cf. Theorem 4.3 in [Ro]).
We have the following remarkable result by Tits:

Proposition 3.13 (Corollary 3 in [Ti1]). The universal 2-covering of a
connected chamber system, labelled over a finite set, is a building if and only
if all 3-residues are 2-covered by buildings.

Corollary 3.14. IfM is a positively curved, compact, simply connected
manifold with a linearisable polar foliation of codimension at least three with-
out point leaves, then the universal cover C̃(M,F) of the chamber complex
C(M,F) is a spherical building.

Proof. Since the foliation has codimension three and no point leaves the
chambers are 3-simplices and hence C(M,F) is of rank four. From Remark
3.2 and our identification of the residue of a point with the sphere normal
to its stratum it is clear that all proper residues res(p) are isomorphic to the
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chamber complexes C(S⊥p , Fp) which are buildings by Remark 3.11. Since this
includes the residues of rank three and C(M,F) is connected by Proposition
3.4 this completes the proof. �

We will denote the universal covering by p : C̃(M,F) → C(M,F) and
for simplicity of notation we may omit the reference to M and F . Using the
combinatorial definition we have an associated Coxetergroup W = W (M)
with its diagram. (Alternatively, note that by the geometric definition all
Coxeter complexes are isomorphic and hence "the" Coxeter group of the
building is well-defined up to isomorphism.) We write S for the simplicial
complex underlying the building. Furthermore we will denote by Vi the set
of vertices of cotype i and by Vert(C̃(M,F)) the union over all Vi, i ∈ I.
Notice that the cardinality of I is one higher than the codimension of the
foliation (M,F) as by our premise all chambers are simplices.
It will be our aim to invoke a result of Burns and Spatzier in [BSp] and
its generalisation by Grundhöfer, Kramer, van Maldeghem and Weiss (see
[GKMW]) linking certain types of buildings to Lie groups. In particular we
will need the following

Definition 3.15 (Topological Building, see [BSp]). A (spherical) build-
ing C̃ is called a topological building if it is equipped with a Hausdorff topology
on Vert(C̃) such that the set C̃i1,...,ij of simplices of type {i1, ..., ij} is closed
in Vi1 × · · · × Vij for any collected of indices. Such a building is then fur-
thermore called compact, connected, locally connected or infinite if the set
C̃1,...,m, is such in the thusly induced topology, with m being the rank of the
building. Its topological automorphism group is defined to be the group of
all chamber system isomorphisms that restrict to homeomorphisms on the
each C̃i1,...,ij .

Our subsequent endeavours will now be focussed on establishing the ap-
propriate topology on C̃. As a first step we define the chamber topology on
C̃ as follows:
Note first that since M is compact so are the (closed) chambers of C and
they thus form a metric space with the Hausdorff-metric.
Choose now a chamber C̃0 in C̃ once and for all. Then for k ≥ 1

2 |W |, ε > 0,
and a chamber C̃ ∈ C̃ define Bε,k(C̃) to be set of all chambers C̃ ′ such that
there are galleries Γ,Γ′ starting at C̃0 and ending in C̃, C̃ ′ respectively, of
length at most k and whose projections to M lie at Hausdorff distance no
more than ε from each other.
The chamber topology on C̃ is now defined to be the topology generated by
the sets Bε,k(C̃).
The following result relies only on basic properties of buildings in general:

Lemma 3.16 (Lemma 4.5 in [FGT]). The chamber topology is indepen-
dent of the choice of C̃0 or k.
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Proposition 3.17 (cf. Proposition 4.4 in [FGT]). Equipped with the
chamber topology the space C̃ is compact, separable and metrizable.

Proof. The proof of Proposition 4.4. in [FGT] for compactness and
metrizability relies entirely on the compactness of M and basic properties
of buildings and thus carries over identically. For separability consider for
every infinitesimal isotropy group Fp the subgroup F ′p consisting only of
the rational points (thinking of Fp as being appropriately represented as a
subgroup of the real matrix group O(νpFp)). Then the set of all chambers
reachable from C̃0 by galleries obtained from folding (cf. Remark 3.6) with
elements of the F ′p is dense and as countable union of countable sets itself
countable. �

The next step will be to see how the chamber topology induces a topology
on the set of vertices. Denote by πi : C̃ → Vi the projection that assigns to
each chamber its vertex of cotype i and topologise Vi with the quotient
topology induced by this, making πi into a continuous map.

Lemma 3.18 (cf. Lemma 4.6 in [FGT]). The projection πi is an open
map for every i, and Vi is compact and Hausdorff. For x ∈ Vi the fibre under
πi is the residue res(x). This is compact and the restriction of the covering
p : C̃ → C to it is a homeomorphism onto the residue res(p(x)) in C.

Our proof will closely follow that in [FGT], where we will make use of the
infinitesimal isotropy groups and the normal holonomy groups of principal
to circumvent the use of the polar group action in [FGT]. In fact, the first
two parts of the proof carry over without modification to the arguments and
we recount them here for completeness’ sake only.

Proof. Any residue in a building is again a building by Theorem 3.5 in
[Ro] and thus the universal covering of its projection under p. Any proper
residue in C is, however, a building itself and thus the restricted covering
must be an isomorphism. For the last claim it thus suffices to see that p is
continuous and maps a compact into a Hausdorff space. Both C and C̃ are
compact and Hausdorff as topological spaces, the former inheriting this as a
length metric space fromM , the latter by Proposition 3.17. Hence it remains
to be seen that res(x) is a closed set. Let (C̃n) be a sequence of chambers in
res(x) converging in C̃. Choose a gallery from a fixed chamber C̃0 to C̃1 and
furthermore galleries linking C̃1 to every subsequent C̃n, where the latter
can be chosen as minimal galleries within res(x), again, because this is a
building itself. Project the concatenations of the fixed initial gallery with
the minimal ones in res(x) via p to the compact space C with its Hausdorff
metric. There a subsequence of these projected galleries will converge to a
gallery Γ which lifts uniquely to a gallery whose final chamber is the limit of
the C̃n. The projections of those parts of the galleries that lie in res(x) lie
in res(p(x)) and so must their limit in the Hausdorff metric. Hence the final
chamber of the lift of the limit gallery must thus lie in res(x).
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Now let (C̃n, C̃
′
n) be a sequence in C̃ × C̃ converging to (C̃, C̃ ′) such that

πi(C̃n) = πi(C̃
′
n). It follows that they share a vertex of cotype i and their

projections (Cn, C
′
n) converge to (C,C ′) in the topology on C × C induced

from the Hausdorff topology on M . Proceeding similarly to the previous
step in the proof we choose minimal galleries between C̃n and C̃ ′n within the
cotype-i-residue the two chambers are contained in, such that (a subsequence
of) their projection converges to a minimal gallery linking C to C ′. It follows
that the limits C,C ′ have a common vertex of cotype i and thus so do C̃, C̃ ′.
This shows that having a common cotype i vertex is a closed relation on the
set of chambers and in order to prove that Vi is Hausdorff it thus suffices to
see that πi is an open map:
We need to show that for any open U ⊂ C̃ the image πi(U) is open, which
thus is equivalent to π−1

i (πi(U)) being open in the chamber topology of C̃.
Since unions carry through the mapping we only need to consider the case
where U is a finite intersection of Bεj ,k(C̃j)’s.
Let thus D̃ be an element of π−1

i (πi(U)). There exists a C̃ ∈ U such that
πi(C̃) = πi(D̃), i.e. C̃ and D̃ share a common cotype-i-vertex x and lie in
the residue Res(x). We can thus construct a gallery Γ linking D = p(D̃) and
C = p(C̃) by folding within the residue inM , using the infinitesimal isotropy
groups in faces containing x. Let V be a neighbourhood of C in p(U) which
we can assume to be a projection of a finite intersection of Bεj ,k(C̃j)’s. Hence
all elements of V have Hausdorff distance less than or equal to ε := min{εj}
from C. Every chamber Hausdorff close to C can, however, be written as
ϕC for a ϕ in the normal holonomy group of a principal leaf L sufficiently
close to the leaf of p(x), that is ε-close to the identity, i.e. ϕ = exp ◦Φε for
some linearised flow Φt acting on νL. (By compactness the global convexity
radius of M is positive and we can in fact choose L so close to p(x) that a
small convex ball around L ∩ C meets all chambers in res(p(x)). Since the
images of chambers are locally uniquely determined by the images of small
open sets this allows us to define the action of ϕ on the entire residue.)
For any such ϕ the gallery ϕΓ links a chamber in V to a chamber ε-close to
D and conversely any such chamber of the latter kind can be reached by a
gallery ϕΓ by applying the above argument to a neighbourhood of D. Since
the normal holonomy groups, the infinitesimal isotropies and the projection
p preserve types each gallery ϕΓ lies entirely in the cotype-i-residue of ϕp(x).
We can now lift these galleries via p. The endpoints of the lifted galleries
constitute neighbourhoods of C̃ and D̃ respectively which are in one-one
correspondence via them. As πi is constant along these galleries we obtain
that for every D̃′ in the neighbourhood of D̃ there exists a C̃ ′ close to C̃
such that πi(D̃′) = πi(C̃

′), i.e. D̃′ ∈ π−1
i (πi(U)) which proves the claim. �

Thus Vert(C̃) is a Hausdorff topological space. Since every chamber is
uniquely determined by its vertices in the simplicial complex S̃ this in turn
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induces a topology on the set of chambers, called the thick topology on C̃.
Notice now that the product of maps πi1 × · · · × πil is continuous and thus
the image of C̃i1,...,il in Vi1 × · · · × Vil is closed, i.e. C̃ with the chamber and
thick topologies is a topological building and by Proposition 3.17 compact,
metrizable and separable. We thus obtain:

Theorem 3.19. Let C̃ be the building covering the chamber complex as-
sociated to a linearisable polar foliation F of codimension at least three (i.e.
C̃ has rank at least four) on a positively curved, simply connected, compact
manifold M , and assume its Coxeter diagram has no isolated nodes. Then
it is the building at infinity of a product of irreducible symmetric spaces of
noncompact type of rank at least two. The topological automorphism group
Auttop(C̃) of C̃ is a real noncompact semisimple Lie group with finitely many
connected components and its identity component is isomorphic to the iden-
tity component of the isometry group of the product of symmetric spaces.

Proof. All that we need to note is that by Theorem 1.2 in [GKMW]
C̃ is the building at infinity of the claimed product of symmetric spaces
with a totally disconnected building. However, the residues of C̃ are all
connected as we have seen, our building is locally connected and thus the
totally disconnected factor must be trivial. The Main Theorem from [BSp]
implies the statements about Auttop(C̃). �

Proposition 3.20. The deck transformation group π of the covering
p : C̃ → C, i.e. the group of all lifts of the identity, equipped with the compact
open topology, is a compact subgroup of Auttop(C̃).

Proof. The α ∈ π are combinatorial automorphisms of C̃, i.e. chamber
structure preserving bijections. As α−1 is again an element of π for every
α, we only need to show that they are open. With a fixed chamber C̃0

chosen consider an elementary open set Bε,k(C̃) for some chamber C̃. The
elements of Bε,k(C̃) are the final chambers of galleries of length no more than
k, starting at C̃0, such that their projections under p : C̃ → C lie at Hausdorff
distance less than ε to the projection of a gallery from C̃0 to C̃. The images
of all these galleries under α ∈ π project by definition of π to the very same
galleries in C. It follows that α(Bε,k(C̃)) is the set of all chambers that can
be reached by galleries of length at most k starting at αC̃0 whose projections
are no further away than ε from those of galleries linking αC̃0 to αC̃, i.e. it
is an elementary open set in the chamber topology with respect to αC̃0. As
by Lemma 3.16 the chamber topology is independent of the choice of base
chamber, this implies that the image is open. Since the thick topology is
induced by the chamber topology the α ∈ π are homeomorphisms and thus
π is a subgroup of Auttop(C̃).
Consider then a sequence (αn) in π converging to some α ∈ Auttop(C̃) in the
compact open topology. It follows that αn(C̃) is a convergent sequence in C̃
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with limit α(C̃) for any chamber C̃. Since the sequence p(αn(C̃)) = p(C̃)

is constant it converges to p(α(C̃)) = p(C̃) which implies α ∈ π. As π acts
freely and has closed, hence compact, orbits it is itself compact. �

Theorem 3.21. A positively curved, simply connected, compact manifold
M with a linearisable polar foliation F of codimension at least three such
that the Coxeter diagram of its associated building has no isolated nodes is
homeomorphic to a compact rank one symmetric space with a polar foliation
orbit equivalent to that of M .

Proof. By Theorem 3.19 the simplicial complex S underlying the asso-
ciated building C̃ equipped with the thick and thin topologies is the sphere at
infinity of a noncompact symmetric space N . Furthermore the deck transfor-
mation group is a compact subgroup of the Lie group Auttop(C̃) and hence a
Lie group itself. Let π0 denote the identity component of π, which again acts
freely on S. If π is disconnected the covering S/π0 → S/π ∼= M would be
non-trivial which is impossible asM is simply connected. As π acts freely on
the sphere S it therefore follows from Theorem 8.5 in [Bd2] that π ∼= {1}, S1

or S3. As it is compact and connected π is contained in some maximal com-
pact subgroup K of the identity component G of Auttop(C̃). Let N denote
the symmetric space from Theorem 3.19. By Theorem 2.1 in Chapter VI
of [He] K must fix a point n in N . The unit tangent sphere at n can be
identified with the sphere at infinity of N , which is S, and the action of K
on the unit tangent sphere at n is topologically equivalent to the action of
K on S, which consists of combinatorial automorphisms and thus respects
the chamber structure. Similarly the linear action of π on the round sphere
S := T 1

n(N) is conjugate to the action of π on S via the projection to the
sphere at infinity. The action of K ⊃ π on the unit tangent sphere at n is
polar and hence so is the linear action of π on this round sphere S := T 1

n(N).
It follows that the fibres of π are equidistant and thus by a result of Grove
and Gromoll (Corollary 5.4 in [GG]) its action is congruent to a Hopf fibra-
tion, as π 6= S7 (the only case excluded in the result of Grove and Gromoll).
It follows that the quotient M ∼= S/π is homeomorphic to the rank one
symmetric space S/π. The orbit foliation induced by the polar action on S
contains the orbits of π, but not not necessarily normally. Hence it projects
to an in general inhomogeneous polar foliation on S/π whose chambers are
isomorphic to those of S and hence to those on M . As Proposition 2.21 thus
applies to S/π, too, this implies that the orbit spaces are isomorphic, too,
which completes the proof. �

Notice that we needed the foliation to be of codimension at least three for
the above theorem, as we only have information on the building structure of
proper residues of the chamber complex C(M,F) and the statement of the
theorem of Tits is trivial for connected chamber complexes of rank three,
which are their own and only residues of this rank. If we further exclude
isolated nodes of the Coxeter diagram from our consideration this yields that
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the diagrams of Coxeter complexes of rank 3 without isolated nodes must
be irreducible. By work of Münzner ([Mü1] and [Mü2]) in conjunction
with Alexandrino’s slice theorem (see [Al2]) the possible Coxeter groups
must be crystallographic, i.e. the dihedral groups formed by any two of their
generating reflections must be of orders 1, 2, 3, 4 or 6. There are according
to the classification of finite Coxeter groups (see [BG]) only two such groups
of rank 3, denoted by A3 and C3. Chamber complexes based on Coxeter
groups of type A3 have been shown to be naturally related to buildings by
work of Tits ([Ti1]) while residues of type C3 play the role of an obstruction
to being a building. Thus, even though our so far established methods break
down for the case of codimension 2 one might hope to at least obtain a result
if the associated Coxeter group is of type A3. This may be subject to future
considerations.



CHAPTER 4

The Point Leaf Case

In the previous chapter we assumed the polar foliation F to contain no
point leaves in order to ensure that the chambers of C(M,F) are simplices.
We shall now investigate the contrary case. Throughout this chapter we
will assume that one (and hence any) section is constantly curved. As by
equidistance all leaves are traced in distance spheres around a point leaf this
assumption will allow us to recover information on the geometry (or topology
in the case of projective sections) of M from its foliation.
In light of Remark 2.39 the work by Mendes in [Me] and the recent general-
isations of some of its prerequisite considerations to the inhomogeneous case
in [MR] may indicate that this is in fact no additional restriction onM . We
call a map between manifolds equipped with (singular) foliations equifoliate
if the image of a leaf is the leaf of any image of a point in that leaf.

Theorem 4.1. Let M be a compact, positively curved, simply connected
manifold with a polar foliation F of codimension at least two. If the set of
point leaves is non-empty and there exists a spherical section with constant
curvature, then M is equifoliately diffeomorphic to a round sphere.

Proof. Let Σ be a spherical section with constant curvature and polar
group W . Then consider the fixed point sphere S := ΣW and its dual
sphere T at the maximal distance d in Σ. Then Σ decomposes as a spherical
join S ∗ T and the underlying manifold M = ΦΣ as Φ(S ∗ T ) = S ∗ ΦT ,
where Φ is the pseudogroup generated by all the flows φXt of the vector fields
X ∈ ΞF , since the orbits under Φ are perpendicular to the joining transverse
geodesics and we have used that by Proposition 3.7 S consists of point leaves.
In particular ΦT is the submanifold at maximal distance from S in M , since
Φ leaves transverse distances invariant, the sections are totally geodesic and
S lives in every section. From the proof of Proposition 3.7 it also follows
that all sections must be spheres and we can hence sensibly refer to W as
the polar group of the foliation (up to isomorphism).
Consider, for an arbitrary fixed p ∈ S, the map ψ : ν1

pS → ΦT ; v 7→ expp(dv).
We wish to see that ψ is an equifoliate diffeomorphism w.r.t. the linearised
foliation on ν1

pS and the restriction of F to the Φ-invariant submanifold ΦT .
Let q be the antipodal point of p in S. Then {p, q} ∗ΦT is a polarly foliated
manifold with section {p, q} ∗ T , the same polar group W and two isolated
fixed points p, q. Hence the unit tangent sphere U of any of the two fixed
points is diffeomorphic to ΦT via the map v 7→ expp(dv) and by Remark

36
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2.16 this map is equifoliate.
But the unit tangent sphere U is just the unit normal sphere to S at (w.l.o.g.)
p, i.e. ν1

pS. Since, as stated before, the joining transverse geodesics are
orthogonal to the leaves, we obtain an equifoliate diffeomorphism IdS ∗ ψ :
Sn = S ∗ U → S ∗ ΦT = M ; [p, q, t] 7→ [p, ψ(q), 2d/π · t]. �

Consider now a projective section Σ with constant curvature. By as-
sumption we have Σ ∼= RPn and there is a polar group W acting on it,
generated by reflections. From our considerations in Chapter 2 we know:
The group W lifts to a Coxeter group W acting on the universal cover
Σ̃ ∼= Sn. Furthermore Fix(W ) is discrete and consists of the vertices of the
cell complex C(Σ), containing itself the set of point leaves of the foliation F .
We let a denote the deck transformation of the universal cover of Σ.
Under our assumption there is a point leaf {p} of F . Then p is a vertex of
the cell complex on Σ and by constant positive curvature any (closed) cell
C containing p contains a codimension one face opposite p. This in turn is
contained in a mirror Λ which is the cut locus of p in Σ and whose reflection
rΛ fixes p.
Set B = ΦΛ, the union of leaves of F intersecting Λ. Since {p} is a point
leaf the distance between p and points of B is always realised by transverse
geodesics. As the flows in Φ leave transverse distance invariant B is at con-
stant maximal distance l from p in M . Hence M decomposes as the n-disc
expp(Dl(p)) attached to B via the attaching map expp |Sl(p) → B.

Proposition 4.2. With the above assumptions M is Blaschke at p, i.e.
the set of tangents of geodesics running from p to any point in Cut(p) form
a great sphere in the tangent space of that point.

Proof. By Thm. 5.43 in [Be] we know that being Blaschke at p is
equivalent to the tangential cut locus cut(p) being spherical. In order to
prove the latter we will show that in fact the submanifold B is the cut locus
of p and hence that the component of minimal radius of its preimage under
the exponential map, Sl(p), is the tangential cut locus.
To that end consider a geodesic γ starting at p. As p is a point leaf any
geodesic starting at p is a transverse geodesic, which hence lies within a
section. By the corollary above we know that all sections are constantly
curved and hence that the cut point on γ occurs precisely at time l. However,
any point at distance l from p lies in B by its construction and the proof is
complete. �

In fact, as B is a submanifold d expp has constant rank along Sl(p) ⊂
TpM and Sl(p) is compact. Hence by Ehresmann’s Lemma expp restricted
to Sl(p) is a (locally trivial) fibration. By work of Browder (cf. [Bw], Thm.
5.1) the fibres are homotopically equivalent to 1-, 3- or 7-spheres. By the
proposition above M is Blaschke at p. Hence we know that the tangents to
geodesics running from p to any point q in B = Cut(p) form a (great) sphere
in T 1

qM . The image of this sphere under the time-l (or time-(–l)) map of



38 4. THE POINT LEAF CASE

the geodesic flow is (up to homothety) the fibre above q and hence this fibre
is diffeomorphic to a sphere itself. We have thus proven the following

Proposition 4.3. Let M be a compact, simply connected, positively
curved manifold with a polar foliation. If there is a point leaf and a pro-
jective section of constant curvature then the tangential cut locus cut(p) is
the (appropriately scaled) tangential sphere at p, the cut locus Cut(p) is a
submanifold of M and cut(p) fibres over Cut(p) via the exponential map with
fibres diffeomorphic to 1-, 3- or 7-spheres.

We wish to study this fibre bundle further in order to obtain information
about the cohomology of M . We start with a remark on the fundamental
group of the base.

Remark 4.4. The manifold M decomposes as the union of an open
ball around the point leaf and a tubular neighbourhood around the base
B = Cut(p). Their intersection is homeomorphic via expp to a thickening
of S1

pM by an open interval and thus homotopy equivalent to it. The ball
D(p) is homotopically trivial and π1(S1

pM) is nonzero only when dimM = 2,
but then the foliation is trivial and M is its own simply connected section,
i.e. a 2-sphere, a case covered by Theorem 4.1. We can hence assume that
dimM ≥ 3 and thus that the intersection of the two open sets has trivial
fundamental group. With the Theorem of Seifert-van Kampen it then follows
that π1(B) = π1(M) = {0}.

Theorem 4.5. A simply connected, compact, positively curved riemann-
ian manifold M , equipped with a polar foliation of codimension at least two
admitting a projective section of constant curvature, has the cohomology of
a projective space if there is a point leaf. More precisely: If the fibres are 1-
spheres, then M is a 2m-dimensional manifold with the cohomology of CPn,
if the fibres are 3-spheres then M is a 4m-dimensional manifold with the co-
homology of HPn, and if the fibres are 7-spheres then M is a 16-dimensional
manifold with the cohomology of the Cayley plane OP 2.

Remark 4.6. Since differentiable manifolds are triangulable (cf. [Mk],
Ch. II) they in particular carry a CW-structure. By Satz 2.13 in [Ma]
cellular and singular homology coincide and by Poincaré duality we can thus
study the cohomology ring via the cellular decomposition, which we shall do
in the subsequent proof.

Proof. Recall that by p we denoted the point leaf whose cut locus is
B. Since B is simply connected the bundle Sk−1 ↪→ SpM � B is orientable
(see [Ha], p. 442) and we can apply the Gysin sequence to it (see [Bd1],
Theorem 13.2):

· · · → H l+k−1(SpM)→ H l(B)→ H l+k(B)→ H l+k(SpM)→ · · · .
For l 6= n−k, n−k−1 the spherical cohomology groups vanish on both sides
of the above part of the sequence and we obtain the short exact sequence

0→ H l(B)→ H l+k(B)→ 0,
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i.e. H l(B) ∼= H l+k(B).
AsB is compact and simply connected, hence orientable, we haveHn−k(B) ∼=
Z and H l(B) = 0 for l ≥ n−k+1. Simple connectedness furthermore implies
H1(B) = 0 and thus by Poincaré duality Hn−k−1(B) = 0. We conclude:

H l(B) =

{
Z, if 0 ≤ l ≤ n− k is divisible by k
0, otherwise.

SinceM is obtained from B by attaching an n-cell centred at p via expp, the
cohomology of M coincides with that of B up to dimension n − k, there is
no cohomology in dimensions n− k+ 1, ..., n− 1 and hence just a free cyclic
group in dimension n, yielding

H l(M) =

{
Z, if 0 ≤ l ≤ n is divisible by k
0, otherwise.

From the Gysin sequence we obtain that the isomorphismH l(M)→ H l+k(M)
for l = 0, ..., n− 2k is given by the cup product with the Euler class χ of the
sphere-bundle over B. Hence H l(M) is generated by χl for l = 0, ..., n − k,
which gives us the ring structure up to that dimension. In order to determine
the full ring structure it thus remains to find the generator of Hn(M). To
that end consider a point q ∈ B and the set F := {expp(tv)|v ∈ exp−1

p (q), t ∈
[0, 1]}. The only possible non-manifold points of this are p and q. Since by
Proposition 4.2 above the differential image of the fibre in the normal bundle
to B is a great sphere, F is smooth at q and for the same reason the fibre
is invariant under −IdSpM , so F is smooth at p, too. Geometrically F is
the suspension of an exponential image of the fibre sphere by the embedded
S0 = {p, q} or the mapping cone of expp restricted to the fibre. It intersects
B in q and in q only. We will employ the geometric interpretation of the cup
product: The cup product of the Poincaré duals of the fundamental classes
of two (transversal) submanifolds is the Poincaré dual of the fundamental
class of their intersection. (We will denote the Poincaré dual by an asterisk.)
Furthermore the fundamental class of a point generates H0(M) and hence
its dual ω generates Hn(M). As F is a k-dimensional manifold the dual of
its fundamental class is an element of Hn−k(M) and thus a multiple of χm−1

where km = n. The dual of [B] is simply χ itself by definition (see [Bd1],
p. 390). Hence we have that

ω = [{q}]∗ = [B ∩ F ]∗ = [B]∗ ^ [F ]∗ = χ ^ rχm−1 = rχm,

for some r ∈ Z which must be nonzero as rχm is the generator of Hn(M).
It follows that the cup product Hk(M) × Hn−k(M) → Hn(M) is non-
degenerate and thus χm = χ ^ χm−1 ∈ Hn(M). This, however, implies
r = ±1, as otherwise ω could not generate χm over Z. Since F is con-
structed via expp, which is the attaching map in obtaining M from B and
an n-ball, the intersection of F and B is positively oriented which finally
yields r = 1 and thus H∗(M) = Z[χ]/χm+1 as asserted.
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It remains to be shown that in the case k = 7 the dimension of M must be
16. Assume that M has the cohomology ring Z[χ]/χm+1 with deg(χ) = 8
and m ≥ 3. We can thus consider the 24-skeleton M24 of M . By Satz 2.10
(first equality below) and Satz 2.13 (second equality below) in [Ma] we have
for 0 ≤ l ≤ 24 that

H l(M24) ∼= H l(M8m) ∼= H l(M).

Furthermore by Satz 2.12 ibidem H l(M24) = 0 for l > 24 and up to that
dimension the ring structure carries over by the isomorphisms sending gen-
erator to generators. Hence M24 has the cohomology ring Z[χ]/χ4 with
deg(χ) = 8. The Ext functor in the universal coefficient theorem for coho-
mology (Corollary 7.2 in [Bd1]) vanishes if we pass from integral to mod-2
cohomology and the short exact sequence from the universal coefficient the-
orem yields a simple isomorphism between the cohomologies that carries
over the ring structure. Therefore M24 also has the mod-2 cohomology ring
Z2[χ]/χ4 with deg(χ) = 8, but that cohomology ring does not exist accord-
ing to Theorem 6.3 in Appendix B in [Hu], a contradiction. Hence m is at
most 2. It is also at least 2 since B is non-trivial. Thus the claim follows,
which completes the proof. �

Notice that the reflection groupW can have fixed points not arising from
point leaves of the foliation. In fact, consider the following

Example 4.7. Consider the standard action of U(1) × U(1) × U(2) on
C4 = C×C×C2. The principal orbits are embedded copies of S1×S1×S3

and the action is polar with sections embedded copies of R3 = R × R × R,
each R-component a radial line in the Ck-factors, k = 1, 2. This action
is equivalent (by homothety) to its restriction to S7 = S(C4) with sections
copies of S2 and the same principal orbits. The polar group of a given section
is of type A1 × A1 × A1. The Hopf action on S7 is contained in the acting
group as the diagonal subgroup {(eiφ, eiφ, diag(eiφ, eiφ)) |φ ∈ [0, 2π]}.
Hence the action projects to an action on CP 3, inducing an orbit foliation,
which has as principal leaves embedded copies of S1 × S3, is polar with
section RP 2 and a reflection group generated by two commuting reflections
(which in this case coincidentally is a Coxeter group itself). The action
of this reflection group has three fixed points which are the vertices of the
chamber, a right angled triangle. The group action itself has two fixed points
on CP 3 originating from the two C-components of the action above. The
singular leaf of the third fixed point of the reflection group consists of points
of the form (0 : 0 : z : w) which form a projective line CP 1 = S2 ⊂ CPn.

The following lemma relates isolated nodes of the Coxeter diagram to
fixed points of the reflection group.

Lemma 4.8. The fixed points of the action of a reflection group W on
a real projective k-space Σ correspond exactly to the isolated nodes in the
Coxeter diagram of the lifted group W acting on the covering sphere Σ̃.
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Proof. First, let r ∈ W represent an isolated node of the Coxeter di-
agram, i.e. r commutes with all other reflections. Its mirror Λ separates
Σ̃ into two convex halves, each with a unique point at maximal distance
from the mirror, that must hence be interchanged by r and a. For any
other reflection s and p, ap the two points at maximal distance we then get
s{p, ap} = s r{p, ap} = r s{p, ap}. Since the deck transformation commutes
with all reflections this implies that s(p), as(p) are two antipodal points in-
terchanged by r and by uniqueness s must leave {p, ap} invariant. Hence
p = π(p) is the isolated fixed point of the reflection r below r which is left
fixed by all other reflections as their lifts leave the antipodal orbit above
invariant.

Now consider the converse: Let p be a fixed point of W . Let Λ, r be the
mirror and reflection corresponding to the antipodal orbit {p, ap} above p.
We wish to show that any given mirror Λ′ which is distinct from Λ meets the
latter orthogonally, i.e. that they meet and their normals at any intersection
point enclose an angle of π/2.
That they meet follows from Theorem 1 in [Fr] since the mirrors are compact
totally geodesic hypersurfaces. For the second part note that each reflection
acts on the normal space at any fixed point (and trivially on the respec-
tive tangential space) by its differential. Hence, at any intersection point
q ∈ Λ ∩ Λ′ the differentials of the two corresponding reflections r, r′ form a
dihedral group acting on νq(Λ ∩ Λ′) = νqΛ ⊕ νqΛ′, where the sum is direct
because the normal spaces are each one dimensional and uniquely determine
their distinct corresponding mirrors. This dihedral group is a linear repre-
sentation of and hence isomorphic to the dihedral group formed by the two
reflections themselves and is hence independent of the particular intersection
point. However, this order also directly corresponds to the angle between
the two normals, which span the normal space of the intersection. Hence, if
Λ,Λ′ are orthogonal to each other at one intersection point they are so at
all. Now choose a geodesic γ from p to Λ ∩ Λ′ within Λ′. Since the latter is
totally geodesic this is also a geodesic in the ambient space. By the second
variational formula γ meets Λ ∩ Λ′ orthogonally in its endpoint q. Thus we
obtain for its derivative n at q that n ∈ νqΛ⊕νqΛ′. Additionally n ∈ TqΛ′ by
construction of γ, so the νqΛ′-component of n must vanish. It follows that
n ∈ νqΛ and thus that n is a non-zero multiple of the unit normal to Λ at q
since the normal space is one-dimensional, which completes the proof. �

In light of this and the fact that the prerequisites of the theorem proved
in Chapter 3, which exclude isolated nodes in the Coxeter diagram of the
associated building, there is a "remaining" case when there are no point
leaves but the Coxeter diagram of the lifted reflection group has isolated
nodes. It may be subject to future investigations what can be said about
the non-trivial singular submanifolds represented by the such isolated nodes.
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