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ABSTRACT 

 

Railway track is an important part of the transportation infrastructure of a country and 

playing a significant role in sustaining a healthy economic. It provides a quick and 

safe public and freight transportation system. Rail track needs to be maintained to 

make sure it is in a good condition in order to provide an optimum performance. 

Unfortunately, in railway system most attention has been given to the track 

superstructure that serves the railway, and less attention has been given to substructure 

that supports the foundation of the track. The most important requirement in railway 

system is that, the track geometry must be maintained during operation. Poor track 

geometry can lead to settlement of the track that caused by the degradation of the 

ballast i.e. ballast breakage. Many researchers have done investigations to understand 

how the track structure components work and the inclusion of geogrid in ballast layer 

to reduce the settlement. The present study recreates the composite foundation in a 

lab-scale static test with geogrid placed at various heights in the ballast layer. The steel 

model box measured 180 mm x 180 mm x 180 mm. There was no apparent yielding 

of the ballast layer, with or without geogrid inclusion, indicative of a strain-hardening 

behaviour of the material under load. The inclusion of the geogrid in the simulated 

ballast layer show a significant effect on the resulting reduced settlement. This can be 

shown for sample Dg = 50 mm that had experience less settlement than the other. A 

graphical analytical method was next adopted to identify the Ballast Breakage Index 

(Bg) in relation to the overall settlement reduction. Overall particle breakage was not 

found to be expediently mitigated by geogrid installation in the ballast layer. The 

settlement reduction though was very much attributed to lateral spread control by the 

geogrid reinforcement. The geogrid deformation shows a significant with the stress 

that been applied to the sample. Surface tear is the highest deformation for the geogrid. 

This is because when the stress applied, ballast in the sample being pushed through 

the aperture instead of interlocking with the geogrid. 
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ABSTRAK 

  

Landasan kereta api adalah satu bahagian penting dalam infrastruktur pengangkutan 

negara dan memainkan peranan penting dalam mengekalkan ekonomi. Ia 

menyediakan pengangkutan awam yang cepat dan selamat. Untuk memberikan 

prestasi yang optimum landasan keretapi perlu berada dalam keadaan yang baik. 

Malangnya, dalam sistem kereta api perhatian yang lebih diberikan kepada struktur 

trek yang berkhidmat untuk kereta api dan kurang perhatian diberikan kepada 

substruktur yang menyokong asas trek. Bahan yang paling penting di landasan 

keretapi adalah lapisan balast yang menyokong struktur trek dan memindahkan beban 

kepada subgred. Keadaan geometri trak yang tidak baik disebabkan oleh kemerosotan 

balast. Ramai penyelidik telah melakukan siasatan untuk memahami bagaimana 

komponen struktur trek dan kemasukan geogrid dalam lapisan balast untuk 

mengurangkan kemerosotan trak geometri. Kajian ini mencipta asas komposit dalam 

ujian statik berskala makmal dengan geogrid diletakkan di pelbagai tahap dalam 

lapisan balast. Kotak model keluli diukur 180 mm x 180 mm x 180 mm. Tiada berhasil 

jelas lapisan balast, dengan atau tanpa kemasukan geogrid, menunjukkan tingkah laku 

pengerasan terikan bahan di bawah beban. Kemasukan geogrid di dalam lapisan balast 

simulasi menunjukkan kesan yang besar ke atas sampel yang menyebabkan penurunan 

sampel dapat dikurangkan. Ini boleh ditunjukkan dengan sampel Dg = 50 mm yang 

mempunyai pengalaman penurunan kurang daripada yang lain. Kaedah analisis grafik 

telah dipakai untuk mengenal pasti Indeks Pecah Balast (Bg) berhubung dengan 

pengurangan penyelesaian keseluruhan. Keseluruhan pecahnya zarah tidak didapati 

dikurangkan dengan pemasangan geogrid dalam lapisan balast. Pengurangan 

penurunan banyak dikaitkan dengan kawalan penyebaran sisi oleh tetulang geogrid 

itu. Ubah geogrid menunjukkan yang signifikan dengan tekanan yang telah digunakan 

untuk sampel. Kerosakan permukaan adalah ubah bentuk permukaan yang paling 

tinggi untuk geogrid itu. Ini adalah kerana apabila tekanan yang dikenakan ke atas 

sampel menyebabkan balast dalam sampel ditolak melalui bukaan geogrid.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1.1 Background of study 

 

Railway track is an important part of the transportation infrastructure of a country 

and playing a significant role in sustaining a healthy economic. Many countries had 

planned and constructed the railway project, even though huge amounts of annual 

budget need to be spent. In United Kingdom for example, the annual budget for 

maintaining the track system can reach up to 5 billion pounds per year with 3 billion 

pounds committed to tracking renewal work (Ching, 2006).  

Wee (2004) noted that, in railway system the most attention has been given to 

the track superstructure and less attention to the substructure. This is ironic as 

substructure components often from the major part of the cost of track maintenance. 

According to Said, Xie & Liu (2012) the lack of attention given to the substructure 

can cause the difficulties in defining many variables of the substructure compared to 

those of the superstructure.  

The most important requirement of the railway track system is that, track 

geometry must be maintained during operation. Many superstructure defects, such as 

rail breaks, are directly or indirectly caused by poor track geometry. Settlement or 

uneven track deterioration is the main cause of poor track geometry. Ching (2006), 

also mentioned that, settlement is the main cause of poor track geometry and 

irregular track which is often highly depend on site condition i.e. type of subgrade, 

ballast etc.  

Ballast is the main contributor to track settlement compared to subballast and 

subgrade.  According to Anursudkij (2007), the conventional method to restore the 

settlement is tamping. However, tamping can destroy the ballast in addition to the 

damage from traffic loading. Due to traffic loading, the ballast will be subjected to 
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higher stress, which are sufficient to cause the ballast resulting in breakage. 

Ultimately, this leads to track settlement and uneven deterioration that leads to poor 

track geometry. 

Since the introduction of the Tensar geogrid in early 1980s, the application of 

reinforcing geogrid has been proved that, it can reduce the settlement in the ballast 

layer. However, less effort has been expended to understand the characteristic of 

grid/aggregate interaction and current practice involve geogrid reinforcement is still 

limited (Chen, 2013). Geogrid reinforcement that include in railway ballast has a 

potential to allow longer maintenance cycles that can lead to cost savings.  

Therefore, this research has been designed to determine the settlement 

reduction of stimulate ballast layer with inclusion of geogrid reinforcement at 

different depths. Deformation of the geogrid under load and ballast such as ballast 

breakage were also examined. Sieve analysis also was conducted to determine the 

ballast breakage. 

 

1.2 Problem statement 

 

The ballast layer is an important part in transmitting and distributing the wheel load 

from sleepers to subballast and subgrade at an acceptable stress level (Selig and 

Waters 1994). Because of its good mechanical properties that can bear the load from 

the track and train, ballast need to be maintained during operation to make sure the 

track is in good condition. Ballast normally composed of strong, medium to coarse 

granular sized particles from 10 to 63 mm that have a high load bearing capacity 

with a large of pore space and a permeable to assist structure in rapid drainage 

(Indraratna and Salim, 2005).  

During operation, ballast deteriorates due to breakage of sharp edges, 

repeated grinding, wearing aggregates, and crushing of weak particles under heavy 

cyclic loading may cause the track settlement and unevenness of the surface. As a 

result, adopting innovative and effective methods to improve the serviceability and 

effectiveness of the track was the inclusion of geogrid in ballast layer. According to 

Chen (2013), the development of geogrid in railway ballast is still limited to 

experience gathered on the site based on ad hoc work. Ching (2006) stated that, the 
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use of geogrid reinforcement in rail track layer ballast has the potential to reduce rate 

of ballast deformation.  

Thus, in this study, the potential of geogrid in reducing settlement was being 

investigated. In order to investigate, a compression test was conducted to determine 

the effectiveness of the geogrid in simulated ballast layer. Besides, the particle 

breakage was also being investigated to identify the degradation of the ballast. 

 

1.3 Research objectives 

 

The objectives of this study are: 

(i) To determine the settlement of a simulated track ballast layer with geogrid 

reinforcement. 

(ii) To determine the ballast degradation i.e. ballast breakage after the 

compression test. 

(iii) To identify the deformation and damage of geogrid reinforcement in a 

simulated track ballast layer.  

 

1.4 Research scope 

 

The scopes of this study are as below: 

(i) A compression test was being conducted by using a standard compression 

test to quantify the settlement, ballast breakage and deformation of the 

geogrid. 

(ii) The test was being conducted in two condition i.e. dry and wet. 

(iii) The tensile strengths of the geogrid used in this study were provided by the 

company and laid at 3 different depths from surface, i.e. 50 mm, 90 mm, and 

130 mm. 

(iv) The mould used in this study was a steel mould with the dimension of 200 

mm x 200 mm x 200 mm and a weight of 21 kg. 

(v) Sieve analysis was conducted to determine the degradation of ballast after the 

compression test. 
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1.5 Significance of research 

 

Ballast is one of the important parts of railway track that need to be maintained all 

the time. Ballast under repeated traffic loading will cause deterioration of the track 

and poor geometry. Therefore, this research can identify the benefit of using geogrid 

reinforcement. It can also determine the effectiveness of geogrid to reduce the 

settlement rate and make the ballast cycle life longer. 



 

 

 

 

CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

2.1 Introduction 

 

Rail track form the largest worldwide network need to provide quick and safe public 

and freight transportation. To achieve optimum performance of the rail tracks, it is 

important to understand how the track structure components work. The structure can 

be divide into superstructure (rail, fastening system and sleeper or tie) and substructure 

(ballast, sub ballast and subgrade). Figure 2.1 shows the cross sectional view of rail 

track. 

 

 

Figure 2.1: Cross sectional view of a rail track (Ching, 2006) 
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According to Indraratna (2006), ballast is the largest component in the rail 

track substructure. It is the most important part in rail track as it is functioning to 

support the rail and sleepers so that it can give the optimum performance. In that case, 

the material of ballast should have a good properties to ensure the track always in a 

good condition.  

However, ballast will deform and degrades under rapidly cyclic loading from 

train and caused the settlement of the track.  Figure 2.2 shows a typical profile of the 

relative contributions of substructure components to track settlement based on a good 

subgrade foundation. From the figures it shows that, the most contribution to track 

settlement is ballast compared with subballast and subgrade. 

 

 

Figure 2.2: Substructure contributions to settlement (Aursudkij, 2007) 

  

2.2 Railway track 

 

The role of a modern railway is to provide economical and relatively speedy 

transportation. To achieve this, the railway track structure has to provide a safe and 

stable platform under stringent vertical and horizontal alignment constraints. It is 

therefore important to identify the specific roles that each different component plays 

and how they combine and perform as an entity. In the recent 200 years, the railway 
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tracks have become more advanced. According to Said (2012), several aspects of the 

modern railway track included: 

i. Safety and accuracy 

ii. Increasing the load capacity 

iii. Avoiding physical degradation to get the system more stable. 

Esvald (2001) state that, the track must be constructed in such a way that trains 

running on it do not cause excessive environmental pollution in the form of noise and 

vibration. While the cost of the total service life and maintenance of the track must be 

as low as possible. Track are assets which will last for some years so that it is important 

to choose the suitable track system that can be used for 20 – 50 years.  

 

2.2.1  Rail track component 

 

In the previous study by Ching (2006), ballasted rail track is divided by 2 main 

divisions of components: the superstructure and the substructure. The superstructure 

component include the rails, fastening system and the sleepers while the substructure 

covers the ballast, the sub-ballast and the subgrade.  

The main purpose of the rails is to guide train wheels. The rails are part of the 

track component that comes into direct contact with the train. Rail pads must have 

sufficient stiffness to transfer the wheel loads onto the sleepers with minimum 

deflection between sleeper supports. Therefore, the material of the rails should be 

strength, fatigue endurance, wear and resistance in corrosion (Bonnett, 2005). If there 

is defect detected in the profile or an entity, it can caused large dynamic loads which 

can compromise the track substructure. 

The fastening system function as a means to retain the rails against the sleepers. 

The general functions of the fastenings are to absorb rail loads elastically and transfer 

them to the sleeper. Besides that, it also must be able to help the rails resist any vertical, 

lateral, longitudinal and overturning movements (Wee, 2004). It also can help to damp 

traffic vibrations, prevent or reduce rail or sleeper attrition as well as providing 

electrical insulation for track signals 

Sleepers is a part of structure that act to receive the rail loads and distribute 

them over the ballast. The sleepers also act as a restraint against any lateral, 

longitudinal and vertical rail movement through anchorage of the superstructure into 
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the ballast (Bonnett, 2005). The sleeper must also be resistant to mechanical wear and 

weathering. The two most common types of sleepers are wood and concrete sleepers. 

Ballast is the crushed granular material which is placed in the top layer of the 

substructure. It is used to support and confine the sleepers, and to minimize any 

vertical and lateral movement transferred to the sleepers. Ballast material also reduces 

sleeper pressures and distributes it to the underlying materials, e.g. sub-ballast and 

subgrade. 

Sub-ballast sits between the ballast and the subgrade material and is often 

referred to as the blanket layer. The role of these structures is very similar to the ballast. 

The function of the sub-ballast is to reduce the traffic induced stress and distribute it 

to the subgrade. Sub-ballast also allows should have a good drainage of water and 

prevent mixing of the subgrade and ballast.  

According to Bhanitiz (2007), subgrade provides the platform on which the 

track is constructed. Usually, the main function of the subgrade is to provide a stable 

foundation for the track substructure. The lack of such quality is often the cause of 

many track defects. 

 

2.3 Track settlement 

 

According to Dahlberg (2003), when track is loaded by the passing train, the track will 

superimpose to that and high-frequency load variations of the ballast and sub ground 

may undergo a non-elastic deformations. When unloaded, the track will not return 

exactly to its original position, but to a position very close to the original one. After 

the track experienced thousands of train passages, all these small non-elastic 

deformation will increase that contribute into deformation of the track. This 

phenomenon is called differential track settlement. The track alignment and the track 

level will change with time depend on the sub ground condition.  

The settlement of the track is a result of permanent deformation in the ballast and 

the underlying soil. It caused by the repeated traffic loading and it also depends on the 

quality and behaviour of ballast, sub ballast and subgrade. The track settlement occurs 

in two major phases that are: 
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i. First phase 

a. Directly after tamping, when the track position has been adjusted to a 

straight level, the settlement become more fast until the gaps between 

the ballast particles reduced and the ballast is consolidated 

b. Settlement with time is an approximate linear relationship. 

ii. Second phase – caused by several basic mechanisms of ballast and subgrade 

behaviour: 

a. Continued from the first phase, densification of the ballast and sub 

ground that caused by particle rearrangement produced by repeated 

train operation. 

b. Subballast or subgrade penetration into the ballast voids. This causes 

the ballast to sink and the track level will change. 

c. Volume reduction by particle breakdown from train loading or 

environmental factors. For example the ballast particles may divided 

into two or more due to loading. 

d. Volume reduction caused by abrasive wear such as originally corned 

stones becomes rounded thus it make less space. 

e. Inelastic recovery on unloading. This means that all deformation will 

not be recovery upon loading the track 

f. Movement of ballast and subgrade particles away from under sleepers 

that can caused the sleeper to sink into the ballast layer and subgrade. 

 

The train also may have opposite effect that caused by particle rearrangement 

due to repeated train loading. The train will lift the trail and sleepers in front and 

behind the loading point due to the elastic foundation. Dynamic high frequency train 

track interaction forces can caused a waves that normally propagate from the wheel-

rail contact patches either through the ballast and subgrade or through the track 

structure. These waves normally propagate faster than the train and give vibrations in 

the unloaded ballast. Thus it may cause the rearrangement of the ballast particles so 

that the density decreases. 
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2.4 Ballast 

 

Ballast is a layer that consisted of broken stoned, gravel or any other granular material 

placed and packed below the sleepers from distributing load from sleepers to the 

formation. Anderson (1999) state that, ballast is the crushed granular material which 

is placed in the top layer of the substructure and it is packed between, below, and 

around the ties. It is used to bear the load from the railroad ties, to facilitate drainage 

of water, and also to keep down vegetation that might interfere with the track structure.  

These coarse grained materials are used to support and confine the sleepers, 

and to minimize any vertical and lateral movement transferred to the sleepers, and 

hence retain track position. The ballast material also reduces sleeper pressures and 

distributes it to the underlying materials, e.g. sub-ballast and subgrade. Ballast also 

provides a certain amount of resilience as well as energy absorption for the rail track.  

According to Indraratna et al. (2006), ballast is a free-draining granular 

material used as a load bearing material and it is composed of medium to coarse gravel 

sized aggregates (10-60 mm). The optimum thickness of the ballast is usually 250-300 

mm from the subgrade. The ballast should be clean and graded crushed with hard, 

dense, angular particle and cubical fragments to provide proper drainage and 

interlocking qualities. 

 

2.4.1 Ballast material 

 

In Gehringer and Read (2012) study, state that there are differences in the mineral 

composition of the various aggregate materials used for ballast applications and the 

respective in track performance of those materials. It also many have variations exist 

in the mineral properties of aggregate materials within the same general name of the 

aggregates known as granites, trap rocks, quartzite, dolomites, and limestone. One 

particular aggregate material may possess most of the desirable characteristics for a 

good ballast material while a deposit of apparently similar material located in the same 

general geographical area will not meet the applicable specification requirements for 

ballast. 

A mixture of materials may be processed into railroad ballast. Table 2.1 shows list the 

of ballast material: 
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Table 2.1: Types of ballast material  

Material Definition 

Granite 

A plutonic rock having an even texture and consisting mainly of 

feldspar and quartz. Plutonic rock is rock formed at considerable 

depth by chemical modification. It is characteristically medium to 

course grained, or granite texture. 

Trap rock 

Any dark-coloured, fine grained non-granitic hypabyssal or 

extrusive rock.  Hypabyssal rock pertains to igneous intrusion or 

to the rock of that intrusion whose depth is intermediate between 

that of plutonic and the surface. 

Quartzite 

A metamorphic rock consisting mainly of quartz and formed by 

crystallization of sandstone or chert by either regional or thermal 

metamorphism. Quartzite may also be a very hard, but 

metamorphosed sandstone, consisting chiefly of quartz grains 

with secondary silica that the rock breaks across or through the 

grains rather than around them. 

Chert 
 Hard, dense cryptocrystalline sedimentary rock consisting 

dominantly of interlocking crystals of quartz. 

Carbonate 
Sedimentary rock consisting primarily of carbonate materials 

such as limestone and dolomite. 
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2.4.2 Ballast function 

 

The function of ballast have been well documented by many research (Chandra and 

Agarwal 2013, Indraratna et al 2011, Indraratna and Salim 2005) and it serves the 

following function in a railway track: 

i. It provide a level and hard bed for the sleepers to rest on. 

ii. It holed the sleepers in position during operation of trains. 

iii. It transfer and distributes the loading from the sleepers to a large area of the 

formation. 

iv. It provide the necessary resistance to the track for longitudinal and lateral 

stability. 

v. It provide effective drainage to the track. 

vi. It provide an effectiveness means maintaining the level and alignment of the 

track. 

vii. Absorb noise and provide sufficient electrical resistance. 

viii. Prevent weed growth. 

 

2.4.3 Ballast gradation 

 

Alemu (2011) research state that, a method set to categorize the different size of the 

aggregates is by use a series of graduated sieve and applying mechanical sieving by 

agitator on it according. Mechanical sieving is the method that been used for categories 

the aggregates sizes accordingly to the standard. The process that's been done in this 

method are washing, drying the particles and agitating the sieve series by mechanical 

shaker. Figure 2.3 shows the graphical definition and the gradation can be classified 

in aggregate mix as and: 

i. Well graded (dense or broad graded) 

ii. Uniformly graded (open) 

iii. Gap graded  
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Figure 2.3: Graphical definitions of grain size distribution (Selig, 1994) 

 

There is a major problem in using ballast in railroad as it can cause the 

degradation and permanent deformation to the track. However, ballast is the most 

important material in railroad track as its purpose is for drainage. But when the ballast 

experience a higher load in rapid time it will produce more fines and it is the main 

reason for ballast contamination.  

Naturally ballast that crushed, angular and rock material is good for ballast 

construction. Angular stones are better shape than rounded. Figure 2.4 shows the 

angular shape of aggregates that good material as ballast. This is because the angular 

shape has a better particle interlocking and resistance to dynamic loading in the 

transverse and longitudinal direction. However, when the particles that used in ballast 

is bigger than the maximum size, it will only make some of the particles beneath the 

tie or slipper which will distribute the loading insufficiently to the subgrade.  
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Figure 2.4: Angular shape of aggregates 

 

  When particles used bigger than the maximum size of the particle, there will 

be only some particles beneath the tie or slipper which will distribute the load 

insufficiently to the subgrade. But when there is too much smaller size particles used 

than the minimum, the void between the bigger sizes will be filled with these particles 

and caused the structure for further drainage problem. (Bonnett, 2005).  

In Bonnet (2005) further research state that, ballast particle degradation will 

cause either traffic or operation during maintenance. In these processes, the particle 

may experience from the loss of edge, become rounded that will minimize the 

interlocking of the particle and crush due to repeated loading. Rail joints, which most 

of the time gets an impact loading will cause ‘wet spots’, furthermore, it will give bad 

riding comfort and will be cause for rapid failure of the structure.  

Essentially there are two gradation curve shape factors used in unified soil 

classification systems (USCS), these are Cu (coefficient of uniformity which 

sometimes called coefficient of “non-uniformity”) and Cc (coefficient of curvature). 

These shape factors are defined as, 

 

         𝐶𝑢 =
𝐷60

𝐷10
     (2.1) 

        𝐶𝑐 =
(𝐷30)2

𝐷10𝐷60
                                     (2.2) 
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D10, D30 and D60 are particle diameters that are 10%, 30% are weight finer than 

each sieve size. According to USCS the value of Cu is for uniformly graded material. 

The material that used for ballast should have a value of Cu < 4and when it is not gap 

graded. On the other hand, when Cu > 4 and 1 < Cc <3, the gradation classification 

can be considered as well graded or broadly graded material (Das, 2010). According 

to Brecciaroli and Kolisoja (2006) research, state that the compacted well graded 

aggregates have a better tendency to resist under the repeating load test than uniformly 

graded aggregates. 

 

2.4.4  Ballast specifications 

 

Ballast particles used for rail track should have a good properties such as hardness, 

durable, have good angularity, chemical resistance and be free from dust. According 

to (Chandra and Agarwal, 2013) the ballast material should have the following 

properties: 

i. Tough and wear resistant. 

ii. Hard so that it does not get crushed under the moving loads. 

iii. Generally cubical with sharp edges. 

iv. Non-porous and should not absorb water. 

v. Resist both attrition and abrasion. 

vi. Durable and should not get pulverized or disintegrated under adverse weather 

conditions. 

vii. Good for drainage 

viii. Cheap and economical. 

 

Besides that, the ballast also need to fulfil certain specification especially on the 

size, shape, hardness, gradation, angularity, surface roughness, bulk density, strength, 

durability and resistance to weather (Kwan, 2006). To meet the requirement, railroad 

organisation had introduce several specification and standard for the ballast.  

Based on the past researchers, physical and chemical properties of ballast has been 

obtained which insures better overall performance of the track which requires 

minimum cost of maintenance. To get the ballast that has good yield performance are 

obtained by conducting series laboratory, field test and evaluating the performance of 

different material of ballast under existing condition under the track. 
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In this research, ballast specification and testing is referring BS EN 13450 (2012) 

to make sure the aggregates were able to stimulate the ballast layer. This specification 

required the uniformity of the ballast grading, where the sieve analysis is conducted. 

This specification comprises five properties process for ballast properties as the ballast 

track specification which are Sieve analysis, Los Angeles Abrasion (LAA), Aggregate 

Impact Value (AIV), Flakiness index and Elongation index. The particle size 

distribution for ballast is shown in Table 2.3  

 

Table 2.2: BS EN 13450 (2012)  
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The LAA test measures a material toughness or tendency to break. It also 

measures the particle resistance to fragmentation with provision of a Los Angeles 

Abrasion (LAA) coefficient. The LAA coefficient is the percentage of material 

passing through the 1.6mm sieve upon completion test. According to BS EN 13450 

(2013), the limits of LAA value is 20. High LAA value signifies a brittle material 

(Lim, 2004). 

 The AIV test can determine the aggregates properties that subjected to the 

mechanical degradation such as toughness and resistance to dynamic or impact 

loading. It can be test in either dry or soaked condition. The aggregate impact value 

that greater than 30% should be reported with caution as it can’t stand the dynamic or 

impact loading (Alemu, 2011). 

The flakiness index test is specified in BS EN13450 (2013). Definition of flaky 

particle is having one thickness which is the smallest dimension of less than 0.5 times 

the larger sieve size fraction. It is consist of two sieving operations which is, the first 

one involves using test sieves to separates ballast samples into various particle size of 

fraction and second is to sieve each size fraction using bar sieves. The bar sieves have 

parallel slots of width 0.5 times the larger sieve size. Flakiness index is expressed as 

the percentage by weight of ballast particles passing the bar sieve and shall not exceed 

30%.  

 

2.4.5 Ballast fouling  

 

The life and performance of the railway track is depend on the ballast layer. The ballast 

layer is subjected to deformation and degradation during traffic loading. Various 

sources of ballast fouling have been identified and in Selig and Water’s (1994), they 

have listed the 5 main sources of ballast fouling: 

i. Ballast Breakdown 

ii. Infiltration from ballast surface 

iii. Sleeper wear 

iv. Infiltration from underlying granular layers 

v. Subgrade infiltration 
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It has been widely agreed that ballast breakdown is the major source of ballast 

fouling. This is quantified in Figure 2.5 based on a study by the University of 

Massachusetts. The report from the University of Massachusetts is based on a variety 

of mainline track conditions across North America. 

 

 

Figure 2.5: Major source of ballast fouling (Selig and Waters, 1994) 

 

During transportation and construction work are the initial stage of ballast 

breakage. Selig and Waters (1994) expected 1 to 2% of the weight of fouling material 

to accumulate when new ballast is placed. Fouling materials are deemed as particles 

of less than 6mm diameter.  

Ionescu (2004), investigated the mechanical degradation of a rail track. He 

accounted that the volume of voids in a newly built track was around 45%. When the 

rail track settles under cyclic train loading, the ballast grains rearrange into a denser 

reducing the volume of voids. At this stage, ballast crushing at contact points of the 

coarser grains, resulting in loss of corners and sharp edges which will be collected as 

fines in the voids. This grain rearrangement will carry on with additional ballast 

crushing with further traffic loads. 
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2.4.6 Ballast degradation 

 

Indraratna, Shahin & Rujikiatkamjorn (2006) mentioned that, excessive cyclic loading 

and vibration, temperature and moisture fluctuation as well as impact load on ballast 

may cause ballast degradation. Since ballast particles are primary angular, most of the 

breakage is from the corner degradation and attrition. The particle degradation can 

occur in three ways (Raymond & Diyaljee, 1979): 

a. The angular projections breakage which influences the initial 

settlement 

b. The breakage of particles into equal parts, which influences the long 

term stability and safety of rail tracks 

c. The grinding off small scale asperities where the presence of fines can 

adversely affect the drainage conditions. 

 

2.4.7 Factors affecting ballast degradation 

 

According to Indraratna, Shahin & Rujikiatkamjorn (2006), the factors governing 

particle degradation are particle size distribution and effect of confining pressure. The 

gradation of ballast significantly controls ballasted track performance thus it should 

provide adequate shear strength and necessary porosity to allow proper run-off 

groundwater. Indraratna et al. (2003) conducted a large scale cyclic triaxial test to 

assess the effect of particle size distribution on deformation and degradation behaviour 

of ballast. The cyclic test results indicate that even a modest change in uniformity 

coefficient significantly affects the deformation and breakage behaviour of ballast. 

The test results suggest that a distribution similar to the moderate grading would give 

improved track performance. The gradation and void ratio characteristic of the test 

specimens are shown in Figure 2.6. 
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Figure 2.6: Particles size distribution used in cyclic triaxial test (Indraratna et al., 2003) 

 

 The confining pressure acting on ballast layer has not often been considered as 

a significant actor. This is because the confining pressure applied on tracks by the 

shoulder ballast and sleepers is small comparison with the relatively high vertical 

stress. . The role of confining pressure on ballast performance under cyclic loading 

has been investigated by Indraratna et al. (2004; 2005a) to evaluate whether there is 

an optimum confining pressure in the track to reduce the amount of ballast breakage.  

 

2.4.8 Ballast particle breakage 

 

Several researcher had investigate how to quantify the particle breakage upon loading. 

Some of them had proposed their own techniques for computation to quantify the 

particle breakage while others focused on the probability of particle fracture. 

Indraratna et al. (2011) had summarized the most widely usage breakage indicates 

comparison. 

 Marsal (1967), Lee & Farhoomad (1967) were the first who developed 

independent techniques and index for quantifying particle breakage. According to 

Marshal (1967), noticed a significant amount of particle breakage during the large 

scale triaxial on rock fill material and purposed an index of particle breakage, Bg. 

Marshal’s method involved the evaluation of change in overall grain-size distribution 
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of aggregates after breakage, where the specimens before and after each test were 

sieved. The difference in percentage retained on each size were computed. Marshal 

defined the breakage index Bg, as the sum of positive value of difference in percentage 

retained on each size. This method suggest that Bg, can used a different set of sieves.  

Lee & Farhoomad (1967) measured the particle breakage while investigating 

earth dam filter. They proposed a breakage indicator expressing the change in a single 

particle size (D15) which is the key parameter in filter design. Miura & O-hara (1979), 

noticed that the changes in grain size area can indicate as particle breakage. Their 

concept was based on the idea that new surfaces could be generated as the particle 

breakage. The sieving data before and after test along with specific area are used to 

calculate the change in surface area. While Hardin (1985), defined that two difference 

quantities as the breakage potential and total breakage based on change in size 

gradation and introduced the relative breakage index.  

After considering various method of particle breakage quantification, 

Indraratna et al. (2011) had introduced a new Ballast Breakage Index (BBI) for railway 

ballast to quantify the degradation. The evaluation of the BBI is the change in the 

particle size distribution before and after test. Figure 2.7 shows the BBI. By adopting 

a linear particle size axis, BBI can be determined from Equation 2.1. 

 

         

Figure 2.7: Ballast breakage index (Indraratna et al. 2011) 
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𝐵𝐵𝐼 =
𝐴

𝐴+𝐵
       (2.1) 

 

A = Initial particle size distribution 

B = Final particle size distribution 

 

2.5 Geogrid reinforcement 

 

Geogrid is defined as a polymeric (i.e., geosynthetic) material consisting of connected 

parallel sets of tensile ribs with apertures of sufficient size to allow strike-through of 

surrounding soil, stone, or other geotechnical material. Their primary functions are 

reinforcement and separation. Reinforcement refers to the mechanism(s) by which the 

engineering properties of the composite soil/aggregate are mechanically improved. 

Separation refers to the physical isolation of dissimilar materials (Das, 2011).  

Tensar (2009) mentioned that, geogrid have been successfully used for the 

reinforcement of railway track over the past decades. A geogrid can be placed within 

the ballast layer to reduce ballast deformation and extend the maintenance cycle by a 

factor of about 3.0, or at the top of the subgrade to increase the bearing capacity of the 

track foundation. In his research was used the conventional biaxial and triaxial 

geogrid, as shown in Figure 2.8. 

 

                           

Figure 2.8: Biaxial and triaxial geogrid. (C. Chen et al. 2013) 

 



23 

 

 The conventional biaxial geogrid are produced with high stiffness in 

longitudinal and transverse directions with square apertures to suit the ballast grading. 

The triaxial geogrid has evolved which involves a change in grid aperture shape from 

rectangular to a triangular one which is a more stable geometric shape for structural 

efficiency (Tensar 2010).  

 

2.5.1 Reinforcing Principle 

 

Usually a geosynthetic placed strategically at the position of maximum tensile plastic 

strain to make sure it is able to reduce such strain by carrying tensile stress in itself. 

Thus it makes good transfer of stress from the soil to the geosynthetic. In the case of 

geogrid, this requires good interlock. Figure 2.9 shows reinforcement in a railway 

track where the geosynthetic resists granular extension strains with confinement 

provided by the tensile strength of the polymer geogrid. 

 

 

Figure 2.9: Reinforcing effect of polymer geogrid (Kwan, 2006) 

 

According to Brown (1996), it is widely agreed that to achieved the reinforcing 

potential of a polymer geogrid, an appropriate stiffness and an ability to interlock 

effectively with the host material is vital. The interlocking effect of geogrid with soil 
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particles which penetrates and locked into position between the strands will increase 

the bearing capacity of the soil. Figure 2.10 shows the interlocking mechanism of a 

typical polymer geogrid.  

 

 

           Figure 2.10: Interlock mechanism of polymer geogrid (Kwan, 2006) 

 

2.5.2 Experimental measurement on geogrid reinforcement 

 

Brown et al. (2006), conducted a full scale test to identify the key parameters 

that influence geogrid reinforcement of railway ballast as shown in Figure 2.11. 

Repeated load of 20 kN at 2 Hz were applied for 30 000 cycles to the ballast through 

a loading platen. Extruded biaxial geogrid were used for the test with square aperture 

and various tensile strength. From the test, it give that the tensile strength may not 

necessary to the parameter alone which control the settlement.  
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