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Abstract

An efficient design dedicated for iterative-multiple-input multiple-output (MIMO) receiver sys-
tems is now imperative in our world since data demands are increasing tremendously in wire-
less networks. This puts a massive burden on the signal processing power especially in small
receiver systems where power sources are often shared or limited. This thesis proposes an
attractive solution to both the wireless signal processing and the architectural implementation
design sides of the problem. A novel algorithm, dubbed the Adaptive Switching Algorithm, is
proven to not only save more than a third of the energy consumption in the algorithmic design,
but is also able to achieve an energy reduction of more than 50% in terms of processing power
when the design is mapped onto state-of-the-art programmable hardware. Simulations are based
in Matlab™ using the Monte Carlo approach, where multiple additive white Gaussian noise
(AWGN) and Rayleigh fading channels for both fast and slow fading environments were in-
vestigated. The software selects the appropriate detection algorithm depending on the current
channel conditions. The design for the hardware is based on the latest field programmable gate
arrays (FPGA) hardware from Xilinx®, specifically the Virtex-5 and Virtex-7 ,chipsets. They
were chosen during the experimental phase to verify the results in order to examine trends for
energy consumptidh in the proposed algorithm design. Savings come from dynamic allocation
of the hardware resources by implementing power minimization techniques depending on the
processing requirements of the system. Having demonstrated the feasibility of the algorithm in
controlled environments, realistic channel conditions were simulated using spatially correlated
MIMO channels to test the algorithm’s readiness for real-world deployment. The proposed al-
gorithm is placed in both the MIMO detector and the iterative-decoder blocks of the receiver.
‘When the final full receiver design setup is implemented, it shows that the key to energy sav-
ing lies in the fact that both software and hardware components of the Adaptive Switching
Algorithm adopt adaptivity in the respective designs. The detector saves energy by selecting
suitable detection schemes while the decoder provides adaptivity by limiting the number of
decoding iterations, both of which are updated in real-time. The overall receiver can achieve
more than 70% energy savings in comparison to state-of-the-art iterative-MIMO receivers and
thus it can be concluded that this level of ‘intelligence’ is an important direction towards a more

efficient iterative-MIMO receiver designs in the future.
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Chapter 1
Introduction

Wireless communication has become the fastest growing segment of the communications in-
dustry. It has gone through remarkable advancement in the 20t century and along with it, elec-
tronic circuit design is also progressing at an exponential rate. Recent innovations in wireless
communication technology and computing have led to the current proliferation of devices, each
with specific applications, form factor, functionality and battery lifetime. The explosive growth
in wireless systems coupled with the proliferation of electronics devices indicate a bright future
for wireless networks, both as stand-alone and as a part of a larger networking infrastructure.
However, many technical challenges remain in designing robust wireless networks and devices
that deliver the performance necessary to support emerging applications. One major challenge
materializes in the form of power. With approximately 14 billion electronic devices are con-
nected online; personal ones, such as mobile phones, laptops, set-top boxes, modems, and/or
on a larger scale; base stations, wireless hotspots and femtocells, the.communication sector
has become one power hungry industry. The devices are estimated to waste around US$ 80
billion each year due to inefficient designs. This trend could lead to an estimated loss of around
US$ 120 billion by the end of 2020 [1]. Therefore, solutions are sought to overcome the current
predicament. This introductory chapter provides a brief review of wireless communications and
describes the motivation behind the work that has been undertaken, the technical challenges,

and finally the possible contributions this work aims to accomplish.

1.1 Motivation of Work

Due to the large number of devices available, just by reconfiguring the design for each individ-
ual device chipsets to be more efficient, would have tremendous impact on the global energy
usage. With the adoption of best available technologies, chipsets are able to possess a higher
degree of software and hardware flexibility to be more efficient in radio éystems. It is said that
such devices could perform exactly the same tasks while consuming around 65% less power
[1]. Therefore, motivation of this work is to tackle the power consumption problem head on

starting from each individual device.
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There are two sides to the coin, the wireless communication side, which deals with the tremen-
dous data demands, and the other, the computer architecture side, where a more efficient im-
plementation is sought for better hardware deployment. On the wireless communication side,
traffic volume according to regions as depicted in Figure 1.1, taken from the report in [1], shows
that data demand is increasing over the years. It is predicted that by the end of 2017, with the
fastest growing inclination, the data for Asia Pacific will be more than triple, reaching to about
45 exabyte (EB) in just 5 years. In other regions, demands are also rising year by year. The

total world demand for data per year amounts to more than 120 EB per month.
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Figure 1.1: Projected data traffic growth

In order to cater for this trend in data demand, a significant breakthrough came in the late
1980s when the adaptive use of multiple-input multiple-output (MIMO) antenna systems was
proposed. By using multiple antennas at both transmit and receive sides, parallel channels that
utilize the same radio spectrum space can be created. MIMO manipulates this to increase the
capacity of a channel so more data can be transmitted at one time. While minimizing power
usage in these devices in wireless networks is imperative, more priority is given to the receivers
since they handle massive computation processing. With billions of devices available, the total

power consumption would be massive. Moreover, the receivers are usually limited in power
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source where they are operated using a battery, which has a limited lifetime. This brings us
to the subject of computer architecture. Future wireless receivers aim at supporting a wide
variety of wireless communication standards, such as the Long-Term Evolution (LTE), Univer-
sal Mobile Telecommunications System (UMTS), wireless local area network (WLAN), and
Global System for Mobile (GSM). Key enabling technology for the enormous success of wire-
less communication is the progress in integrated circuit (IC) technology. It started in the late
1950s with the production of the first metal-oxide-semiconductor field-effect transistors (MOS-
FET) and with the idea of complementary metal-oxide-semiconductor (CMOS) circuits [2]. IC
follows the trend given by Moore’s law, which states that the number of transistors in a dense
integrated circuit has doubled approximately every two years. Electronic design automation
(EDA) software tools help handle larger and faster chips, fabrication technologies for support-
ing new technology nodes, and verification strategies for the increased circuit complexity. The
progress in CMOS IC technology made it possible to pack more and more transistors onto the
same area of silicon. This progress allowed to realize increasingly complex functions on a
small piece of silicon. With this, the realization of a fast Fourier transform (FFT), a real-time
detection and decoding algorithms, or an entire wireless baseband processor on a single chip

became feasible.

Figure 1.2 shows the potential energy savings that can be achieved with growing technology in
programming and IC circuitry. It depicts the proportion of savings that can be accomplished
to compute a given operation, and that the devices of today do not fully reap these benefits in
the designs. By the year 2015, just by implementing power minimization techniques to evoke a
more efficient hardware design, 70% of potential energy savings can be gained, and this trend
continues to rise up to a point where, in 2025, it is predicted that around 87% of energy usage
can be conserved if more efficient designs are implemented in these devices. In order to have a
more efficient design, flexible software and hardware implementation are needed for the whole
receiver. To achieve this flexibility, the processor circuit and signal processing software need to
have certain adaptivity whereby they possess a level of ‘intelligence’. In principle, this would
allow the exchange between transmission standards and algorithms at boot or even dynami-
cally at run-time. This could be in the form of a system that is able to adapt to the detection
algorithm on-the-fly to the current operating scenario according to the requests of the system.
Current radio communication devices have incorporated digital signal processing (DSP)-based
programmability for some receiver blocks. However, many computationally intensive parts still

require dedicated hardware for performance and efficiency reasons. This issue is particularly
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crucial for MIMO transceivers, where the volume of incoming data is multi-fold, and therefore

the energy required to process would be immensely large.
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Figure 1.2: Potential energy savings trend [1]

This aspect of computer architecture and the power management schemes have not been
fully exploited. Even though the technology exists, several power minimization techniques
are not properly optimized on devices that support MIMO. This thesis therefore proposes a
more efficient design for a receiver that rivals the state-of-the-art available in the market today.
With the combination of both fields of knowledge, another setback to take into account when
designing an efficient hardware capable of transmitting large amounts of data is that when
a signal propagates through a wireless channel, it experiences random fluctuations in time if
the transmitter or receiver is moving, due to changing reflections and attenuations. Thus, the
characteristics of the channel appear to change randomly with time, which makes it difficult
to design reliable systems with guaranteed performance. This is imperative to keep in mind in

order to confirm the applicablity of the new design in realistic situations.

In summary, technological advances in the following areas are needed to overcome the chal-

lenges this work aims to tackle:
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e Algorithmic design for the MIMO detection and decoding algorithms that support effi-

ciency in implementations.

e Hardware design suitable for low-power handheld computer and communication receiver

terminals, which can be implemented on current and future communication systems.

e Measurements and models for wireless indoor and outdoor channels in order to verify

the design suited for real-life deployment.

Given these requirements, the work draws from many areas of expertise, which includes the
area of communications, signal processing, software and hardware design, and power manage-
ment schemes. Moreover, given the fundamental limitations of the wireless channels and the
explosive demand for its utilization, communication between these interdisciplinary groups is

necessary to implement the most rudimentary shell for the thesis work.

1.2 Thesis Contributions

The objective of this work is to design an efficient iterative-MIMO receiver fit for current and
upcoming wireless communication standards. The main contributions of this work are dis-
tributed in three separate chapters. The chapters integrate into one another to culminate in
achieving the main objective of the thesis, which is to design an efficient adaptive algorithm
that possesses a level of ‘intelligence’ for iterative-MIMO receivers. Each stage of the work

leads to the next logical progression from experimental to design practicality, as detailed below:

e An Adaptive Switching Algorithm that adapts to real-time channel conditions to min-
imize the power and energy consumption of iterative-MIMO detection systems is pro-
posed. This is realized in the form of a threshold control unit, which selects the minimum
complexity detector capable of meeting the desired bit-error-rate (BER) performance.
The adaptive algorithm shows promising BER performance on par with the current avail-
able detection schemes with lower resource utilization. An evaluation of the new algo-
rithmic design shows convincing dynamic and static power savings compared to baseline

detectors.

e Realistic power and energy saving trends of the Adaptive Switching Algorithm are com-

puted for the chosen hardware circuitry. Detailed power and energy analysis and the
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assessment of potential benefits of specific power minimization techniques show more
promising results compared to the others. The combination of both the algorithmic design

and the hardware design adaptivity results in tremendous gains in the overall proposed

design.

o The performance of the Adaptive Switching Algorithm in realistic conditions shows sig-

nificant power and energy savings with slight BER degradation. The proposed algorithm

is suitable to be used as a link between the detector and iterative decoder blocks in the
receiver, as a stopping criteria tool to help determine the number of decoding iterations
needed per transmission. Hardware design implementation for the proposed algorithm
maintains the performance of the Adaptive Switching Algorithm total receiver design in

spatially correlated channels with a lower hardware utilization complexity to boot.

1.3 Thesis Outline

The thesis is structured into several chapters covering different stages of the work, following a
logical flow of information, starting with the development from theoretical concepts and con-
tinuing on with the three main contributions of the research; the proposed Adapti\}é Switching
Algorithm, the design performance of the proposed algorithm on hardware and finally, the per-
formance of the hardware design in realistic channel conditions to test its readiness for real

world applicability. The structure of each chapter is described below:

Chapter 2 is divided into two parts, viz. the wireless communication and the computer ar-
chitecture. The wireless communication part explains the total iterative-MIMO systems and
provides additional background on the detecting and decoding techniques. For a reader who is
familiar with modern wireless communication systems, this part will serve mainly as a refresher
as it introduces the concept of MIMO systems that provides the foundation of the research. The
computer architecture part presents the different hardware types available and various power
minimization techniques labeled as state-of-the-art, each of which promises significant power
savings. The combination of the two fields of knowledge provides the comprehensive under-

standing required as basis for the work described in this thesis.

The proposed novel innovation of the Adaptive Switching Algorithm introduced in Chapter 3
proves to be suitable for the sole purpose of saving power and energy consumption of the overall

receivers in both slow and fast fading environments. The algorithm works by switching between
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thresholds pre-calculated between the transmitters and receivers during each transmission in
real-time. This novel idea is the first of its kind to produce an ‘intelligent’ system based on
switching from a high to a low complexity detector, exploiting full information of the current
channel conditions of a MIMO system. The adaptivity shows that promising savings can be

gained in comparison to non-adaptive iterative-MIMO detectors.

Having shown the potential power and energy savings that can be achieved within the receiver
design with the proposed algorithmic design of the Adaptive Switching Algorithm, the next
stage of work as described in Chapter 4 extends those findings by incorporating the novel
idea of the Adaptive Switching Algorithm onto hardware design, to promote its applicability in
implementations as well. With efficient design, the proposed algorithm shows that significant
power and energy savings can be gained when different power minimization techniques are
utilized. A comprehensive power and energy performance analysis of the Adaptive Switching
Algorithm is investigated for the iterative-MIMO systems, with the primary goal of minimizing
additional power and energy consumption within the receiver. The work is then extended to
examine the potential benefits of several power minimization techniques during the implemen-
tation of the Adaptive Switching Algorithm. An in depth investigation shows that power and
energy usage can be further optimized when the design for the proposed-algorithm is designed

on state-of-the-art hardware.

After having demonstrated in the preceding chapters that the Adaptive Switching Algorithm
could save significant complexity, power and energy consumption in both algorithmic and
hardware design implementation in experimentally controlled conditions, its effectiveness in
real-world situations is then verified in Chapter S, whereby the proposed algorithm is executed
under spatially correlated channel conditions. The performance of the Adaptive Switching Al-
gorithm in these channel conditions shows that significant energy savings can be gained with
slight BER degradation as the correlation between the transmitters and receivers increases. The
chapter describes how forwarding the proposed algorithm threshold information to the decoder,
which by providing the same necessary information used in the detector as a stopping crite-
ria for the decoder, helps limit the number of iteration(s) required during each transmission.
Significant power and energy savings are achieved for the full Adaptive Switching Algorithm
receiver in comparison to state-of-the-art hardware, with lower hardware utilization complexity

to boot.

The concluding remarks about this work, as presented in Chapter 6, enumerates the major
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Chapter 2
Background

2.1 Chapter Contribution

The work described in this thesis evolves around designing an efficient iterative-MIMO re-
ceiver that is suitable for state-of-the-art wireless communication standards. This chapter aims
to provide comprehensive knowledge in the areas of wireless communications for software
design and computer architecture for the hardware design implementation. The combination
of each field of specialization gives the background information required to help the reader in
understanding the nature of the work. The chapter begins by introducing the wireless com-
munication system under consideration and the blocks within the iterative-MIMO systems i.e.
the detector and the decoder. After a brief description regarding each block, the chapter pro-
gresses to the other area of specialization, namely the computer architecture. Several power
minimization techniques in hardware are discussed in detail to shed light on the state-of-the-art
methods currently available in the market. The chapter concludes by summarizing the chosen
methods in this thesis for detecting and decoding and the reason behind them. It also pinpoints
the best power minimization techniques to investigate in this study. Both information will lead

to better understanding of the upcoming technical chapters.

2.2 Wireless Communication

Wireless communication is the transfer of information between two or more points that are
not connected by an electrical conductor. The most common wireless technologies use radio.
Figure 2.1 illustrates the different antenna configurations for wireless communication links.
Single-input single-output (SISO), shown in Figure 2.1(a) is effectively a standard radio chan-
nel. This type of configuration has one transmitter and one receiver. Due to its simplicity,
SISO requires no extra processing for manipulating the diversity that may be used. The disad-
vantage of SISO is that it is vulnerable to interference and fading. Moreover, the throughput

is dependent on the channel bandwidth and the signal-to-noise ratio (SNR), which means it is



unded by Shannon’s law. The single-input multiple-output (SIMO) version is depicted in

e 2.1(b) and the multiple-input single-output (MISO) is shown in Figure 2.1(c). Due to

g

e usage of multiple antennas, there are several advantages that can be gained when compared
their SISO counterpart. SIMO or MISO is able to increase the receive SNR by coherently
mbining the wireless signals to achieve array gain. Moreover, diversity gain, which can
classified as transmit or received diversity, are used to combat fading. The receive diversity
does this by enabling the receiver to receive signals from a number of independent channels.
ransmit diversity on the other hand, generates redundant data from the multiple transmitters
Efor the one receiver to choose from. This is when the signal is transmitted over multiple (ide-
ly) independent fading paths in time, frequency, or space. This allows the receiver to select
the optimum signal to extract the required data. The advantages of using multiple transmitters
are that it creates redundancy in coding and moves processing from the receiver to the transmit-
“ter. This is highly beneficial for the receiver. The lower processing requirement, which leads to
Jlower power consumption, will have a positive impact on the size needed for multiple antennas,
as well as the cost and battery lifetime. In addition, the usage of multiple antennas exploits
the spatial dimension to increase the separation between users by directing signal energy to-
wards the intended user. This is interference reduction. Lastly, spatial mulﬁple;;ing gain in
the multiple antenna setup provides additional data capacity by utilizing the difféfent paths to

increase the data throughput capability [3] [4] [5].

By combining the configurations, MIMO may exploit all the advantages provided by the con-
figurations of others [6], from the aforementioned techniques of array gain, diversity gain,
spatial multiplexing gain and interference reduction. MIMO, as illustrated in Figure 2.1(d),
uses multiple antennas at both the transmitters and receivers. It enables a variety of signal paths
to carry the data, choosing separate paths for each antenna to enable multiple signal paths to
be used. It is found that the signal can take many paths between a transmitter and a receiver.
Additionally, by moving the antennas even by a small distance, the paths used by the signal
will change. The variety of paths available occurs as a result of the number of objects that
appear to the side or even in the direct path between the transmitter and receiver. By using
MIMO, these additional paths provide additional robustness to the radio link by improving the
SNR, or by increasing the link data capacity. As a result, it is able to considerably increase the
capacity of a given channel by increasing the number of receive and transmit antennas. MIMO
increases the throughput of the channel linearly with every pair of antennas added to the sys-

tem. Moreover, as spectral bandwidth is becoming an ever more valuable commodity for radio

10
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Figure 2.1: Channel transmission configurations

communications systems, MIMO is one of the techniques needed to properly exploit available
bandwidth more effectively as well. Hence, depending on the ,purpbse of the MIMO system,
an appropriate trade-off needs to be found. Due to the increasing demand of data mentioned
in the previous chapter, spatial multiplexing provides the capacity to cater for this need. The
aim of this work is therefore, to find the right trade-off in a system that incorporates spatial

multiplexing, between the complexity or power consumption and the system performance.

2.2.1 Iterative-MIMO System Architecture

A typical iterative-MIMO architecture is illustrated in Figure 2.2. An in-depth explanation of
the full iterative-MIMO system can be found in the next section, however, as an overview, the
system can be partitioned into three segments; the transmitter, the channel and the receiver.
The transmitter is made up of several components. The hard data bits, u, first go through
the channel encoder. The channel encoder appends extra data bits to make the data transmis-
sion more robust to interferences on the transmission channel. There are many coding schemes
available and they can basically be categorized into two major types; linear block codes and

convolutional codes. In a typical iterative-MIMO system, the latter is used, specificaily the

11
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turbo encoder, where two convolutional codes are used in parallel with some kind of interleav-
iing in between. This gives the encoded e bits, which are interleaved. These are being passed
through to the constellation modulator where the bits are mapped onto a digital scheme such as
ithe quadrature amplitude modulation (QAM) or the phase-shift keying (PSK). By representing
'{:the transmitted bits a as a complex number and modulating a cosine or sine carrier signal with
j—real (R) and imaginary () parts respectively, the symbols can be sent with two carriers on the

same frequency. Once the symbols are modulated, they are split into several streams depending
: on the number of transmitters used before being transmitted over a channel. The transmission

channel is essentially a path between two nodes in a network.

- |TERATIVE-MIMO ———

A

- .

Figure 2.2: Iterative-MIMO system channel

Consider a spatial multiplexing MIMO-orthogonal frequency-division multiplexing (OFDM)
system with M transmitters, N receivers, and M > N. The channel can be represented by the

matrix described in Equation (2.1).

r=Hs+n 2.1

where the channel matrix H € CM*¥ with independent elements h;; ~ CN(u,0?), for
1 <i< Mand1l < j < N representing a block fading propagation environment, with

u=0andg? =1,s = (s1,82,...,8m)" is the transpose vector of the M-dimensional
y 2 p

12
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transmit symbol vector with E[| s; [*] = M~1, n is the CV*! additive independent and
identically distributed (i.i.d.) circular symmetric complex Gaussian noise vector normalized so
that its covariance matrix is the identity matrix, i.e. n ~ (0, NoIn) of hs; ~ CN(0, No) and
r = (r1,72,...,7n)7 is the transpose N-vector of received symbols. Throughout this thesis,

the SNR is defined as the average SNR per receive antenna according to Equation (2.2).

ME;,

SNR = N

2.2)

where E; is the energy per transmit symbol s. The received symbols, r, are then processed by
the receiver. From Figure 2.2, first, the symbols are multiplexed into a single stream before

being detected by the MIMO detector to give {1 bit streams.

In the receiver, the detection can be solved in many ways. In order to optimally solve the
MIMO detection problem, an exhaustive search for the best solutions can be performed over all
signal constellations. The number of possible signal constellations increases exponentially with
the number of antennas and the number of bits per modulation symbol. Maximum-Likelihood
(ML) detection finds the minimum constellation point in Equation (2.1) within the received

symbols. It is given by:

Sy = argmin | r — Hs ||2 2.3)
seOM

where @ denotes the constellation size of a specific modulation. The ML detector is optimal
and fully exploits all available degree of freedom. Even though ML produces the best BER
performance, due to its use of exhaustive search, it can have immense complexity for direct
implementation. The complexity grows exponentially with the transmission rate ¢, since the
detector needs to go through 2% hypotheses for each received vector. For example, for the case
of a 4 x 4 iterative-MIMO system employing 16-QAM, the detector would need to search a
total of S = 16% = 65,536 candidates in order to find the correct transmitted vector. For
64-QAM, this number rises to more than S = 64* = 16, 777,216. This makes an exhaustive
search infeasible for a hardware implementation [7]. As the optimal exhaustive search is far too
complex for hardware implementations, many suboptimal detection algorithms exist with a big
range in communications performance and complexity. Several efficient suboptimal detection

techniques have therefore been proposed or adapted from the field of multi-user detection.

13



| Even though these techniques are much less computationally demanding than the ML detector,

;ihey are often unable to exploit a large part of the available degree of freedom, and thus, their

&

serformance tends to be significantly poorer than that of ML detection. However, this trade-off

: n be made for efficient hardware designs.

Back to Figure 2.2, after the detection, the symbols are then forwarded to the constellation de-
inodulator where the symbols are demapped to get & before going to the turbo decoder, with two
nstituent decoders working together with deinterleavers in between them. This iterative de-
:coders then produce the hard output for the received symbol bits. Within the receiver is where
the focus of the work lies. This involves around minimizing power and energy consumption
;within the iterative-MIMO receiver, particularly, by re-designing the MIMO detector and the it-
“erative decoder parts of the system. The sections below explain different types of detectors and
_decoders available, and their advantages and disadvantages are highlighted to showcase parts
that need to be improved for a better performance in power and/or energy consumption. Find-
ing the right trade-off between communications performance with implementation complexity,

and understanding the implications on the whole receiver is one of the major challenges in the

design of iterative-MIMO receivers.

2.2.2 MIMO Detectors

MIMO detection algorithms can be seen as a “tree search” problem, as shown in Figure 2.3.
This is realized by inverting the channel matrix H using the QR-decomposition to decompose
matrix H into a unitary matrix Q of dimension M X M and an upper-triangular matrix R of

dimension M x N according to:

H=QR 2.4)

The system model in Equation (2.1) can be left-multiplied by the Hermitian transpose of Q,
which is the QH , to give:

72Qr=Rs+n (2.5)

When the problem is visualized as a “tree search”, the ML detection rule as given in Equation
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(2.3) can be approximated as:

8ymr ~ argmin || § — Rs ||? (2.6)
seOM

—ee - MIMO DETECTION p——rerrer—

' TREE DIAGRAM

Al R R ‘Ru‘ RS 5t

. 0 R, R; R 3
d@=|1|- n Ry Rl g oot eon

X3 0 0 R, Ryjis; 53

b2 0 0 0 R|s s,

Figure 2.3: MIMO detection as a tree diagram for 4-QAM modulation on a 4 x 4 MIMO system

Figure 2.3 depicts the search traversing down level 4, looking through j nodes until the so-
lution is found, where the O is the number of constellation points in respective modulation
scheme. Since R is upper-triangular, the minimization in Equation (2.3) corresponds to a
“tree search” problem, where the nodes on level ¢ are associated with a partial symbol vec-
tor s = [s;, ..., s)]T and with a corresponding squared partial Euclidean distance (ED), d;(s).

The squared partial ED is given by:

di(ss) = dit1(sit1) + | Di(si)? 2.7)

with s = M, M — 1, ..., 1. The distance increments | D;(s;)|? are computed as:
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M
|Di(si)|2 = |9 — Z-RiijP 2.8)
j=i

herefore, the squared ED for the ML solution is given as:

dyr = min (di(s1)) 2.9)
seOM

d the ML solution is the associated s;. With this illustration in mind, the task of a MIMO-
etector is to find the vector s; that leads to the smallest d;, i.e. the leaf node with the smallest

uared partial ED.

To this end, a vast amount of literature exists that presents algorithms and approximations
“to process the tree in a clever way in order to find the estimate § with less computational
effort than an exhaustive search. The trade-off between the different approaches consists of

}implementation complexity, BER performance, and throughput.

2.2.3 Hard-Output MIMO Detection

“The output of a MIMO detection algorithm is either a hard-output decision (the estimate §), or
ana posteriori probability (APP) for each bit of the transmitted symbol vector. The latter helps
further improve the performance of a MIMO detector. This soft-output iterative-MIMO detec-
tion algorithms were introduced in [8], and will be described in the next section. A hard-output
MIMO detector delivers an estimate § of the transmitted symbol vector s. Starting point is the
input-output relation as given in Equation (2.1). Several algorithms exist to obtain the estimate
8. In general, these are divided into linear detection, successive interference cancellation (SIC)

detection, and ML detection methods.

2.2.3.1 Linear Detectors

Alinear detector first separates the data streams with a linear filter and then decodes each stream
independently. The computational complexity of linear hard-output MIMO detection is small in
comparison to other detection schemes. However, the BER performance is significantly worse

compared to ML detection. Examples of linear detectors are Zero Forcing (ZF) and minimum
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mean square error (MMSE) filters apply an inverse of the channel to the received signal in
order to restore the transmitted signal [9]. These linear filters can be implemented at a low

complexity, however, their performance is very low as well.

The ZF detector inverts the effect of the channel matrix, H. The corresponding channel filter

matrix G zp is given by Equation (2.10).
Ggzr = (HIH)THY (2.10)

where G zr is the Moore-Penrose pseudoinverse of H. Left-multiplying Equation (2.1) with

G zr yields the ZF estimate of:

Vzr = Gzrr = s+ Gzpn 2.11)

to obtain the symbol-vector estimate §, the equalized noise G zzn is ignored and each element

of ¥ zr is mapped to the closest constellation point according to Equation (2.12).

6 =Wlo, for i=1,..M @.12)

The ZF detection removes the co-channel interference and it is the ideal detector when the
channel is noiseless, i.e. n = 0. Howeyver, in a real system, the noise is enhanced and corre-
lated by G zp, which is the main reason for the poor BER performance of ZF detection. This

phenomenon is known as noise-enhancement [10].

The MMSE detector considers the noise power in the interference cancellation and therefore
shows a slightly better performance. It reduces the effect of noise-enhancement by minimizing

the total error, including the noise term, according to Equation (2.13).
G ymse = argmin || Gr —s ||? (2.13)
GeCMxN

The MMSE estimator matrix G prpsE can be computed as in [10] to give Equation (2.14).

M
— H —1pyH
Gumseg = (H " H+ _SNRIM) H (2.14)
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multiplication of Equation (2.1) by G musp yields:

o N
Ymmse = Gumser = 4/ s+ G yusgn (2.15)
E

here the term \/-—EF: is the mean (over fading) received energy of the signal transmitted by each
;enna, which is the residual noise caused by the co-channel interference. The detection step
":carried out, similar to ZF detection, by mapping ¥ yamsE to the closest constellation point
alogous to Equation (2.12). The MMSE detector suffers less from the noise-enhancement

vd therefore achieves the better BER performance in comparison to ZF detection. The com-
;national complexity remains approximately the same as for ZF detection with the exception

the former needing an estimate on the SNR.

2.2.3.2 SIC Detectors

The SIC technique was initially adopted by the Vertical-Bell Laboratories Layered Space-Time
(V -BLAST) system [3]. In contrast to the basic ZF and MMSE filters, SIC detects the trans-
rmtted streams sequentially. It chooses the substream with largest SNR and removes the in-
%terference of each detected stream before continuing the detection process The performance

Qf the SIC algorlthm is generally better than ZF and MMSE filters. The starting point for SIC

 detection is the QR-decomposition of the system model in Equation (2.5).

The matrix, R, has the property of being upper-triangular and the M*" stream can be detected

according to:

. UM
4 = 2.16)
[RM,M] o (

The remaining streams are detected according to the following recursion:

g = 3|,  for i=M—1,..,1. 2.17)
{Bm Z iy J] (

Jj=i+1

SIC detection resembles the procedure of ZF detection. However, the streams are processed

sequentially, one after another. This allows slicing the estimate §; to §; immediately after its
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computation and using the result to cancel out its influence on the subsequent streams. SIC can
be visualized as a single tree-traversal from top to bottom always selecting the node with the

smallest partial ED. The symbol vector leading to the leaf node is returned as the SIC estimate.

2.2.3.3 ML Detectors

Under the assumption that all transmit symbol vectors are equally likely, ML decoding is the
optimum hard-output MIMO detection method in terms of minimizing the symbol BER [10].
The task of an ML detector is to go through all the possible constellation points and level of

antennas exhaustively until the minimum node with the smallest ED is found.

A brute-force ML detector computes the ED for all possible transmitted vector symbols. The
ML solution then corresponds to the vector symbol with the smallest ED. In [11], it was shown
that the implementation of the detector is feasible at a throughput of 50 megabit per second
(Mbps) for a 4 x 4 MIMO system with quadrature phase-shift keying (QPSK) modulation, i.e.

for 44 = 256 possible vector symbols.

2.2.3.4 Sphere Decoding (SD)

Due to the ML detection problem complexity being extremely high, the brute force manner can
also be solved by the sphere decoding (SD) algorithm. SD traverses the tree in a clever way
such that the search complexity is significantly reduced by searching over only those lattice
points that lie within a hypersphere of radius ® around the received signal r [10]. From a “tree
search” point-of-view, the ML solution corresponds to the leaf associated with the smallest ED,
as shown in Equation (2.9). To find this leaf, SD traverses the tree in a depth-first manner. The

hypersphere around r corresponds to a pruning criterion in Equation (2.18).

di(s;) < @2 (2.18)

Complexity reduction is achieved by pruning those nodes from the tree that violate the sphere
constraint. Whenever a node is computed with a partial ED, d;(s;) > ®2, that branch is pruned
and no longer followed. In order to further reduce search complexity, some optimizations on
algorithmic level can be applied such as radius reduction. The @ is initialized to ® = oo in

order to guarantee to find at least one leaf node. Once the first leaf node is computed, the radius
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updated according to ® « dy(s;). Now, whenever a new leaf is found that fulfills sphere
traint, @ is updated again. The reduction of & allows for more rigorous tree pruning while
finding the ML solution and therefore leads to a reduced average number of visited nodes.
nother technique of reducing complexity is enumeration, where each node in the tree has
veral child-nodes. The processing order of these child-nodes considerably influences search
}hplexity, especially if radius reduction is applied. A scheme proposed by Schnorr and
ichner [12] and modified for finite lattices in [13] visits the nodes of the same parent node
ascending order of their partial EDs. SD with Schnorr-Euchner enumeration and radius
duction is usually denoted as Schnorr-Euchner SD. A drawback of SD is the variable run-

ne, due to variable search complexity, which renders detection latency unpredictable.

2.3.5 Close-to-ML Detection

e variable number of nodes that need to be visited in SD and the still considerable imple-
entation complexity lead to a variety of algorithms that approximate the performance of SD.
{ %The price for the reduced implementation complexity or for the constant run-time is slightly
Tjvworse but still close-to ML BER performance. Therefore, reduced complexity sphere de-
i'coding aims at decreasing the computational effort to compute a partial_ED.v To this end, the

-computation of the squared [?-norm in Equation (2.7) is approximated by the /'-norm or the

‘f.l°~°-norm, respectively [14]. The I'-norm of a vector x is defined as:

% [h= IR+ [S()| (2.19)

and the [®-norm of a vector X is defined as:

| X [l1= max{|R(x)], [S(x)} (2.20)

By application of the [*-norm, Equation (2.8) becomes:

|Di(si)| = [R(Di(s:)| + [S(Dilse)l} (2.21)

and the partial ED in Equation (2.7) can be computed according to:
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di(s:) = diy1(sit1) + |Di(ss)] (2.22)

With this approximation, the squaring operation in Equation (2.8) is saved, which helps to
reduce both delay and circuit area in a potential implementation. For the [®-norm, the distance

increment in Equation (2.8) is computed according to:

| Di(s:)| = max{|R(Ds(s))|, [S(Di(s3))] 2.23)

and the partial ED in Equation (2.7) becomes:

di(si = max(di+1(si+1), [Di(si)]) (2.24)

In [14], it was shown that the application of the [®-norm is beneficial in terms of the number of
visited nodes as well as in terms of circuit area and clock frequency, while the BER performance

is only slightly reduced compared to ML detection performance.

The K-Best detector is another algorithm that provides a close-to-ML solution. The K-Best
algorithm for MIMO detection was first proposed in 2002 [15]. From a “tree search” point-of-
view, it resembles a breadth-first “tree search”. On each level of the tree, only the K nodes with
the smallest partial EDs are further extended. Compared to SD, the throughput of the K-Best
algorithm is constant. However, the BER performance is slightly degraded compared to SD and
strongly depends on the chosen K. The K-Best algorithm is well suited for very-large-scale-
integration system (VLSI) implementation due to the regular data path and the simple control

flow. Architectural transformations like pipelining and resource sharing can easily be applied.

Another algorithm for hard-output MIMO detection is the fixed-throughput fixed-complexity
sphere decoding (FSD) algorithm [16]. It achieves close-to ML BER performance and, like
the K-Best algorithm, it exhibits a constant throughput. The FSD algorithm overcomes the
problem of the variable complexity and the sequential behaviour of SD by searching only over
a fixed but well-defined number of lattice vectors. A common configuration is to visit all nodes
on the top level (i.e., on i = M) and only one node per parent node on the lower levels. A
decisive factor that significantly contributes to the close-to ML BER performance of FSD is the

order in which the streams are processed. The ordering is determined according to the number
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nodes that are visited on the same layer. On the layers where all nodes of a parent node are
B: (e, the stream with the largest noise amplification is chosen; on the other levels, the streams
selected in ascending order of their noise-amplification. In [16], the ordering is called FSD

ering and was obtained via V-BLAST ordering and computed according to [17].

e number of operations, floating-point operations per second (FLOPS) or algebraic oper-

s, required by a detection algorithrn is expressed in the “big O” notation. However, its

] d lower order contributions to the computatmnal cost may also be relevant. MatlabTM pro-
_‘__'dcs counting of FLOPS. Though this technique is obsolete, it provides a general overview
4 the complexity of each detection algorithm, where at this stage to be sufficient. Table 2.1
bulates the FLOPS counts for each detection algorithm using Matlab™ environment running
a packet size of 1,024 utilizing 4-QAMon a4 x 4 AWGN channel. SD and K-Best algorithms
ave variable complexity whereby they are highly dependent on the size of the search radius ®
£and the expanded node K. In this case, ® = oo and K is set to be 3.

f’
i

e

High Performance Low Complexity
Detector  Type  KFLOPS Detector Type KkFLOPS -
ML Fixed 28.7 ZF Fixed 1.7-
SD Variable 24.4 MMSE Fixed 1.9
: K-Best  Variable 21.1 SIC Fixed 4.2
i FSD Fixed 16.8 V-BLAST/ZF Fixed 4.8

Table 2.1: Different algorithm complexity of MIMO detectors measured in kFLOPS

Figure 2.4 shows the frame-error-rate (FER) curves for the addressed hard-output MIMO de-
tection algorithms. The simulation results are for a 4 x 4 MIMO-OFDM system with a convo-
lutional code rate of ¢ = 1/2. Each OFDM symbol consists of 64 subcarriers using 16-QAM.
For the simulation results, perfect channel state information and perfect synchronization are
assumed. The simulation results clearly show the large difference between hard-output low
complexity linear ZF and MMSE or SIC detection and high performance K-Best and FSD in
relation to the ML detection respectively. Since the algorithms of V-BLAST/ZF and FSD show
similar innerworkings (FSD requires the V-BLAST ordering), in the next chapter, a slightly
modified version of the FSD algorithm incorporation with the V-BLAST/ZF, is presented to be

the basis of the proposed efficient algorithm.

Better BER performance can be achieved by incorporating the APP in the detection. Figure 2.5
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Figure 2.4: BER performance comparison high performance and low complexity hard decod-
ing 16-QAM with convolutional coding of ¢ = 1/2

shows the BER performance for an optimum iterative soft-input soft-dﬁtput MIMO detector
with 4 iterations, for an optimum APP detector, and for an ML ﬁérd—output detector [8]. It can
be seen that the BER performance for a convolutional coding with code rate of ¢ =1 /2 in
binary phase-shift keying (BSPK) for additive white Gaussian noise (AWGN) channel shows
significant improvement over the hard decoding equivalent. With an iterative-MIMO detector,
the best BER performance can be achieved. However, the associated performance gains come
at the cost of a substantially increased implementation complexity. This work will utilize the

soft-output in the receiver.

2.2.4 Soft-Output MIMO Detection

As already shown in Figure 2.5, better BER performance in a coded MIMO-OFDM system
compared to hard-output detection can be achieved by computing the APP for each hard bit,
b, that associated to the transmitted symbol vector s. Therefore, the aforementioned detection
algorithms have to be adjusted to utilize the given soft-input information. The APPs are usually

expressed as log-likelihood ratio (LLR) [18] [19] and are computed according to:
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gure 2.5: BER performance comparison between hard and soft decoding BPSK with convo-
lutional coding of p = 1/2

s In P(si,b = +1|I’,H)

2 2.25
W o Blsi, = —1)Jr, H) (2:25)

or all bits b on level 4 = 1,..., M. The sign of the LLR value L;3; shows whether bit s;p is
ore likely to be +1 or 1 and the magnitude of |L;p| indicates the probability of the estimate.

e channel decoder takes advantage of the APPs and improves the estimate on the transmitted

2241 Soft-Output ML Detector

In [19], Equation (2.25) can be computed according to:

I 3 ezt Py(r|s, H)
In Zsezgzl) Py(r|s, H)

L(i,b) = (2.26)

under the assumption of equally distributed transmit symbols s. The sets Zi(:l) and Zi(,;l) are
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