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ABSTRACT 

 

 

 

ZnO nanostructures can be derived using a variety of techniques. Using 

hydrothermal synthesis, ZnO nanostructures can be produced easily on a large scale 

due to the low temperature involved. Among the factors that influence the 

crystallinity of ZnO nanostructures are types of alkaline solution, the alkaline pH 

value used and the application hours of the hydrothermal process. This research 

focuses on the fabricated ZnO nanostructures via hydrothermal synthesis and the 

effects of alkaline solution on the morphology of ZnO nanostructures. Distilled water 

was mixed with three types of alkaline which are NaOH, KOH and LiOH solutions 

in 3 different pH values. The hydrothermal process was conducted using three 

different time periods which are 6, 12 and 24 hours. XRD analysis was done to 

identify the phase and crystallinity of ZnO nanostructures. Morphology and surface 

roughness analysis were characterized using FESEM and AFM to observe the 

nanostructures growing on ZnO thin films while current against voltage testing was 

done to identify the resistivity of ZnO nanostructures using a 2-probe point analyzer. 

All of these analyses were performed on the growth of ZnO nanostructures after the 

hydrothermal process. The results revealed that the addition of KOH solution as a 

precursor provides the best nanostructure properties over other alkaline solutions. 

The most suitable time period required to produce the best ZnO crystalline structure 

is 24 hours while the perfect pH value that allows the formation of ZnO 

nanostructures is 12. 
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ABSTRAK 

 

 

 

Umumnya, nanostruktur bagi ZnO boleh dihasilkan melalui pelbagai teknik. Melalui 

kaedah hidrotermal, nanostruktur bagi ZnO boleh dihasilkan dengan banyak dan 

prosesnya ringkas kerana melibatkan penggunan suhu yang rendah. Antara faktor 

yang mempengaruhi pertumbuhan nanostruktur ZnO yang baik ialah penambahan 

jenis larutan alkali, kepekatan pH alkali yang digunakan dan juga masa proses 

hidrotermal dijalankan. Kajian ini menumpu kepada fabrikasi nanostruktur bagi ZnO 

melalui kaedah hidrotermal dan kesan pengaruh larutan alkali keatas morfologi 

kerajang nipis Zn. Air suling telah dicampur bersama 3 jenis alkali yang berbeza 

yang mana mempunyai 3 kepekatan pH yng berbeza. Kerajang Zn telah dijalankan 

proses hidrotermal selama 6, 12 dan juga 24 jam. Analisis XRD dijalankan bagi 

mengetahui fasa dan kehabluran bagi nanostruktur yang terhasil. Analisis morfologi 

dan juga analisis kekasaran permukaan yang dijalankan oleh FESEM dan AFM 

bertujuan untuk melihat struktur nano ZnO yang terhasil pada kerajang Zn. Ujian 

arus melawan voltan yang dijalankan oleh 2-point probe bertujuan untuk mengetahui 

nilai keringtangan yang wujud bagi nano struktur ZnO. Kesemua analisis ini 

dijalankan pada kerajang ZnO selepas proses hidrotermal dijalankan. Larutan alkali 

yang menghasilkan nanostruktur ZnO yang baik adalah larutan alkali jenis KOH. 

Manakala masa yang terbaik untuk menghasilkan struktur hablur pada kerajang ZnO 

ialah sebanyak 24 jam dan kepekatan alkali yang sesuai digunakan adalah pH 12. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

1.1 Background of study 

 

Zinc Oxide (ZnO) has a wide number of properties which has gained considerable 

attention from researchers over the past few years. ZnO is a popular material used in 

semiconductor research and this was mentioned back in 1945 (Gomez & Tigli, 

2012). World-wide use of ZnO that has 9 % of metallic zinc is more than 1.2 million 

tonnes per year (International Zinc Association, 2011). Due to its unique chemical 

properties and structure, ZnO is increasingly being used in the production of 

electronic devices. The applications of ZnO are not only limited to the engineering 

field, but also the pharmaceutical industry, cosmetic and food packaging industry. 

 There are wide applications of ZnO in hybrid solar cells and organic solar 

cells due to its low cost, ease of synthesis, non-toxicity, high stability and good 

optoelectronic properties (Huang, Yin, & Zheng, 2011). Doped ZnO thin films are 

transparent electrodes for solar cells. Solar cells require a transparent and conductive 

oxide (TCO) thin film that can extract the electrical current and allow the light to 

enter the absorber layers (Tadatsugu, 2005). ZnO is not only highly transparent but 

also highly conductive and strongly suitable to be a TCO candidate.  

There are two types of synthesis methods to obtain the ZnO nanostructure. 

The ways are solution phase synthesis and gas phase synthesis. For solution phase 

synthesis, normally the aqueous solution is used and the process is referred to as 

hydrothermal growth process. Baruah & Dutta(2009) in their research said that 

solution phase synthesis processes consist of several methods. First, Zinc Acetate 

Hydrate (ZAH) is derived from nano-colloidal sol-gel route, ZAH in alcoholic 

solutions with Sodium Hydroxide (NaOH), template assisted growth, spray pyrolysis 

for growth of thin films and electrophoresis. Due to the variety in methods, the 
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structure and look of ZnO produced could be different. The best structure of ZnO is 

nanowire because of its good performance in electronics, optics and photons field 

(Yangyang et al., 2012).  

 

1.2 Statement of Problem 

 

Basically, ZnO nanostructures can be derived using a variety of techniques. Based on 

Segovia et al., (2012) , hydrothermal synthesis or wet chemistry techniques are 

simple and proved to be efficient methods to obtain nanostructure thin films on a 

large scale. Besides that, Yangyang et al., (2012) said that hydrothermal synthesis 

has been used for the synthesis of 1-D nanostructures that are useful in different 

fields such as Dye-Sensitized Solar Cells due the unique electrical properties. 

Nanostructures that are categorized in 1-D are nanowires, nanorods, nanofibres, 

nanobelts and nanotubes. The growth of ZnO nanostructures via hydrothermal 

synthesis can be controlled by alkaline reagents, initial solution pH, and growth 

duration. All of these parameters affect the nanostructures of ZnO and diversifies the 

properties of ZnO. 

 Research on ZnO nanostructures produced based on different parameters will 

be emphasized in this study. The best parameters to produce ZnO nanostructures 

with electrical properties based on solar cell application through hydrothermal 

synthesis will be identified. 

 

1.3 Objectives 

 

1) To fabricate the nanostructure of ZnO via hydrothermal synthesis method. 

2) To study the effects of different types of alkaline solution on the 

morphologies of the synthesized ZnO nanostructures. 

 

1.4 Scope of Study 

 

1) Zinc foil (99.9% purity) was used as substrate and solid reagent. 

2) Zinc foils were produced via hydrothermal synthesis in different alkaline 

solutions such as NaOH, KOH and LiOH.  

3) Hydrothermal synthesis by an autoclave at 120°C for 6, 12 and 24 hours. 
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4) Alkaline concentrations of pH 10 and 12 were used for formation control of 

ZnO nanostructure.  

5) The crystallinity and phases of ZnO nanostructures were characterized by X-

ray Diffractometer (XRD).  

6) Surface morphology of the ZnO nanostructures with different alkaline 

concentration was characterized by Field Emission Scanning Electron 

Microscopy (FE-SEM).  

7) The surface roughness of ZnO nanostructures was measured by Atomic Force 

Microscopy (AFM). 

8) 2-point probe was used to measure the current-voltage (I-V) for ZnO 

nanostructures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

2.1 Introductions 

 

Thin films are very thin layers of substances that are used to support materials. It is 

common in solar energy applications today to generally use thin films on solar panels 

to absorb energy from the sun. To do so, the photovoltaic material will be deposited 

in thin layers on substrates such as glass, plastic or metal. Thin film solar cells have 

several differences as compared to traditional solar cells like silicon whereby it 

performs as a semi-conductor. Thin films are considered second generation solar 

cells after silicon solar cells because they are made from semiconductor materials 

that are a few micrometers in thickness.  

 Thin films will be deposited on various materials to produce nanostructures. 

The application of nanoscale materials will be able to convert solar energy with 

higher efficiency and produce low-cost devices (Beard, Luther, and Nozik, 2014). 

This indirectly revolutionises solar cell application. Nanostructures layered on thin 

film have several advantages. Based on the review made by Sagadevan (2013), there 

are three advantages of nanostructures in solar energy application. First advantage 

being, the absorption of nanostructures are more effective than the absorption of 

actual film thickness due to multiple reflections. Secondly, the electrons generated 

by light travels a much shorter path avoiding losses. Lastly, the size of nanoparticles 

allows more flexibility in the absorption of solar cells. 

ZnO polar surfaces are actually very stable and include many different 

nanostructures. The nanostructures provide many advantages for several 

applications, especially for catalyses and surfaces. The surface is easier to modify 

and provides improved solar cell performance when it is running (Chou et al., 2007). 

ZnO also has a band gap that is the same as TiO2 while having much higher electron 
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mobility. Figure 2.1 shows a band position of several semiconductors in aqueous 

electrolyte at pH 1. The greater gap allows higher breakdown voltage and larger 

ability to sustain electric fields (Baruah and Dutta, 2009).  

 

 
Figure 2.1: Band Position of Several Semiconductor in Aqueous Electrolyte at pH 1 

(Chou et al., 2007) 

 

 One dimensional nanostructure of ZnO is more efficient to carry and 

transport with decreased surface defects, grain boundaries, disorders, and 

discontinuous interfaces (Chen et al, 2010). ZnO also has properties like transparent 

conducting oxides (TCO). Usually, the most widely used TCO is indium-tin oxide 

(ITO). However, an active search for alternative materials is underway because of 

the high processing cost. The applications of ZnO as TCO is well-suited because of 

its low cost and non-toxicity (Noriega et al., 2010). Thus, it makes a popular TCO in 

the application of solar cells. It is widely used in applications of solar cells because 

of their optical transmission in the visible and electrical conductivity. Ridhuan et al., 

(2012) in their paper said that, the seeding of substrates by hydrothermal method has 

better controlled morphology and growth direction of ZnO nanostructures. Table 2.1 

shows the ZnO nanostructured properties. 
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Table 2.1: ZnO nanostructures properties (Fan & Lu, 2005) 

 
Properties Values 

Lattice Parameters 

(T= 300K) 

a=b=3.25 Å 

c=5.21 Å 

u=0.348 

c/a=1.593-1.6035 

Density 5.606 gm/cm
3
 

Melting Point 2248 K 

Stable Crystal Structure Wurtzite 

Dielectric Constant 8.66 

Refractive Index 2.008 

Band Gap (Eg) 3.37 eV (direct) 

Exciton Binding Energy 60 meV 

Electron/ Hole Effective Mass 0.24 mo / 0.59 mo 

Hole Mobility (300K) 5-50 cm
2
/Vs 

Electron Mobility (300K) 100-200 cm
2
/Vs 

 

2.2 Hydrothermal Synthesis 

 

Hydrothermal synthesis is the technique of fabricating materials from low 

temperature aqueous solution in high vapour pressure and a synthesis process of 

single crystals. This method will save energy and is more environmental-friendly 

because the reaction is done in closed system conditions. Moreover, this synthesis is 

also able to fabricate single crystals in low temperatures. The main advantage of 

synthesising in low temperatures is that it is simple and energy efficient (Komarneni, 

2003). To control the size and shape of the nanophases, this method is more suitable. 

 Hydrothermal synthesis can be done through two methods: Conventional 

Hydrothermal and Microwave Hydrothermal. Conventional Hydrothermal synthesis 

uses cold seal vessels and Parr vessels. Cold seal vessels control pressure and 

temperature, while Parr vessels only control temperature with precision. Parr vessels 

will not control the pressure parameters. Hydrothermal process by microwave 

however, gives other advantages when compared to conventional hydrothermal 

method. Komarneni (2003) in his study said, reaction system by microwave has more 

rapid kinetics than conventional hydrothermal. The rutile crystallisation happens in 

between 0.5 to 2 hours in 0.5 to 3 M titanium oxychloride solutions, while the 

reaction through conventional hydrothermal takes 3 days to be completed.  

 In a study done by Kharisov, Kharissova, and Méndez (2012), they showed 

the morphology control of ZnO nanostructures by microwave hydrothermal. ZnO 

nuclei will transform into nanorods by preferential c-axis [002] with oriented 1D 

growth. Nanowires that form from nanorods become nanospindles because of the 
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increase in diameter and local dissolution. The nanorods can also become 

nanodendalions from the multiple growths of nanorods. Crystal growth along the 

[002] direction becomes nanoslices due to quasi 1D growth. Finally, nanothruster 

vanes form due to assembled growth of nanoslices. Figure 2.2 showes the shape-

controlled synthesis of ZnO nanorod, nanowire, nanothruster vanes, nanodendalions 

and nanospindles using the microwave hydrothermal method. 

 From the researches done, we now know that ZnO materials do have 

important properties like photoluminescence and photocatalysis. The nanostructures 

that give good performances in photoluminescence are known as nanoflowers (Lai et 

al., 2011). This structure is a special three dimensional nano-ZnO. Between the 

variables that can be controlled to develop good nanostructures are: types of alkaline 

solution, temperature, hydrothermal reaction time, and difference in pH value. 

 

 
 

Figure 2.2: The shaped controlled synthesis of ZnO using microwave hydrothermal 

(Kharisov et al., 2012) 
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2.3 Effects of Different Alkaline 

 

The use of different alkaline solution in hydrothermal synthesis will give a result that 

is non-toxic, environmentally beneficial, easily available, and relatively inexpensive 

chemical. In the research by Ekthammathat et al., (2014), it shows that alkaline 

solution helps in the crystallisation process and generate nanostructure like rod, 

pencil and star. The ZnO is synthesised by NaOH, LiOH and NH4OH. Using these 

alkaline solutions result in a ZnO thin film that is very sharp in XRD pattern which 

indicates that product has good crystalline structure. Figure 2.3, shows that all 

diffraction patterns can be categorised as hexagonal wurtzite structures. ZnO that is 

synthesised in NaOH solution has the highest diffraction peak at 34.45°. However, 

ZnO synthesized using LiOH and NH4OH solutions do have strong diffraction peaks 

on (002) and (101) planes in relatively intensified diffractions. 

 

 
 

Figure 2.3: XRD patterns of ZnO synthesized by NaOH, LiOH and NH4OH alkaline 

solutions (Ekthammathat et al., 2014). 

 

 Ni et al., (2005) also conducted a research on the preparation of ZnO 

nanorods that grows in powder form. In his research, KOH solution was mixed with 

ZnCl2 to produce the ZnO powder through the hydrothermal process. The result of 
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XRD shows a strong diffraction peak at (101) plane and it directly shows that this 

material has good crystallinity and size. By using KOH solution, the sizes of the 

structures become more homogeneous and have a mean size of about 50 nm x 250 

nm. 

 Based on the study by Pei et al., (2010) on oxidation of Zn substrate by 

distilled water however, the highest peak of intensity by XRD are also shown on 

planes (101) and (002). The strong diffraction peaks on the planes were suggested to 

have a preferential growth direction even through the use of distilled water as 

precursor. The XRD pattern is shown in Figure 2.4. 

 

 
 

Figure 2.4: XRD pattern through oxidation of Zn substrate by distilled water (Pei et 

al., 2010) 

 

The use of a variety of alkaline as precursor is able to give different thickness 

in ZnO layer growths. The thicker the ZnO layers might be due to the low value of 

conversion efficiency. This statement is based on the study conducted by Baviskar, 

Tan, Zhang, and Sankapal (2009), where the value of voltage is 428 mV and the 

photovoltaic conversion efficiency is 0.34 %. Figure 2.5 shows the result of current 

density against voltage (J-V) from the study. Besides that, it is also found that the 

thickness value is indirectly caused by the increase of the resistivity (Shariffudin, 

Salina, Herman, and Rusop, 2012). 
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Figure 2.5 : Current density against voltage (Baviskar et al., 2009) 

 

The research from Mondal, Kanta, and Mitra (2012) on ZnO film deposition 

on a microscope glass as substrate shows that the sample has ohmic character from 

the current-voltage plotted below. The deposition process of ZnO on microscope 

glass is done by having the chemical dipping solution added with Ammonium 

Hydroxide (NH4OH) in water. Based on Figure 2.6, the plotting graph of current 

against voltage is linear. It shows that the ZnO is an ohmic material. 

 

 
 

Figure 2.6: Linear graph for ZnO thin film (Mondal, Kanta, and Mitra, 2012) 

 

The experiment by Choi et al., (2010) also shows the result of ZnO-Ag 

interface as an ohmic character. This is because there is no electron energy barrier 

occurring at the interface and the value is 4.5 eV, as show in Figure 2.7. ZnO 

nanorods are a substrate on a flexible polyethersulfone (PES) and were then prepared 
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by using hydrothermal synthesis. The solution that is use in this experiment is NaOH 

and Zinc acetate dehydrate. ZnO nanorods is the third layer on the PES substrate 

while the first and second layer are Ti and Ag layers. These layers are applied using 

spin coating techniques. 

 

 
 

Figure 2.7: The linear I-V curve for ZnO nanorod structures (Choi et al., 

2010) 

 

 In the research by Vijayan et al., (2008) the application shows the deposition 

of ZnO on glass substrate by dipping it in NaOH and Zinc Sulphate (ZnSO4) 

solutions results in surface roughness on the films over an area of 20 x 20 µm
2
when 

in contact. This result is shows in Figure 2.8. The ZnO thin film was then immersed 

in alkaline zinc nitrate to grow the nanostructures on the glass substrate. While in the 

research by Shinde, Gujar, and Lokhande (2007), they used chemical methods to 

make the ZnO layer on the glass substrate. The structure that is grown on the 

substrate can be categorised as nanospherical because it has uniform spherical grains 

in an average size of ~400nm. The surface roughness of this sample was analysed by 

AFM as shown in Figure 2.9. 
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Figure 2.8: AFM results on surface roughness on ZnO (Vijayan et al., 2008) 

 
 

Figure 2.9: AFM analysis of nanospherical structures for ZnO thin film using 

chemical bath synthesis (Shinde et al., 2007) 

 

 Meanwhile, the research from Yang et al., (2008), demonstrated the synthesis 

of ZnO with NaOH and NH3
.
H2O solution at 60°C for 7 days in autoclave. The result 

is a densely packed array of nanorods with diameter ranging between 50 nm until 

200 nm and has a length of over than 10 µm. ZnO that is synthesised using NH3.H2O 

with NaOH solution can grow the nanorods longer in length and sharper in tips if 

compare with ZnO diluted with only NH3.H2O (as reference). Figure 2.10 shows the 

difference between ZnO nanostructure synthesis by (a) ZnO that is diluted in 

NH3
.
H2O and (b) ZnO diluted in NH3

.
H2O and NaOH using FESEM.  
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Figure 2.10 (a): FESEM of nanorods from ZnO with NH3
.
H2O (b): FESEM of 

nanorods from ZnO with NH3
.
H2O and NaOH (Yang et al., 2008) 

 

 Studies by Dezfoolian, Rashchi, and Ravanbakhsh (2014), on Cu-ZnO 

nanostructured based anodisation technique, reports that there were nano-flower 

structures spotted. The pure brass was anodised by KOH and NaOH solution in 

different concentrations. The different types of alkaline caused the difference in 

growth of the Cu-ZnO structures. The difference in structures can be seen in Figure 

2.11. The structure from the NaOH solution causes more nano-flowers structures to 

grow compared to the application of KOH solution. 

 

B 
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Figure 2.11: Cu-ZnO structures from FESEM for different alkaline solution (a) KOH 

solution (b) NaOH solution (Dezfoolian et al., 2014) 

 

 However, it is also found that, using weak alkali precursor will also produce 

ZnO nanostructures. This statement was proven through the study conducted by Li et 

al., (2007) which used ammonia as the precursor to produce ZnO nanostructures. In 

the experiment by Zhang et al., (2013), it showed ZnO nanostructures grown using 

the atomic layer deposition process, which resulted in nanorod structures forming in 

the structure of ZnO shown in Figure 2.12. The formation of ZnO nanorod structures 

is a result from the immersion of the ITO substrate in zinc nitrate hexahydrate and 

hexamethylenetetramine. Hexamethylenetetramine is a weaker alkaline than 

ammonia. Table 2.2 shows the summary of references used in this literature review 

section.  

 

 
 

Figure 2.12: FESEM image for ZnO nanorods using atomic layer deposition 

technique (Zhang et al., 2013) 

a b 
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Table 2.2: Summary of the test using different alkaline (XRD, I-V Measurement, 

AFM and FESEM) 

 
XRD 

Researchers Parameter Results 
Ekthammathat et al., (2014) Method : Hydrothermal 

Solution : NaOH, LiOH and 

NH4OH 

Plane: (002) and (101) 

Pei et al., (2010) Method : Hydrothermal 

Solution: Disttilled water 
Plane: (101) and (002) 

Ni et al., (2005) Method: Hydrothermal 

Solution: ZnCl2 and KOH 
Plane : (101) 

AFM 
Researchers Parameter Results 

Vijayan et al., (2008) Method :Double Dip 

Solution : NaOH (first dip) 

and hot water (second dip) 

Figure 2.8 

Shinde et al., (2007) Method: Immersed in 

chemical 

Solution: Ammonia 

Figure 2.9 

Solar Simulator 
Researchers Parameter Results 

Baviskar et al., (2009) Method : Wet Chemical 

Solution : Zinc Acetate (CH3 

COO)2Zn 2H2O, 

Hexamethylene tetraamine 

(HMTA) (CH2)6N4 and 

Ammonia (NH3) 

Figure 2.5 

Mondal et al., (2012) Method: Chemical Dipping 

Solution: Water (H2O) and 

Ammonia Hydroxide 

(NH4OH) 

Figure 2.6 

Choi et al., (2010) Method: Hydrothermal 

Solution: NaOH and zinc 

acetate dehydrate 

Figure 2.7 

FESEM 
Researchers Parameter Results 

Yang et al., (2008) Method : Hydrothermal 

Solution : NH3H2O and NaOH 
Figure 2.10 

Dezfoolian et al., (2014) Method: Anodization 

Solution: KOH and NaOH 
Figure 2.11 

Zhang et al., (2013) Method: Atomic Layer 

Deposition 

Solution: zinc nitrate 

hexahydrate and 

hexamethylenetetramine 

Figure 2.12 
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2.4 Effects of Different Hours 

 

According to a review by Kołodziejczak-Radzimska & Jesionowski, (2014) on ZnO 

synthesis, they said that the increase in diameter of ZnO particles were based on the 

increased time of the hydrothermal process. Ismail et al., (2005) also conducted ZnO 

synthesis using hydrothermal method in his research. In his research, the 

Zn(CH3CO2)2
.
2H2O were mixed with NaOH and hexamethylenetetramine using 

magnetic stirring at room temperature. Zn(OH)2 formed and was treated using 

hydrothermal process. The hydrothermal process was conducted from 5 to 10 hours 

and at temperatures of 100°C to 200°C. Table 2.3 shows the result of the experiment 

without the use of any surfactant. 

 

Table 2.3: Results of ZnO particle sizes without surfactant in variable times and 

temperatures (Ismail et al., 2005). 

 

Sample Time (hours) Temperature (°C) Particle size (nm) 
R5 5 150 60 
R7 10 150 83 
R9 7.5 100 55 

R11 7.5 200 82 

 

 The result shows that the variation in time affected the ZnO particle sizes 

more as compared to the variation in temperature. However, the research by Zou et 

al., (2014) found that the shorter the time given to hydrothermal process causes the 

XRD patterns to have less peaks and the intensity of the peaks were not high. In the 

research by Shi, Gao, & Xiang, (2010), however shows there is a difference between 

the before and after using hydrothermal process. The difference can be observed 

from the XRD patterns in Figure 2.13. The XRD patterns after hydrothermal process 

are more intense compared to the XRD patterns before hydrothermal process. This 

happens because the samples that had undergone hydrothermal process have 

formations of nanostructures.  

 From the research by Nagaraju et al., (2010), the ZnO powder was 

synthesised by hydrothermal process in various temperatures and time with addition 

of NaOH as well as NH4OH solution. The formation of nanorods from the ZnO 

powder is from the reaction with the NaOH and NH4OH solution during 

hydrothermal process. Figure 2.14 shows no difference between the XRD patterns 
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although hydrothermal process was done in a variety of parameters. All the samples 

have the highest intensity at plane (101). Besides that, the XRD pattern also shows 

that ZnO powder has a crystalline structure at plane (002) and (100) due the peaks 

that occur in the XRD patterns. 

 

 
 

Figure 2.13: XRD pattern for (I) before hydrothermal (II) after hydrothermal (Shi et 

al., 2010) 

 

 
 

Figure 2.14:z XRD patterns of ZnO powder that was prepared at (a) 180°C for 6 H 

using NH4OH (b) 180°C for 20 H using NaOH and (c) 200°C for 20 H using NaOH 

(Nagaraju et al., 2010) 

 

 Based on the experiment by Nithya & Radhakrishnan, (2012) the surface 

roughness for thin film decreased with the increase in thickness of ZnO deposition. 

The increased thickness of ZnO deposition layers with various times are shown in 

Figure 2.15 .This experiment was conducted with different coating times. The 

substrate was dipped in Ammonium (NH
4+

) solution that was maintained at pH 9. 
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The longest time for this dip-coating process is 150 minutes and the shortest time is 

30 minutes. The thickness of ZnO deposition for the longest time is 161.267 nm 

while for the shortest time is 25.321 nm.  

 

 
 

Figure 2.15 : AFM images of Surface Roughness for different times during the dip-

coating process (a) 30 minutes (b) 60 minutes (c) 90 minutes (d) 120 minutes (e) 150 

minutes. (Nithya & Radhakrishnan, 2012) 

 

 In the experiment on ZnO conducted through hydrothermal synthesis, ZnO 

nanowires displayed growth that is uniform in size of about 20-30 nm (Zhitao, Sisi, 

Jinkui, & Yong, 2013). Figure 2.16 shows the AFM image for this sample. This ZnO 

sample was deposited on Si and underwent hydrothermal synthesis for 1-12 hours at 

95°C after the sol-gel process and spin-coating technique. Based on the experiment 

that was conducted by Kamaruddin et al., (2010) on ZnO nanostructures growth by 

sol-gel hydrothermal, the surface of the sample was rougher. However, the sample is 

still categorized as nanostructures based on Figure 2.17. This sample was underwent 

sol-gel hydrothermal method for 5 hours at 95°C. 

 

a b c 

d 
e 
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Figure 2.16: AFM results of ZnO seeded in Si substrate (Zhitao et al., 2013) 

 
Figure 2.17: The roughness of ZnO nanostructures by sol-gel hydrothermal synthesis 

(Kamaruddin et al., 2010) 

 

 Through the research that was conducted by Amin & Willander, (2012) the 

value of voltage was extracted at 1.52 V. In this experiment, the CuO was layered on 

a ZnO substrate with ITO and was held in a hydrothermal synthesis for 6-8 hours at 

50°C. The voltage value of 1.55 V was a close approximate to the experiment voltage 

value conducted by Baek & Tuller, (1995).  

 ZnO was able to reach its best value from the current density (Isc) through the 

performance of the devices after 20 minutes as compared to other types of hybrid 

solar cell. This was stated in Lira-Cantu & Krebs, (2006) paper on the performance 

of thin film semiconductor oxides. Other thin films that were tested in this study 

besides ZnO is TiO2, Nb2O5, CeO2, and CeO2-TiO2. All this thin films were prepared 

using sol-gel solution that was coated on ITO substrates through the spin coating 

method. Table 2.4 shows the values of ISC and VOC for devices of various types of 

ITO thin films. 
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Table 2.4: Values of ISC and VOC for devices of various types of ITO thin films (Lira-

Cantu & Krebs, 2006) 

 
Oxide Initial (st start) From IV curve Maximum FF (%) 

 VOC (V) ISC(mA/cm
2
) VOC (V) ISC(mA/cm

2
) ISC 

(mA/cm
2
) 

 

TiO2 -0.74 +0.39 -0.70 +0.16 +0.17 25 
Nb2O5 -0.22 +0.04 -0.42 +0.27 +0.13 30 
ZnO -0.39 +0.11 -0.46 +0.17 +0.21 37 
CeO2-

TiO2 
+0.42 -0.007 - - +0.08 32 

CeO2 +0.12 -0.004 - - +0.06 25 

 

From the experiment done by Chen et al., (2014), the nanostructures grown 

on the ZnO samples were synthesized using hydrothermal method with distilled 

water. The hydrothermal process was conducted at 100°C for 1, 3, and 5 hours. 

Figure 2.18 shows the ZnO morphology through FESEM. The morphology after 1 

hour of hydrothermal shows no formation of nanorods or nanoflowers and only 

irregular–plate structure growth. Liu et al., (2005) however, has stated that the 

different morphology occurs with different substrates. Furthermore, the time span of 

deposition will also influence the structure’s growth. 

 

 

 

Figure 2.18: ZnO surface shows morphologies through FESEM at different hours of 

hydrothermal process (a) 1 hour (b) 3 hours (c) 5 hours (faceup) (d) 5 hours 

(respectively) (Liu et al., 2005) 

a b 

c 
d 
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 In the research by Haque et al., (2012) on nanostructures of ZnO thin films 

using the uncovered hydrothermal method, it is charted that they ran the experiment 

for 60, 120 and 240 minutes. The formation of ZnO nanostructures were then 

analysed through FESEM. Figure 2.19 shows the differences of ZnO nanostructures 

based on the differences in hydrothermal times. Based on the figure, it is clearly 

shown that the hexagonal structure formed at the 4 hour mark during the 

hydrothermal process. Table 2.5 shows the summary of tests done with variations in 

time allocations with results from XDR, FESEM, I-V measurement and AFM. 

 

 
 

Figure 2.19: ZnO nanostructures based on different time reaction through FESEM 

(Haque etal., 2012) 
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Table 2.5: Summary of tests done with different variations in time (XRD, I-V 

Measurement, AFM and FESEM) 

 
XRD 

Researchers Parameter Results 
Ismail et al., (2005) Method : Hydrothermal 

Solution : Zn(CH3CO2)22H2O 

and NaOH 

Duration: 5-10 Hours 

Plane: (101),(002), (100) 

Shi et al., (2010) Method: Hydrothermal 

Solution: ZnSO4 and Na2CO3 

Duration: 6-12 Hours 

Figure 2.13 

Nagaraju et al., (2010) Method: Hydrothermal 

Solution: ZnSO4. 7H2O and 

NaoH 

Duration: 6-24 Hours 

Figure 2.14 

I-V Mesurement 
Amin & Willander, (2012) Method: Hydrothermal 

Solution: Zn Precursors 

Duration: 6-8 Hours 

Voltage Value = 1.52 V 

Lira-Cantu & Krebs, (2006) Method: Spin-Coated 

Solution:2-Propanol, ZnAC 

and Diethanolamine 

Duration:2 Hours 

Table 2.4 

AFM 
Nithya & Radhakrishnan, 

(2012) 
Method : Coated by chemical 

bath technique 

Solution:ZnCl2 and NaOH 

Duration:30-150 minutes 

Figure 2.15 

Zhitao et al., (2013) Method: Hydrothermal 

Solution: Zn(NO3)2, HMTA 

and Distilled water. 

Duration: 1-12 Hours 

Figure 2.16 

Kamaruddin et al., (2010) Method: Sol-gel hydrothermal 

Solution: Zn(NO3)2. 6H2O and 

C6H12N4 

Duration: 5 Hours 

Figure 2.17 

FESEM 
Chen et al., (2014) Method: Hydrothermal 

Solution: Zn(O2CCH3)2 and 

HMT 

Duration: 7 Hours 

Nanoflowers and nanorods 

Liu et al., (2005) Method: Solution Deposition 

Method 

Solution:Zn(NO3)2·6H2O and 

HMT 

Duration: 1-5 Hours 

Figure 2.18 

Haque et al., (2012) Method: Uncovered 

Hydrothermal 

Solutions: Zn(NO3)2·6H2O and 

HMT 

Duration:60-240 Minutes 

Figure 2.19 
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2.5 Effects of Different pH 

 

Besides the varying factors of solutions and time allocations used in the 

hydrothermal process, different pH levels in solutions do effect the ZnO 

structurestoo. This fact is strengthened by the results of the research done by Musić 

et al., (2005) on the size and properties of ZnO particles with effects from chemical 

synthesis. The Zn(CH3COO)2
.
2H2O is neutralised using hydrothermal techniques 

with different quantities of NH4OH solution. 

 The pH of NaOH was adjusted from 11,12,13 to 14 in the research by Zhao, 

Li, & Lou, (2014). The formation of structures were different when NaOH pH was 

added. The illustration of the formation can be seen in Figure 2.20. When a solution 

that is alkalic with the pH of 11 was used, the microstructures were of hexagonal 

prism in shape with a diameter of 1 µm. Structure disk that has a diameter of 5 µm 

are shaped using the solution that is of pH 12. The addition of pH 13 forms spherical 

structures with 3-5 µm in diameter. The pH 14 solution of NaOH produced well 

flowers in 3D microstructures that resembled petals.  

 

 
 

Figure 2.20: The formation of ZnO structures using the Hydrothermal technique in 

different pH NaOH solutions (Zhao et al., 2014). 
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Research done by Bhat, Shrisha, & Naik, (2013) using the solvolthermal 

method uses water and methanol as solvents. When using water as a solvent, the 

value of the alkaline solution is recorded at 8 and 12 pH, while when using methanol 

as a solvent, the solution of NaOH with 8 and 9 pH was produced. Even though the 

experiments were conducted with different pH values and solvents, the plane at (101) 

is still a favourite plane for ZnO. XRD results of this research are shown in Figure 

2.21. 

 

 

 
 

Figure 2.21: XRD patterns for ZnO nanostructures (a) water as solvent with pH = 8 

(b) water as solvent with pH = 12 (c) methanol as solvent with pH = 8 (d) water as 

solvent with pH = 9 (Bhat et al., 2013). 

 

 Based on the Figure 2.22, all the XRD patterns for all pH values are 

crystalline in nature with peaks corresponding at (100), (002), and (101) planes. The 

intensity of peaks increase with the increase of pH values. In this figure, the ZnO 

powder at pH 9 has the most crystalline structure because it has the most intense 

peaks. The intense of XRD peaks decreases at pH 10 and pH 11. 

a b 

c d 
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