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ABSTRACT 

 

 

 

Brain Computer Interface (BCI) is one of the alternatives available in situation 

when all other typical interface such as joystick is not an option.  This situation is 

generally true for users with severe motor impairment such as spinal injury who are 

unable to control wheelchair.  In this research, method to classify EEG signals for 

controlling wheelchair for severe impairment users is proposed.  The proposed system 

will be using a low cost consumer grade device, Neurosky Mindwave Mobile, to safely 

measured and acquired EEG data.  Two types of model are proposed, the first one is 

based on visualizing colour model, and the other one is imagining doing motor task.  

Colours chosen are cyan, black, green and yellow as this colour are proven to generate 

high brain activity.  For mental task, subjects are required to imagine doing motor task 

such as running, kicking, juggling, and signing a song.  Data acquired will then go 

through simplest pre-processing stage to obtain signal contain enough information for 

classification.  Classification implemented using linear classifier, Support Vector 

Machine as EEG brainwave is presumed to be linear.  Results by trying different 

combination of task were analyzed to deduct the best way to classify direction which 

might work for controlling wheelchair. 
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ABSTRAK 

 

 

 

Antara muka dengan menggunakan minda merupakan salah satu alternatif yang boleh 

digunakan sekiranya terdapat situasi dimana kesemua antara muka konvensional yang 

lain tidak dapat digunakan.  Situasi ini biasanya terjadi kepada pengguna dengan 

kemerosotan fungsi motor yang teruk seperti kecederaan tulang belakang dan tidak lagi 

mampu mengawal kerusi roda.  Didalam penyelidikan ini, kaedah untuk 

mengklasifikasikan isyarat EEG bagi mengawal kerusi roda dicadangkan.  Sistem ini 

akan menggunakan peranti termurah dengan gred konsumer, Neurosky Mindwave 

Mobile untuk mengukur dan mendapatkan data EEG dengan selamat.  Dua model 

berbeza dicadangkan, yang pertama akan melihat warna sebagai asas dan satu lagi 

dengan membayangkan seolah-oleh sedang melakukan perbuatan melibatkan kemahiran 

motor.  Warna yang dipilih adalah biru muda, hitam, hijau dan kuning kerana warna-

warna ini telah terbukti akan mengaktifkan aktivti minda.  Bagi tugas menggunakan 

minda sepenuhnya, subjek perlu membayangkan seolah-oleh sedang melakukan 

kemahiran motor seperti berlari, menendang, menjugel, dan menyanyikan lagu.  Data 

yang diperolehi seterusnya akan malalui pra-pemprosesan paling mudah bagi 

mendapatkan isyarat yang mengandungi cukup maklumat bagi tujuan pengkelasan.  

Pengelasan dilakukan dengan pengekelas linear, Support Vector Machine (SVM) kerana 

isyarat EEG secara amnya adalah linear.  Keputusan dengan menggabungkan pelbagai 

kombinasi tugas dianalisa bagi mengenalpasti cara yang terbaik untuk membezakan arah 

yang mungkin boleh diguanakan bagi mengawal kerusi roda. 
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CHAPTER 1  

 

 

 

INTRODUCTION 

 

 

 

1.1  Research background 

 

Human Computer Interface (HCIs) is common nowadays.  Interfaces such as 

joystick are usually used to steer electric wheelchair.  There is a huge demand, however, 

for HCI’s that can be used in situations where this typical interface is not an option.  

Brain Computer Interfaces (BCI) is one of the alternatives available to cater this 

problem. 

Input devices based on cues or actions generated from the head (e.g., facial, 

brain, gaze, tongue and bite) can be possible media for such users at all levels of injury 

[1].The use of brain waves is the best alternative for users with severe motor impairment 

(e.g. spinal cord injury) to control wheelchair since they are lack muscle control and in 

worst cases they are unable to control the movement of arms and legs.    To do so, 

electroencephalography (EEG) signal patterns can be used to capture the different 

pattern of brain waves. The EEG signal need to be acquired, classified and grouped into 

different actions such as forward, reverse, right and left. 

Electrical impulses from the nerves in the head can be recorded by using 

electroencephalography (EEG).  “Electro” refers to the electrical impulses, “Encephalo” 

refers to the head, and “gram” refers to the printed record.  Currently the most common 

used of EEG is to diagnose a number of conditions, including epilepsy, sleep disorders, 

and brain tumors.  However the scopes are now broadening with new technology 
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introduced and the necessary equipment are now become available with minimal cost.  

Thus, it is now possible to utilize the brainwave as one of the HCIs. 

 

1.2  Problem statement 

 

Standard joystick provided for electric wheelchair is unable to accommodate 

users with severe impairments.  According to Simpson [2] the disabilities may due to 

several reasons such as cerebral palsy or cognitive impairment.  Patient cannot use a 

power wheelchair because they lack of requisite motor skills and strength.  Fehr, 

Langbein and Skaar [3] concluded that “individuals indicate with severe disabilities 

which compromise respiratory drive and/or limit the dexterity of the head and hands 

have few options for steering a power wheelchair”.   

 

1.3  Aim and objective 

 

This project builds upon previous project - Enhancing Wheelchair Maneuverability for 

Severe Impairment Users [4].  Two modules were proposed in previous project in order 

to enhance wheelchair manoeuvrability.  The first one was the alternative hybrid input 

interface to issue control easily and second one is semi-autonomous driving assistance to 

assist the user’s mobility in difficult situation.   

The project’s aim is to expand the capabilities of the first one (alternative hybrid 

input interface) by introducing brainwave as hands-free interface (HFI).  This method 

however will not be used to continuously control the wheelchair because the user needs 

high level of concentration and if it is used in full–time operation, user will find it tiring 

and not practical.  Therefore, the signal from brainwave will be extracted and classified 

according to user’s intended direction only such as forward, reverse, left and right.  The 

rest will be taken care of by semi-autonomous driving assistance done in previous 

project. 
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The main aim of this system is to utilize the most economical means of extracting 

the brainwave so that it will be available as one of the HCI used to maneuver the 

wheelchair for severe impairment user. To achieve the aim of this research, the 

following objectives are formulated: 

 

i. Capture frontal EEG activities by a single-channel mobile EEG system. 

ii. Extract the raw EEG wave and record the data for further analysis. 

iii. Classified the brainwave according to the user’s intention to move the 

wheelchair. 

iv. Evaluate the performance of the system by analyzing the accuracy of the 

classification system. 

 

1.4  Scope of works 

This research will only concentrate to: 

i. Communicate wirelessly with NeuroSky Mindwave portable biosensor EEG 

via Bluetooth using ThinkGear Connection Driver (TGCD).   

ii. Build Graphical User Interface for signal acquisition and data recording 

using Visual C#. 

iii. Classification process will take place offline using SVM. 

iv. Comparing result to achieved best combination for BCI implementation. 
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1.5  Outline of thesis 

 

The contents of this Report are distributed by the following chapter: 

i. Chapter 1: Introduction. The first chapter contemplates this introduction. 

ii. Chapter 2: Literature Review.  Comprehensive and published works by 

accredited scholars and researchers in BCI and wheelchair maneuverability 

will be reviewed in this chapter. 

iii. Chapter 3: Methodology.  This chapter will cover in detail about devices used 

to obtain the raw EEG, data gathering method, classification procedures and 

step taken to analyze system performance.  

iv. Chapter 4: Result.  The fourth chapter is devoted result obtained. 

v. Chapter 5: Summary and recommendation for future research. 
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CHAPTER 2  

 

 

 

LITERATURE REVIEW 

 

 

 

2.1  Brain Activity Patterns 

In 1929, Hans Berger discovers that electrical activity can be recorded by amplifying 

signal captured (30 − 100𝜇𝑉) using electrodes placed on scalp.  He named it as 

Electroencephalogram or EEG, procedures to measure the brain activity over time by 

placing electrodes at certain area of the brain. Since his discovery, the research area in 

brain activity evolved and can be further divided as discussed in this section. 

Malmivuo, J. & Plonsey,R [5] classify the electrical activity that can be 

monitored in the brain into three group: spontaneous activity, evoked potentials and 

bioelectric events produced by single neurons. 

i. Spontaneous activity – called EEG.  Measured on the scalp and cycles 

through several different brainwave states (Beta, Alpha, Delta, Theta, 

Gamma) as further discussed in section 2.2. 

ii. Evoked Potentials – these are component of EEG which response to a 

given stimulus such as electric, auditory, visual, etc.  The signals usually 

are below the noise level.  A train of stimuli and signal averaging are 

required to improve the signal-to-noise-ratio so that it can be 

distinguished and identified.  Most of the time, Evoked Potential is also 
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known as Event Related Potential.  But there are time when this two 

should be properly distinguished as discussed in section 2.3. 

iii. Bioelectric events produced by single neurons – the spiking rate of single 

neurons can be recorded by placing microelectrodes implanted in the 

brain. 

 

There are two types of BCI system, invasive and non-invasive.  Invasive system 

used to record bioelectric events produced by single neurons, while non-invasive 

system used to record EEG signals whether it comes from spontaneous activity or 

evoked potentials.  To conclude, the BCI used related to the brain activity pattern 

can be summarized as Figure 2.1 below. 

 

Figure 2.1: Types of Brain Computer Interface used related to brain activity 

monitored. 

Brain 
Computer 

Interface (BCI) 
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Evoked 
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Event Related 
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2.2  Brainwave States 

 

There are several brainwave states operate simultaneously at a time with one of the 

states being dominant [6].  The waves are EEG component which occur 

spontaneously.  Relationship between brainwave states and level of consciousness 

are represented in Table 3. 

Table 2.1: Brainwave state and level of consciousness 

BRAINWAVE 

STATE 

FREQUENCY STATE OF MIND 

Beta  12 – 30 Hz 

- Hightened  state of alertness 

- Focus  

- Mind actively engaged 

- Eg : conversation, playing sports 

Alpha 7.5-12Hz 

- State of relaxed mental awareness 

- Reflection 

- Contemplation, Visualization, problem 

solving, accessing deeper level of creativity 

Theta  3.5 – 7.5 Hz 

- Deep relaxation, meditation 

- Creativity, stress relief , light sleep, 

dreaming 

Delta 0.5 – 3.5Hz 

- Deep dreamless sleep 

- Associated with healing 

Gamma 31Hz and up 

- High level information processing 

 

Mu waves occur in alpha wave frequency range, with the maximum amplitude 

recorder around motor cortex area.  This wave will be suppressed when a person 

move or have an intent to move [7].  It will be even suppressed when a person 

observes another person performing a motor action. 
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Sensorimotor Rhythm (SMR) can be detected by monitoring the brain activity 

recorded over the sensorimotor cortex which is modulated by actual movement, 

motor intention or motor imaginary.  These modulations are manifests by decrease in 

alpha (also known as Mu rhythm) and beta frequency bands accompanied by 

increase in the gamma frequency band.  It is also known as Event-Related 

Desynchronization (ERD). 

 

Figure: 2.2: Example of different type of brainwaves (Lotte, 2009) 
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Information gathered from these brainwaves make it possible to develop application 

related to the state of mind as listed out in Table 2.2 below. 

Table 2.2: Related work done associate with brainwave state. 

Researchers Summary 

Solis-Escalante 

et al(2009) 

[8] 

 

Analysis of sensorimotor rhythms for the implementation of a 

brain switch for healthy subjects 

*Device: Single channel dry sensor mobile EEG system from 

Neurosky. 

- Using ERD during a motor task and event-related 

synchronization (ERS) after the termination of the 

task. 

- Support Vector Machine (SVM) used as classifiers. 

  

Mak, Chan and 

Savio (2013) 

[9] 

Evaluation of Mental Workload in Visual-Motor Task: 

Spectral Analysis of Single-Channel Frontal EEG 

- Consistent increase in EEG activities in upper alpha 

band was induced by significant increase in mental 

workload. 

- First 30s show significant connection between EEG 

activities and mental workload.   

- Mental workload level associated with the task was 

more dominated by the number of sharp directional 

changes than the actual time taken to complete the 

task. 

Jimenez et al 

(2011) [10] 

Classification Of Cognitive States Of Attention And 

Relaxation Using Supervised Learning Algorithms 

- Low Beta, Medium Beta, High Beta, Alpha, Delta and 

Gamma were analyzed in this study.  

- Data extracted was classified using KNN, LDA, C4.5 

and Naïve Bayes . 
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Researchers Summary 

Hyunjin et al 

(2013) [11] 

Emotion Recognition Of Serious Game Players Using A 

Simple Brain Computer Interface 

- Using neurosky mindwave to extract delta, theta, 

alpha, beta and gamma frequency band power as well 

as attention and meditation levels. 

- Accuracy reached 66.04% to classify emotional states 

(activated, engaged, pleasant and neutral. 

Vourvopoulos, 

A, Liarokapis, 

F (2011) [12] 

Brain-Controlled NXT Robot: Tele-operating a Robot through 

Brain Electrical Activity 

- Use attention and meditation level obtained from 

Neurosky Mindset to control speed of robot. 

- Use Emotiv Epoc Headset to determine direction of 

robot. 

Chin-Teng Lin 

et al (2010) 

[13] 

A Real-Time Wireless Brain–Computer Interface System for 

Drowsiness Detection 

- Alpha and Theta Rhythms are used to detect 

drowsiness  

 

2.3  Evoked Potentials (EP) & Event Related Potentials (ERP) 

 

Both Evoked Potentials (EP) and Event Related Potentials (ERP) are time locked to a 

specific stimulus.  An Event Related Potentials (ERP) is the brain response when given 

specific stimulus such as sensory, cognitive or motor event [14].  Example of ERP 

component is P300 wave which surfaces as a positive deflection in voltage with delay 

around 250 to 500ms [15] when given stimulus. P300 is associated with process of 

decision making.  While Evoked Potentials (EP) is an electrical potential recorded from 

the nervous system following a stimulus.  Evoked potential (EP) tests measure the 

electrical activity of the brain in response to stimulation of specific sensory nerve 
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pathways [16]. Example of EP testing is Visual Evoked Potentials (VEP) which is 

effectively used to confirm a diagnosis of multiple sclerosis [17].  To conclude, EP can 

be considered associated with physical stimulus while ERP involve other aspect such as 

memory, expectation and attention, among others. 

 

Figure 2.3: P300 wave occur approximately 300ms after given stimulus [17].   
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Several works done by harnessing EP and ERP is shown in Table 2.3 below. 

Table 2.3: Related work done associate with EP and ERP 

Researchers Summary 

Farwell et al 

(2001) [18] 

Using brain MERMER testing to detect knowledge despite 

efforts to conceal  

- Using brain waves as lie detector. 

 

 
(a)                                  (b)           

Figure 2.3:  P300 wave showing (a) Suspect guilty and (b) 

Suspect not guilty 

- Suspect given known information (red), unknown 

information (green) and information related to crime 

(blue). 

- Suspect guilty if the blue and red lines closely correlate.   

 

Campbell et 

all (2010) 

[19] 

NeuroPhone: Brain-Mobile Phone Interface using a Wireless 

EEG Headset 

- A sequence of contact’s photo from address book was 

flashed . 

- P300 component will trigger if the flashed photo matched 

the person whom the user wishes to dial. 

Yuanqing Li 

et al (2013) 

[20] 

A Hybrid BCI System Combining P300 and SSVEP and Its 

Application to Wheelchair Control 

- P300 combined with SSVEP to produce a “go/stop” 

command to control wheelchair in real time. 
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2.4  Signal Acquisition 

The brain activities can be recorded by placing electrodes on the scalp.  The electrodes 

placements for EEG measurement follow International Standard Procedures 10/20 

System as shown in Figure 2.4. 

 

 

Figure 2.4: The standard 10/20 electrode placement system for EEG (McGill, EEG-

Introduction) 

 

Nowadays, there are variety selections of mobile EEG headset using dry electrodes 

and make it easier to design consumer based product by making use advancement in 

brainwave acquisition tools.  In order to collect brainwave data, Neurosky Mindwave 

Mobile is used in this research.  The sensor placement for Mindwave Mobile target FP1 

(as shown in Figure 2.4) because it offers EEG clarity since this is the forehead area with 

minimal hair.  The location stated also offers higher cognitive processes such as 

Attention and Meditation algorithms.  FP1 placement also enables blink detection given 

the proximity to the eye.   
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2.5  Data Measurement 

EEG band power values from Mindwave Mobile are indications of relative amplitudes 

of the individual EEG bands.  Usually, volt-squared per Hz (
𝑉2

𝐻𝑧
) unit is used to indicate 

power spectrum band.  However, since the value from mindwave mobile have 

undergone a number of complicated transforms and rescale operations from the original 

voltage measurements, there is no longer a simple linear correlation to units of Volts.  

 In their currently output form, they are useful as an indication of whether each 

particular band is increasing or decreasing over time, and how strong each band is 

relative to the other bands.  EEG power band are displayed in exponential values since it 

represent a power spectrum, which mean the lower-frequency bands (such as delta and 

theta) will be exponentially larger values than the higher-frequency bands (alpha and 

beta) 

Beside EEG band power values, raw EEG wave samples can also be obtained from 

Mindwave Mobile using Mindset Communication Protocol.  The output is sampled at 

512 Hz, which mean there are 512 data can be plot in one second.  The formula for 

converting raw values to voltage is: 

𝑟𝑎𝑤𝑉𝑎𝑙𝑢𝑒×(
1.8

4096
)

2000
        (2.1) 

This is due to a 2000 times gain, 4096 values range and 18V input voltage. 

2.6  EEG Analysis 

The most applied method for signal processing and analysis would be the Fourier 

Transformation and extraction of band power [21].  It is possible to separate different 

EEG rhythms by using an algorithm based on Discrete Fourier Transfrorm (DFT) as 

shown in equation 2.2.  .   
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𝑋𝑘 = ∑ 𝑥𝑛
𝑁−1
𝑛=0 𝑒−𝑖2𝑘𝜋

𝑛

𝑁        , 𝑘 = 0, … , 𝑁 − 1    (2.2) 

and the inverse of it 

𝑥𝑛 =
1

𝑁
∑ 𝑋𝑘

𝑁−1
𝑛=0 𝑒𝑖2𝑘𝜋

𝑛

𝑁       (2.3) 

Typically, the fast Fourier Transform (FFT) is used to compute the DFT and its 

inverse.  FFT is an algorithm that can compute the DFT and produce exactly the same 

result but much faster compared to evaluating the DFT directly.  This is the reason why 

FFT is much more preferred to analyze EEG signals.  

 

2.7  Classification Task 

There are several types of classification used in BCI research.  One of the common 

methods is Neural Network.  However, although neural network are great at nonlinear 

problems, EEG wave are generally presumed to be linear [22].  

 A linear classifier, Support Vector Machine, SVM was chosen for this research 

as it is the simplest classifier that might work.  

For pattern recognition mapping,  

𝑋 ⟼ 𝑌,          (2.4) 

𝑥 ∈ 𝒳          (2.5) 

𝑦 = 𝒴          (2.6) 

where  𝑥 ∈ 𝒳 is some object and 𝑦 = 𝒴 is a class label.  
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For a simplest case, 2 class classification, 

 𝑥 ∈ ℛ𝑛, 𝑦 ∈ {±1}.          (2.7) 

 For training and prediction model, input/output sets 𝒳, 𝒴.   

Training set (𝑥1,𝑦1,), … , (𝑥𝑚,𝑦𝑚,)       (2.8) 

For generalization, given a previously seen 𝑥 ∈ 𝒳, find 𝑦 = 𝒴.  In other word, want to 

learn classifier: 𝑦 = 𝑓(𝑥, 𝛼),         (2.9) 

Where 𝛼 are the parameters of the functions.  For example, to choose model from the set 

of hyperplanes in ℛ𝑛, then  

𝑓(𝑥, {𝑤, 𝑏}) = 𝑠𝑖𝑔𝑛(𝑤. 𝑥 + 𝑏)        (2.10) 

 

2.7.1  Linear Classifiers 

A linear classifier has the form  

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏         (2.11) 

In 2D the discriminant is a line as shown in Figure 2.5.  w is the normal and known as 

the weight vector while b is the bias. 

 

Figure 2.5: Linear classifier in 2D 

In 3D the discriminant is a plane as shown in Figur 2.6 and in nD it is a hyperplane. 
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Figure 2.6: Linear classifier in 3D 

For a K-NN classifier, it was necessary to `carry’ the training data.  For a linear 

classifier, the training data is used to learn w and then discarded.  Only w is needed for 

classifying new data. 

2.7.2  Support Vector Machine 

SVM maximize the margin around the separating hyperplane.  The decision function is 

fully specified by a subset of training samples, the support vectors as shown in Figure 

2.7.   

 

Figure 2.7: Support vectors in a linearly separable data 
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 𝑤𝑇𝑥 + 𝑏 = 0          (2.12) 

𝑐(𝑤𝑇𝑥 + 𝑏) = 0         (2.13) 

Since equation 2.12 and 2.13 define the same plane, we have the freedom to choose the 

normalization of w.   

𝑤𝑇𝑥+ + 𝑏 = +1         (2.14) 

𝑤𝑇𝑥− + 𝑏 = −1         (2.15) 

Choose normalization such that the resulting is as shown in equation 2.14 for positive 

and equation 2.15 for negative support vectors respectively.   Then the margin is given 

by 

𝑤

‖𝑤‖
. (𝑥+ − 𝑥−) =

𝑤𝑇(𝑥+−𝑥−)

‖𝑤‖
=

2

‖𝑤‖
       (2.16) 

 

Figure 2.8: Margin in SVM 

 

Figure 2.8 shows clearly how equation 2.12 until 2.15 can be visualize in a linearly 

separable data.  
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CHAPTER 3  

 

 

 

METHODOLOGY 

 

 

 

3.1  System Overview 

 

Method used in the classification of EEG signals to control wheelchair for severe 

impairment users is shown in Figure 3.1.   

 

 

 

 

 

 

 

 

Figure 3.1: Overall diagram showing method used in the classification of EEG signal to 

control wheelchair for severe impairment users. 
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EEG signal acquisition process will be done by using Neurosky Mindwave Mobile 

(M003).  Graphical User Interface is used to collect raw data from the Mindwave Mobile 

to determine whether the data obtained can be mapped out to classify different direction 

based on user’s intention.  Fast Fourier Transform will be used to obtain the frequency 

component in time domain signal from raw data.  Data obtained (both in frequency 

domain and power spectrum) will be tested offline in Phyton using SVM. The output 

will be classified to four directions: forward, backward, left and right based on user’s 

intention. 

 

3.2  EEG Signal Acquisition 

The main component of Neurosky Mindwave Mobile as shown in Figure 3.2 consist of 

EEG electrode which is placed at FP1 in 10/20 International Standard Electrode 

Placement System, and an ear clip to picks up environment noise generated from the 

body movement and other electrical devices such as laptop and power outlet.  The ear 

clip functions as a ground and reference in order for the Mindwave Mobile to filter out 

noise and focus on brainwave. 

 

 

 

 

 

 

 

Figure 3.2: Neurosky Mindwave Mobile. 
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This device was design to be connected with computer using Bluetooth and able 

to generate output as listed in Table 3.1 below.   

 

Table 3.1:  Neurosky Output Protocol 

No Output Description 

1 Raw EEG data Returns raw EEG data, sampled at 1HZ 

2 Delta Power The ”delta band” of EEG (0.5 - 2.75Hz). 

3 Theta Power The ”theta band” of EEG (3.5 - 6.75Hz). 

4 Low Alpha Power The ”low alpha” band of EEG (7.5 - 9.25Hz). 

5 High Alpha Power The ”high alpha” band of EEG (10 - 

11.75Hz). 

6 Low Beta Power The ”low beta” band of EEG (13 - 16.75Hz). 

7 High Beta Power The ”high beta” band of EEG (18 - 29.75Hz). 

8 Low Gamma Power The ”low gamma” band of EEG (31 - 

39.75Hz). 

9 High Gamma Power The ”mid gamma” band of EEG (41 - 

49.75Hz) 



 

22 

 

 

10 Attention eSense Returns the eSense Attention integer value, 

between 0 and 100 

11 Meditation eSense Returns the eSense Meditation integer value, 

between 0 and 100 

12 Poor Signal Returns poor signal level, 0 is good signal, 

200 is off-head state. 

13 Blink Strength Returns an integer value between 0-255, 

indicating the blink strength. 

 

Only raw data used and processed in this research.  An attention value was 

recorded as benchmark.  Data will only be recorded when attention value reach certain 

level. 

 

3.3  Data Recording 

 

Data for both model (imagine mental task and colour visualization) recorded for each 

participants in office with an uncontrolled environment.  Ten-second recordings of six 

people were gathered for data collection.  Each participant performed ten trials to 

ensure enough trials for both training and testing sets when doing cross-validation.  

Graphical User Interface (GUI) was design by using Visual C# to record the data.  

Table 3.2 listed the respective colour and imaginary task assigned to each direction. 
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Table 3.2: Type of Colour used for different direction 

Direction Colour Imaginary Task 

Forward Cyan Running 

Right Green Kicking 

Left Black Juggling 

Reverse Yellow Singing a song 

When GUI started, the first thing to check is whether the mindwave is connected 

or disconnected.  It will be only connected if Mindwave Mobile is on.  For signal 

strength, if the status is bad, probably headset is not worn and if poor means the 

distance might be too far.  GUI can only start recording if the signal is good. 

  

Figure 3.3: Settings in the GUI 
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Figure 3.3 shows setting tab in the GUI.  User can set how many cycle the data 

need to be recorded.  If it is set to two cycles or more, the data will be append into 

existing data with the same name.  After few times of testing, it is decided that only one 

cycle for each recording will be done because the recording process itself need a lot of 

concentration and tiring.  Interval can be set based on output of ‘Power Band’ (Delta, 

Theta, etc) because it gives one output every one second.  Literally, if it set to 10, the 

data will be recorded approximately for 10 seconds.  The last one is attention threshold.  

The value is set to15, means that data will start recording when subject’s attention level 

reach 15% or more.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Flowchart for data recording. 
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