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ABSTRACT 
 
 
 
 

Flowfield Dependent Variation (FDV) method is a mixed explicit-implicit numerical 
scheme that was originally developed to solve complex flow problems through the use 
of so-called implicitness parameters. These parameters determine the implicitness of 
FDV method by evaluating local gradients of physical flow parameters, hence vary 
across the computational domain. The method has been used successfully in solving 
wide range of flow problems. However it has only been applied to problems where the 
objects or obstacles are static relative to the flow. Since FDV method has been proved 
to be able to solve many complex flow problems, there is a need to extend FDV 
method into the application of moving boundary problems where an object 
experiences motion and deformation in the flow. With the main objective to develop a 
robust numerical scheme that is applicable for wide range of flow problems involving 
moving boundaries, in this study, FDV method was combined with a body 
interpolation technique called Arbitrary Lagrangian-Eulerian (ALE) method. The 
ALE method is a technique that combines Lagrangian and Eulerian descriptions of a 
continuum in one numerical scheme, which then enables a computational mesh to 
follow the moving structures in an arbitrary movement while the fluid is still seen in a 
Eulerian manner. The new scheme, which is named as ALE-FDV method, is 
formulated using finite volume method in order to give flexibility in dealing with 
complicated geometries and freedom of choice of either structured or unstructured 
mesh. The method is found to be conditionally stable because its stability is dependent 
on the FDV parameters. The formulation yields a sparse matrix that can be solved by 
using any iterative algorithm. Several benchmark stationary and moving body 
problems in one, two and three-dimensional inviscid and viscous flows have been 
selected to validate the method. Good agreement with available experimental and 
numerical results from the published literature has been obtained. This shows that the 
ALE-FDV has great potential for solving a wide range of complex flow problems 
involving moving bodies. 
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CHAPTER ONE 

INTRODUCTION 

 
 
 
1.1 INTRODUCTION 

Governing equations in fluid mechanics are a coupled system of nonlinear partial 

differential equations, which are difficult to solve analytically and to date except for 

some particular problems, there is no general closed-form solution to these equations. 

Thus, numerical approach is important in order to study and analyze the problems 

involving fluids. In fluid mechanics, the area that studies such an approach is 

Computational Fluid Dynamics (CFD), and its development began with the advent of 

the computer in the 1950s. CFD is important as a research and design tool today 

because the development of modern technologies such as high-speed transportation, 

electronics and biotechnologies also rely on the understanding of fluid mechanics. 

 Major basic techniques used in the solution of partial differential equations in 

general and CFD in particular are Finite Difference Methods (FDM), Finite Element 

Method (FEM) and Finite Volume Method (FVM). FDM is easy to formulate but 

because a structured mesh is required, it has difficulties with multi-dimensional 

problems that involve complex geometries. In contrast, complex geometries and 

unstructured meshes are easily accommodated by FEM but it uses large computer 

memory, thus slow for large problems and not well suited for turbulent flows. 

 FVM however, has an advantage in memory usage and speed for very large 

problems. This method is based on the discretization of the integral form of nonlinear 

partial differential equations (PDE) into finite control volumes and control surfaces. It 

is not limited to simple meshes as the finite volumes could take arbitrary shapes, thus 
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applicable to unstructured grids and complex geometries. Furthermore, the system of 

algebraic equations by finite volume methods enforces the conservation of all 

variables across the control surfaces. Therefore, the conservation of mass, momentum 

and energy are assured in the formulation itself while variables may not be 

continuously differentiable across shock or other discontinuities, which is an 

advantage for high-speed flow problems. 

 In CFD, the problems are usually solved by different techniques depending on 

the physical properties of the flows. For example, incompressible flows are analyzed 

using the pressure-based formulation but compressible flows are analyzed using the 

density-based formulation. In dealing with the domains, which contains flows of all 

speed with various physical properties, where the equations of state for compressible 

and incompressible flows are different, and where the transitions between laminar and 

turbulent are involved, very special and powerful numerical treatments are needed. 

The so-called Flowfield Dependent Variation (FDV) theory, which was first 

introduced by Chung (1999), has been devised toward resolving these issues. The 

theory introduced the so-called FDV parameters, which are dependent on the gradient 

of changes between flow variables (e.g. Mach number or Reynolds numbers) of local 

adjacent nodal points in the computational domain. Because of these parameters, the 

terms containing the fluctuation variables in the FDV equation automatically follow 

the current physical phenomena and adequate numerical controls (artificial viscosity) 

are automatically activated according to the current flow field physics. The numerical 

scheme of the FDV equation itself will then adjust accordingly for every node based 

on the flow properties of different regions that coexist in the computational domain. 
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 For the numerical simulation and analysis of objects that move within the flow, 

the objects usually are made static relative to the flow in the computational domain, 

similar to the wind tunnel experiment. However, there are many situations when the 

objects are needed to move or deform in the computational domain such as airfoil 

oscillations, wing flutter, and rotating propellers problems. This is one of the 

important issues in CFD applications, because the simulations of the flow around 

moving objects require special interpolation methods to handle the moving 

boundaries. Methods for moving computational mesh have been studied actively by 

the CFD community because of their engineering importance. One of the most 

popular techniques in solving moving boundaries problems is Arbitrary Lagrangian-

Eulerian (ALE), which combines Lagrangian and Eulerian description of a continuum, 

i.e. fluid and solid, in one numerical scheme.  

 The present research studies the combination of FDV method and ALE method 

in finite volume form. The finite volume form would make this method applicable to 

complicated geometries of moving bodies and by combining FDV with ALE method, 

it would give an accurate prediction of the interactions between fluid and the moving 

bodies. Therefore, it is expected that the proposed method will provide a new 

technique of resolving accurately the interaction of arbitrary bodies in arbitrary flow 

fields. 

 

1.2 PROBLEM STATEMENT 

Unified Computational Fluid Dynamics (CFD) method has been the aim of the CFD 

community in recent years. The need for a unified method arises because in CFD, 

different type of flow problems need different type of method to solve, but in reality 

different type of flow do exist in the same region. For example, low speed flow area 
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may coexists with high speed flow area such as in the cases of aircraft landing or take-

off configurations where the free stream Mach number is much less than the local 

Mach number around the high-lift devices of the aircraft. Flowfield Dependent 

Variation (FDV) method has been introduced to resolve these problems, however this 

method is currently limited to stationary bodies and has not yet been used to handle 

moving boundary problems. This research proposes to combine FDV method with 

moving boundary interpolation technique, ALE method for solving moving boundary 

problems because in some cases, deformation and motion of the bodies need to be 

taken into account in order to get accurate results without ignoring its physical 

properties as well as the existence of many different flow regimes within a flow field. 

 

1.3 RESEARCH PHILOSOPHY 

The philosophy of this research is to combine the advantages of FDV theory with a 

moving body technique, the ALE method, in order to develop a robust and versatile 

method, which could be used for the computation of flow fields with moving 

boundaries. The philosophy is driven by the need to consider the deformation and/or 

movement of bodies in a flow in which to date, the FDV theory has not been applied. 

The philosophy is based on obtaining the parameters of the FDV equations from the 

current flow field variables at each time step and every grid point which are used to 

adjust governing equations in each flow region according to the current flow field 

situation. The combination of ALE and FDV method will be used to handle the 

problems involving moving boundaries in a flow. Meanwhile, the finite volume 

method gives the ALE-FDV formulation, the capability to solve flow problems 

involving bodies with complicated geometries. 
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1.4 RESEARCH OBJECTIVES 

The objectives of this research are as follows. 

• To develop a technique which could be used for wide ranges of 

compressible-incompressible, viscous-inviscid, laminar-turbulent, and 

high-low speed flows for moving boundary problems. 

• To combine FDV method and a moving body interpolation technique, 

named ALE method for solving flow problems involving moving 

boundaries. 

• To apply the proposed method to solve three-dimensional inviscid and 

viscous flow problems involving moving boundaries by developing an 

algorithm and translate it into an efficient computer code. 

• To investigate such combinations that will satisfy the stability requirement 

as well as guarantee accuracy and efficiency. 

 

1.5 RESEARCH METHODOLOGY 

The methodology of this research will focus on the development of the proposed 

method based on numerical work. The numerical work will be carried out using 

traditional way of CFD, starting with pre-processing, then solving process, and ending 

with post-processing. Pre- and post-processing will be performed using commercial 

softwares, Gambit as mesh generation software and Paraview as visualization 

software. The solving process will be carried out using FORTRAN code on a UNIX 

based machine. The steps of algorithm development for the proposed method will be 

done as follows: 

a) The step begins by expanding conservative variables (i.e. density, 

momentum and energy) with respect to time in a special form of a Taylor 
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series. This expansion is done with the addition of implicitness parameters 

into the first and second time derivatives of that series. Next, the time 

derivatives are changed into spatial derivatives by substituting the Navier-

Stokes equations in that series to construct the FDV formulation. 

b) The general formulation of ALE-FDV method is derived by combining 

ALE technique with the FDV formulation. The formulation is then 

discretized using appropriate finite volume method.  

c) Strategies to solve the ALE-FDV formulation are then constructed and 

translated into computing algorithm. This algorithm is then written in 

FORTRAN language as the solver code.  

d) Then, selected stationary body in one-dimensional problems flow is 

solved using the developed solver and numerical as well as experimental 

data available in the literature is used to validate the solver.  

e) If the solutions of the stationary body problems are valid, several one-

dimensional moving boundary problems are selected and solved using the 

complete solver for the validation and analysis process. 

f) Finally, ALE-FDV method is applied to two and three-dimensional flow 

problems by repeating steps b to e. 

To summarize, the following flow chart shows the overall methodology of this 

research. 
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Figure 1.1 Flow chart of research methodology 
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1.6 SCOPE OF RESEARCH 

This study focuses on developing a new numerical scheme that combines the FDV 

method and ALE method. The proposed method is spatially discretized using 

appropriate finite volume method. A flow solver, called as ALE-FDV solver is 

developed by translating the discrete formulation into an algorithm. In order to 

validate the scheme, the developed solver is applied to several benchmark one, two 

and three-dimensional flow problems. The flow problems involving moving mesh and 

fluid-structure interaction in inviscid or viscous fluid are also in the scope of this 

work. 

 

1.7 THESIS ORGANIZATION 

This thesis is organized by dividing it into five chapters. This chapter, which is the 

first chapter, gives an introduction and background of FDV and ALE method as well 

as demonstrates the importance of extending FDV method into the application of 

moving boundaries and fluid-structure interaction problems. Problem statements, 

research philosophy, objectives, methodology and scope of the research are also 

explained in the first chapter. Second chapter presents a review of previous studies 

and works that are relevant to this research. The review covers past and recent works 

related to the FDV and ALE methods as well as other works involving moving 

boundaries and fluid-structure interaction applications.  

 The third chapter explains the derivation of the ALE-FDV method and the 

technique to discretize it with finite volume method. The strategies to apply ALE-

FDV method and the algorithm used in this research are also explained in detail in the 

third chapter. The fourth chapter demonstrates the applicability of ALE-FDV method 

in solving various flow problems involving moving boundaries. Discussion on the 
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numerical results and verification of ALE-FDV method by comparing with previous 

relevant works are discussed in the same chapter. Finally, the fifth chapter concludes 

this research works and findings, highlights the main contributions of the research and 

recommends future works on improving the ALE-FDV method. 
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CHAPTER TWO 

LITERATURE REVIEW 

 
 
 
2.1 INTRODUCTION 

Interaction between a solid and a fluid is a common phenomenon either in nature or 

induced by human activities. Such interactions happen in various disciplines and at 

different scales, which can be modeled through experiments or simulated using 

computational method. In a modern world, computer simulation has become an 

important tool because it provides an economical approach as well as additional 

insight to the analysis of such fluid interactions.  

 The numerical approach in fluid mechanics, Computational Fluid Dynamic 

(CFD), has been developed in the 1950s and since then has been extended by 

researchers in order to allow investigation on various complex fluid interactions. CFD 

is being used extensively in many industrial sectors and is advancing rapidly as more 

complex fluid interaction become available and simulation on larger scale is more in 

demand today.  

 As the flow simulation become larger and complex, development of more 

accurate and efficient numerical scheme has become significant. One of the numerical 

approaches called Flowfield Dependent Variation (FDV) method has been developed 

towards resolving complex flow interaction problems. In this chapter, a review on the 

development and application of FDV method and other similar method will be 

presented. At the same time, many fluid and solid interaction problems require 

computation of structural movement, hence require special grid interpolation 

technique for deformable mesh to produce accurate solutions. This chapter also 
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presents an overview on the development and application of such grid interpolation 

techniques. This chapter will be ended by a summary of all reviews and conclusion on 

the advantages and drawbacks of numerical schemes used in the reviewed literatures. 

 

2.2 UNIFIED CFD METHOD 

Compressible flow field solvers use density as their primary unknown variable while 

artificial compressibility method (Chorin, 1967) and pressure correction method 

(Harlow and Welch, 1965) are the two approaches that have been widely used as 

incompressible flow solvers. The problem with compressible flow solver is that some 

areas of the flow would be incompressible, thus make it unsuitable for the 

compressible flow solver alone to compute the entire flow field. Since the solution of 

incompressible flow can be obtained as part of the compressible flow formulation, the 

method of extending the function of compressible flow solver has been actively 

studied (Wesseling, 2000). 

 Either explicit or implicit time stepping scheme can be used to solve the 

governing equations numerically. However, an explicit scheme needs to satisfy the 

stability condition in order to produce solutions of the problems. In particular, the 

stability condition, known as Courant-Friedrich-Lewy (CFL) condition dictates the 

Courant number (i.e., ratio of physical propagation speed to numerical propagation 

speed) must be less than unity (Courant, Friedrichs and Lewy, 1967). In other words, 

the time needed for the numerical information to propagate in a spatial distance ∆x 

must be smaller than the time of physical information propagation in that same 

distance. Moreover, the time needed for the numerical information to propagate will 

become much smaller if acoustic effects are present in low-subsonic flow. When this 

happens, a system of governing equation will become stiff, i.e. this system requires 
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many small steps to be solved. Moreover, often-wrong results are obtained when a 

stiff system of equations are solved by carrying out very large number of small time 

steps as reported by Turkel, Fiterman and Van Leer (1993) and Guillard and Viozat 

(1999). 

 In order to resolve the problem, some numerical schemes such as 

preconditioning techniques are developed. This scheme alleviates the problem by 

modifying the governing equations artificially by multiplication of the time-derivative 

with a specific preconditioning matrix. While the scheme resolved stiffness and 

accuracy problem for stationary solutions, the time accuracy is lost due to the 

modification of time derivatives in the governing equations. Therefore, to compute 

unsteady flows, the preconditioning method has been combined with dual time 

stepping method in order to restore the accuracy in time (Weiss and Smith, 1995). It 

has been shown that dual time stepping is more efficient than physical time stepping 

used by the original compressible flow solver. However, because of the large number 

of pseudo-time steps required for each physical time step, the efficiency lags behind 

incompressible flow solvers (Wesseling, 2000). As remarked by Paillére, Clerc, 

Viozat, Toumi, and Magnaud (1998), implicit time stepping scheme must be used if 

the explicit time stepping scheme requires a very small time step to satisfy the 

stability condition.  

 A different approach has been taken by Yoon and Chung (1996), where they 

introduced the so-called mixed explicit implicit generalized Galerkin spectral element 

method (MEI-GG-SEM). Unlike traditional methods, the so-called flow field 

dependent parameters detect the physical properties of the fluid and then 

automatically apply adequate computational requirements for compressible and 

incompressible flows. They aimed for the direct numerical simulation of turbulence 
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flow where mesh refinement were carried out adaptively until shock waves were 

resolved in which the traditional turbulence model is no longer needed. 

 Complexities of fluid phenomena are not only due to the co-existence of 

compressible and incompressible flow, it also includes transition to turbulence, 

relaminarization, flow separation and transition between viscous and inviscid flow 

regions. Instead of focusing only on the incompressible and compressible flow 

mixture problems, a new approach called the flow field dependent mixed explicit-

implicit (FDMEI) method has been developed in attempt to resolve the complexities 

of fluid phenomena in all speed flow regimes (Chung, 1997a, 1997b; Yoon, Moon,  

Garcia, Heard, and Chung, 1998). Based on the flowfield dependent variation (FDV) 

theory, this method uses FDV parameters which depend on the change of either Mach 

numbers, Reynolds numbers, Peclet numbers, or Damkohler numbers at adjacent 

nodal points to detect physical properties of each nodal points. Peclet number or 

Damkohler number is used for high speed compressible flow problems such as in 

hypersonic flow or chemically reactive flow problems such as in combustion. Peclet 

number is defined as the ratio of convective to diffusive strength (Wesseling, 2000) 

while Damkohler number defined the relationship between chemical reaction and 

flowfield transport phenomena such as convection, diffusion or heat conduction 

(Chung, 2002).  

 Appropriate numerical schemes are provided to each nodal point if necessary 

by calculating and updating the values of these parameters at each time step. Yoon et 

al. (1998) used FDMEI method to compute flow over a flat plate, supersonic flow on a 

compression corner, three-dimensional duct flow, and lid-driven cavity flow. Their 

results showed good agreement with experimental and other published numerical 

results. Wide range of validation results proved the capability of FDV theory to 
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resolve mutual interactions and transition between viscous/ inviscid, compressible/ 

incompressible, and laminar/ turbulent flows. 

 

2.3 FLOWFIELD DEPENDENT VARIATION (FDV) METHOD 

The original idea of FDV theory began from the need to address the physics involved 

in shock wave turbulent boundary layer interactions (Chung, 1999). In this situation, 

transition and interactions of inviscid/ viscous, compressible/ incompressible, and 

laminar/ turbulent flows constitute not only the physical complexities but also 

computational difficulties. This is where the very low velocity in the vicinity of the 

wall and very high velocity far away from the wall co-exist within the domain of 

study. Implicitness parameters were initially introduced in the expansion of 

conservative variables in the Taylor series up to the second order time derivatives. 

The series are then used in the Navier-Stokes system of equations so that these 

parameters could be used in solving the flow field interaction. These parameters are 

characterized into two categories, namely first and second order convection/diffusion 

parameter. In particular, the first order parameters ensure the solution accuracy and 

second order parameters assist in the solution stability, and both serve as physical 

parameters to allow the transitions and interactions of different types of flow to be 

automatically accommodated. 

 Moreover, flowfield-dependent variation formulations have been addressed by 

Schunk, Canabal, Heard, and Chung (1999) as a strategy toward unification of finite 

difference, finite element, and finite volume methods. All the physical phenomena are 

taken into account in FDV equations, so that spatial discretization will not dictate the 

physics, but rather are no more than simply the options on how to discretize between 

adjacent nodal points or within an element. On the other hand, the FDV parameters 



 15 

introduced in FDV equations play significant roles as adjusting the governing 

equations (hyperbolic, parabolic, and/or elliptic), resolving various physical 

phenomena, and controlling the accuracy and stability of the numerical solution. The 

theory is verified by a number of example problems addressing the physical 

implications of the variation parameters, which resemble the flow field itself. Using 

finite difference method as spatial discretization of FDV equations, Schunk et al. 

(1999) showed numerical results of three-dimensional triple shock/boundary layer 

interaction matched with experimental results and finite difference calculation using 

k-ε model as reported by Garrison, Settles, and Hortsman (1996), thus indicated that 

FDV theory was robust enough to adequately model complex flow phenomena. 

 FDV theory also has been applied in high-energy astrophysics problems, 

particularly to those containing shock waves and high-speed flow. Richardson, Chung, 

Karr, and Pendleton (2000) proposed the FDV theory as a method to accurately solve 

very high-speed flow problems and capturing relativistic shocks. Instead of Mach 

number, Lorentz factor, which describe the velocity of an object relative to the speed 

of light (Corcoran, 2010), is used to dictate the FDV convection parameters. The 

theory has been applied in relativistic hydrodynamic equations to solve relativistic 

shock tube problems. Furthermore, they also presented FDV method for solving 

general relativistic non-ideal hydrodynamics (Richardson and Chung, 2002a). Non-

ideal flows are where radiation, magnetic forces, viscosities, and turbulence play an 

important role. Relativistic effects become pronounced in such cases as jet formation 

from black hole magnetized accretion disks, which may lead to the study of gamma-

ray bursts. Richardson and Chung (2002b) implemented the FDV theory to obtain 

general relativistic astrophysical flow and shock solver (GRAFSS) which is a multi-

dimensional finite element code based on the FDV theory capable of solving complex 
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geometries. Richardson, Cassibry, Chung, and Wu (2010) have demonstrated the 

capability of the finite element form of FDV method in physical applications that have 

widely varying spatial and temporal scales. The use of a finite element formulation 

also adds capabilities such as flexible grid geometries and exact enforcement of 

Neumann boundary conditions. The author presented the results of 

converging/diverging nozzle, which contains both incompressible and compressible 

flow in the flow field over a range of subsonic and supersonic regions. The results 

showed that the finite element formulation is stable and accurate for a range of both 

Mach numbers and Lorentz factors while its accuracy are comparable to other 

methods and slightly better than Total Variation Diminishing (TVD) method. 

 Heard (2007) utilized the FDV parameters for adaptive mesh refinements. FDV 

equations were solved using an element-by-element GMRES solver with the elements 

grouped together to allow the element operations to be performed in parallel. Besides 

dictating the physical properties of the flow field, FDV parameters are used as error 

indicators for a solution-adaptive mesh. The finite element grid is refined as dictated 

by the magnitude of FDV parameters. This method is comparable to those where the 

grid is refined using primitive variable error indicators, and requires less 

computational time to generate the grids. The use of parallel processing in performing 

some element operations is shown to reduce the wall clock time by approximately 40 

percent in going from one to eight processors. The algorithm's ability to solve a flow 

field containing various kinds of interactions is demonstrated by solving a variety of 

fluid flow conditions ranging from low-speed incompressible flow to compressible 

flow containing shock waves, and the refinement of finite element grid to further 

resolve discontinuities in the flow field have been successful. 



 17 

 FDV parameters were modified by Megahed, El-Mallah, and Girgise (2006) to 

improve the understanding of physical meaning of the variation parameters. The 

modified method, MFDV method was applied to the Euler equation with standard 

Galerkin finite element method as its spatial discretization. Two well-known cases of 

supersonic internal flow; shock reflection problem and compression corner problem 

were solved and the results were shown to have a good agreement with other 

published literature. Furthermore, three other cases of supersonic internal flow; half 

wedge in supersonic wind tunnel, extended compression corner problem, and circular 

arc problem also has been solved. All of the numerical solutions are comparable with 

analytical and numerical solutions obtained by other established methods, thus 

showed the ability of the MFDV method to solve problems involving supersonic 

internal flow. 

 FDV theory also has been combined with higher-order compact method (Hirsh, 

1975; Lele, 1992; Mawlood, Basri, Asrar, Omar, Mokhtar, and Ahmad, 2006; Elfaghi, 

Asrar, and Omar, 2010) which is generally a technique that use fewer number of nodal 

points to obtained high order finite difference approximation as opposed to classical 

finite difference method. Originally developed by Elfaghi et al. (2010), Higher-Order 

Compact Flowfield-Dependent Variation (HOC-FDV) method used implicit fourth 

order compact differencing Hermitian (Pade-type) scheme to approximate the spatial 

derivatives in FDV equations. HOC-FDV method has been applied to solve up to two-

dimensional problems such as Sod-shock tube problem, interaction of two-blast shock 

waves, and flow past NACA0012 airfoil (Elfaghi, Asrar, and Omar, 2009a). The same 

method also has been used in solving full Navier-Stokes equations such as nonlinear 

viscous Burgers equation and transient Couette flow (Elfaghi, Asrar, and Omar, 

2009b, 2010). From the literatures, HOC-FDV method has shown the ability to 
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operate in various flow regimes without using any special treatments due to the 

capability of the FDV method. Moreover, HOC-FDV is more efficient than FDV 

method as well as other conventional high-order methods because less stencil points is 

required to obtain solutions with the same accuracy. 

 

2.4 FLOWS WITH MOVING BOUNDARIES 

Moving boundary problems in CFD applications are the cases where boundaries of the 

bodies (or obstacles) in a flow are moving and/or deforming. For example, airfoil 

oscillations, wing flutter, accelerated/decelerated aircraft, rotating propellers, fast 

turning cars, reciprocating engines, suspension bridges vibration, flapping wings, 

pulsating blood vessels, etc. Some movements of these boundaries are relatively small 

but when they undergo large displacements, rotations or deformations, the effects of 

fluid-body (or fluid-structure) could not be ignored. The need to solve such kind of 

flow problems using dynamic mesh (i.e. the moveable/deformable body-conformal 

grids system) has attracted many researches to develop various kinds of moving grid 

interpolation techniques. One of the body-conformal moving grid interpolation 

technique that is widely used in fluid and solid mechanics is Arbitrary Lagrangian-

Eulerian (ALE) method. However, simulation of largely deformable objects using 

dynamic mesh is quite unstable and requires costly grid generation methods. 

Therefore, such simulations are widely performed using stationary mesh (non-

conformal grid system) with the so-called Immersed Boundary (IB) method (Peskin, 

1977; Mittal and Iaccarino, 2005). 
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2.4.1 Arbitrary Lagrangian-Eulerian (ALE) Method 

Numerical algorithms using ALE method combine two classical kinematic 

descriptions of continuum (i.e. fluid and solid) mechanics; Lagrangian and Eulerian 

description. Lagrangian algorithms, in which each nodal point in the computational 

domain follow the movement of associated structures, are mainly used in solid 

mechanics. In contrast, Eulerian algorithms allow the continuum to move with respect 

to the fixed computational grids, thus widely used in fluid mechanics. By combining 

both algorithms, the computational grid can follow the moving objects in a 

Lagrangian way, while the fluid is still seen in an Eulerian manner (Donea, Huerta, 

Ponthot, and Rodríguez-Ferran, 2004).  

 ALE method was originally introduced in finite difference formulation (Hirt, 

Amsden, and Cook, 1974), and has been successfully implemented in finite volume 

and finite element formulations. Guardone, Isola, and Quaranta (2011) discretized the 

ALE formulation of Euler equations with finite volume method. They adopted edge-

swap technique to improve the quality of triangular or tetrahedral cells in the 

deformation mesh and thus allow the boundaries to encounter large displacement. The 

technique is applied on translating and oscillating NACA 0012 airfoil case in which 

the mesh undergo large deformation. 

 Habchi, Russeil, Bougeard, Harion, Lemenand, Ghanem, Valle, and 

Peerhossaini (2013) developed a fluid-structure interaction solver using finite volume 

approach. Both governing fluid flow equation and structural displacement equation 

are discretized using finite volume method. ALE formulation is used to handle 

displacement of fluid-structure interfaces in the deforming mesh. Some benchmark 

two-dimensional problems such as lid-driven cavity with flexible bottom edge, elastic 

flap deformation induced by Von Karman vortex and two flaps in pulsating flow 
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problem have been used to validate the solver. Through the combination of Pressure 

Implicit with Splitting of Operators (PISO) algorithm and Semi-implicit Method for 

Pressure-Linked Equations (SIMPLE) algorithm to solve fluid governing equation, 

they obtained accurate solutions by using large time steps. 

 Feistauer, Kučera, and Prokopová (2010) discretized the ALE form of 

compressible Euler equations using discontinuous Galerkin finite element method 

(DGFEM). Semi-implicit time discretization is used to avoid CFL-stability constraint 

thus allowing large time step to be taken for low Mach number problem. Then, 

Feistauer, Hasnedlová-Prokopová, Horáček, Kosík, and Kučera (2013) extended the 

method for viscous flow problems. They employed DGFEM as the discretization 

technique on ALE form of compressible Navier-Stokes equations. They showed that 

based on the validation of several numerical tests, the method can be applied to the 

fluid flow problem involving elastic structures. 

 Sun, Zhang, and Ren (2012) improved the characteristic-based split (CBS) 

scheme in ALE framework by reformulating the previous ALE-CBS scheme. 

Standard Galerkin finite element method is used for spatial discretization of governing 

flow equation while spring analogy method proposed by Blom (2000) is used in the 

moving mesh strategies. The improved ALE-CBS scheme is applied to the broken 

dam problem and the flow around oscillating circular cylinder. They found that the 

improved ALE-CBS scheme demonstrates better accuracy even using coarse mesh 

with large time step and is unaffected by mesh velocities in contrast to the former 

existing ALE-CBS scheme. 

 Implementation of ALE method requires re-meshing formulation to update the 

computational grids/meshes at each time step while at the same time avoiding severe 

mesh distortion and mesh entanglement. Due to the influence of re-meshing technique 
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in the stability and accuracy of ALE method, many researches have enforced 

Geometric Conservation Law (GCL) when using this method. 

 The concept of GCL was derived by Thomas and Lombard (1979) in order to 

resolve the difficulties with maintaining global and local volume conservation due to 

the boundary-conforming coordinate transformation applied on flow computation 

involving moving boundaries. During such computation, the magnitude of 

transformation Jacobian (used to map variables in Cartesian coordinate system to a 

boundary-conforming curvilinear coordinate system) changes as the geometries of the 

boundary change in time. They found that, unsatisfying conservation of local volume 

due to such changes leads to erroneous solution. Therefore, GCL was addressed as a 

way to govern the changes so that it will not violate the local volume conservation. 

The concept was further investigated by (Guillard and Farhat, 2000) for solving time-

dependent governing equations on dynamic mesh. They then introduced Discrete GCL 

(DGCL) as a useful guideline to evaluate geometric quantities involving grid positions 

and velocities. The law states the evaluation of such quantities should be conducted in 

a way that the numerical scheme used for integrating the flow equations must preserve 

a uniform flow field, independently of the mesh movement. 

 Since then, many researchers have studied the impact of GCL on solution 

accuracy. Thomas and Lombard (1979) implemented the GCL for density-based finite 

difference schemes on structured grids while Shyy, Udaykumar, Rao, and Smith 

(1996) implemented the GCL for pressure-based finite volume schemes. Lesoinne and 

Farhat (1996) developed first order time accurate scheme preserving the GCL using 

density-based ALE finite volume and finite element schemes on unstructured grids 

while Koobus and Farhat (1999) introduced second-order time accurate density-based 
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ALE finite volume schemes. Most studies show that not satisfying the GCL leads to 

wrong solutions or spurious oscillations in the solutions.  

 Mihara, Matsuno, and Satofuka (1999) presented an iterative finite-volume 

approach for unsteady coupled system of fluid and body motion in compressible 

flows. Similar to the dual-time or pseudo-time concept, inner iteration was carried out 

at every time step in order to satisfy the geometric conservation laws and to ensure 

accuracy. Gun-tunnel simulation was carried out using the method and based on the 

results, the method always satisfies the conservation laws independent of the CFL 

condition. The approach was further improved by using solution-adaptive moving-

grid method (Sato, Matsuno, Nakagawa, and Satofuka, 2001). The improved version 

was validated by comparing numerical solutions of cylindrical implosion problem. It 

was proven to be more accurate than the solutions of uniform grid. On the other hand, 

Yamakawa and Matsuno (2004) presented the iterative finite volume method that 

includes algorithm for eliminating and merging cells of unstructured moving grids. 

The new method was developed for compressible flows and it was applied to a gun 

tunnel problem and two bodies docking and separating in a supersonic flow problem. 

 Visbal and Gordnier (2000) extended the HOC schemes for the solution of 

Navier-Stokes equations on moving grids. The authors used up to sixth order accurate 

Pade-type compact finite difference scheme combined with low-pass filtering 

technique while carried out time-marching using explicit (fourth order Runge-Kutta) 

and implicit (Newton-like sub iterative Beam-Warming scheme) time-integration 

method. Transformation Jacobian is evaluated at each time step using GCL in order to 

ensure free stream preservation. The extended scheme is applied on two and three-

dimensional deforming ’wavy’ mesh to investigate its accuracy. The performance of 

this scheme was also demonstrated by the simulation of viscous flow past a rapidly 
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pitching NACA 0012 airfoil and the simulation of aeroelastic interaction arising from 

viscous flow past over a flexible panel. The simulation of pitching NACA 0012 airfoil 

was carried out using rotating (the grid rotates as the airfoil pitched at some angle) 

grid and deforming (the grids near airfoil boundaries distorted as the airfoil pitched at 

some angle) grid. Good agreement of both results indicated the robustness and 

versatility of this method. Furthermore, the resulting pressure field due to interaction 

of boundary layer and flexible panel exhibit acoustic radiation while the same 

phenomena does not arise in non-interacting case, thus showing the importance of 

computing fluid-structure interaction to capture the real physics behind such 

phenomena. 

 Kamakoti and Shyy (2003) state that GCL have been proven to be a key 

component of Computational Aeroelasticity problems specifically involving 

deforming grids. They developed a computational procedure for performing three-

dimensional aeroelastic computations in a turbulent flow. Semi-implicit Method for 

Pressure-Linked Equations (SIMPLE) algorithm is used to solve the flow field, while 

the structure of deforming body is modeled by finite element. Multi-block structured 

grid with moving grid capability based on master/slave concept and transfinite 

interpolation concept was applied on the flow field while GCL is used to satisfy the 

conservation of discrete volumes. Simulation of AGARD 445.6 wing configuration in 

turbulent flows was performed to validate their method and it was shown that the 

results of aerodynamic parameters agree with the theory.  

 

2.4.2 Immersed Boundary (IB) Method 

Immersed boundary (IB) methods is a class of methods that simulate flows on 

computational grids that do not conform to the object’s (or obstacle’s) boundaries. 
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Originally developed by Peskin (1977) to simulate cardiac mechanics associated with 

blood flow, the method has gained popularity in solving flow problems with moving 

boundaries due to the use of stationary, non deforming Cartesian grid. IB is 

represented as a field of force in flow computation, unlike body-conformal grid, 

imposing boundary condition is not straightforward. Boundary condition is imposed 

indirectly through modification of governing equation by introducing source term (or 

forcing function) that will produce the effect of IB. Two kinds of approaches are used 

in that modification; continuous forcing and discrete forcing approach. The first 

approach is well suited with immersed elastic boundaries but posed accuracy and 

stability problems with immersed rigid boundaries, thus widely applied in biological 

studies where elastic boundaries abound. The second approach is much more difficult 

in terms of implementation of moving boundaries and require large computation grids 

for flow with high Reynolds number but enables greater accuracy near IB (Mittal and 

Iaccarino, 2005). 

 IB method has been widely used for incompressible flow simulation due to its 

advantages on elastic boundaries and low Reynolds number computation. Kim (2001) 

introduced the IB method based on a finite volume approach on a staggered grid and 

solved using fractional-step method. They introduced mass source and discrete-time 

momentum forcing into continuity and momentum equation of incompressible viscous 

flow, respectively. Mass source is applied at cell-center, while momentum forcing is 

applied in a staggered fashion on immersed boundaries or inside the body to satisfy 

mass continuity and no-slip boundary condition. It is shown that with the mass source 

included near immersed boundary, nonphysical solution especially near stagnation 

points is avoided and deterioration of numerical solution as Reynolds number increase 

is suppressed. The method has been further developed by Kim and Choi (2006) using 
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