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Abstract 
 

 

The non-contact process of Electrical Discharge Machining (EDM) eliminates 

cutting forces, and is regarded as the most effective process to machine 

polycrystalline diamond (PCD). However, the EDM plasma temperature of up to 

12000K in the EDM process will cause damage to the machined surface. With 

emphasis on the cutting tool product, this study focuses on the analysis of the PCD 

surface damage caused by the Electrical Discharge Grinding (EDG) process and its 

optimization strategies. In addition to the graphitization and residual stress, several 

issues that assumed to be thermal damage indications caused by the process are 

highlighted. These include the formation of porous surfaces, cutting edge undercuts 

and some cosmetic aspects at the WC-PCD interface. It was found that the high 

temperature generated during erosion resulted in the partial conversion of diamond to 

graphite phase under the surface. Higher finishing in-feed proved to produce better 

surface quality by means of lower surface graphitization and lower tensile residual 

stress. The comprehensive discussion undertaken includes the theoretical modelling 

of the process, together with the validated results. The structural difference and 

residual stress between PCD manufactured with EDG and conventional grinding 

have been compared. Performance tests have also been conducted at the end of the 

methodology to evaluate and validate the models.  
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Chapter 1 Introduction 
 

 

 

 

1.1.Research Background 

 

 

Known as a hard and brittle material, polycrystalline diamond (PCD) is produced 

from diamond particles that are sintered together under high temperature and high 

pressure conditions (at temperatures of 1670K to 1770K and pressures of 5GPa to 

6GPa) in the presence of a catalytic metal [1-4]. PCD is becoming popular because 

of its excellent physical characteristics. It has been applied widely in die and cutting 

tool applications due to the high hardness, good thermal conductivity, high strength, 

and chemical resistance to most corrosive environments [5, 6]. Until 1996, 

applications of PCD tools were monopolized by the automotive sector due to the 

limitations of the process, which is efficient only in forming simple shapes [1]. 

Conventionally abrasive grinding processes have been established as the fabricating 

method for PCD cutting tools. Although better surface roughness can be obtained by 

conventional grinding, low grinding efficiency and large grinding forces induced 

during the process are inherent problems that limit the wide application of PCD 

tools. The non-contact process of Electric Discharge Machining (EDM) eliminates  

cutting forces, and is regarded as the process that will result in a better application by 

means of process flexibility with lower production costs [6]. For this reason, 

nowadays, further investigation on EDM of PCD is becoming extensive, and EDM is 

expected to be the best strategy in integrating the complicated geometric shape and 

superior properties of PCD for optimized process characteristics. Figure 1 shows an 

example of complicated tools shape that demand high process flexibility. 
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Figure 1: Example of special geometry drill-bit commercially available in 

machining of fibre reinforced plastic material [7] 

 

 

However, the  EDM plasma with the temperature of up to 12000K in the EDM 

process will cause damage to the machined surface [1]. Erasmus et al. [8] reported 

that the PCD material would be subjected to reduction in compression stress when it 

was repeatedly annealed to about 1070K. This might due to the graphitization 

process catalysed by the cobalt (and typically has an onset temperature of around 

1020K) [8]. The effect is expected to be more dominant for the EDMed surface, 

since the temperature is comparatively much higher than the annealing temperature.  

 

 

The damaged surface or surface integrity associated with the thermal effect include 

graphitization and residual stress. This surface damage is usually correlated with the 

zone termed the Heat Affected Zone (HAZ). In order to achieve better performance, 

surface damage or defects should be controlled. Surface defects will induce stress 

concentration that is also considered a weak spot for crack propagation. Removing 

the damaged surface by grinding is not the best solution, especially when the surface 

geometry is complex.  

 

 

The available research includes the strategies on how to overcome the major 

drawback in EDM, which is low production rate, and high surface roughness. 

However, the PCD industries, especially in cutting tool production, should not only 

consider the economic aspect, but also need to place emphasis on the quality aspect 

of the product. The primary concern is that there is insufficient data on the surface 

quality or surface integrity relating to the application performance of the tools. With 
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emphasis on the cutting tool product, this study is focused on the analysis of the 

Polycrystalline Diamond (PCD) surface damage caused in the fabrication process, 

specifically in the Electrical Discharge Grinding (EDG) process, and its optimization 

strategies. 

 

 

 

 

1.2. Objectives and Research Questions 

 

 

Since its development, PCD has been applied in the aerospace, automotive, wood 

and mining industries as cutting tools due to its outstanding cutting performance. 

Because of the ultra-hardness and low electric conductivity, PCD tools are very 

difficult to fabricate. The high costs caused by low machining efficiency have 

seriously hindered its widespread application in industry. 

 

Although PCD tools are superior in toughness (chipping resistance), a 300% to 500% 

scatter in tool life has been reported in the automotive industries [9]. Indeed, 

unexplained breakages of PCD tools used for similar applications are also common 

[2, 9]. In addition to the direct cost of the tools, indirect costs are caused by the large 

amount of time needed to replace failed tools and set up new ones on each shift each 

day, which causes huge losses to the company over the long run. Figure 2 shows an 

example of weekly tool consumption for the drilling and milling of carbon fibre 

reinforced plastic (CFRP) components at Boeing Aerostructures Australia (a medium 

size company at Port Melbourne, Australia). High performance PCD tools with a 

much longer tool life would have been a perfect solution. 

 

 

However, there is as yet no theory to explain adequately the relationships between 

tool life and the modified PCD properties after specific fabrication or machining 

strategy. Owing to the special structure of PCD, the EDM erosion process is very 

complex. The machining mechanicm is distinctively different from conventional 

electrical conductive material. Because of the lack of theoretical support on the 

modified PCD properties after erosion, industry EDG technology has to rely on 

visible qualities, such as surface finish and geometrical accuracy, in order to define 
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the quality of the PCD tools. In fact, the author found that the other factors, such as 

residual stress and graphitization significantly altered the PCD tool life, although 

similar visible quality is achieved.  

 

 

 

Figure 2: Weekly tool usage in Boeing Aerostructures Australia 

 

 

As an attempt to resolve the issues, the following research objectives are defined: 

a. To develop a new methodology to identify HAZ. 

b. To find the best method to quantify the residual stress on PCD. 

c. To investigate the effects of plasma temperature generated by electrical 

sparks on PCD tool life. 

d. To optimize the EDG parameters (electrode polarity, wheel rotation direction, 

pulse on-time, pulse off-time, sparking voltage, and finishing in-feed) to 

improve PCD tool performance. 

 

 

The key research questions are: 

a. How to determine the HAZ in PCD?  

b. What are the structural differences between PCD tools manufactured with 

different EDG processes? 

c. What are the differences in residual stress between PCD tools manufactured 

with EDG and conventional grinding processes? 



 

 

5 

 

Chapter 1. Introduction 

d. What is the relationship between the plasma temperature in the EDG process 

and PCD tool quality (tool life)? 

e. How will the machining parameters (electrode polarity, wheel rotation 

direction, pulse on-time, pulse off-time, sparking voltage, and finishing in-

feed) affect the wear behaviour of PCD tools? 

 

 

 

 

1.3. Scope of the Investigation 

 

 

The scope of this study is as follows: 

a. The research includes both theoretical and experimental knowledge analysis. 

b. PCD samples with cobalt binder and different particle sizes will be used in 

this investigation. 

c. Finishing processes are limited to conventional grinding and EDG. 

d. CNC cutting tests will be conducted to prove and validate theoretical 

findings. 
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1.4. Challenges in PCD Tools Fabrication 

 

 

PCD is commonly produced in a thin layer of 0.5mm to 0.7mm thickness on a 

supporting layer of tungsten carbide (WC). PCD tools are usually fabricated in three 

steps:  

a. Cut PCD blanks into small inserts;  

b. Braze the inserts on a carbide substrate;  

c. Machine and sharp the cutting edges into the required dimension and surface 

finish.  

 

 

Figure 3 shows an example of PCD tools for the milling process. 

 

 

 

Figure 3: PCD tool. 

 

 

The research was begun with the observation of the PCD tools‘ surface quality after 

erosion. Several issues that were assumed as thermal damage indications caused by 

the process were highlighted. This included the formation of cutting edge undercut 

and some cosmetic aspects at the WC-PCD interface. However, whether the 

phenomena are the real implications of thermal damage was in question. Figure 4 

shows the example of edge undercut mentioned. Initially, it was inferred that the 

formation of edge undercut happened due to the excessive tensile stress generated on 

the tip. However, the inference was incorrect and the exact reasons have been 
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reported in this thesis. Since the issue was reported previously but unexplained, the 

study was regarded as the first that successfully resolved the issue. 

 

 

 

Figure 4: Edge undercut 

 

 

From the industrial perspective, a notch that appeared on the WC-PCD interface is 

also considered a temperature-induced defect. Due to the difficult–to-observe PCD 

thermal damage, the notch appearance is referred to as gauging the damage level. 

With the bigger notch that appeared after erosion, a bigger thermal impact is 

predictably performed on the surface during erosion. With this hypothesis, the notch 

becomes an industrial concern. However, the emergence of this hypothesis became 

confusing when inconsistent notch width was achieved with similar repetition of the 

process. Regarding this issue, two possibilities were drawn as follows: 

a. There is an uncontrolled variable that affects the process.  

b. The machine system is unstable, and this then caused inconsistency in energy 

supplied for the plasma development. 

 

 

The thermal damage issues are as yet not well understood by the research 

community. In order to gain better understanding of the PCD thermal damage, a 

series of scientific investigations on process stability is urgently required. Chapters 4 

and 5 discuss the importance of some control factors and the findings related to these 

issues.  
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1.5. Research Methodology 

 

 

The flowchart in Figure 5 shows the methodology of the research. 

 

 

 

Figure 5: Research methodology 

 

 

The alteration of residual stress and phase transformation (graphitization) was 

expected to indicate the HAZ of the PCD due to the erosion process. Metallurgical 

examination methods, such as optical metallography, Scanning Electron Microscope 

(SEM), X-ray diffraction (XRD) and Raman spectroscopy, were identified as 

suitable instruments for the analysis. Through the literature, it was found that the 

Raman method is the best method for residual analysis determination. The small 

laser spot size and reasonably small penetration depth were found to provide better 

measurement accuracy than XRD. This was considered a highly sensible method for 

being able to detect amorphous carbon structure. 

 

 

 

Figure 6: Illustration of the process flow 
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Determination of the control factors is a vital procedure for ensuring good 

repeatability of the process and avoiding obstruction or interference of external 

elements with the results obtained. Focusing on the surface quality and the cutting 

edge sharpness, the effects of tool polarity and wheel rotation direction were 

determined. The best strategies were then taken as the standard in the succeeding 

investigation.  

 

 

As the next step, the PCD-eroded surface quality was evaluated. Specimens that were 

prepared by EDG with different machining parameters were analysed. With the aid 

of the morphological findings, different PCD erosion mechanisms were discussed. A 

comprehensive discussion was undertaken and the theoretical modelling of the 

process was obtained. The structural differences between PCD manufactured with 

EDG and conventional grinding were also compared. The performance test was 

conducted at the end of the methodology as a process evaluation. 

 

 

Overall, the research seeks to better understand the PCD surface thermal damage 

caused by the EDG plasma and its influence on tool life. With this fundamental 

understanding, better process optimization and better PCD tools utilization can be 

expected.  

 

 

  



 

 

 

 

Chapter 2 Literature Review 
 

 

 

 

2.1. Introduction 

 

 

The applications of PCD tools include the shaping of various materials, such as 

aluminium alloy used in the automotive industries, and wood, rock and rubber [1, 3, 

10-13]. Due to PCD‘s excellent properties, this tool material is also regarded as the 

best candidate for machining exotic materials for the aerospace industries [14]. The 

significant hardness and excellent thermal conductivity of PCD, of up to 920 W/mK, 

makes it the most promising tool material for machining titanium [5]. In addition, 

several studies demonstrate the use of PCD in micro-machining glass and other 

micro optical-related devices made from tungsten carbide, electro-less plated nickel 

and silicon  [15, 16]. In Printed Circuit Board (PCB) industries, PCD has also been 

used in the cutting tools with special blade configurations [2].  

 

 

However, the outstanding mechanical, electrical and thermal properties of this 

material have a negative influence in that uneconomical and inefficient 

manufacturing processes often result [17, 18]. Low G ratios, high cutting force and 

high wheel cost pose the main challenges to conventional grinding production of 

PCD parts [17]. Similarly, for lapping processes, low efficiency, low removal rate, 

high cost and poor consistency are the major problems [17, 19, 20]. Experiments 

show that the G-ratio of conventional grinding of PCD tools is between 0.015 and 

0.025 and MRR is between 0.226mm
3
/min and 0.886mm

3
/min, depending on 

different grind size and structures [21]. Another problem with conventional grinding 

is the possibility of micro-cracks due to the high cutting force  [21].  

 

 

Brecher et al. [22] and Wang [23] used laser ablation, and achieved equivalent 

surface quality as abrasive grinding. However, unless ultra-short laser pulses of 

picoseconds were applied, which would result in unacceptably low MRR, a 
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conventional abrasive grinding process has to be followed in order to remove the 

severe heat affected zone [22]. In 2013, Qinjian et al. [24] developed another type of 

hybrid method by combining electrical discharge machining and ultrasonic-assisted 

mechanical grinding, but it was found that the hybrid method had limited impact on 

MRR. Likewise, Iwai et al. [25] developed an abrasive grinding-assisted EDM by 

using a metal-bounded diamond wheel for machining EC-PCD, but no obvious 

improvement in the grinding ratio was achieved in grinding conventional PCD 

material. For these reasons the EDM process is considered a good alternative for 

machining PCD due to its non-contact nature.  

 

 

EDM is a non-conventional material removal process that uses thermal energy to 

melt or vaporize the work piece using high temperature sparks between the work 

piece and an electrode. EDM can be used for all conductive materials, regardless of 

their hardness and other mechanical properties, and is particularly good for fragile 

work pieces [26]. This chapter reviews the current achievements and findings of the 

EDM process of PCD. 

 

 

 

 

2.2. PCD EDM Process 

 

 

Early attempts to machine the diamond by EDM began in 1960. Heerschap et al. [27] 

revealed that non-conductive diamond could be machined using EDM by 

implementing a graphite coating on the diamond work piece. This is similar to the 

concept of ―assisted electrode‖ used on EDM of insulated ceramics [28, 29]. To form 

the conductive coating of graphite, the diamond was heated up by non-oxidising 

flame to a temperature higher than its graphitization temperature [27, 30]. This was 

to ensure the conversion of diamond into graphite specifically on the work piece 

surface in order to provide a conductor path for spark initiation. The conductivity of 

the graphite enabled initial sparking and the erosion process was caused to the 

diamond-graphite conversion so that the process is self-sustaining.  Hence, newly 

formed graphite was obtained on the eroded surface, providing connection to the 

current source [27, 30]. Figure 7 illustrates the aforementioned erosion concept. 
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Figure 7: Graphite Coating Method 

 

 

The emergence of PCD resolved the issues of non-conductivity of diamond. The 

presence of up to 15% by weight of metallic cobalt in the PCD composition makes it 

possible to machine PCD using EDM [6, 31-33]. Research on PCD EDM may be 

divided into Die/Sink EDM, EDG and Electrical Discharge Wire Machining 

(EDWM). Although they posit the same concept, EDG and EDWM vary 

significantly in machining parameters. Instead of static electrodes typically used in 

Die/Sink EDM, a rotating electrode wheel is used in EDG. This improves the 

flushing efficiency, since the rotating wheel electrode effectively drags dielectric into 

the gap. It thus yields better in-material removal rate, tool wear ratio and surface 

roughness [34-37]. 

 

 

2.2.1. EDM  Polarity 

 

 

Several studies show that a lesser electrode wear ratio was obtained when positive 

polarity of the tool electrode was used during EDM of PCD [6, 38]. Carbon plating 

of the positive electrode (which is the electrode in this case) was believed to be the 

reason for the reduction of electrode wear when this method is used [6, 39]. The 
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transformation of diamond into other forms of carbon occurs during the EDM 

sparking process. The result from the conversion process is the formation carbon 

ions, which are then involved in the positive electrode plating operation. This heat-

resolved carbon acts as a shield that protects the electrode from wear [6]. 

Furthermore, the deposited carbon is also reported to come from the dielectric 

medium when hydrocarbon dielectric was used [40]. 

 

 

However, the adhesion also had a negative impact on process precision. Wang et al. 

[6] revealed that the formation of carbon adhesion (graphite and amorphous carbon) 

on the silver-tungsten alloy electrode rod led to increases in the effective electrode 

size. It thus produced a hole with a size bigger than the required dimension. 

Particularly in micro-hole machining, increase in the electrode size due to plating 

phenomena will significantly affect process precision. The comparison of the shape 

of electrodes after EDM with different polarity is shown in Figure 8.  
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Figure 8: Comparison of electrode shape obtained by SEM after different polarity 

machining. (a) Initial shape of electrode (before machining) (b) Electrode after the 

positive polarity erosion (positive polarity of the tool electrode) (c) Electrode shape 

after negative polarity erosion (negative polarity of the tool electrode)[6] 
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2.2.2. Material Removal Rate 

 

 

Considering the thermal conductivity, specific heat, and melting point of materials, 

Wang et al. [6] quantified the degree of difficulty for EDM of several materials. The 

degree of difficulty for a material to be eroded can be calculated using the following 

formula: 

 

 

Cm = KCTm
2
         (2.1) 

 

 

where Cm is the erosion resistance index (ERI) (10
12

J
2

/ m s kg) and K, C and Tm are 

the thermal conductivity expressed in W/(mK), specific heat is expressed in J/(kg K), 

and melting point is expressed in K, respectively. As shown in Table 1, in 

comparison to the ERI of tungsten, copper and steel, the highest ERI was attributed 

to PCD, indicating that PCD is the hardest material to be eroded by EDM. 

 

 

Table 1: Erosion resistance index (ERI) of materials [6] 

Material Erosion resistance index (10
12

J
2

/ m s kg) 

Tungsten 2.99 

Copper 2.79 

Steel 0.230 

PCD 4 

 

 

It is well understood that the smaller PCD grain size will give better MRR, because it 

has higher electrical conductivity than PCD with bigger grains. This is due to the fact 

that PCD with smaller grain size has a higher proportion of cobalt content than is the 

case with bigger grain size PCD. Since cobalt is a highly conductive material and 

diamond is non-conductive, the electrical conductivity of smaller grain PCD is 

higher.  
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Figure 9 shows several strategies that have been applied to optimize the production 

rate in EDM machining of ordinary materials [41-45]. But, to the authors‘ 

knowledge, very little research has been reported on the effect of tool electrode 

material and dielectric in EDM machining of PCD. Current research for the purpose 

of improving the MRR in EDM of PCD is more focussed on the optimization of 

parameters. PCD is a highly thermally conductive material (a range of 250 to 920 

W/mK) [5]. As a result, it suffers high energy losses per unit volume, which slows 

down the melting operation. Therefore, in a roughing operation, higher voltage and 

current are required to get the higher sparking energy for better MRR. However, it 

was reported that there is an interaction between the sparking energy and the 

charging process of capacitors. After a certain limit, charging capacitors of the EDM 

machine more than is required also results in lower MRR. Although higher energy is 

provided, a major amount of time was spent on the charging process [46].  

 

 

 

Figure 9: MRR optimization strategies 

 

 

Parameter control is also important for avoiding a short circuit during the operation. 

Using the current and voltage feedback system integrated to the machine, a specific 

pulse known as normal, arc and short circuit pulses could be observed. Short circuit 

pulses occur when the electrode is in contact with the work piece and are believed 

not to contribute anything to removing material. However, the control activity of 

PCD EDM parameter is challenging, since the feedback system is not necessarily 

accurate in representing the real machining behaviour. As was found by Ye et al. 

[47], in some cases the short circuit pulses did not happen, although the electrode 

was contacting the PCD surface. This was due to the electrode making contact with a 

 

MRR optimization 
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Tool electrode  

Parameters optimization 

Dielectric  
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non-conductive diamond particle that protruded from the PCD surface and the 

sparking still being between the cobalt and the electrode. 

 

 

2.2.3. Surface Roughness and Morphology 

 

 

Surface roughness is an important factor that affects the performance of cutting tools, 

particularly in high precision machining [5, 48]. Due to the extremely high hardness 

of PCD, together with high chemical stability, mechanical processing does not 

appear to be the best machining strategy for producing a very fine surface while 

considering the production cost [5]. 

 

 

In the roughing operation of PCD EDM, granularity of the surface results when 

individual diamond grains drop out of the surface, which makes the roughness value 

proportional to the grain size [1]. Hence, finer grain size is to be preferred when a 

better surface finish is a priority. However, in some tool applications, specifically in 

machining metal matrix composite (MMC) materials, bigger grain PCD is 

preferential. The investigation into the performance of PCD tools in machining of 

MMCs showed that better tool wear performance was achieved by PCD with bigger 

grains [49-51]. Although better in surface finish, a high percentage of cobalt in small 

PCD grain structure is also believed to be involved in weakening the structure, due to 

its affinity for carbon and its catalytic action in changing diamond to other forms of 

carbon at high temperatures [52]. For this reason, the investigation of surface 

roughness obtained by the fabrication process, especially for big PCD grain (10µm 

grain size and above), is crucial for the development of high performance tools. 

 

 

Olsen et al. [32] believed that, during the sparking process, some diamond grains 

were lost as a result of the highly conductive cobalt network being preferentially 

eroded [31, 32]. For this reason, sparked PCD surfaces were generally of lower 

quality than conductive Chemical Vaporized Deposition (CVD) diamond film, so-

called CVDITE CDE, even when fine diamond is used (2µm) [31].Unlike PCD, in 

CVDITE CDE film production, the conductivity of diamond grains is increased by 

increasing the electrical conductivity of the diamond crystal itself through boron 
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doping [32]. Therefore, the spark will not only initiate on the grain boundary but can 

also happen on the grain surface. This led to the EDM of CVDITE CDE process 

cutting through the diamond crystal and not detaching the grains as a reason for finer 

surface value. [31]. To better understand the difference in mechanism, PCD and 

CVDITE CDE film material are compared in Table 2. It was believed that the major 

factor causing selective erosion of the PCD is the low electrical conductivity of 

diamond in contrast to the highly conductive cobalt path at the grain boundaries.  

 

 

Table 2: Comparison between PCD and CVDITE CDE material 

 PCD material 

Conductive CVD 

(CVDITE CDE) 

material 

Thermal 

conductivity 

Around 459 W/mK (for 10µm 

grains)[53] 
Up to 2200 W/mK[32] 

Compositions 
Consists of cobalt binder and 

diamond grains 

Consists of no metallic 

second phase [32] 

Grains structure 

Diamond might comprising both 

lamellar and fine grains, depends on 

the production method and starting 

materials [54]. 

Comprising only 

columnar/ lamellar 

diamond grains [32]. 

Specific 

resistance 
1.4×10

-4
Ωm[53] 0.4~1 x10

-3
 Ωm [55] 

 

 

This principle has also been proved  by Suzuki et al. [53]. A new type of PCD was 

developed by following the same concept as conductive CVDITE CDE. The boron 

atoms were incorporated into the diamond lattice in order to increase electrical 

conductivity [32, 53]. As a result, better surface finish than the standard PCD was 

achieved after the WEDM process. Interestingly, observation on the new PCD 

developed showed that the grain was flattened by the electro-discharge process 

(Figure 10). Better oxidation resistance might also be the other factor contributing to 

the lower surface roughness of the boron-doped PCD while EDMed in water 

dielectric. By oxidation analysis of CVD (CVDITE CDE), it was shown that better 

oxidation resistance is obtained when the diamond is doped with boron [55]. 
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Figure 10:EDMed surfaces of boron doped PCD sample[53] 

 

 

In the EDM process, discharge energy obtained by the spark significantly affects the 

roughness of the work piece surface. Although high sparking energy is desirable for 

better MRR, the higher the discharge energy, the higher the surface roughness will be 

[33]. Zhang et al. [56] claimed that low surface roughness obtained by low sparking 

energy is due to the chemical effect of molten cobalt. They believed that the 

temperature of the spark is high enough for diamond to graphite conversion on the 

surface. The converted diamond or graphite will then be dissolved into the molten 

cobalt before being removed easily by the blast that forms due to the dielectric oil 

vaporization [56]. The effect will not be significant when high sparking energy is 

used, since the cobalt will be vaporized [56].  

 

 

In other study, even though with a similar sparking energy, Han et al. [57] believed 

that the surface roughness may not necessarily be similar. They stated that the heat 

flux generated from the process had a significant effect on the surface roughness as 

well as on surface morphology [57]. Heat flux, defined as the heat transfer rate per 

unit area, is related to the magnitude of current used during the EDM process. With 

the same sparking energy, the heat flux may not be the same. With the same 

discharge energy, a pulse with short duration and high peak current will give higher 

heat flux than a pulse with long duration and low peak current [57]. Consider the 

following basic formula for the temperature gradient calculation: 
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q= -K ΔT         (2.2) 

 

 

where ΔT, q and K are the temperature difference, heat flux and material 

conductivity, respectively. Rearrange equation 2.2 so that: 

 

 

T2 - T1= - q/K           (2.3) 

 

 

Since the heat flux is a vectorial quantity, T2 should be defined as the temperature on 

deeper surface and T1 is the temperature of the surface that is exposed to the spark. 

Higher heat flux, defined as the higher heat rate per unit area, will reduce the chance 

of heat losses due to the conduction on the surface, thus creating deeper craters. 

 

 

Little research has been done regarding the effect of dielectric in the machining of 

PCD materials. WEDM of PCD in oil can result in better surface quality than 

deionized water [53]. It was also reported that implementing WEDM of PCD in a 

water bath would increase the selective erosion on the cobalt region, since the cobalt 

has a much higher electrochemical equivalence than the other elements in PCD [58, 

59]. Furthermore, the oxygen content in water also results in the oxidation of the 

PCD machined surface [55]. Wu et al. have shown the increase in oxygen content 

toward the edge of the WEDMed surface [59]. Figure 11 shows the voids that 

occurred due to the selective erosion of cobalt on the PCD surface. 
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Figure 11: Void due to selective erosion [59] 

 

 

2.2.4. Challenges on Cutting of Laminar Discs 

 

 

The laminar disc blanks are made from PCD on a carbide substrate. Although the 

carbide substrate provides the PCD tools with sufficient toughness [60], EDM of this 

laminar structure is a challenge, since the layers are made of materials with 

dissimilar properties [58, 61].  Preferential erosion of the carbide occurs at the PCD-

carbide interface and this not only causes a notch to form but also increases residual 

stress in this area [1]. The notch is believed to be more dominant when the bigger 

grain structure is used [1]. An analysis was conducted by Cao et al. [17] in an 

attempt to minimize the notch depth that was categorized as the most serious PCD 

surface defect caused by EDM. Through parameter optimization, they successfully 

reduced the notch depth on the diamond-WC interface to only 0.03mm [17].  

 

 

Pisarciuc and Cristian [58] stated that ―due to the manufacturing process, the cobalt 

concentration is higher in the transition zone between the carbide substrate and the 

diamond matrix. The low resistance of cobalt to thermal erosion compared with the 

other components, give rise to increased material removal in this area‖ [58]. This is 

proved by the element mapping result (Figure 12) obtained by Shin et al. [62] just 

after the HPHT sintering process of PCD. The result shows that the composition of 

cobalt is dominant on the PCD-WC interface. However, there is also an unexplained 

phenomenon which occurred during the roughing operation: formation of another 

notch that appeared just below the top edge of the PCD was observed [58]. Further 

study on the behaviour is needed to explain the phenomenon.  
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Figure 12: Element Mapping of (a) C, (b) Co, (c) Ta and (d) W [62] 

 

 

2.2.5. Heat Affected Zone (HAZ) 

 

 

In EDM of metals, the recast layer, also known as the white layer, is a thin layer on 

the surface of the work piece which is formed by the re-solidification of melted 

material that has not been swept away by the dielectric during the EDM process. This 

layer usually presents after the WEDM or Die Sinking EDM due to an inefficient 

flushing operation [58]. The melted material is quickly chilled, primarily by heat 

conditions in the bulk of the work piece, resulting in an exceedingly hard surface. 

For this reason, a smaller grained annealed microstructure is usually formed just 

beneath the machined surface which also results in better surface hardness [58, 63]. 

The surface integrity result from the EDM process on ordinary material (metals) is 

illustrated in Figure 13. 
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Figure 13: Heat affected zone of EDMed surface [58] 

 

 

The heat affected zone (HAZ) when machining a metal is the zone that is subjected 

to very high temperatures, though not high enough to be melted, but which promotes 

some microstructure changes [43, 58, 64]. It will generally extend to a depth of a few 

microns beneath the machined surface. Research has shown that the surface damage 

due to the heat of plasma appeared up to 0.05mm in depth [31]. The depth is 

dependent on the temperature gradient profile, which is affected by the electrode 

materials, dielectric and machining conditions [43]. Although a recast layer may not 

be generated in the EDG of PCD, there will generally be a HAZ, which is largely 

unavoidable when dealing with thermal processing. This HAZ is also generally 

called the modified zone or affected layer by some researchers when dealing with 

PCD [65, 66].  

 

 

Metallurgical examination of the surfaces using various techniques such as optical 

metallography, Scanning Electron Microscope (SEM), X-ray diffraction (XRD) and 

Raman spectroscopy has been undertaken by many researchers to study the 

behaviour of material due to thermal stress [65-77]. The affected layer with a 

thickness more than 70µm has been observed on the PCD surface after EDM with a 

roughing condition [65] (Figure 14a). The thickness of this layer is also believed to 

significantly affect PCD tool life. However, detailed explanation of the structural 

properties of this layer has remained unknown. As shown in Figure 14b, nearly the 

same layer was also observed by Kalyanasundram et al. on the PCD sample after 
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LWJ machining. Using the Raman analytical method, a laser that focused on the 

layer formed strongly indicates the formation of graphite. A high proportion of 

graphite on this area can be explained by the diamond to graphite conversion to be 

covered in section 2.2.6.  

 

 

     

Figure 14: SEM image of PCD (a) after EDM (b) after LWJ [65, 66] 

 

 

The failure of material structure usually starts from the surface [69]. Hence, in order 

to have better performance, the surface damage or defects should be controlled. 

Surface defects will induce stress concentration, leading to crack propagation [78]. 

Removing the damaged surface by grinding is not generally feasible, especially when 

a complex surface is involved. Surface cracking on EDMed PCD is typically 

associated with the heat generated by the process [1]. Increasing the heat will 

increase the PCD grain volume that will increase the residual stress especially on the 

surface. Once residual stress is increased over certain limits, initial cracks a few 

nanometres will be caused. These nano-scale cracks pose a major concern in making 

PCD cutting tools, because they are one of the main reasons for tool failure and short 

tool life. Rapid loading with machining vibration requires the tool to have high 

fatigue strength. Nano-cracks will tend to be propagated when the tool is under the 

fatigue loading. The crack will tend to appear on the grain boundary or diamond 

bridge (Figure 15), which is the weakest part of the microstructure. This causes 

dislodgement of diamond particles as the mechanism for tool wear [49].  
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