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Goal of this project and further information
We prove several properties of amenable cones and compare amenabil-

ity with other notions of facial exposedness. This is a joint work with Vera
Roshchina (UNSW) and James Saunderson (Monash University) For more
details, please check our arXiv preprints [2] and [3].

1 Convex sets and their faces

First, some definitions. Let

�C: a closed convex set contained in Rn.

� F : closed convex set contained in C

F is a face of C (i.e., F ⊴ C)
def⇐⇒ if αx + (1− α)y ∈ F , with x, y ∈ C,

α ∈ (0, 1), then x, y ∈ F .
Extreme points are faces consisting of a single point.
A face F is exposed if there exists a supporting hyperplane H of C such

that F = C ∩H . Examples.

Let K be a closed convex cone. We write K∗, K⊥ and spanK, for the
dual cone, orthogonal complement and linear span of K , respectively. We
also define

dist(x,K) := inf{∥x− y∥ | y ∈ K}.

1.1 Notions of facial exposedness

Let K ⊆ Rn be a closed convex cone. We have the following definitions.

�K is amenable
def⇐⇒ for every face F ⊴ K there is κ > 0 such that

dist(x,F) ≤ κ dist(x,K), ∀x ∈ spanF .

�K is projectionally exposed
def⇐⇒ for every face F ⊴ K there exists

a linear map P : Rn → Rn such that P (K) = F and P 2 = P .

�K is nice
def⇐⇒ ∀F ⊴ K, F∗ = K∗ + F⊥.

�K is facially exposed
def⇐⇒ every face is facially exposed.

These notions have many applications in the study of duality theory, fa-
cial reduction and representability in conic programming. Here we focus on
amenable cones, which were proposed in [1] in order to study error bounds
for conic systems.

2 Properties of amenable cones

Let K1,K2 be closed convex cones. The following results were proved inS

� If K1 and K2 are amenable, then K1 ∩ K2 and K1 ×K2 are amenable.

� If A is an injective linear map and K1 is amenable then A(K1) is amenable.

� Polyhedral cones and spectrahedral cones are amenable.

�Hyperbolicity cones are amenable.

In particular, second-order cones, positive semidefinite cones and all homo-
geneous cones are amenable.

3 Slicing amenable cones

Amenability can be defined for general convex sets as follows.

C ⊆ Rn is amenable
def⇐⇒ for every F ⊴ C and every bounded set

B ⊂ Rn, there is κ > 0 such that the affine hull of F (denoted by aff F )
satisfy

dist(x, F ) ≤ κ dist(x,C), ∀x ∈ B ∩ aff F .

Let K be an amenable cone. A slice of K is an intersection of the form
K ∩ V , where V is an affine space. The following statements hold.

� Every slice of K is an amenable convex set.

� If C is a amenable compact convex set, then the convex cone generated by
{1} × C is amenable.

See [3, Section 4] for details.

A slice of a closed convex cone.

4 Comparison of exposedness properties

Known results:

� Facially exposed ⇐ Nice ⇐ Amenable ⇐ Projectionally exposed.

� In dimension 3 or less: Facially exposed ⇔ Projectionally exposed

� There exists a 4D cone that is facially exposed but not nice. [4]

New results (see Sections 5 and 6 in [2]):

� There exists a 4D cone that is nice but not amenable, see figure below.

� In dimension 4 or less: Amenable ⇔ Projectionally exposed.

A 3D slice of a 4D convex cone that is
nice but not amenable
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