統計数理研究所 2021年6月18日 オープンハウス

Geometry of amenable cones

Bruno F. Lourenço **Department of Statistical Inference and Mathematics** Associate Professor

Goal of this project and further information

We prove several properties of amenable cones and compare amenability with other notions of facial exposedness. This is a joint work with Vera Roshchina (UNSW) and James Saunderson (Monash University) For more details, please check our arXiv preprints [2] and [3].

Convex sets and their faces

First, some definitions. Let

- C: a closed convex set contained in \mathbb{R}^n .
- F: closed convex set contained in C

F is a **face** of C (i.e., $F \leq C$) $\stackrel{\text{def}}{\iff}$ if $\alpha x + (1 - \alpha)y \in F$, with $x, y \in C$, $\alpha \in (0, 1)$, then $x, y \in F$.

Extreme points are faces consisting of a single point.

A face F is **exposed** if there exists a supporting hyperplane H of C such that $F = C \cap H$. Examples.

Slicing amenable cones 3

Amenability can be defined for general convex sets as follows.

 $C \subseteq \mathbb{R}^n$ is amenable $\stackrel{\text{def}}{\iff}$ for every $F \trianglelefteq C$ and every bounded set $B \subset \mathbb{R}^n$, there is $\kappa > 0$ such that the affine hull of F (denoted by aff F) satisfy

 $\operatorname{dist}(x, F) \le \kappa \operatorname{dist}(x, C), \quad \forall x \in B \cap \operatorname{aff} F.$

Let \mathcal{K} be an amenable cone. A **slice of** \mathcal{K} is an intersection of the form $\mathcal{K} \cap V$, where V is an affine space. The following statements hold.

- Every slice of \mathcal{K} is an amenable convex set.
- If C is a amenable compact convex set, then the convex cone generated by $\{1\} \times C$ is amenable.

See [3, Section 4] for details.

Let \mathcal{K} be a closed convex cone. We write \mathcal{K}^* , \mathcal{K}^{\perp} and span \mathcal{K} , for the dual cone, orthogonal complement and linear span of \mathcal{K} , respectively. We also define

 $\operatorname{dist}(x,\mathcal{K}) \coloneqq \inf\{\|x-y\| \mid y \in \mathcal{K}\}.$

1.1 Notions of facial exposedness

Let $\mathcal{K} \subseteq \mathbb{R}^n$ be a closed convex cone. We have the following definitions. • \mathcal{K} is **amenable** $\stackrel{\text{def}}{\iff}$ for every face $\mathcal{F} \leq \mathcal{K}$ there is $\kappa > 0$ such that $\operatorname{dist}(x, \mathcal{F}) \leq \kappa \operatorname{dist}(x, \mathcal{K}), \quad \forall x \in \operatorname{span} \mathcal{F}.$

- \mathcal{K} is **projectionally exposed** $\stackrel{\text{def}}{\iff}$ for every face $\mathcal{F} \trianglelefteq \mathcal{K}$ there exists a linear map $P : \mathbb{R}^n \to \mathbb{R}^n$ such that $P(\mathcal{K}) = \mathcal{F}$ and $P^2 = P$.
- \mathcal{K} is nice $\stackrel{\text{def}}{\iff} \forall \mathcal{F} \trianglelefteq \mathcal{K}, \quad \mathcal{F}^* = \mathcal{K}^* + \mathcal{F}^{\perp}.$
- \mathcal{K} is **facially exposed** $\stackrel{\text{def}}{\iff}$ every face is facially exposed.

These notions have many applications in the study of duality theory, facial reduction and representability in conic programming. Here we focus on **amenable cones**, which were proposed in [1] in order to study error bounds for conic systems.

A slice of a closed convex cone.

Comparison of exposedness properties 4

Known results:

- Facially exposed \Leftarrow Nice \Leftarrow Amenable \Leftarrow Projectionally exposed.
- In dimension 3 or less: Facially exposed \Leftrightarrow Projectionally exposed
- There exists a 4D cone that is facially exposed but not nice. [4] **New results** (see Sections 5 and 6 in [2]):
- There exists a 4D cone that is nice but not amenable, see figure below.
- In dimension 4 or less: Amenable \Leftrightarrow Projectionally exposed.

References

2 **Properties of amenable cones**

Let $\mathcal{K}_1, \mathcal{K}_2$ be closed convex cones. The following results were proved in S • If \mathcal{K}_1 and \mathcal{K}_2 are amenable, then $\mathcal{K}_1 \cap \mathcal{K}_2$ and $\mathcal{K}_1 \times \mathcal{K}_2$ are amenable. • If A is an injective linear map and \mathcal{K}_1 is amenable then $A(\mathcal{K}_1)$ is amenable.

- Polyhedral cones and spectrahedral cones are amenable.
- Hyperbolicity cones are amenable.
- In particular, second-order cones, positive semidefinite cones and all homogeneous cones are amenable.
- [1] B. F. Lourenço. Amenable cones: error bounds without constraint qualifications. Mathematical Programming, 186:1–48, March 2021. arXiv:1712.06221.
- [2] B. F. Lourenço, V. Roshchina, and J. Saunderson. Amenable cones are particularly nice. arXiv e-prints, November 2020. arXiv:2011.07745.
- [3] B. F. Lourenço, V. Roshchina, and J. Saunderson. Hyperbolicity cones are amenable. February 2021. arXiv:2102.06359.
- [4] V. Roshchina. Facially exposed cones are not always nice. SIAM J. Op*tim.*, 24(1):257–268, 2014.

The Institute of Statistical Mathematics