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ABSTRACT 

 

 

 

Red blood cell (RBC) diagnosis is very important process for early detection of 

related disease such as malaria and anaemia before suitable follow up treatment can 

be proceed. Conventional method under blood smears RBC diagnosis is applying 

light microscope conducted by pathologist. Red blood cell counting and 

classification only rely on the manual visual inspection which is laborious, tedious 

and required highly skill and experience pathologist to analyse the shape of the red 

blood cell. In this project an automated RBC counting and classification system is 

proposed to speed up the time consumption and to reduce the potential of the 

wrongly identified RBC. Initially the RBC goes for image pre-processing which 

involved global threshold of method applied green channel colour image. Then it 

continues with RBC counting by using particle area and calculator numeric function 

method. Eventually, Heywood Circularity Factor, Nearest Neighbour, k-Nearest 

Neighbour and Minimum Mean Distance classifier methods are applied for normal, 

abnormal and overlap RBC classification. The proposed method has been tested on 

blood cell images and the effectiveness and reliability of each of the classifier system 

has been demonstrated.  
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ABSTRAK 

 

 

 

Diagnosis sel darah merah adalah suatu proses yang penting dalam pengesanan awal 

penyakit yang berkaitan seperti malaria dan anemia sebelum sebarang rawatan 

lanjutan boleh dilaksanakan. Cara yang biasa digunakan pada ketika ini adalah 

dengan menggunakan kaedah pengesanan sampel darah di bawah mikroskop cahaya 

yang dilakukan oleh ahli patologi. Ianya hanya bergantung kepada pengesanan secara 

visual yang agak rumit dan hanya boleh dijalankan oleh patologi yang 

berpengalaman sahaja. Dalam projek ini, pengkelasifikasian dan pengiraan sel darah 

merah dilakukan secara automatik. Cara ini dapat mempercepatkan proses dan 

mengurangkan tahap kesilapan dalam mengenal pasti bentuk sel darah merah sama 

ada yang normal atau pun tidak. Ianya bermula dengan imej pra-pemprosesan yang 

melibatkan proses „global threshold‟ pada bahagian warna hijau imej.  Selepas itu 

proses diteruskan dengan pengiraan sel darah merah menggunakan cara „particle 

area‟ dan „numeric function‟. Akhirnya pengkelasifikasian sel darah merah dilakukan 

dengan menngunakan beberapa jenis sistem pengkelasifikasi termasuk „Heywood 

circularity factor‟, „Nearest Neighbour‟, „k-Nearest Neighbour‟ dan akhir sekali 

„Minimum Mean Distance‟ digunakan untuk mengenalpasti sel darah merah yang 

normal, tidak normal dan juga yang bertindih. Seterusnya, kesemua sistem 

pengkelasifikasi ini diuji keberkesanan prestasinya secara verifikasi. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Project Background 

 

Blood is determined by connective tissue that consisting of cells suspended in plasma 

[1]. Its major function is to convey various agents including oxygen, carbon dioxide, 

nutrients, wastes, and hormones. Blood cells are composed of erythrocytes (red 

blood cells, RBCs), leukocytes (white blood cells, WBCs) and thrombocytes 

(platelets). The majority cells abundant in blood are small reddish cells called 

erythrocytes or red blood cell. An erythrocyte is a discoid cell with a thick rim and a 

thin sunken center [2]. The main function of RBC is to move oxygen from lung to 

tissues in body and collect carbon dioxide from tissue back to the lung. Whereby, 

white blood cell or Leukocytes is the cell part of immune system. 

Diagnosis of RBC in medical area contributes information about pathological 

diseases and condition. The shape and quantity of RBC in samples can be connected 

to the relevant diseases. Thus, the detail and accurate analysis is important to serve 

the correct treatment for the patient. The time consumption for the analysis to be 

undergone will affect to the early treatment process for the patient. Complete blood 

count analysis (CBC) is a process involving RBC. Any abnormal finding from the 

result can be signed for disease such as anaemia and secondary effect of several other 

disorders [3]. Factors that should be consider during performing RBC counting 

including level of age of people (children and adult, younger and older) and 

strenuous physical activity [3].  
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When performing the process, any abnormal and overlapping RBC should be 

identified prior to count the total number. The former cell should be excluded from 

the normal cell count while the latter need to be separated before considered for 

counting. Since such a process is a tedious and time consuming, an image processing 

is a handy medium for assisting the operator by labelling normal, abnormal and 

overlapping RBC and provides the numbers of normal and abnormal cell. This will 

speed up the counting time and the same time reduction the human cause error.     

Image processing is powerful method to identify each single cell in blood 

samples. Compare to conventional method by using haemocytometer, image 

processing provide advantages that really helpful in RBC analysis. Classification of 

each cell in blood samples is the ultimate process to be conducted to identify each 

single cell in the blood cell. This classification process will lead to the counting 

process. From counting process the total quantity of each single cell in blood samples 

can be gained and consequently provide a conclusion about the health status of the 

patient. 

 

1.2 Problem Statement 

 

The conventional device used to count blood cell is the haemocytometer. It consists 

of a thick glass microscope slide with a rectangular indentation creating a chamber of 

certain dimensions. This chamber is etched with a grid of perpendicular lines. It is 

possible to count the chamber of cells in a specific volume of fluid and calculate the 

concentration of cells in the fluid [3][4]. To count blood cell, physician must view 

haemocytometer through a microscope and count blood cells using hand tally 

counter. The overlapped blood cells can‟t be counted by using haemocytometer 

(Figure 1.1). Furthermore, other cells besides normal RBC such as WBC, irregular 

shape of RBC and platelet are also elements that interfere during RBC counting.  

Normally, the counting task is time-consuming and laborious. Furthermore, 

conventional method is considering time-consuming to complete the counting task 

and it is laborious [5][7]. Before this counting process can be conducted, the 

identification of each single cell in the blood sample needs to be done. Identification 

by human is a current practice in this process. Experience and knowledge will help 
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this identification process which lead to RBC counting process can be conducted in 

short time consumption. Development of automated system that can identify or 

classify each of single cells in the blood samples will help to overcome the burden of 

a manual process. This automated system will really helpful for haematologist or 

medical practitioner.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: RBCs, WBCs and platelet image in blood sample 

 

1.3 Aim & Objectives 

 

The project aim is to classify the RBC into normal and abnormal in an overlapping 

condition before counting the number of each individual cluster. To achieve the aim 

of this research, the following objectives are formulated:  

i. To develop a method for automatically segment out RBC region. 

ii. To classify the normal RBC and irregular/abnormal RBC from blood smear 

images. 

Overlap RBC 

Abnormal RBC 

Normal RBC 

WBC 

Platelet 
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iii. To assess the performance of the develop system qualitatively and 

quantitatively. 

 

1.4 Scope of works 

 

i. Develop RBC image pre-processing. 

ii. Develop RBC image classifier system. 

iii. Produce the quantity of RBC normal, abnormal and overlap after the 

classification process. 

iv. Evaluate the performance each of the RBC classification system. 

 

1.5  Outline of thesis 

 

This project is classified into five chapters. The scope of each chapter is explained as 

below: 

First chapter gives the background of the thesis, problem statement, aim and 

objective, scopes of works and outline of the thesis.  

Chapter II is about the literature review, in which previous studies and 

theories related to this project are discussed and reviewed. It is also describe about 

RBC image classification using several methods such as connected component 

labelling, neural network and nearest mean. Literature review provides a background 

of this project and also gives and direction in this research. 

 Chapter III deals with a research methodology. It describes the detailed 

methods that have been used to conduct this project. This chapter proposes the 

method that involved in this project including image pre-processing using 

morphological and threshold method. The classification method that is proposed is 

Heywood circularity factor, Nearest Neighbour, k-Nearest Neighbour and Minimum 

Mean Distance.  

Chapter IV is for the results and discussion. This chapter will highlight the 

result of each classifier method that is proposed in this project also the each of the 

performance evaluation conducted to find the most suitable classifier that provides 

by NI Vision Builder AI that suits with this RBC classification project.  
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Chapter V concludes this project. It also describes the next step that need to 

be done in the future works. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1  Introduction 

 

RBC analysis through image processing method has been subject of interest of many 

researchers recently because of conventional method using haemocytometer is quite 

tedious and time consuming. Most of the previous work using MATLAB image 

processing toolbox as their main tool for analyse the RBC image because of its 

convenient for evaluating newly developed algorithm. 

Many combination of method has been tested in the RBC image processing. 

The main challenge of such process is identification of normal RBC in the blood 

sample since the variety in shape of such cell may exist. It will become worse if the 

cell is clump and overlap in a group. Such a problem is a main challenge for a 

researcher to identify or to classify single RBC in this region.  

Some of the previous works just ignore the overlapped RBC [8][9] and some 

of it proposed a method to classify/separate the overlapped cell [7][10][11] by using 

sophisticated image processing methodology. In this project, the focus is on an 

automated method for processing the RBC under various overlapping condition. In 

following section, explanation of various methods available to overcome such an 

issue is given in detail. 
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2.2  Image Acquisition and Enhancement 

 

The images basically are obtained from the samples of blood that being captured 

using light microscope which the process involve the preparation of blood smear 

[8][12]. Blood smear is a process to put the blood specimen on the slide that being 

observed under the microscope. The images are then being filtered to reduce or 

minimize noise. Several filtration techniques are used such as average filter and 

median filter [8][13][14]. Average filter is a linear spatial domain filter and function 

to decrease all noises in sample. It uses a defined filter mask to average grey level 

pixel in the neighbourhood.  

While median filter is a nonlinear spatial filter that changes the gray value at 

the center pixel with median value of the gray value of the pixel group. Edge 

detection reduces amount of data, filters useless information and preserves important 

structural details. Histogram equalization is used to adjust intensity value of image 

[15][10][16]. Contrast and brightness adjustment is a step that has been used in 

image processing. Both adjustments used histogram of interested image to display 

the range of intensity value of image [10]. 

 

2.3  Image Conversion 

 

Illumination issue always happened in blood cell microscopic image. To avoid 

illumination issue, color conversion method is applied. Previous study on color 

conversion is done by using Ycbcr technique where the RGB color is divided into Y, 

cb and cr component to avoid illumination [8]. The second component of the Ycbcr 

color has been chosen and it shows the clear appearance of the WBC nucleus and 

platelet. Then, color and contrast and brightness adjustment method has been done in 

the next process to give the view of color representation image. 

 Previous method has been done on image conversion from original image to 

gray image [17][18][13][19]. Classifying the image by gray-level pixels may reduce 

and simplify some image processing operations such as edge detection, edge 

smoothing, feature extraction, image processing and image registration [15]. 
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 RGB image conversion into binary image also has been done on previous 

work [20][30]. Conversion to binary image is helpful to identify foreground and 

background of the image. Due to the binary image is in black and white mode, thus 

the image can be easily identified.  This process will be continued by threshold 

method, threshold will be used as reference to identify object and its background. 

 

2.4 Cell Detection 

 

Cell detection is one of the methods to identify the perimeter or boundary cell. One 

of the most popular cell detection that been used is edge detection method. Most 

edge detection methods such as Canny or Sobel edge detectors exploit the image 

intensity gradient magnitude to identify object boundaries in image [9][10]. Edge 

detection does not work well between two overlapping cell. This is due to the change 

of intensity between two overlapping cells is very slow. That‟s why it not suitable for 

detection of inter-cell-boundaries. 

 

2.5 Morphological Operation 

 

Morphology is a broad set of image processing operations that process images based 

on shapes [19]. Morphological operations apply a structuring element to an input 

image, creating an output image of the same size. Morphological image processing is 

based on a strong mathematical concept which been used to change the size, shape, 

structure and connectivity of objects in the image [8]. 

In a morphological operation, the value of each pixel in the output image is 

based on a comparison of the corresponding pixel in the input image with its 

neighbours. The number of pixels added or removed from the objects in an image 

depends on the size and shape of the structuring element used to process the image 

[10][30]. This adding and removing object is also called „dilation‟ and „erosion‟. 

Morphological operation is used to separate overlapped image. But there is 

only certain condition where morphological operation can be used. It is normally 

works to separate minor overlapped image. This method is not suitable to separate 

over overlapped image. 
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All morphological processing operations are based on two simple ideas, hit 

and fit. Fit stands for the condition when all pixels in the structuring element cover 

on pixels in the image whereas hit signifies the condition when any of the pixels in 

the structuring element covers on a pixel in the image.  

Morphological operators also include a few steps which are filling holes, area 

calculation, template calculation, opening, closing and reconstruction. Mathematical 

morphological operators used to segment RBC by eliminating WBC appearance [8] 

[18]. It is used for extracting image components and useful in represent or describe 

the region of shape such as boundary, skeleton and texture [16].  

 

2.6 Image Segmentation. 

 

Segmentation is one of the most crucial tasks in image processing and computer 

vision [21]. As mentioned earlier blood cell contains RBC, WBC, platelet and sickle 

RBC. To identify each of this item, there are several method of image processing has 

been done. Once each item can be segmented, the analysis can be done separately.  

 From previous work that done, the most challenge scenario in RBC image 

segmentation identifying single cell in overlapped condition. However, many 

researches did the improvement by combining several methods or create the new 

technique to overcome the problem. 

One of the methods for image segmentation is watershed transform. 

Watershed is a morphological technique that derives its name from an expression in 

geography, where watershed is defined as the ridge that divides areas drained by 

different river systems [21]. Watershed algorithm is a method used to segment RBC 

in overlapping area [8][9][19]. However, it cannot handle when the overlapping area 

contain important information and it is hard to ensure the accuracy of segmentation 

due to the large error. The improvement has been done by combining mathematical 

morphology using corrosion and expansion algorithm with the principle of watershed 

algorithm [7]. 

The distance transform is a useful tool employed in conjunction with the 

watershed transform. It computes the distance from every pixel to the nearest non-

zero valued pixel. On previous work, distance transform is used combined with 
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watershed for splitting clumped cells. The main function of distance transform is it 

detects the cell central point. Thus if the image is inconsistent in shape or 

overlapped, by using this method it can detect cell image based on the central point‟s 

[17].  

The other recent common methods used for overlapping and clumped cells 

are concavity analysis and template matching [8]. On the other hand, concavity 

analysis is used to measure split lines for an overlapped cells. Nevertheless, it is only 

applicable for a pair of cells but useless against multiple overlapping cells. Plus, a 

very accurate segmentation is needed to apply this method. Other technique template 

matching which uses a template of RBC or clumping area to be matched to the object 

in the image able to separate small cell in shape and size. However, it is 

computationally expensive. 

In a research, template matching method was combined with pulse coupled 

neural network (PCNN) since PCNN cannot cope with overlapped cells. However 

the accuracy decreases whenever the RBCs are overlapped totally because the area of 

one cell is considered as a template and the algorithm works only in 100x 

microscope scale [18]. 

Hough transform method also been used in previous work. The Hough 

Transform (HT) has been recognized as a very powerful tool for the detection of 

parametric curves in images [11][13][22]. It implements a voting process that maps 

image edge points into manifolds in an appropriately defined parameter space. The 

Circular Hough Transform (CHT) is one of the modified versions of the HT. The 

CHT concentrates to find circular patterns within an image. The Circle Hough 

Transform is designed to find a circle characterized by a center point. 

Contour tracing approach has been used to segment scanning electron 

microscope (SEM) images. The method views contour detection and negotiating 

perceived problem areas one at a time but it still has lack when facing overlapping 

cells. It applies Bayesian tracking framework [1]. Consequently, the RBC 

segmentation of SEM image utilized shape reconstruction and multi-scale surface 

based on shape from shading technique combined with linear approximation [14]. 

Other than that, classification of RBC has been done through depth map and surface 

feature for different surface shapes [23]. 
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2.7 Image Classification 

 

In image classification, Multilayer perceptron artificial neural network (ANN) is 

most common method used to identify and count RBC [15][10]. It performed by 

adjusting the value of the weight between the elements and the mean square error is 

calculated from there. The weight value is used to separate abnormal RBC and 

Normal RBC, thus the quantity of normal RBC is counted.  The result shows 74% 

accuracy of counting RBC [10]. In other research ANN used in observing the 

relation between Hgb level and RBC with the color or blood sample. More than 90% 

of the samples is produced with tolerance less than 5% compared to lab results [12]. 

In some other research, back projection of ANN compared with connected-

component labelling (CLL) has been proved. Haematology analyser Sysmex KX-21 

was used as benchmark for the comparison. The average accuracy of the CCL is 

87.74% and the back projection ANN produced 86.97% of accuracy [5]. 

A comparative study among Nearest Neighbour, k-Nearest Neighbour and 

Minimum Mean Distance classifier of NI Vision Builder AI has been conducted in 

Wireless Object Sorting Robot Arm System (WOSRAS) [29]. The result from the 

classification shows that the Nearest Neighbour with Sum metric distance shows the 

highest performance in term of accuracy, misclassification rate and Kappa-

coefficient. 

 

2.8 Summary 

 

RBC classification using image processing has been done in many previous works. 

As we know RBC analysis using image processing is not a new thing in medical 

diagnosis. Researchers focus on the improvement of the accuracy and promising 

result in their research by using many different methods. There is a challenge in 

machine vision system to achieve the quality level of human vision system.  

There are still weaknesses and constraints due to the image itself such as 

color similarity, weak edge boundary, overlapping condition, image quality, contrast, 

brightness, illumination and noise. Thus, more study must be done to handle those 

matters to produce strong analysis approach for medical diagnosis purpose. This 
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project is hoped can build a better solution and help to improve the current methods 

so that it can be more capable, robust, and effective whenever any sample of blood 

cell is analysed. 
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CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

 

3.1 Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Research framework 

 

There are several steps taken in for RBC classification and counting from previous 

works. The problem domain in this case is to extract the RBC from a blood cell 

image automatically. Whereby, the goal is to classify RBC between normal and 
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RBC Classification 
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irregular shape. The foundation methods that are taken in digital image processing 

will be similar one to another. Image processing is not a one-step process: most 

solutions follow a sequential processing scheme whose main steps are described 

next. Figure 3.1 shows the overall flow process of the research. 

 

3.2 Acquisition 

 

The acquisition block is in charge of acquiring one or more images of blood samples 

of anaemia patient or person that facing RBC disease. This acquisition process will 

be gained from digital microscope. Several factors should be considered on the blood 

image that captured from the digital microscope that will likely impact the quality of 

the result of the RBC classification such as blur and illumination. Figure 3.2 shows 

the flow of acquisition process of blood cell from microscope. 

 

 

 

 

 

 

 

 

 

 

 

        Figure 3.2: Flow of acquisition process from microscope 

 

3.3 Pre-processing 

 

The goal of the pre-processing stage is to improve the quality of the acquired image. 

Possible algorithms to be employed during this stage include contrast improvement, 

brightness correction, and noise removal. As described earlier, blood cell contains 

RBC, WBC and platelet.  
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During pre-processing, unwanted image need to be removed. This process 

will remain RBC as the remaining object to be analysed for next process. Possible 

algorithms to be employed during this stage including border image removal, 

removing small objects and filling holes of the RBC images. 

 

3.3.1     Global Thresholding 

 

Many optimal strategies for selecting threshold values have been suggested in the 

literature. These strategies usually rely on assumed statistical models and consist of 

modelling the thresholding problem as a statistical inference problem. Unfortunately, 

such statistical models usually cannot take into account important factors such as 

borders and continuity, shadows, non-uniform reflectance, and other perceptual 

aspects that would impact a human user making the same decision. Consequently, for 

most of the cases, manual threshold selection by humans will produce better results 

than statistical approaches would. 

The well-known global image threshold is Otsu‟s method. Otsu‟s method is 

histogram based image thresholding method that separates the image pixel into two 

classes with a minimal intra-class variance. In this project, global colour thresholding 

process is applied to convert the image from RGB to binary image. 

 

3.3.2 Global Color Thresholding 

 

Colour thresholding converts a colour image into a binary image. To threshold a 

colour image, specify a threshold interval for each of the three colour components. A 

pixel in the output image is set to 1 if and only if its colour components fall within 

the specified ranges. Otherwise, the pixel value is set to 0. 

For a pixel in the colour image to be set to 1 in the binary image, its red value 

should lie between 130 and 200, its green value should lie between 100 and 150, and 

its blue value should lie between 55 and 115. Figure 3.3 shows the difference of 

RGB histogram value of RBC compare to its background. 
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Figure 3.3: RGB histogram average value (a) RBC, (b) RBC background 

 

 

(a) 

(b) 
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3.3.3 Binary Image 

 

Binary images are encoded as a 2D array, typically using 1 bit per pixel, where a 0 

usually means “black” and a 1 means “white” (although there is no universal 

agreement on that). The main advantage of this representation usually suitable for 

images containing simple graphics, text, or line art is its small size. Figure 3.4 shows 

conversion from RGB to binary image. 

 

 

 

 

 

 

 

 

 

                     

             

Figure 3.4: (a) RGB image, (b) Binary image 

 

3.3.4  Morphological Operation 

 

Morphology is a broad set of image processing operations that process images based 

on shapes. Morphological operations apply a structuring element to an input image, 

creating an output image of the same size. In a morphological operation, the value of 

each pixel in the output image is based on a comparison of the corresponding pixel in 

the input image with its neighbours.  

The number of pixels added or removed from the objects in an image depends 

on the size and shape of the structuring element used to process the image. All 

morphological processing operations are based on two simple ideas, hit and fit. Fit 

stands for the condition when all pixels in the structuring element cover on pixels in 

the image whereas hit signifies the condition when any of the pixels in the 

(a) (b) 
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structuring element covers on a pixel in the image. The different morphological 

operators used are discussed below. 

 

3.3.5 Remove Border Object 

 

Objects that touching border is not in incomplete shape and it is difficult to be 

classified. Due to this constrain, the RBC image that touches border can be 

eliminated. This process can affect the performance result of the classifier but due to 

the limitation these incomplete shape of RBC need to be remove. Figure 3.5 shows 

before and after result of this process.  

 

 

 

 

 

 

 

 

 

 

Figure 3.5: (a) Before remove border object, (b) After remove border object 

 

3.3.6 Erosion 

 

Erosion is a morphological operation whose effect is to “shrink” or “thin” objects in 

a binary image. The direction and extent of this thinning is controlled by the shape 

and size of the structuring element. In this project, erosion function is used in 

removing small object as per shown in Figure 3.6. 

 

 

 

 

(a) (b) 
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 Figure 3.6: (a) Binary image; (b) Eroded binary image 

 

3.3.7 Dilation 

 

Dilation is a morphological operation whose effect is to “grow” or “thicken” objects 

in a binary image. The extent and direction of this thickening are controlled by the 

size and shape of the structuring element. The structuring element (SE) is the basic 

neighbourhood structure associated with morphological image operations. It is 

usually represented as a small matrix, whose shape and size impact the results of 

applying a certain morphological operator to an image. In this project, the dilation 

function is applied in filling the hole in RBC images as per shown in Figure 3.7. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: (a) Before fill hole, (b) After fill hole 

 

(a) (b) 

(a) (b) 
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3.4 Heywood Circularity Factor 

 

Heywood circularity factor is used as image classifier inside RBC images to identify 

non-overlap, overlap and normal RBC. Heywood circularity Factor is perimeter 

divided by the circumference of a circle with the same area. The closer the shape of a 

particle is to a disk, the closer the Heywood circularity factor is to 1. Heywood 

circularity factor is also a ratio of particle perimeter to the perimeter of the circle 

with the same area. It is defined in (3.1): 

 

                            
                  

                                              
  3.1) 

                                                   
                  

 √                 
               

 

3.5 NI Vision Builder AI Classification Function 

 

NI Vision Builder AI provides image classification function that can be used to 

classify objects in several types of application. There are three classifiers that 

provided in the system which is Nearest Neighbour (NN), k-Nearest Neighbor (k-

NN) and Minimum Mean Distance. Along with these three classifiers, there are three 

types of metrics that can be selected. The three metrics are Maximum, Sum and 

Euclidean. In the RBC classification project, the approach of classification will be 

attempted for those three classifier and the three metrics and the performance of each 

classifier can be observed. 

 

3.5.1 Nearest Neighbour Classifier 

 

Nearest Neighbour is the most direct approach to classification. In Nearest 

Neighbour classification, the distance of an input feature vector of unknown class to 

another class is defined as the distance to the closest samples that are used to 

represent that class. In Nearest Neighbour (NN) algorithm, the input feature vector X 
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of unknown class to a class   
  is determined as the distance to the nearest neighbour 

which is used to represent the class as shown in (3.2). 

 

               ) =      
     

  
                     (3.2) 

Where  (    
  
) is the distance between   and   

  
 

 

The classification rule assigns a pattern   of unknown class to the class of its nearest 

neighbour that is given in (3.3). 

 

               (    )        
     

                                (3.3)    

   

The main advantage of Nearest Neighbour algorithm is its simplicity 

approach for classification. It works well if corresponding feature vectors for every 

class are available. Nearest Neighbour classification is the most intuitive approach 

for classification. If representative feature vectors for each class are available, 

Nearest Neighbour classification works well in most classification applications. 

Figure 3.8 shows Nearest Neighbour concept.  

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.8: Nearest Neighbour 
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3.5.2 k-Nearest Neighbour Classifier 

 

In k-Nearest neighbour classification, an input feature vector   is classified into a 

class    based on a voting mechanism. The NI Classifier finds k nearest samples from 

all the classes. The input feature vector of unknown class is assigned to the class with 

majority of the votes in the k nearest samples.   

The outlier feature patterns caused by noise in real-world applications can 

cause incorrect classifications when Nearest Neighbour classification is used. K-

Nearest Neighbour with k=3 is illustrates in Figure 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: k-Nearest Neighbour 

 

3.5.3 Minimum Mean Distance Classifier 

 

The last one is Minimum Mean Distance which is most effective in applications that 

have little or no feature pattern variability or other corruptive influences. In 

minimum mean distance classification, an input feature vector of unknown class is 

classified based on its distance to each class centre. Consider that {  
 
   

 
       

 
} 

Feature (y) 

Feature (x) 
      = class 1            = class 2 

 

 

Unknown object classified as    
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be    feature vectors which is used to represent the class   . Every feature vector 

contains a label of class   that has been selected for representing the class. The centre 

of the class   is given in (3.4)    

 

                                           
 

  
∑   

   

   
                 (3.4) 

 

An input feature vector X of unknown class was classified in the classification phase 

depends on the distance to each class centre and given in (3.5)  

 

               (    )        
                                     (3.5) 

 

Figure 3.10 shows the Minimum Mean Distance Classification process.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Minimum Mean Distance 

 

3.5.4 Distance Metrics 

                        

The classifier comes along with metric or distance. There are three metrics that can 

be selected for each classifier which is Maximum, Sum and Euclidean. Maximum is 

most sensitive to small variations between samples. Maximum is used to classify 

samples with very small differences into different classes. While Sum metric is used 

Feature (y) 

Feature (x) 
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in most classification applications. Sum is also known as the Manhattan metric or 

Taxicab metric. The last one is the Euclidean metric that least sensitive to small 

variations between samples. Euclidean metric is applied in classification samples 

with small differences into the same class. 

Let  =[  ,        ] and  =[  ,         ] be the feature vectors, then the 

distance metric        was given for each distance metric. Euclidean distance (L2), 

Sum distance (L1) and Maximum distance (L∞) was evaluated and the resultant 

formulas for the distance metrics of classification methods were shown in Table 3.1. 

 

Table 3.1: Distance metrics for classification methods 

Euclidean distance (L2)        √∑        
 

   

 

Sum distance, also known as the City-

Block metric or Manhattan metric (L1) 
        ∑       

 

   

 

Maximum distance (L∞)                  
    

 

Figure 3.11 shows the comparison distance for value of 1 unit among the 

three metrics. It can be seen that the Maximum Mean Distance metric shows square 

shape, Sum metric shows diamond shape and Euclidean metric shows circle shape. It 

can be conclude that each metric has different length of distance to reach the same 

coordinate of object. 
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