
Applied Mathematics and Computation 274 (2016) 362–371

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

On travelling wave solutions of the diffusive Leslie–Gower

model

Hamizah M. Safuan a,∗, Isaac N. Towers b, Zlatko Jovanoski b, Harvinder S. Sidhu b

a Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia
b Applied and Industrial Mathematics Research Group, School of Physical, Environmental and Mathematical Sciences, UNSW Canberra,

Canberra ACT 2600, Australia

a r t i c l e i n f o

Keywords:

Predator–prey

Reaction–diffusion

Wave speed

a b s t r a c t

We investigate the diffusive Leslie–Gower predator–prey model. Travelling wave solutions

were found and a minimum wave speed relationship was derived. Linear stability analysis

was performed in addition to full numerical simulation of the model. All travelling waves

were found to be stable.

© 2015 Elsevier Inc. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository
1. Introduction

Models that describe predator–prey interactions are well established. These models incorporate competition, cooperation

and predation terms to describe realistic dynamics. In these models, features such as extinction of one species or the other,

persistence and oscillatory behaviour between species are commonly found. Different formulations of the above mentioned

cases are an area of continuing research [2,14,16,21,26].

These models generally consist of two or more ordinary differential equations (ODEs) to represent the interactions of predator

and prey. Multiplicity of solutions, limit cycles and chaos are among the features found in these type of systems. For example,

Gilpin and Rosenzweig [9] have discussed the effects of enrichment to the predator and prey system that could lead to a limit

cycle or periodic solution. Rinaldi et al. [25] studied a classical predator–prey model with a varying environment. They investi-

gated several types of bifurcation properties and found chaos exists in the system. Harrison [10] conducted bacterial population

experiments and validated the results using various modified predator–prey models.

Another predator–prey model commonly studied is the Leslie–Gower (LG) model

dX

dt
= aX − bX2

Y
, (1a)

dY

dt
= cY − dY 2 − eXY, (1b)

which is a type of ratio-dependent system. Introduced by Leslie [17] and Leslie and Gower [18], the model assumes that the

carrying capacity of the predator X changes proportionally to the prey Y, and that the carrying capacity of the prey is limited by

a fixed value c/d. In contrast, the classical models assume that the prey population grows without bound in the absence of the

predators [2].
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System (1) has a unique coexistence equilibrium

X∗ = ac

ae + bd
, Y ∗ = bc

ae + bd
.

Korobeinikov [13] found a Lyapunov function for the LG model and showed that the equilibrium is globally stable, and a simpler

case of LG model was considered by Safuan et al. [29].

Since the LG model has been introduced, numerous studies have modified and investigated the properties of system (1) to

model various predator–prey populations. Collings [5] applied several functional forms to system (1) to investigate changes in

the dynamical behaviour of mite predator–prey populations. Seo et al. [31] compared a LG-type model with another predator–

prey model and found both models exhibit limit cycle solutions. A LG model with the effect of prey refuge was considered by

Chen et al. [3]. They found that if the amount of prey refuge is increased, predator and prey densities can either increase or

decrease. Chen and Chen [4] investigated a LG model with feedback controls and found that the feedback control variables have

no effect on the global stability of the system, but only alter the location of the coexistence equilibria. Modified LG models for

three species populations are also available, see references [1,15,27,28].

The aforementioned studies help biologists and ecologists to understand the dynamics that evolve between predators and

preys temporally without any spatial dimensions. To incorporate the distribution of populations over time and space domains,

spatio-temporal models should be considered. System of partial differential equations (PDEs) will provide more information to

explain the population distribution, the wave speed and the effects of diffusivity of each species over a space domain.

The LG model can be extended to include diffusive effects and takes the form

∂U

∂t
= d1

∂2U

∂x2
+ aU − bU2

V
, (2a)

∂V

∂t
= d2

∂2V

∂x2
+ cV − dV 2 − eUV, (2b)

where U is the predator and V is the prey population. Parameters d1 and d2 are the diffusion coefficients for the predator and

prey, respectively. The predator grows logistically with growth rate a and is limited by the availability of prey with parameter b.

The prey also grows logistically with growth rate c. The term eUV represents the effect of predation which reduces the prey’s per

capita growth rate.

There have been several investigations into the diffusive LG model (2). Du and Hsu [6] investigated the behaviour of steady-

state solutions of system (2) in environments that are homogenous and heterogeneous (where the constant parameter b in

Eq. (2a) is replaced by a spatial-dependent function b(x)). They found that the system has no non-constant positive solution in a

homogeneous environment whereas in a heterogeneous environment, a non-constant solution can be obtained. Ko and Ryu [12]

investigated non-constant positive steady-states of system (2) with general functional response and found in some conditions,

there may have more than one non-constant positive steady-state. A diffusive LG model with a protection zone for the prey was

studied by Du et al. [7]. They found results on the asymptotic profile of positive solutions of the model for large intrinsic predator

growth rates. A cross-diffusion LG model was considered by Li and Zhang [19]. Depending on the natural and cross-diffusion

coefficients, they showed the existence or non-existence of a non-constant positive solution of the system.

In this investigation, we are interested in studying travelling wave solutions within a homogeneous diffusive LG model. The

wavefront solution provide information regarding how both populations disperse over space. It is a standard approach to con-

sider travelling waves solution when investigating reaction-diffusion system. For instance, Dunbar [8] investigated a diffusive

Lotka–Volterra model that gave rise to a travelling wavefront solution, and simulated the PDE using the method of lines. Huang

and Weng [11] applied several numerical methods to study travelling waves for a diffusive predator–prey system with a general

functional response. Our aim is to use a similar approach as used by Dunbar to determine and analyse the travelling wave solu-

tions for the diffusive LG model in one spatial dimensional. We also numerically solve the PDEs with different initial conditions.

2. Equilibrium and stability analysis

Introducing the transformations u = eU/c, v = eV/c, τ = at, and ξ =
√

a/d2 x, we arrive at the non-dimensional version of

system (2)

∂u

∂τ
= δ

∂2u

∂ξ 2
+ u

(
1 − αu

v

)
, (3a)

∂v
∂τ

= ∂2v
∂ξ 2

+ βv(1 − γ v − u), (3b)

where

α = b/a, β = c/a, γ = d/e and δ = d1/d2.

Let the travelling wave solution have the form u(ξ , τ ) = u(ζ ), and v(ξ , τ ) = v(ζ ) where ζ = ξ − sτ is a moving frame with

speed s. Substitute these into the system (3) to give a system of second order ODEs which is the travelling wave system

δu′′ + su′ + u

(
1 − αu

v

)
= 0, (4a)
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v′′ + sv′ + βv(1 − γ v − u) = 0, (4b)

where ′ = d/dζ . Next we will analyse the effects of the diffusivity parameter δ on the system (4).

2.1. Sedentary predator and diffusing prey, δ = 0

Most predators are fast-moving which is a crucial survival skill for some animals. For example, tigers have to run faster to catch

a running deer and a large fish has to swim faster to catch a school of small fish. However, there are other cases in ecosystems

where predators move slower than the prey. For example, a praying mantis remains still while waiting for butterflies, moths,

bees and beetles to move towards it. Similarly the pacman frog which has a wide mouth that enables it to swallow prey that

crosses its path uses a ‘sit-and-wait’ strategy. Another species that also applies the same strategy is the web-builders spider [24].

This type of spider stays and waits for the presence of any small insects on the sheet webs until it can make its move. Thus it is a

relevant case to consider. In our model, we assume that the predator moves very slowly relative to the prey, d1 � d2, so we can

neglect the ratio of the diffusion coefficients, δ = 0, then system (4) becomes

su′ + u

(
1 − αu

v

)
= 0, (5a)

v′′ + sv′ + βv(1 − γ v − u) = 0. (5b)

From system (5) there is a pair of critical points. The first critical point is P0 = (0, 1/γ ) (extinction of predator) and the second

critical point is P1 = (u∗, v∗) (coexistence of predator and prey) where

u∗ = 1

αγ + 1
, v∗ = α

αγ + 1
.

Our interest is to study system (5) which corresponds to orbits in phase space connecting one critical point to another. We

can write the system (5) as a system of first order equations

u′ = u

s

(
αu

v
− 1

)
, (6a)

v′ = w, (6b)

w′ = βv(γ v + u − 1) − sw. (6c)

Thus, P0 and P1 correspond to the critical points E0 = (0, 1/γ , 0) and E1 = (u∗, v∗, 0).

The Jacobian matrix of system (6) takes the form

J =

⎛
⎝

2αu−v
sv −αu2

sv2 0

0 0 1

βv β(2γ v + u − 1) −s

⎞
⎠, (7)

and at equilibrium E0 = (0, 1/γ , 0), the matrix (7) becomes

JE0
=

⎛
⎜⎝

− 1
s

0 0

0 0 1

β
γ β −s

⎞
⎟⎠. (8)

The characteristic equation of (8) is

P1(λ) = λ3 +
(

s2 + 1

s

)
λ2 − (1 − β)λ − β

s
, (9)

which gives the eigenvalues of the linearisation of (7) at E0

λ1 = −1

s
, λ2 = − s

2
+

√
s2 + 4β

2
, λ3 = − s

2
−

√
s2 + 4β

2
. (10)

The eigenvalues λ1 and λ3 are always negative while λ2 is always positive (see Fig. 1a). Thus, there is a one dimensional

unstable manifold based at equilibrium E0. Further, from (10), the wave speed of the system (5) can take any positive value, s >

0, and the eigenvalues λ1 = λ3 if speed sc1
=

√
1/(1 + β).

At equilibrium E = (u∗, v∗, 0), the matrix (7) becomes
1
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Fig. 1. Qualitative graphs of the characteristic polynomial with δ = 0 and varying s for (a) P1(λ) in (9), and (b) P2(λ) in (12).
JE1
=

⎛
⎜⎝

1
s

− 1
αs

0

0 0 1

αβ
αγ +1

αβγ
αγ +1

−s

⎞
⎟⎠. (11)

It follows the characteristic equation of (11) at E1 is

P2(λ) = λ3 +
(

s2 − 1

s

)
λ2 −

(
1 + αβγ

αγ + 1

)
λ + β

s
. (12)

From P2(λ), there is exactly one negative root and two positive roots or a pair of complex roots with positive real parts (see

Fig. 1b). Thus there is a two dimensional unstable manifold based at equilibrium E1.

2.2. Predator and prey diffuse, δ > 0

Generally, predator and prey move at different rates. In a case where both of the species move, one could be moving a little

faster than the other or both of them are moving at a similar rate. For example, equal diffusivity of both species (δ = 1) is due to

spatial mixing from turbulence in a lake or in the sea. For such a case, one can assume that the magnitude of the diffusivity for

the predator (zooplankton) and the prey (phytoplankton) is the same [22].

For general species, let’s assume that the predator and prey diffuse at different rates. Then the ratio of the diffusion coeffi-

cients, δ > 0 in the system (4). Again we can write system (4) as a system of first order equations

u′ = w, (13a)

v′ = z, (13b)

w′ = u

δ

(
αu

v
− 1

)
− sw

δ
, (13c)

z′ = βv(γ v + u − 1) − sz, (13d)

where P0 and P1 correspond to the critical points F0 = (0, 1/γ , 0, 0) and F1 = (u∗, v∗, 0, 0).

At equilibrium F0 = (0, 1/γ , 0, 0), we have the characteristic equation

P1(ν) = ν4 + s(1 + δ)

δ
ν3 + 1

δ

(
s2 + 1 − βδ

)
ν2 + s

δ
(1 − β)ν − β

δ
, (14)

from which the eigenvalues are

ν1 = − s

2
+

√
s2 + 4β

2
, ν2 = − s

2
−

√
s2 + 4β

2
, (15)

ν3 = − s

2δ
+

√
s2 − 4δ

2δ
, ν4 = − s

2δ
−

√
s2 − 4δ

2δ
. (16)

From Eq. (15), the eigenvalue ν1 is always positive while ν2 is always negative. From (16), if s ≥ 2
√

δ, ν3 and ν4 are a pair

of real negative eigenvalues. If 0 < s < 2
√

δ, ν and ν are a pair of complex conjugate eigenvalues with negative real part (see
3 4
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Fig. 2. Qualitative graphs of the characteristic polynomial with δ > 0 and varying s for (a) P1(ν) in (14), and (b) P2(ν) in (18).
Fig. 2a). In our example, we use δ = 2 to indicate predator’s diffusion rate is twice than the prey’s. There is a one dimensional

unstable manifold and a two dimensional stable manifold based at equilibrium F0. For 0 < s < 2
√

δ, the trivial equilibrium F0 is a

spiral point on the stable manifold. Therefore, if the travelling wave solution exists, the possible minimum speed of system (13)

for biologically relevant solution with non-negative u and v is

s ≥ 2
√

δ. (17)

With s satisfying condition (17), a realistic solution may exist which tends to u = 0 and v = 1/γ as ζ → +∞. At the non-trivial

equilibrium F1 = (u∗, v∗, 0, 0), we have the following characteristic equation:

P2(ν) = ν4 + s(1 + δ)

δ
ν3 + 1

δ

(
s2 − 1 − αβγ δ

αγ + 1

)
ν2 − s

δ

(
1 + αβγ

αγ + 1

)
ν + β

δ
. (18)

From P2(ν), there is exactly two negative roots or a pair of complex roots with negative real parts and two positive roots

or a pair of complex roots with positive real parts (see Fig. 2b). Thus there is a two dimensional unstable manifold based at

equilibrium F1.

3. Numerical results

In this section, we describe how we solve a two-point boundary value problem given by system (4) and we simulate the full

PDE problem (3) for both δ = 0 and δ = 2.

3.1. Travelling wave profiles

We use a relaxation or collocation method [23] to solve the travelling wave system (4) together with the following boundary

conditions:

u( − ∞) = 1

αγ + 1
, u( + ∞) = 0, (19a)

v( − ∞) = α

αγ + 1
, v( + ∞) = 1

γ
. (19b)

In the process of finding travelling wave profiles, we use the following initial trial functions:

u(ζ ) =
{

1
αγ +1

, ζ < ζ0,

0, ζ > ζ0,
v(ζ ) =

{ α
αγ +1

, ζ < ζ0,

1
γ , ζ > ζ0.

(20)

For the sedentary predator and moving prey (δ = 0), we set α = 0.5, β = 0.9, γ = 1, δ = 0, s = 2 in system (5) with the trial

functions (20), we plot the travelling wave solution for u and v in Fig. 3. The parameters are chosen to simulate the shape of the

travelling wave solutions. The travelling wave solutions join equilibrium (1/(αγ + 1), α/(αγ + 1)) to (0, 1/γ ). From the figure,

we can see that initially at the right boundary, only prey exists. After the introduction of the predator at the right boundary, the

sedentary predator consumes the large amount of moving prey. The predator increases in numbers after consuming the prey,
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Fig. 3. Numerical solution of the travelling wave system (5) obtained from relaxation method with α = 0.5, β = 0.9, γ = 1, δ = 0, ζ0 = 50, with various speeds

s = 0.5, 1, 1.5, 2.
and in contrast prey numbers decrease due the predation activity. After passing the interaction regime, both predator and prey

stabilise at the coexistence equilibrium. Fig. 3 also shows the solution of the system (5) with various wave speeds. As we found

in (10), s can be any value greater than zero. As s increases, we observe that the peak in predator u is slightly decreasing.

In system (5), each parameter α, β , γ has different effects to the properties of the travelling wave solution. Different values of

α and γ affect the location of the coexistence equilibrium (1/(αγ + 1), α/(αγ + 1)) and the predator extinction equilibrium (0,

1/γ ), respectively. The variable β does not have any significant impact to the travelling wave of the prey v, but the density of the

predator u, decreases as β increases. This is the result of the predator’s carrying capacity is dependent on the availability of the

prey. Thus, any slight change in the system will affect the numbers of the predators. Also, this behaviour is caused by the nature

of the system (5) where β is written as the factor for the growth terms in Eq. (5b).

For the case where both species diffuse (δ > 0), we plot the region where the travelling wave of system (4) is possible from the

speed condition (17). Fig. 4a shows the minimum speed curve s = 2
√

δ = s∗ that divides the parameter space into two regions. The

shaded region represents parameter space where s ≥ s∗ and the unshaded region represents s < s∗. We set the ratio of diffusion

coefficients, δ = 2, which represents the diffusion parameters d1 and d2 in the dimensional system (2) and other parameters

remain the same as before for all our travelling wave profiles. With δ = 2, the minimum wave speed is s∗ = 2
√

2. Using this set

of parameters (in the shaded region), we plot the travelling wave profile as shown in Fig. 4b. However, if we plot the wave profile

using parameter set in the unshaded region, we will have negative population density which is not biologically sensible thus

it is not shown here. Fig. 4c shows the predator’s profile with different values of diffusivity parameter, δ. The character of the

travelling wave remains the same, but the region of solution expands as δ increases due to the numerical computations to relax

the solution at the left and right boundaries.

3.2. Simulations

We numerically simulate the PDE system (3) via method of lines [30] with the initial conditions obtained from the relaxation

method for δ = 0 with fixed speed s = 2 are shown in Fig. 5. The distribution of each species is shown across the domain for

time intervals of size 100 and we discretise one dimensional space into equal size of n = 2000 in a finite interval [0, 200]. In

all simulations, we use Neumann boundary condition ∂u/∂n = ∂v/∂n = 0, which reflects no population can escape across the

boundary.

Fig. 5 shows that the fixed wave profile moving to the right with constant speed s. We can observe that both equilibria are

connected by the travelling wave solution – similar results as the relaxation method found in the previous section. The presence

of predator at the right boundary induces the prey to increase and move. Once the predator starts consuming the prey, the prey

numbers are reduced. The prey are depicted by a tanh-shaped kink solution whereas the predator shows a one-hump travelling

wave as a result of consumption. Both predator and prey coexist at the left boundary. The behaviour of the travelling wave

solution can be viewed similar relative to a dispersion of a soliton. Solitons are known to originate from the nonlinearity effects

in the governing equations and have been shown to have a single hump-shaped that moves along the x-axis direction. In our

case, the peak in the predator and a slight dip in the prey are induced by the nonlinear interaction terms found in system (5).

We also plot the solutions for δ = 2 with minimum speed s∗ = 2
√

2 in Fig. 6. Compared to the stationary case δ = 0 in Fig. 5,

the waves travel further for the case with δ = 2. This shift is driven due to the effect of the diffusion parameter δ. The greater

value of δ, the further the populations move over space. In this case, the predator moves twice as fast compared to the prey.

After analysing the travelling wave solution of the Leslie–Gower model with the effects of the diffusion parameter δ, we are

interested to observe the dynamics of population distribution for different types of initial conditions. For example, Medvinsky
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Fig. 4. (a) The curve s = 2
√

δ = s∗ separates the shaded and the unshaded regions in the (s, δ) parameter space. Shaded region represents parameter space

where s ≥ 2
√

δ, and the unshaded region represents parameter space s < 2
√

δ. (b) Wave profile of system (4) obtained from a relaxation method with α =
0.5, β = 0.9, γ = 1, δ = 2, ζ0 = 100, and s = s∗ = 2

√
2. (c) u profile with different values of diffusivity parameter, δ.
et al. [20] study a predator–prey system that depends on the choice of initial conditions. They found that for some small pertur-

bation in an otherwise homogeneous distribution gives rise to a heterogeneous spatial distribution of species. However, they did

not discuss travelling wave solution for the PDE problem. Dunbar [8] found travelling wave solution in a predator–prey system

using a particular step-function form of initial conditions.

In our study, we simulate the PDE system (3) with several initial conditions: constant-gradient, step-function, and sinusoidal

function. For all simulations, we solve (3) with a Neumann boundary condition and δ = 2. The minimum wave speed according

to the condition (17) is s∗ = 2
√

δ = 2
√

2.

We begin with a simple step function for predator u and constant distribution for prey v

u(x, τ ) =
{

1
αγ +1

, x < x0,

0, x > x0,
v(x, τ ) = α

αγ + 1
, (IC1)

and then consider step functions for both species

u(x, τ ) =
{

1
αγ +1

, x < x0,

0, x > x0,
v(x, τ ) =

{ α
αγ +1

, x < x0,

1
γ , x > x0,

(IC2)

and finally investigate a sinusoidal distribution in prey v

u(x, τ ) =
{

1
αγ +1

, x < x0,

0, x > x0,
v(x, τ ) = α

αγ + 1
+ A sin

(
2π(x − xo)

S

)
, (IC3)
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Fig. 5. Solutions of system (3) via method of lines with the initial conditions obtained from the relaxation method. Solutions are plotted on the same axes at

τ = 5.7, 12.7, 19.6, 26.7, 33.7, 40.7. Parameters are α = 0.5, β = 0.9, γ = 1, δ = 0 and fixed speed s = 2.

Fig. 6. Solutions of system (3) via method of lines with the initial conditions obtained from the relaxation method. Solutions are plotted on the same axes at

τ = 5.7, 12.7, 19.7, 26.7, 33.7. Parameters are α = 0.5, β = 0.9, γ = 1, δ = 2 and minimum speed s∗ = 2
√

2.
where A and S are constants with A < α
αγ +1 .

The simulations of the travelling waves with different initial conditions are given in Fig. 7. For all three types of initial condi-

tions, after some initial transients (see Fig. 7a (ii), b(ii), and c(ii)), the travelling wave profiles are similar to those found by the

relaxation method in Section 3.1. These simulations show that a wide range of initial conditions for the PDE system will relax to

a travelling wave. Hence, it demonstrates that the travelling wave solutions found in our work are attractors in the PDE system

and are nonlinearly stable.

4. Conclusions

We have studied a spatio-temporal reaction-diffusion system modelling Leslie–Gower predator–prey population with dif-

fusion. We showed that system (4) gives rise to a travelling wave solution that connects one critical point to the other. Using

stability analysis, a minimum wave speed condition was derived for the case with diffusion parameter δ > 0. The relaxation

method is used to find the travelling wave profile for both cases δ = 0 and δ > 0.

Our results for the diffusive Leslie–Gower model of predator–prey interaction show that both a “sit and wait” strategy (δ = 0)

and a small hunting ground approach (δ = 2) exist as travelling wave solutions. Furthermore, these travelling waves solutions are

stable implying the important biological quality of persistence. Further, our numerical simulations show that a variety of initial

conditions will resolve to the above mentioned travelling wave solution. We may interpret this to mean the coexistence of the
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Fig. 7. Simulations of the system (3) with initial conditions (a) IC1, (b) IC2, and (c) IC3 with x0 = 50, A = 0.1, S = 60.
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predator and prey is robust to either how the two species initially encounter one another or external shocks to the population

numbers.
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