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ABSTRACT 
 

 
 
 
 

 The analogue to digital converters are the key components in modern electronic 

systems. Signal processing is very important in many of the system on-a-chip 

applications. Analogue to digital converters (ADCs) are a mixed signal device that 

converts analogue signals which are real world signals to digital signals for 

processing the information. As the digital signal processing industry grows the ADC 

design  with new techniques and methods are extensively sought after. This increases 

the requirements on ADC design concerning for high speed, low power and small 

area. A flash ADC is the best solution, not only for its fast data conversion rate but 

also it becomes part of other types of ADC. However main problem with a flash 

ADC is its power consumption, which increases in number of bits. In this project a 4-

bits flash ADC is designed with a 1.5V power supply and 1.5 GHz clock using 0.25 

µm CMOS technology. The software used for this ADC design is Tanner EDA’s S-

Edit
TM

 and T-Spice
TM

 which is utilized to simulate the three blocks of flash ADC  

with input frequency of 250 MHz. The ADC is successfully designed with a power 

consumption of 5.18 mW. 
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ABSTRAK 
 
 
 
 

 

Penukar isyarat analog kepada digital adalah komponen utama dalam sistem 

elektronik moden. Pemprosesan isyarat adalah sangat penting dalam pelbagai sistem 

aplikasi menggunakan satu cip. Penukar isyarat analog kepada digital (ADC) adalah 

peranti isyarat bercampur yang menukarkan isyarat analog iaitu isyarat dunia sebenar 

kepada isyarat digital untuk memproses maklumat. Seiring dengan perkembangan 

industri pemprosesan isyarat digital, reka bentuk ADC dengan teknik dan kaedah 

baru secara meluas dicari dengan keperluan kepada rekabentuk ADC kelajuan yang 

tinggi, penggunaan tenaga yang rendah dan bersaiz kecil. ADC denyar adalah 

penyelesaian yang terbaik, bukan sahaja untuk kadar penukaran data yang cepat 

tetapi juga ia menjadi sebahagian komponen kepada lain-lain jenis ADC. Namun 

masalah utama dengan ADC denyar adalah penggunaan kuasa, yang meningkat 

dengan bilangan bit. Dalam projek ini ADC denyar  4-bit direka dengan bekalan 

kuasa 1.5V dan pemasaan 1.5 GHz menggunakan teknologi CMOS 0.25 μm. 

Perisian yang digunakan untuk reka bentuk ADC ini ialah Tanner EDA S-Edit
TM

 dan 

T-Spice
TM

 yang digunakan untuk mensimulasikan tiga blok ADC denyar dengan 

menggunakan frekuensi input 250 MHz. Litar ADC ini telah berjaya direka dengan 

penggunaan kuasa sebanyak  5.18 mW. 
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CHAPTER 1 

 

 

INTRODUCTION  

 

 

 

1.1  Project Background 

 

An analogue-to-digital converter (ADC) is a tool that translates the constant physical 

amount of an analogue  input into a digital number to denote the amplitude of that 

amount, thus resulting in the translation of a series of digital values from a 

continuous-time and continuous-amplitude analogue signal to a discrete-time and 

discrete-amplitude digital signal [1]. A direct-conversion ADC or flash ADC consists 

of a set of comparators [2] which test the input signal in parallel, with each firing 

according to their decoded voltage range. An encoder logic circuit, which produces a 

code for each voltage range, is fed by the set of comparators. 

 Among the various types of ADCs, the flash ADC is used as a component in 

other types of ADCs such as  pipeline and multi bit Sigma Delta ADCs. Among the 

many principles employed for ADC circuits, the all-parallel or flash converter 

remains the swiftest converter and it usually uses 2
N
-1 comparators for the 

conversion of N bits data [3]. For large values of N, the greater number of 

comparators are required and consequently the speed of the ADC will be slowed 

down and the circuit will consume more power, this is main disadvantage of a flash 

ADC that its power consumption is raised as the number of bits increased. 

  The design and execution of a high speed low power 4-bits 1.5 V, 0.25 µm 

flash ADC using complementary metal oxide semiconductor (CMOS) technology is 

presented in this study. The effect on the power consumption by altering the design 

of the encoder block is being examined. The low power consumption is attributed to 

the reduced size of the transistor and the modularity of the design. 
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1.2  Problem Statement 

 

With the development of very large scale integration (VLSI) technology, the need for 

lower power consumption, and higher speed and resolution in the ADC field has 

become increasingly important. Currently, a lot of research is being carried out to 

develop data converters that can meet the highest specifications for state-of-the-art 

data converter applications. Novel methods have been put forward to reduce the 

power consumption of flash ADCs. The flash ADC is not only renowned for its fast 

data conversion rate, but is also a component of other types of ADCs such as pipeline 

and multi bit Sigma Delta ADCs. However,  main disadvantage of a flash ADC is its 

power consumption, which goes up with an increase in the number of bits. Cascading 

high-speed comparators are used to make flash ADCs. The circuit needs to use 

2
N
 -1 comparators for a converter with N bits. Many comparators are required for a 

large value of N, and the consequent difficulty of encoding renders this principle less 

appealing. This problem is  discussed in this study, together with ways to overcome 

it as well as the method for increasing the conversion rate. 

 

1.3  Project Objectives 

 

The main objective of this study is the design and execution of a high speed low 

power 4-bits 1.5 V, 0.25 µm flash ADC employing CMOS technology. The 

following are the objectives of this study: 

 

a) To design a flash ADC using CMOS technology. 

b) To obtain a power consumption of the ADC that is below 104 mW.  
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1.4  Project Scope 

 

  The main focus of this study is the flash ADC, and it consists of the design  and 

execution of the resistor ladder, comparator and encoder block of the flash ADC, and 

the optimization of all the blocks to obtain a design that has a low power 

consumption and high data conversion rate. It is also necessary to alter the 

architecture of the encoder block and to monitor the effect of this on power 

consumption. The scopes of this study are as follows: 

 

a) The design of a encoder architecture for a 4-bits ADC. 

b) The design of a circuit using a power supply of 1.5 V. 

c) The use of CMOS technology of 0.25 µm. 

 

  

 

 



 

 

 

CHAPTER 2 

 

 

 

LITERATURE REVIEW  

 

 

 

2.1  Technological Developments 

Analogue-to-digital converters (ADC) constitute the main element in state-of-the-art 

electronic systems. With the advancement of the digital signal processing industry, 

researchers are faced with the increasing challenge of designing an innovative ADC. 

Nowadays, the ADC is included in the chip of an electronic system and is no longer a 

separate circuit for data converters, thus raising the ADC design requirements with 

regard to such characteristics as high speed, low power, less  area, high resolution, 

low noise, etc. New methods and approaches are being constantly developed in order 

to enhance the performance of ADCs. Among the various types of ADCs, the flash 

ADC is the best, not only renowned for its data conversion rate, but also as a 

component in other ADCs, such as the pipeline and multi bit Sigma Delta ADCs.  

  Analogue-to-digital converters are the foundational blocks that form an 

interface between the analogue and digital domains. Since the ADC is the primary 

block in mixed signal applications, it slows down data processing applications and 

restricts the performance of the system. This chapter presents the architectures of 

several A/D converters beginning with the basic definition of an ADC, followed by 

descriptions of various ADC architectures, including Flash, Sigma-Delta, Pipeline, 

Successive Approximation and Dual Slope ADCs. 
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2.2  ADC 

An ADC is a mechanism that receives an analogue value (voltage/current) and 

transforms it into digital form, thus enabling it to be processed by a microprocessor. 

A simple ADC having two inputs and 8 output bits is shown in Figure 2.1. The input 

comprises the signal that is to be transformed into digital form, while the reference 

denotes the reference voltage (Vref) that is applied. The input signal in digital form is 

indicated by the 8 bits at the output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Ideal Analogue-to-Digital Converter 
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2.3 Sampling Frequency   

In signal processing, sampling is the reduction of a continuous signal to a discrete 

signal. A common example is the conversion of a sound wave (a continuous signal) 

to a sequence of samples (a discrete-time signal). Thus in ADC, proper sampling is 

very important. 

 

 For a proper sampling, the analogue signal from the samples must be 

accurately reconstructed. Even though the sampled data may seem to be unclear or 

incomplete, if the process can be reversed, then it means that the key information has 

been secured. 

 

Figure 2.2 Sinusoids before and after digitization [4] 

 

 Figure 2.2 depicts several sinusoids before and after digitization. The 

continuous line denotes the entry of the analogue signal into the ADC, while the 

square markers represent the departure of the digital signal from the ADC. In Figure 

2.2 (a), the analogue signal, which is a zero frequency cosine wave, has a constant 

DC value. As the analogue signal comprises a sequence of straight lines between 

each of the samples, all the information required to reconstruct the analogue signal is 

enclosed in the digital data. This is defined as proper sampling. 
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  In Figure 2.2 (b), the sine wave is shown to have a frequency of 0.09 of the 

sampling rate. This might denote, for instance, the sampling of a 90 cycle/second 

sine wave at 1000 samples/second. In other words, 11.1 samples are being taken at 

the completion of each cycle of the sinusoid. This case is more complex than the 

previous one because the analogue signal cannot be reconstructed by just drawing 

straight lines between the data points. These samples must properly represent the 

analogue signal, which they do, because no other sinusoid or sinusoid combination 

will produce this pattern of samples. Since these samples match a single analogue 

signal, therefore it means that the analogue signal can be accurately reconstructed. 

This is another example of proper sampling. 

 The situation in Figure 2.2  (c) is much more difficult as the frequency of the 

sine wave has been increased to 0.31 of the sampling rate, thus resulting in only 3.2 

samples per sine wave cycle. The samples here are so scanty that they not even seem 

to follow the general pattern of the analogue signal. These samples must properly 

represent the analogue waveform, which again they do, and for precisely the same 

reason. The samples distinctly represent the analogue signal. All the information that 

is required to reconstruct the continuous waveform is maintained in the digital data. 

Clearly, it must involve a more sophisticated technique than merely drawing straight 

lines between the data points. Although this may appear to be strange, this falls under 

the definition of proper sampling. 

 In Figure 2.2  (d), the analogue frequency is forced even higher to 0.95 of the 

sampling rate, with a meagre 1.05 samples per sine wave cycle. In this case, the 

samples fail to properly represent the data. Instead, they depict a different sine wave 

from the one enclosed in the analogue signal. Specifically, the initial 0.95 frequency 

sine wave is misrepresented as a 0.05 frequency sine wave in the digital signal. This 

occurrence of sinusoids changing frequency during sampling is known as aliasing. 

The sinusoid adopts another frequency that is not its own in much the same way as a 

criminal might adopt an assumed name or identity (an alias). An unambiguous 

reconstruction is no longer possible as the digital data cease to be uniquely connected 

to a specific analogue signal. Nothing in the sampled data indicates that the initial 

analogue signal had a frequency of 0.95 instead of 0.05. The sine wave has totally 

concealed its true identity; thus committing the perfect crime.  

 This is defined as improper sampling. This line of reasoning is a 

breakthrough in the digital signal processing  (DSP) sampling theorem, which is 
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often called the Shannon or the Nyquist sampling theorem, after the authors who 

published papers on this subject in the 1940s. According to this theorem, a constant 

signal can only be properly sampled if it is not comprised of frequency components 

that are more than half the sampling rate. For example, a sampling rate of 2,000 

samples/second will need an analogue signal that is comprised of frequencies that are 

less than 1000 cycles/second. If the signal has frequencies that are beyond this limit, 

those frequencies will have aliases of between 0 and 1000 cycles/second combining 

with any information that was rightfully there. 

 

2.4 ADC Types  

2.4.1 Flash ADC 

Flash ADC’s are also known as parallel ADCs because of their parallel design, 

which makes them the fastest type of ADCs that are appropriate for use with high 

bandwidths. Conversely, the flash ADC has high power consumption, low resolution, 

and is costly for high resolution applications. It is employed primarily in high 

frequency applications and in the other types of ADC designs, such as Pipelined and 

the multi-bit Sigma-Delta ADC. Some examples of flash ADC applications include 

data acquisition, satellite communication, radar processing, sampling oscilloscopes, 

and high-density disk drives. From Figure 2.3, which is a block diagram of a 

standard flash ADC, it can be seen that an “N” bit converter would need to have 2
N
-1 

comparators. 
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Figure 2.3. Block Diagram of Flash ADC 

 

The comparators will generate a thermometer code of an input signal. It is called 

thermometer code encoding, because it is similar to a mercury thermometer, where 

the mercury column always rises to the appropriate temperature and no mercury is 

present above that temperature. This thermometer code will then encode into a binary 

form by thermometer-to-binary encoder. The comparators are typically a cascade of 

wideband and low gain stages. They are low gain because at high frequencies it is 

difficult to obtain both wide bandwidth and high gain. They are designed for low 

voltage offset, such that the input offset of each comparator is smaller than a Least 

significant bit (LSB) of the ADC. Otherwise, the comparator's offset could falsely 

trip the comparator, resulting in a digital output code not representative of a 

thermometer code. A regenerative latch at each comparator output stores the result. 

The latch has positive feedback, so that the end state is forced to either a "1" or a 

"0"” 
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2.4.2 Sigma-Delta ADC 

Figure 2.4 shows a sigma-delta ADC that uses a 1-bit DAC, filtering, and over 

sampling to achieve very accurate conversions. 

 

 

 

Figure 2.4: Block Diagram of Sigma Delta Converter [5] 

 

 When a low frequency input signal is applied to a Sigma-Delta ADC, this 

signal will be quantized with a high sampling frequency by the 1-Bit  digital to 

analogue converter (DAC). The sampling rate will be lowered and the ADC 

resolution will be raised by the digital decimator filter. For example, given a 

sampling frequency of 2MHz, then the sampling rate will be lowered to 

approximately 8 kHz, and the ADC resolution or dynamic range will be raised to 16 

bits due to the oversampling. 

 The Sigma-Delta ADC is renowned for its accuracy with regard to the input 

reference and clock rate, and it is unlike the flash ADC, where the accuracy of the 

conversion is affected by the resistors. Another advantage of the Sigma-Delta 

converter is that it is inexpensive. 

 However, the Sigma-Delta converter is hampered by its speed, as it is known 

to be the slowest type of ADC converter. The converter requires many clock cycles 

to carry out oversampling of the input for conversion. Another disadvantage of the 

Sigma-Delta converter is the complex design of the digital filter, which is used to 

transform duty cycle information into digital words. 
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2.4.3 Pipelined ADC 

One of the most common ADC designs is the pipelined analogue-to-digital 

converter, which can operate on a few mega samples to more than hundreds of mega 

samples with a resolution ranging from 8 bits to 16 bits. It is used extensively in the 

medical and communications field, such as for charge-coupled device (CCD) 

imaging, ultrasonic medical imaging, digital receivers, base stations, digital videos 

(for example, HDTV), xDSL, modem cables, and fast Ethernet, because of its high 

resolution and sampling rate range. Although there are vast improvements in terms of 

speed, resolution, power and dynamic performance in the pipelined ADC, the SAR 

and integrating designs are still being employed for low sampling rate applications, 

whereas the flash ADC is still preferred for high sampling rate applications (e.g. 1 

GHz). Figure 2.5 shows the block diagram of a 12-bit pipelined ADC. 

 

 

 

 

 

Figure 2.5  Pipelined ADC with four 3-bit stages [6] 
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2.4.4 Successive Approximation ADC 

Successive-approximation-register (SAR) analogue-to-digital converters (ADCs) are 

used mainly for medium to high-resolution and low sampling rate applications, the 

majority of which are in the range of 8 bits to 16 bits. It also consumes very little 

power and has a small form factor. As such, it is ideal for low power applications, for 

example, for portable/battery-powered instruments, pen digitizers, industrial controls, 

and data/signal acquisitions. In fact, since the SAR ADC executes a binary search 

algorithm, therefore its internal circuitry might operate at several megahertz. 

However, because of the approximation algorithm that follows, the sampling rate of 

the ADC is quite low. Figure 2.6 shows the basic configuration of the SAR ADC, 

although it can be implemented in several different ways. 

 

 

Figure 2.6: Simplified N-bit SAR ADC architecture [6] 
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2.4.5 Dual-Slope ADC 

In order to understand the architecture of dual slope ADC understanding  the concept 

of single slope ADC is a must. The single slope ADC is also known as integrating 

ADC and the main theme of this architecture is to use analogue ramping circuit and 

digital counter instead of using DAC. The operational amplifier circuit that is also 

called an integrator is used to generate a reference ramp signal that will compare 

with input signal by a comparator. The digital counter clocked with precise 

frequency is used to measure time taken by the reference signal to exceed the input 

signal voltage. 

 The dual-slope ADC input voltage (Vin) integrates for fixed time interval  

(TINT), then it will de-integrate by using reference voltage (VREF) for a variable 

amount of time (TDE-INT) as shown in Figure 2.7. 

 

 

 

Figure 2.7: Dual-slope integration [6] 

 

 This design behaves in the same way as a digital ramp ADC, except that a 

sawtooth waveform is used as a reference signal instead of a staircase signal. 

Integrating analogue-to-digital converters (ADCs) provide high resolution and can 

provide good line frequency and noise rejection. Since the dual slope design 

combines the input signal for a fixed period of time, therefore the input signal 

becomes regular, and this will result in an output that is more immune to noise. For 

this reason, it is ideal for high accuracy applications. Another advantage of this 
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design is that it is less complicated since it does not include a DAC. A major 

constraint of this design is that it is only appropriate for input signals at low 

bandwidths. 

 

2.5 The MOS Transistor Theory 

A bipolar junction transistor is able to intensify a small alteration in the input current 

to generate a large alteration in the output current. Another type of transistor, known 

as a field effect transistor (FET), can transform an alteration in input voltage into an 

alteration in the output current. Hence, the performance of an FET is measured in 

terms of its transconductance, which is the ratio of the alteration in the output current 

to the alteration in the input voltage. The voltage is directed at the input terminal, 

known as the Gate, and the current that flows through the transistor is determined by 

the electric field generated by the gate voltage. An insulating plate is located beneath 

the gate electrode, and hence, the gate current of an FET is roughly zero. Metal 

Oxide Semiconductor (MOS) transistors or Metal Oxide Semiconductor Field Effect 

Transistors (MOSFET) are FETs which employ a slim silicon dioxide insulator. 

 MOS transistors are categorised as N-channel transistors (nMOS) and P-

channel transistors (pMOS) according to the channel formed below the insulating 

layer. Figure 2.8 and 2.9 show the cross sections of both transistors and Figure 2.10 

and 2.11 show the symbol of the transistor. Each transistor is comprised of a source, 

drain, gate and a backgate, commonly called the bulk terminal. The source and gate 

are produced by the dispersion of the N-type dopant to a P substrate for NMOS, 

while the reverse is true for PMOS. The MOS transistor has a source and drain that 

are interchangeable, whereby the carriers flow out from the source and into the drain. 
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Figure 2.8:   nMOS transistor 

 

 

 Figure 2.9: pMOS transistor 

 

Figure 2.10: pMOS transistor symbol 
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Figure  2.11: nMOS transistor symbol 

 A description of the basic operation of an NMOS transistor is given below. A 

transistor has three operational regions: 

1. Cut-off region (VGS < VTH) 

2. Triode region (VGS > VTH & VDS < VDSsat) 

3. Saturation region (VGS > VTH & VDS > VDSsat) 

 At first, the transistor is regarded as having VGS = 0, i.e. there is no gate to the 

source voltage that is applied. It is similar to having the backs of 2 diodes connected 

to each other between the source and the drain, such that no current will flow from 

the source to the drain. In addition, a depletion region will be created at the source – 

substrate, drain – substrate junctions. When the VGS voltage is steadily increased to 

below the threshold voltage (VTH), the holes beneath the gate are held off to generate 

a depletion region, and it becomes steady beneath the gate from the source to the 

drain. When the VGS is then increased beyond the threshold voltage, i.e. 

VGS > VTH, the minority carriers (electrons) in the P sub crosses the depletion region 

and arrives beneath the gate. This process is known as inversion. The number of 

electrons that arrives beneath the gate is determined by the VGS – VTH voltage. 

Therefore, a conducting channel is generated as a result of this transverse electric 

field. After the channel is formed between the Source and the Drain, the VDS (Drain 

to source voltage) is steadily increased from 0. When the VDS changes to positive, the 

Drain – Sub junction will become reverse biased, and the depletion region will 

become wider as the drain becomes increasingly positive with regard to the source. 

Because of this adjacent electric field, the current flow begins from the source to the 
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drain, and this flow will increase as the VDS increases. Hence, the potential at the 

source is below that of the source at the depletion region, which widens close to the 

drain while the channel narrows. The channel comes into contact with the drain the 

moment the VDS = VDSsat, and the resultant drain to source voltage is then called the 

pinch-off voltage. The current flow becomes steady beyond the saturation voltage. 

Carriers are driven down the channel by the somewhat weak electric field along the 

channel. On arriving at the edge of the pinched-off region, they are swept across the 

depletion region by the strong electric field. As the drain voltage increases, there is 

no further drop in the voltage across the channel but instead, the pinched-off region 

broadens. Thus, the drain current reaches the threshold and stops rising. 

 

2.6     Previous Research  

2.6.1  Design and Implementation of a High Speed Low Power 4-Bits Flash ADC 

A four-bit flash type Analog-to-Digital Converter (ADC) is designed and it is 

suitable for Ultra Wide Band (UWB) applications due to its high operating frequency 

and low power consumption. The high operating frequency is due to the pipelined 

nature of the design. The low power consumption is due to the minimized transistor 

sizes and modularity of the design. The proposed ADC is designed, integrated and 

simulated using Cadence EDA Tools. The simulation was done using a 3.3V, 0.35μm 

CMOS Technology [7]. Table 2.1 summarizes the result of this project. 

 

Table 2.1  Results for work [7]. 

 Parameters [7]  

Power supply 3.3 (V) 

Input frequency 250 (MHz) 

CLK frequency 1.3 (GHz) 

Stages 5 

Power consumption 104 (mW) 
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 2.6.2 A 68 mW 1.356 GS/s 4-Bit Flash ADC in 0.18 μm CMOS 

A 1.356 GS/s 4-bit ADC meant for direct-spectrum code-division multiple-access 

ultra-wideband (DS-CDMA UWB) communications was introduced in [8]. A flash 

architecture that is totally differential was employed by the ADC. In order to keep 

the power consumption low and to attain a high rate of conversion, the recommended 

converter was designed with a preamplifier range comprised of current-mode 

amplifiers (CMAs), accompanied by dual sense amplifiers (DSAs). The dual sense 

amplifier is able to detect both the voltage and the contrasts in the currents of the 

preamplifier output signals. At an input of 30 MHz (650 MHz), the ADC was able to 

attain an effective number of bits (ENOB) of 3.7 (3.35) while experimenting at 1.356 

GHz. A current of 38 mA was drawn from a power supply of 1.8V. The ADC, with 

an active area of 0.35 mm
2
, was assembled through a 0.18 μm CMOS process. 

 

2.6.3 A 0.6 W 4GS/s 4-Bit Flash ADC in 0.18 μm CMOS 

A 4-bit flash ADC executed in 0.18 μm digital CMOS to achieve a sampling rate of 4 

GS/s was presented in [9] and [10]. The ADC’s comparator comprised of a 

comparator core, two latch stages and a subsequent D flip-flop (DFF). A high 

comparator speed was achieved by means of on-chip differential inductors (32 μm by 

32 μm) within the comparator core, and small rapid mechanisms. In order to lessen 

the Integrated Non-Linearity (INL) and Differential Non-Linearity (DNL) errors, the 

DAC trimming was used in combination with the comparator redundancy. An ENOB 

of 3.84 and 3.48 bits was achieved for a 100 MHz input tested at 3 and 4 GS/s, 

respectively. A Wallace tree counter [11] was employed for the conversion from a 

thermometer code to a binary code, as well as for enhanced resistance to 

metastability and bubble errors. To ensure that the counter functioned properly at 4 

GS/s, two time-interleaved counters operating at 50% of the comparator clock 

frequency (i.e., 2GHz) were used in the ADC. The power consumption of the ADC 

together with the clock buffer was approximately 0.6 W from a power supply of 1.8 

V (for the analogue part) and from 2.1 V to 2.5 V (for the digital part), while the 

input capacitance was 1.6 pF. 
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2.6.4 Efficient Design of a 3-bit and 4-bit Flash ADC 

The efficiency of a flash Analogue-to-Digital converter depends very much on the 

type of comparator and the design of the thermometer-to-binary encoder used. A 

description of the design and pre-simulation of a 3-bit and 4-bit ADC for low power 

CMOS is presented in this paper. In order to convert a thermometer code to a binary 

code it is necessary to have 2
N
-1 comparators and an encoder. A spectre simulator 

using 90 nm technology was employed to simulate the design in a Cadence 

environment. Prior to the simulation, the design displayed a low power dissipation of 

87 uw for the comparator, and 1.05 mW and 1.984 mW for the 3-bit and 4-bit Flash 

ADC, respectively. Meanwhile, the circuit functioned at an input frequency of 25 

MHz for a power supply of 1.5 V, with a conversion time of 2.162 ns and 6.182 ns 

for the 3-bit and 4-bit ADC, respectively [12]. 

 

2.6.5 A 2.5mW 1.25GS/s 4-Bit Flash ADC in 90nm CMOS 

A very low power 1.25GS/s 4-bit flash ADC in 90 nm CMOS was described in [13]. 

It is able to attain 3.7 effective number of bits (ENOB) from a DC to a Nyquist rate 

input with a power consumption of 2.5 mW from a 1.2 V supply, thus resulting in an 

energy per conversion rate of 0.16 pJ. Every inessential block in the flash ADC was 

detached, including the track/hold  (T/H), preamplifiers, reference ladder, and bubble 

error correction, in order to conserve power. Threshold levels were built into the 

comparators by means of appropriate sizing of the input transistor pairs and active 

calibration by a binary scaled range of variable capacitors. The outputs from the 

comparators were accumulated in Set-Reset latches and then transformed into a 4-bit 

Gray code (with inherent error correcting features) by means of a ROM-based 

encoder. NAND gates with 2 inputs were used to conduct the word-line selection of 

the encoder. 



 

 

 

 

 

CHAPTER 3 

 

 

 

METHODOLOGY  

 

 

 

 3.1  Introduction 

When designing a conversion system, it is necessary to understand the operation of 

the complete electronic system in which it is to be installed before determining the 

design specifications of the converter. A flowchart of the steps leading to the design 

or selection of a typical conversion system is shown in Figure 3.1. If the system 

designer were to merely concentrate on the design of the conversion system without 

regard for the operating system, then problems are bound to arise during the 

development of the equipment. On the other hand, by taking into account all the 

problems of the system, the designer will be able to save time and costs when it 

comes to develop the equipment. 

 This study employs the methods as mentioned to develop and implement a 

high speed, low power, 4-bit Flash ADC using 1.5 V and 0.25 µm CMOS technology 

to reduce power consumption, reduce area and increase the speed. The study is 

divided into several parts. 

 Figure 3.1 shows how this project is being developed. It consists of two parts, 

namely Part 1 and Part 2, with each part representing the work to be carried out for 

Master Project 1 and Master Project 2, respectively. Part 1 begins with an 

explanation of flash ADC and the identification of the issues involved. 
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Figure 3.1: Flow chart of overall project activities 
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3.2  System Architecture  

Several architectures are available for the development of an ADC based on the 

speed, accuracy, resolution, and so on, with the most popular ADC types being the 

flash, pipeline, successive approximation, dual slope and sigma-delta. Flash ADC 

has been chosen for this project and will be discussed further. 

 

3.3  Flash ADC 

The flash ADC, also known as a parallel ADC, is the fastest among all the other 

ADCs because of its parallel architecture, making it suitable for high bandwidth 

applications. However, it uses up a lot of energy for low resolutions, and is costly for 

high resolutions. It is used primarily in high frequency applications and in the other 

ADC architectures such as the pipeline and multi-bit sigma delta ADCs. Some 

applications of flash ADCs include data acquisition, satellite communication, radar 

processing, sampling oscilloscopes, and high-density disk drives. 

  From the block diagram of a typical flash ADC as shown in Figure 3.2, it can 

be seen that 2
N
-1 comparators are needed for an N bit converter. The resistor ladder 

network is made up of 2
N
 resistors, which produce reference voltages for the 

comparators. Each comparator has a reference voltage that is one least significant bit 

(LSB) less than that of the comparator directly above it. The comparator will 

generate a “1” when its analogue input voltage exceeds its reference voltage; if not, 

the comparator output is "0". If the analogue input lies between  Vx4 and  Vx5, then 

the comparators  X1 up to X4 will generate "1"s, while all the remaining comparators 

will generate "0"s. The point where the code changes from ones to zeros is the point 

at which the input signal becomes smaller than the respective comparator reference-

voltage levels. 

 For this project, since the ADC is for 4-bits, then the number of comparators 

are 2
4
-1= 15. As for the resistor, the numbers are 2

4
 = 16. 
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Figure 3.2: Block Diagram of Flash ADC [11] 
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3.3.1 Components of Flash ADC 

A range of comparators are used in a flash ADC to compare the input voltage with a 

series of increasing reference voltages. The input signal is denoted by the comparator 

output as a thermometer code [12], which will then be converted into a binary code. 

This explanation clearly shows that practically all flash ADCs consist of three blocks 

as follows: 

 1. Resistor Ladder  

 2. Comparator  

 3. Encoder  

 

3.3.1.1 Resistor Ladder 

A resistor ladder is used to produce the reference voltages for the comparators in a 

flash Analogue-to-Digital Converter. In a continuous time system, the input signal 

and the reference voltage are linked directly to the differential pairs of the amplifier. 

The differential pairs of the input amplifier that are functioning in the linear range 

have an input capacitance that connects the source of the input signal with the ladder, 

thus resulting in a decline in the reference voltages. Since the position of the zero 

crossing produced at the input gain stage is determined by the reference voltage, this 

will distort the A/D converter. It is necessary to compute the maximum impedance of 

the reference ladder in order to avoid significant reference ladder feed-through. A 

distributed model for the computation of the maximum allowable reference ladder 

resistance for a specific shift in the reference voltages is shown in Figure 3.3. 

 

 

Figure 3.3: Resistor Ladder 
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