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ABSTRACT 

 

 

 

 

Maze solving has gained increasing attention in the field of Micromouse competition 

and Intelligent Robot. The first maze solving using mathematical approach is done 

by Leonhard Euler in 1736 after solving a problem known as the Seven Bridges of 

Königsberg. Since then, several algorithms which originate from graph theory and 

non-graph theory were developed. The main objective of this project is to study the 

efficiency of the famous graph theory based algorithm which is Dijkstra’s Algorithm 

in term of the shortest distance covered and time taken to solve the maze. A 

benchmark will be compared to a non-graph theory which is the famous Left Hand 

Rule Algorithm. To compare the algorithms efficiency, each algorithm are 

experimented by using a Zumo Pololu mobile robot. The experimental result 

obtained will lead towards a conclusion about the behavior, nature and efficiency of 

each algorithm.    
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ABSTRAK 

 

 

 

 

Penyelesaian maze telah mendapat perhatian yang semakin meningkat dalam bidang 

persaingan Micromouse dan Inteligent Robot. Penyelesaian pertama maze 

menggunakan pendekatan matematik dilakukan oleh Leonhard Euler pada 1736 

selepas menyelesaikan masalah yang dikenali sebagai ‘The Seven Bridges of 

Königsberg’. Sejak itu, beberapa algoritma yang berasal dari teori graf dan teori 

bukan graf telah dibangunkan. Objektif utama projek ini adalah untuk mengkaji 

keberkesanan algoritma yang terkenal berdasarkan teori graf iaitu Algoritma Dijkstra 

dari segi  jarak terdekat dari tempat permulaan dan tempat pengakhiran dan masa 

yang diambil untuk menyelesaikan maze. Penanda aras akan dibangdingkan dengan 

teori bukan graf iaitu Left Hand Rule yang dikenali ramai. Untuk membandingkan 

kecekapan algoritma, setiap algoritma dimuat turun dan diuji dengan menggunakan 

robot mobil Zumo Pololu. Hasil pengujian yang diperoleh akan membantu memberi 

kesimpulan mengenai tingkah laku, sifat dan kecekapan setiap algoritma. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Project overview 

 

 

A maze is a complex puzzle where the solver has to a find a path between the 

entry and exit of the maze. Technically, a maze is not similar to a labyrinth where the 

labyrinth has only a single through route twists and turns but without any junction 

and is considered much easier than a maze itself [1]. 

 

Leonhard Euler is the first person to solve a maze using mathematical 

approach. He solved the problem known as the famous Seven Bridges of Königsberg 

in 1736, Prussia [2]. The city includes two large islands which were connected to 

each other with the mainland by seven bridges.  

 

The problem statement for the Seven Bridges of Königsberg is to ensure that 

a route is to be designed so that each bridges is crossed once are and able to return to 

the starting point. The route was able to solved by implementing a system of nodes 

and vertices or currently known as a graph theory. This solution is considered to be 

the first theorem of graph theory, specifically of planar graph theory [3]. 
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 Research in robotic maze solving problems has been highly active for the past 

few decades in both robotics and artificial intelligence. The general objective for this 

kind of problem is to use a mobile robot to navigate an unknown or semi-known 

environment and to accomplish some specific tasks. Generally, a common task is to 

navigate from the starting point, to the goal, and sometimes back to the starting point 

again. 

  

 Most maze solving techniques are based on graph theory where mazes 

without loops are equivalent to a branch of a tree where there are junctions and 

eventually a deadlocks if the route is not correct [4]. Graph theory algorithm are said 

to be more efficient compared to non-graph theory [5] 

 

 IEEE has held the Micromouse Competition every year since 1970’s. The 

contest has been gaining favour since the first launch. Due to this, many techniques 

was developed to achieve the shortest path and fastest time to solve the maze. 

Nowadays, through advancement of technologies, hardware used has evolved and 

can withstand much more complex and sophisticated algorithm to solve the maze. In 

real application, maze solving algorithms are widely used in autonomous vacuum 

cleaners, lawn mowers, car park systems and many more. 

 

 

1.2 Problem Statement 

 

Maze solving robot needs to be instructed with a maze solving algorithm in 

order to solve a maze intelligently. Due to this, a variety of algorithms can be 

implemented in the mobile robot. However, the objective of the maze solving needs 

to be achieved which are in terms of the shortest distance travelled and time taken to 

solve the path. Therefore, this project is to compare two types of maze solving 

algorithms which are 1 algorithm for graph theory and 1 algorithm for non-graph 

theory in terms of its efficiency. 
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1.3 Project Objective 

 

 The objectives of this project are to develop an optimum algorithm of graph 

theory which is Dijkstra’s Algorithm in term of the shortest distance and time taken 

in solving the maze. The benchmark made is referred with the Left Hand Rule 

Algorithm which is a non-graph theory. 

 

 

1.4 Limitation and Specification 

  

This project mainly focuses on the comparison of time taken and distance 

travelled by an autonomous mobile robot which implements Dijkstra’s Algorithm 

and Left Hand Rule Algorithm. The autonomous robots used are a 3pi Pololu mobile 

robot as the platform to study the efficiency of each algorithm.  

 

 Specifications of the robot are as follows: 

 

Dimension  : 3.7” diameter 

Processor  : ATmega168/328P 

Motor Driver  : TB6612FNG 

Motor Channel : 2 

User I/O Lines  : 2 

Minimum operating Voltage : 3V 

Maximum operating Voltage : 7V 

Maximum PWM frequency : 80 kHz 

Reverse Voltage protection : Yes 
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 Specifications of the track are as follows: 

 

Material  : Plywood 

Type of line tracing : Black line over white background 

Width of black tape : ¾” 

Size of plywood : 6” x 6” 

Size of maze  : 5 x 5 of the plywood 

 

 

1.5 Project report layout 

 

This project report is organized as follows; 

 

i) Chapter 1 briefs the overall background of the study. A quick glimpse of 

study touched in first sub-topic are the heart of the study such as problem 

statement, project objective, limitation and specification  project report layout 

is present well through this chapter. 

 

ii) Chapter 2 covers the literature review of previous case study based on 

development of algorithms to solve maze using various techniques. Some 

basics and general information regarding the rule of maze solving and the 

mobile robot used are also described in this chapter. 

 

iii) Chapter 3 presents the methodology used to integrate both algorithms into the 

mobile robot itself. A basic explanation for each algorithm is presented.  

 

v) Chapter 4 discusses on the results obtained based on the problem statements 

as mentioned in the first chapter.  The results from several runs of the mobile 

robot on a particular maze are recorded and analyzed for each algorithm. 

 

v) Chapter 5 mainly discusses the conclusion and recommendation for future 

study. References cited and supporting appendices are given at the end of this 

project report while the documentation CD is attached on the back cover of 

this project report for future reference.  



 

 

 

 
CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction 

 

At the beginning of this project, a research regarding the newest algorithm 

used in maze solving robot, the physical hardware used, and any information that is 

relevant is gathered to lead this project to the correct path. The information gathered 

is mainly from IEEE’s database and websites. This chapter discusses some of the 

projects and also the studies that have been done. The information provided served as 

a guideline to this project. 

 

2.2 Maze Solving 

 

A maze is a puzzled way which consists of different branch of passages 

where the aim of the solver is to reach the destination by finding the most efficient 

route within the shortest possible time. Artificial Intelligence plays a vital role in 

defining the best possible way of solving any maze effectively. Graph theory appears 

as an efficient tool while designing proficient maze solving techniques. Graph is a 

representation or collection of sets of nodes and edges and graph theory is the 

mathematical structure used to model pair wise relations between these nodes within 

the graph. By proper interpretation and mathematical modelling, it is possible to 
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figure out the shortest distance between any of the two nodes. This concept is 

deployed in solving unknown maze consisting of multiple cells. Depending on the 

number of cells, maze dimension may be 8x8, 16x16 or 32x32. Each cell can be 

considered as a node which is isolated by walls or edges. This is nothing but the 

interpretation of graphs onto a maze. This analogy between graph and maze provides 

the necessary foundation in developing maze solving algorithms. 

 

 

 

 

 

 

 

 

Figure 2.1: Example of Line Maze Solving 

This report is based on solving a particular type of two dimensional maze 

using graph and non-graph theory algorithms where the solver is a self-governing 

robot. The maze may be made up of a 5x5 grid of cells. Each cell is 18cm square. By 

incorporating intelligent procedure with the existing graph theory algorithms, some 

Micromouse Algorithms have been developed. This research implemented the use of 

graph theory algorithms which is Djikstra’s Algorithm in maze solving. Analytical 

approach is taken to evaluate Djikstra’s Algorithm. The performance and outcome of 

these algorithms are also analysed and compared. With adequate reference and 

observation it is obvious that graph theory technique is the most efficient in solving 

various mazes than other techniques. 
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2.3 Related Works 

 

Euler’s topological theory, Wall follower algorithm were the initial attempts 

to solve mazes. More algorithms like dead-end filling algorithm, shortest path 

algorithm also were used in solving the mazes in the traditional domain. Euler 

publishes a paper titled “The solution of a problem relating to the geometry of 

position” in 1736. The title itself indicates that Euler was aware that he was dealing 

with a different type of geometry where distance was not relevant. From Euler’s 

topological theory, in today’s notation would be stated as a graph has a path 

traversing each edge exactly once if exactly two vertices have odd degree. This was 

the first step in graph theory algorithm and was mainly used as guidance in most of 

other algorithms established. 

 

 

 

 

 

 

Figure 2.2: Euler’s Topological Theory 

 

Pledge algorithm [6] solves the problem when the entry is in the interior of 

maze and exit is on the exterior of the maze. Pledge algorithm is an algorithm that 

instructs the robot on leaving an unknown maze see algorithm 1, which performs 

only two types of movements which are either the robot follows the wall of an 

obstacle and counts the turning angles, or the robot moves through the free space 

between the obstacles in a fixed direction. The latter task always starts at vertices of 

the obstacles when the angle-counter reaches a pre-defined value. As soon as the 

robot leaves the maze it receives a signal of success. 
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Figure 2.3: Pledge Algorithm sequence 

 

Tremaux’s algorithm [7] guarantees the path for all cases by implementing 

the depth-first search. It solves the maze by using the backtracking till it finds the 

exit. It's similar to the recursive backtracker and will find a solution for all Mazes: As 

the robot runs down a passage, it will draw a line behind the robot to mark its path. 

When the robot hit a dead end, it will then turns around and go back the way it came. 

When the robot encounter a junction which it haven't visited before, it will pick a 

new passage at random. If it is walking down a new passage and encounter a junction 

which have visited before, treat it like a dead end and go back the way it came. If 

walking down a passage it have visited before (i.e. marked once) and it encounters a 

junction, take any new passage if one is available, otherwise take an old passage. All 

passages will either be empty, meaning they haven't visited it yet, marked once, 

meaning it have gone down it exactly once, or marked twice, meaning it has gone 

down it and were forced to backtrack in the opposite direction. When the robot 

finally reach the solution, paths marked exactly once will indicate a direct way back 

to the start. If the Maze has no solution, it will find itself back at the start with all 

passages marked twice.  

Recently, maze solving has become a true multi-disciplinary topic, as many 

researchers tried to solve related problems with wide range of algorithms originating 

in different fields. Few of the attempts need special mentioning here as the work is 

much inspired by these multi-disciplinary publications. Some of the works are 

explained briefly in the next sentence. 



9 

Wyard-Scott [8] solved the maze problem in the electrical domain with 

varying potential differences driving the micro mouse to the destination. Yang and 

Meng [9] used neural network for generating the trajectory of robotic path. 

Dijkstra’s algorithm [10] is a legendary work on the lowest cost path finding 

using the graph theory. Floyd-Warshall [11] algorithm finds the shortest path 

between each pair of the nodes existing in the graph using dynamic programming. 

Most of the recently used algorithms for path finding are graph searching 

algorithms. A* algorithm [12] is a heuristic based best first search algorithm with 

many variants. D* algorithm [13] is an incremental graph search algorithm with 

many variants and give better results. Rapidly Exploring Random Trees (RRT) 

algorithm [14] is used for solving the path problems with constraints. 

 



 

 

 

 
CHAPTER 3 

 

 

 

 

METHODOLOGY 

 

 

 

3.1 Introduction 

 

This chapter describes the methods that have been implemented in comparing 

maze solving algorithm. The main topics discussed in this chapter are the mechanical 

hardware, algorithms that have been used and maze configuration. 

 

3.2 Project Overview 

 

In order to analyse the maze solving algorithm, a line maze has been 

constructed and an autonomous mobile robot is utilized to solve the maze using 2 

different algorithms which are Dijkstra’s Algorithm and Left Hand Rule Algorithm. 

 A good and stable autonomous mobile robot is needed in order to solve the 

maze smoothly. The mobile robot should be able to: 

a) Know the position and bearing in the maze. 

b) Control the desire distance which needed to travel. 

c) Make precise 45°, 90° and 180° turn. 

d) Good chassis to keep the structure stable. 

e) Navigate the maze intelligently. 
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3.3 Hardware 

 

 

The hardware chosen for this project is 3pi Pololu Mobile Robot. The 3pi 

Pololu robot is a small, high performance, autonomous robot designed to excel in 

line following and line-maze solving competitions. 

 

 

 

 

 

 

 

 

Figure 3.1: Pololu’s 3pi Mobile Robot. 

 

As for the maze, an adjustable 5 x 5 grid has been constructed to be used in 

this project. The term adjustable is used as the pattern of maze can be easily 

rearranged and changed compared to the fixed pattern mazes which are time 

consuming. Basically, the mobile robot will explore the map for the first time and 

search for the end of the map. During this run, the robot will save, analyse and 

distinguish the shortest path. After that, a second run will instruct the mobile robot to 

move towards the end of the map using the path that has been calculated. Usually, 

the first run or usually known as “run time” will have a larger time difference 

compared to the second run or also known as “maze time”. The two algorithms will 

be programmed in Atmel’s Atmega328P microcontroller. 
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 The outputs of each experiment for the corresponding algorithm are displayed 

on the LED attached on the 3pi Pololu mobile robot. The outputs are in terms of time 

taken to solve the maze during maze time. Run times are not being considered in the 

optimisation study. 

 

 

 

 

 

 

 

 

Figure 3.2: 3pi Pololu robot in detail. 

 

In order to startup the 3pi Pololu Mobile Robot, 4 units of AAA batteries are 

required. It is recommended to use NiMH batteries that have rechargeable ability. 

This will ensure the project can run continuously without concern of the battery pack 

being drained during the testing phase. 

Apart from that, an AVR ISP programmer with 6 pin connector is required. 

The 3pi has a standard 6 pin programming connector and thus suffice the need to 

download a program to the target device. 

Lastly, a computer or a laptop is needed for developing algorithms and load it 

onto the 3pi robot.  
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3.4 Line Tracing 

 

 The robot used will follow a black line on a white background. It uses a 

sensor array to sense the line and a PID control to follow the line. With the help of a 

PID control, the robot does not follow the line by oscillating to the left and to the 

right like a conventional line followers but follows the line smoothly without 

wavering too much the left and right thus conserving battery power while at the same 

time following the line much faster. 

This robot uses differential drives which are easier to build, controlled and 

are cheap. Irrespective of the steering mechanisms that are used, the most important 

thing to keep in mind is to place the line sensors as far as possible from the steering 

wheel. This will give the robot, more time to react. Keeping the distance between the 

sensors and the steering wheel big, will largely reduce the number of over-shootings 

by the robot. 

Another important thing is to keep the center of mass as close to the ground 

as possible. This can be done by, placing all the heavy parts (batteries, motors) of the 

robot as close to the ground as possible. Keeping the center of mass low will 

decrease the robot's moment of inertia enabling it to slow down quickly and then 

accelerate faster in curves. A robot with a high center of mass takes a lot of time to 

slow down and a lot more time to accelerate afterwards owing to its high moment of 

inertia. 

This robot uses a simple PID algorithm which controls the speed of each 

wheel individually to ensure that the robot is moving at the center of the line which is 

usually called as the target. The integration of wheel speed and the line tracing will 

be as follows: 
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Figure 3.3: Basic algorithm for line tracing. 

 

PID stands for Proportional Integral and Derivative. It is a popular control 

loop feedback control extensively used in industrial controls systems. But why would 

one need a PID controller for a line following robot, when there are many simpler 

algorithms already available for line following? 

A conventional robot would follow a line as in figure 3.3(a). The red line 

shows the robot movement to follow the black line. It can be seen that the robot 

oscillates a lot about the line, wasting valuable time and battery power. For this 

algorithm, there is a maximum speed beyond which you cannot use or otherwise, the 

robot will overshoot the line. 
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Whereas in figure 3.3(b), the robot moves smoothly along the line keeping its 

centre always above the line. In straight lines, the robot gradually stabilizes go 

straight unlike a robot with the left-right algorithm. This enables the robot to follow 

the line faster and more efficiently. 

 

 

 

 

 

 

 

 

   (a)     (b) 

Figure 3.4: (a) Without PID algorithm. (b) With PID algorithm 

 

 Before explaining about the PID, there are several terms which needs to be 

clarified first. The terms are as follows: 

Target – It is the position you want the line follower to always be (or try to be), that 

is, the centre of the robot. 

Current Position – It is the current position of the robot with respect to the line. 

Error - It is the difference between the current position and the target. It can be 

negative, positive or zero. 
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Proportional – It tells us how far the robot is from the line like – to the right, to the 

extreme right, to the left or a little to the left. Proportional is the fundamental term 

used to calculate the other two. 

Integral – It gives the accumulated error over time. It tells us if the robot has been 

on the line in the last few moments or not.  

Derivative – It is the rate at which the robot oscillates to the left and right about the 

line. 

Kp, Ki and Kd are the constants used to vary the effect of Proportional, Integral and 

Derivative terms respectively. 

The controller calculates the current position on the black line. Then calculate 

the error based on the current position with the target position. It will then command 

the motors to take a hard turn, if the error is high or a small turn if the error is low. 

Basically, the magnitude of the turn taken will be proportional to the error. This is a 

result of the Proportional control.  

Even after this, if the error does not decrease or decreases slowly, the 

controller will then increase the magnitude of the turn further and further over time 

till the robot centres over the line. This is a result of the Integral control. In the 

process of entering over the line the robot may overshoot the target position and 

move to the other side of the line where the above process is followed again. Thus 

the robot may keep oscillating about the line in order to centre over the line. To 

reduce the oscillating effect over time the Derivative control is used. 
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3.4.1 Implementing PID control for a line following robot 

  

The first requirement in implementing PID for a line follower is calculating 

the error of the robot. To calculate the error, the robot needs to know the current 

position of the robot with respect to the line. There are a number of ways of knowing 

this. 

A simple approach would be to place two IR sensors on either side of the 

line. The IR sensors should be tuned to give an output voltage that is promotional to 

the distance between the line and the sensor. The output can then be connected to the 

ADC pin of a microcontroller and the error can be calculated. 

Though this method may seem simple and easy to implement it has a few 

drawbacks. Firstly, a robot using this method will have problems following a line 

whose width is varying. Secondly, the output of these sensors will be highly 

susceptible to interference from external light. And lastly, for this method to work, 

user will have to ensure that the track is completely flat. Any change in the distance 

between the sensor and the surface will affect the sensor readings. 

A better approach would be to use the traditional sensor array. Using an array 

of sensors, it is easy to calculate the error by knowing which sensor is on the line. 

Consider the sensor have an array of 10 each placed 1cm apart. When the 7
th

 sensor 

from the left detects the line it can be calculated that the centre of the robot is 2 cm to 

the right of the line. Using a sensor array the processor can calculate the error faster 

as there is no ADC required to be done and thus the sampling rate can be increased. 

The robot can also be used as a grid solver. 

When building a sensor array, there are a few things to keep in mind. Firstly, 

the more sensors in an array, the better will be the performance of the robot, because 

more sensors translates to more range of error. For line following anything between 6 

to 10 sensors will be sufficient. The distance between each adjacent sensor 

determines the resolution of the readings. It is always best to place the sensors as 

close to each other as possible because the resolution will increase as the sensors are 

closer. 
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The next important thing in implementing PID after the sensors is the writing 

the code itself. The algorithm for a PID control for line followers is described as 

below: 

  

Error  = target_pos – current_pos      //calculate error 

P = Error * Kp                         //error times proportional constant gives P 

I = I + Error                           //integral stores the accumulated error 

I = I * Ki                               //calculates the integral value 

D = Error – Previous_error        //stores change in error to derivate 

Correction = P + I + D 

The next step is to add this correction term to the left and right motor speed. 

 

 

3.5 Algorithm 

 

In this section, the famous Graph Theory based Algorithm used in this project 

are explained which are Dijkstra’s Algorithm. A Non-Graph Theory based algorithm 

which is the Left Hand Rule are used as a benchmark. The steps for each algorithm 

to solve the maze are discussed. 
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3.5.1 Dijkstra’s Algorithm 

 

One of the main reasons for the popularity of Dijkstra’s Algorithm is that it is 

one of the most important and useful algorithms available for generating (exact) 

optimal solutions to a large class of shortest path problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Flowchart of Dijkstra’s Algorithm. 

Basically, Dijkstra’s Algorithm uses a technique known as BFS (Breadth 

First Search) to solve the maze [15]. It works in two phases which are the “filling 

phase”, the cells are marked and the “retrace phase”, which uses the concept of back 

tracking. The algorithm are sequenced as in the numbered below: 
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1) Label the first vertex with label 0 and order label 1. 

2) Assign temporary labels to all the vertices that can be reached directly 

from the start. 

3) Select the vertex with the smallest temporary label and make its label 

permanent. Add the correct order label. 

4) Put temporary labels on each vertex that can be reached directly from the 

vertex you have just made. The temporary label must be equal to the sum 

of the permanent label and the direct distance from it. If there is an 

existing temporary label at a vertex, it should be replaced only if the new 

sum is smaller. 

5) Select the vertex with the smallest temporary label and make its label 

permanent. Add the correct order label. 

6) Repeat until the finishing vertex has a permanent label. 

7) To find the shortest path(s), trace back from the end vertex to the start 

vertex. Write the route forwards and state the length. 

 

Given below is a table which are used in Dijkstra’s calculations. It is only 

intended to help visualize the reader on how the calculation works. The algorithm is 

best explained by using an example which will be discussed in detail.  

 

 

 

 

 

 

Figure 3.6: Table used in Dijkstra’s calculations. 
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Given below is an example of 5 vertices labelled as A, B, C, D and E. It can 

be observed that the numbers in between the vertices represents the distance from 

each respective vertex. From the first rule of Dijkstra’s Algorithm, it states to label 

the first vertex with label 0 and order label 1. Therefore, at vertex A, the upper left of 

the table is the label and since it is the starting point, it is labelled as 1 and as for the 

upper right table, it is the distance of vertex from the starting point. As it is at the 

beginning of the vertex, the distance is 0.  

 

 

 

 

 

 

 

 

Figure 3.7: Step 1 of Dijkstra’s Algorithm. 

 

After that, the second rule of Dijkstra’s states to assign temporary labels to all 

the vertices that can be reached directly from the start. This means that from vertex 

A, vertex B and vertex D can be reached. Due to this, the bottom of the table for each 

vertex will be written with the distance from vertex A as in figure 3.7 below. Next is 

to implement the third rule of Dijkstra’s Algorithm which is to select the vertex with 

the smallest temporary label and make its label permanent. Add the correct order 

label. The temporary distance for vertex B and D are compared and vertex D has the 

smallest temporary label. Therefore, it is labelled as 2 and the permanent distance is 

1. 
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Figure 3.8: Step 2 and 3 of Dijkstra’s Algorithm. 

 

The 2
nd

 and 3
rd

 rule for Dijkstra’s applies on the next step. The vertex D has 

been made permanent. Therefore, the neighbor vertexes that can be reached are B 

and E. The fourth Dijkstra’s rule applies which are to put temporary labels on each 

vertex that can be reached directly from the vertex have just made. The temporary 

label must be equal to the sum of the permanent label and the direct distance from it. 

If there is an existing temporary label at a vertex, it should be replaced only if the 

new sum is smaller.  
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