
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

Mechanical Engineering and Materials Science
Independent Study Mechanical Engineering & Materials Science

5-18-2021

Quadruped Pupper Robotics: Dynamics and Control Quadruped Pupper Robotics: Dynamics and Control

Daniel Shen
Washington University in St. Louis

Isaac Sasser
Washington University in St. Louis

Aaron Manuel
Washington University in St. Louis

Tom Kang
Washington University in St. Louis

Kenny Huang
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/mems500

Recommended Citation Recommended Citation
Shen, Daniel; Sasser, Isaac; Manuel, Aaron; Kang, Tom; and Huang, Kenny, "Quadruped Pupper Robotics:
Dynamics and Control" (2021). Mechanical Engineering and Materials Science Independent Study. 150.
https://openscholarship.wustl.edu/mems500/150

This Final Report is brought to you for free and open access by the Mechanical Engineering & Materials Science at
Washington University Open Scholarship. It has been accepted for inclusion in Mechanical Engineering and
Materials Science Independent Study by an authorized administrator of Washington University Open Scholarship.
For more information, please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/mems500
https://openscholarship.wustl.edu/mems500
https://openscholarship.wustl.edu/mems
https://openscholarship.wustl.edu/mems500?utm_source=openscholarship.wustl.edu%2Fmems500%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/mems500/150?utm_source=openscholarship.wustl.edu%2Fmems500%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

Quadruped Pupper Robotics: Dynamics and Control

Independent Study Faculty Sponsor: Louis Woodhams

Independent Study Sponsor: Stuart Bowers

Independent Study Sponsor: Lee Redden

Report Submission Date: Wednesday, May 12, 2021

We hereby certify that the lab report herein is our original academic work, completed in accordance

with the McKelvey School of Engineering and Undergraduate Student academic integrity policies, and

submitted to fulfill the requirements of this assignment:

Isaac Sasser

Aaron Manuel

Daniel Shen

Kenny Huang

Tom Kang

Contents

Contents 1

List of Figures 1

List of Tables 3

ABSTRACT 4

INTRODUCTION 4

THEORY 5

METHODS 13

RESULTS & DISCUSSION 19

CONCLUSION 33

References 34

Appendix A Robot Startup Guide 35

Appendix B Software Installation Guides 36

Appendix C Hardware Build Notes 40

Appendix D Recommended Reading and Helpful Resources 41

Appendix E Simulator Guide 42

List of Figures

1 Transformation matrix definition. 5

2 Glossary for Transformation Matrix [4]. 6

3 3D Transformation Matrix Example [5]. 7

1

4 Transformation Matrix 0
1) schematic. 8

5 Transformation Matrix 0
1) result. 9

6 Transformation Matrix 1
2) result. 10

7 Simulation result for the quadruped model without the leg loading feedback at constant

acceleration [6]. 11

8 Simulation results for the quadruped model with the leg loading feedback during

acceleration [6]. 11

9 Diagram of the rhythmic activities of the flexor half-centers of the four legs and three

types of postures in the stance phase of the two legs in phase of each diagonal pair

during trotting [6]. 12

10 The nine emerged gaits that result from the possible combination of two elements out

of the pair [6]. 12

11 Block diagram for the control of the Robot. 17

12 Circuit diagram of the power drawing elements in the PCB. 18

13 Flow chart that shows the CAN connections on the board. 18

14 Picture of the activated robot standing (front). 20

15 Picture of the activated robot standing (side). 20

16 Picture showing the keyboard connection to the robot. 21

17 Picture of the robot tilting upward. 22

18 Picture of the robot tilting downward. 22

19 Picture of the robot rolling left. 23

20 Picture of the robot rolling right. 23

21 Controller Modes . 25

22 Mappings Between Modes . 26

23 Robot Postures at Different Zs . 27

a I = −0.02 . 27

b I = −0.05 . 27

c I = −0.09 . 27

d I = −0.15 . 27

2

e I = −0.22 . 27

24 Complete Motion of A Normal Hop . 28

a REST . 28

b HOP . 28

c FINISHHOP . 28

d Falling . 28

e Landing . 28

25 Robot Postures at Different Xs . 29

a G = −0.20 . 29

b G = −0.05 . 29

c G = +0.05 . 29

26 HOP Mode Parameters Summary . 30

27 FINISHHOP Mode Parameters Summary . 31

28 BALANCE Mode Parameters Summary . 31

29 Complete Motion of A Jump . 32

a Rest (HOP) . 32

b Pushing (FINISHHOP) . 32

c Jumping (FINISHHOP) . 32

d Falling (FINISHHOP) . 32

e Landing (FINISHHOP) . 32

List of Tables

1 Table of tools and equipment used to construct the robot. 15

2 List of challenges and solutions discovered during the build process. 16

3

ABSTRACT

The purpose of this project is to provide insights on the Pupper Robot, from Hands-On Robotics

(handsonrobotics.org), for future studies and research. The Hands-On Robotics (HOR) team aims to

provide robotics kits and educational curricula to explore agile locomotion, motor control, and AI

for community colleges and high schools. We worked with the HOR team in this project to help

them better achieve their goals. The main objectives of this project include: 1. Build the robot and

analyze the dynamical behaviors of the robot. 2. Investigate the robot control from both hardware and

software perspectives. 3. Design a new gait for the Pupper Robot. 4. Create an implementation guide

for future groups, documenting knowledge we have learned during the project. By the end of this

project, we achieved the following: A. Built a fully functioning robot. B. Investigated the theoretical

underpinnings of quadruped robots, including inverse kinematics and gait generation theories. C.

Understood and reflected on the control structure of the robot. D. Implemented a new jumping gait

which allows the robot to leap forward and land on balance. E. Composed detailed guides on robot

building instructions, controller files installation, simulator installation, and simulator modifications.

INTRODUCTION

This project was focused on the construction and testing of a quadruped robot. Quadruped

robotics offer a unique ability to experience and learn a number of interesting topics such as control

systems, gait control and analysis, and a number of hardware and software applications such as circuits

and coding. As a result, the quadruped robot is an interesting educational possibility; however, often

the advances in this area are very localized and many variables change at the same time. This makes

it challenging to isolate advances or find a performance benchmark. Additionally, quadruped robots

are often very expensive. The Stanford Pupper was designed to be a low-cost open source option for

quadruped testing, promoting fast iteration and information sharing [1].

The goal of this project was to build the robot and analyze the dynamics of the robot as well

as robot control. This involved analyzing gait control as well as developing new gaits for the robot.

Furthermore, to promote information sharing on this topic, step-by-step guides to building the robot

as well as troubleshooting common problems that were encountered during our work are also found

within this report.
4

THEORY

Quadruped Robot Kinematics. Quadruped robots are very complex in structure and are

harder to control than wheeled and crawler robots [2]. In order to achieve and maintain a certain

posture, each of the four legs of the robot is often performing a kinematic behavior that is different

from the other legs. Kinematic models are very important tools that help with the stability analysis

and trajectory planning of the robot. The basic idea of the kinematic model is to describe the motion

of a system of linked bodies. In this application, the kinematic model helps define the motion of our

robot, namely the motion of each joint, leg, and the main body. For a quadruped robot, there is a main

body with 4 legs. With 3 joint motors on each leg, the total degrees of freedom is 12. Although the

legs and the body are connected, it would be difficult to model them as a whole system because the

motor on each joint can provide rotary movement only subject to the particular joint. For example, if

we are trying to model our robot in a 3D coordinate system, and we set the hip joint of leg 1 to be our

origin, then the 3 other legs’ motion are still undefined because their movements are centered around

their own joints. In fact, since there are 12 joints, each of them is connected to a part of the leg, so

all parts are actually doing some movements subjective to only their connected joints. Technically, we

describe each of them to be in their own frames when modeling. To properly model the movement,

from one inertial frame to another, we need a tool called the transformation matrix, as defined in Fig.

1.

Figure 1 Transformation matrix definition.

This form of transformation matrix shown in Fig. 1 is called the affine transformation matrix.

5

The affine transformation matrix can represent any linear transformation [3]. For any n dimensional

object, the affine transformation matrix will be an (n+1) by (n+1) matrix. Thus, the matrix in Fig.

1 is used to transform an object between two 3D frames. The glossary for transformation matrix

configurations in 2D is shown in Fig. 2.

Figure 2 Glossary for Transformation Matrix [4].

Figure 3 is an example of 3D transformation matrices. This example is important because this

concept is essential in order to understand the inverse kinematics of the robot.

6

Figure 3 3D Transformation Matrix Example [5].

In this example, we have 3 frames: FRAME0 is the normal Cartesian coordinates in 3D;

FRAME1 shares the same origin and Z-axis with FRAME0, but with some rotation around the Z

axis; FRAME2 is quite different than the first two frames, and the z-axis of FRAME2 is inline with

y-axis of FRAME0. It’s obvious that FRAME0 and FRAME2 can be used to model a part of the

robot leg with two joints. 0
1) is the matrix that transforms objects in FRAME1 to objects in FRAME0.

Similarly, 1
2) is the matrix that transforms objects in FRAME2 to objects in FRAME1. And by matrix

manipulation, we can also have a matrix transform objects in FRAME2 to FRAME0, that matrix 0
2)

can be calculated by 0
1) ·

1
2) (matrix product). The form of the transformation matrices are shown in

Fig. 1 [5]. We will break down the two matrices by parts and discuss their compositions.

7

0
1) Matrix:

Figure 4 Transformation Matrix 0
1T schematic.

We can first conclude that the position vector should be [0, 0, 0] because FRAME0 and

FRAME1 share the same origin. In other words, the distance between the two origin (of FRAME0

and FRAME1) is zero, so the position vector is the zero vector.

Since FRAME1 uses the same z-axis as FRAME0, we can also expect the third column and

third row to be [0, 0, 1] (Fig. 5). No matter what \ is, the x and y axis are always going to be

perpendicular to z-axis, so the red vectors are always zero. The Z-axis of the two frames is identical,

so the purple number is going to be 1, independent from \.

To find the projection of the x and y axis, we can degrade the system to a 2D system. Similar

to the “Rotate about origin” case in Fig. 2, the xy plane of this example is also a rotating model. As

shown Fig. 4, consider the blue arrow being the x-axis of FRAME1. We can see how it is rotating

around the z-axis for a degree of \ from the x-axis of FRAME0. The projection of -1 on -0 then,

is the green vector marked in Fig. 4. Note that the orange segment and the green segment should be

perpendicular. Since the green part can be found by cos(\) times the blue vector, we have determined

the first entry of the matrix to be cos(\). All other entries can be found using the same logic. And the

results are marked green.

The last row is always [0, 0, 0, 1] for an affine transformation matrix by convention. The result

8

for 0
1) is shown in Fig. 5.

Figure 5 Transformation Matrix 0
1T result.

1
2) Matrix:

we can first conclude that the position vector should be [0, L, 0] where L is the distance between

two origins. Note that the L is in the second place because the origin of FRAME2 is “departed” from

the origin of FRAME1 in the y-axis (of FRAME1) direction.

Note that the z-axis of FRAME2 is inline with y-axis of FRAME1, but in opposite direction,

we have the purple being -1. Since the xy plane is perpendicular to the z-axis, we can conclude that

the xy plane of FRAME2 is also perpendicular to the y-axis of FRAME1. Similarly, since the xz-plane

is perpendicular to y-axis, we can also state that the xz plane of FRAME1 is perpendicular to z-axis

of FRAME2. Hence we have those red vectors being 0.

The green vectors can be found using the same idea that we discussed in previous matrix. Note

that the direction of \ in this matrix is different from in the previous previous example.

The last row is always [0, 0, 0, 1] for an affine transformation matrix by convention. The result

for 0
1) is shown in Fig. 6.

9

Figure 6 Transformation Matrix 1
2T result.

This example provides a holistic view of how to transform different inertial frames into one

base frame through transformation matrix.

Gait Generation. Gaits are the patterns of movement that describe how animals control their

leg swings and stance. Animals select their gaits based on speed. Studies show that the reason of gait

change includes energetic, durable, biomechanical, environmental and morphometric considerations.

In the study done by Yasuhiro eta, they used a central pattern generator(CPG) as a control system

to determine the motion of the swing and stance of the quadruped robots’ legs [6]. Initially, the

CPG network was always hard-wired and the lateral neighboring CPG models were mutually and

inhibitorily coupled. This method produced the most basic gait-trot in which the diagonal pairs of

legs move in-phase and the other pair of legs move out of phase. The concept of trot can be showed

in the following figure. The footfalls describe the duration of stance for each leg and it is controlled

by the extensor. The footfall data shows the coupled diagonal legs’ movement for the trot gait. The

swing phase of the gait is controled by the robot’s flexor which can lift the feet. The body pitch tilt is

effected by speed of the robot.

10

Figure 7 Simulation result for the quadrupedmodel without the leg loading feedback at constant

acceleration [6].

Based on the CPG system, the foot loading sensor is equipped at the ankle area for each

leg which feeds back the foot loading. The flexor, which controls the swing and the extensor which

controls stance mutually inhibits one another. The load-sensitive receptors in the ankle extensor motors

inhibit the flexor. While the leg is loaded, the extensor is excited because of the inhibition of the flexor

which results in prolongation of stance duration and prevention of initiation of the swing phase. Based

on the foot loading feedback, each step would be adjusted according to body tilt which generated

many different gaits. The following figure shows a constantly accelerated robot with different gaits

generated.

Figure 8 Simulation results for the quadruped model with the leg loading feedback during

acceleration [6].

11

The principle of gait generation is related to the diagonal pair of legs moving out of phase.

The following picture shows the different directions of out-phasing causing different body tilt. The

green curve is the trot which is when the diagonal pairs are in phase.

Figure 9 Diagram of the rhythmic activities of the flexor half-centers of the four legs and three

types of postures in the stance phase of the two legs in phase of each diagonal pair during trotting

[6].

Each pair of diagonal legs can cause different body posture, which means 9 combinations of

gait can be generated based on this principle. The following figure shows the combination of diagonal

pair phasing condition with its corresponding gaits’ name.

Figure 10 The nine emerged gaits that result from the possible combination of two elements out

of the pair [6].

12

METHODS

Software Control Implementation.

Note: This document refers to the “Stanford Quadruped” controller repository.

From the control perspective, the Stanford Pupper can be broken into three sections: joystick

interface, controller, and motor interface. In the joystick interface section, the command is given to

the robot through a PS4 joystick or keyboard joystick emulator. The joystick interface reads the signal

sent from the joystick. The controller part includes a gait scheduler to plan the gait for the motion.

The gait is achieved by two helper methods: swing and stance. The swing method makes the leg move

to the next location and the stance method makes the leg stay on the ground. Through the combination

of “swing” and “stance”, a specific gait can be implemented. The “swing” and “stance” methods are

controlled by the foot coordinates in the body frame, and an inverse kinematics method is used to

convert the Cartesian coordinate of the desired location to a set of joint angles. This array of joint

angles is passed to the motor interface. The motor interface reads the joint angles array from the

controller section and converts it to PWM (Pulse-width modulation) duty cycle and sends the signals

to the motor controllers (Teensy board).

The joystick interface (JoystickInterface.py) reads the signal from the PS4 joystick. In this

method, both discrete and continuous commands can be read and passed to the controller. Discrete

commands include activation and deactivation, as well as changing mode between resting, trotting,

and hopping. Continuous commands include moving in x and y direction and changing pitch angle,

height, and rolling. The output of this function is a command object that records x and y velocity, yaw

rate, height, pitch, roll, and which gait mode the robot is executing.

The main controller (Controller.py) reads the command object passed from the joystick interface

and uses the swing and stance method to carry out the movement. Three helper methods used by the

main controller are gait controller (Gaits.py), swing controller (SwingLegController.py), and stance

controller (StanceController.py). The gait controller breaks the continuous movement to phases and

defines the motion as a cyclic motion for each individual leg. The swing controller simulates the

movement of a specific leg. It calculates the desired Cartesian coordinates from the command object

and returns the final foot location. The stance controller simulates the contact between a specific leg

13

https://github.com/stanfordroboticsclub/StanfordQuadruped/tree/dji

and the ground. In stance mode, the leg is not moving if the reference frame is the ground. However,

the leg moves backward if the reference frame is the robot. For example, if in the stance phase

the feet move backwards at -0.4m/s (to achieve a body velocity of +0.4 m/s) and the stance phase

is 0.5 seconds long, then the feet will have moved backwards -0.20 m. Inside the main controller,

three modes, including trot, hop, and rest, are defined. The main controller calls the gait controller to

determine which legs are moving and which legs are staying, and calls the gait controller and the swing

controller to calculate the coordinates of the next foot location. Inverse kinematic (Kinematics.py) is

used to convert the coordinates into a set of joint angles. These joint angles and the coordinates will

be passed to the motor interface.

The motor interface (HardwareInterface.py) passes commands from the main controller to

individual motors thorough the motor controller, Teensy board. This is achieved by the communication

through serial port. The serial port is a two-way communication channel between the Teensy board

and the main controller’s Raspberry Pi board. The Teensy board sends error messages and feedback to

the Raspberry Pi board while the Raspberry Pi board sends commands to Teensy board to control the

motors. The parameters that can be sent to the motor includes the activation/deactivation command,

PD control parameters (? and 3), and maximum current. The main controller can send two types

of command to the motor: the actuator position (joint angles) and Cartesian position (Cartesian

coordinates). The PD control inside the motor controller (Teensy board) moves the leg to the set of

desired joint angles or the desired Cartesian coordinates.

The main method (run_djipupper.py) is a while true loop that keeps reading from the joystick

interface. The user can activate or deactivate the robot here. If the robot is in the activated mode, the

main method will repeatedly read from the joystick, run the controller to find the desired joint angles

and cartesian coordinates, and pass the command to the motor interface until a keyboard interruption

is entered to stop the while true loop.

The objects that are used to record data are Config, State, and Command. These objects are

mainly used to store data and to pass along data between different phases and methods. The Config

object sets the maximum value and geometric constraints. The State object records the parameters and

behavior mode at the current state. The Command object records the desired motion received from

the joystick. The Config object is invariant while the State and Command objects change when the

14

robot moves and when a command is given to the robot, respectively.

Hardware and Construction.

Initial Setup and Preparation. This section contains information about how the team prepared

for the build. Upon arrival the robot kit would ideally contain all the hardware needed for assembly.

However, in our case there were some hardware pieces missing. In addition, some required assembly

tools may also come with the kit; for example, our kit included a crimping set but not a soldering iron.

The team gathered the tools required to complete the build. Some of these were gathered at

the start, while others were acquired as they were needed. The list of tools that were used is found in

Table 1.

Table 1 Table of tools and equipment used to construct the robot.

Tool Additional Information

Needle Nose Pliers

Wire Cutter

Wire Stripper

Crimping Set If not provided

Soldering Iron Make sure it’s strong enough (>60 W).

Solder

Heat Shrink Tubing For splicing wires

Metric and Imperial Allen Wrenches

Extra Wire

Multimeter

After the kit arrived, the first step was itemizing the kit. The kit was compared against the bill

of materials (BOM) to determine if any items were missing. In our case, we were missing 4 "clamping

D-hubs," 2 "left lower links," and 1 "left hip," along with some M3x8 flat head screws.

15

Build Process. Once the initial steps were complete, the hardware itemized and the tools

collected, the team began the build process. There were two steps that should be done before beginning

the build process: shortening the controller wires and crimping the JST connectors onto the controller

wires. The wires were shorted to about 6 cm by cutting them and splicing them back together. The

cleanest way to do this was to desolder the connection on the controller, shorten the wire and re-solder

the wires. Each of the controllers came with an additional heat shrink for this purpose. However, this

was not the approach taken as the team’s soldering iron at the time was under-powered for the task.

Therefore, the wires were cut in the middle and shortened then spliced back together.

During the build process the team ran into a number of challenges. These challenges and the

solutions taken are listed in Table 2

Table 2 List of challenges and solutions discovered during the build process.

Challenge Solution

Couldn’t melt solder More powerful soldering iron

Shorting of the PCB
Use a multimeter to check for shorts

before powering on the robot

Wire Crimping Develop crimping guide

Screws not biting the Nylon shrouds Really push on the screws for the first few turns

Legs over or under rotating
Screw orientation matters. Make sure to

check the guide for D-hub screw location

Teensy not working when plugged

into the shield

Teensy shield may be shorting the Teensy.

Check all pins with multimeter

Power the Teensy when running

a Raspberry Pi

Run a 5V regulator to the Pi and power

the Teensy through the USB on the Pi.

Software Setup. Figure 11 shows a block diagram of the control flow for the robot.

16

Figure 11 Block diagram for the control of the Robot.

As shown in the figure, the commands from the computer are sent to the Teensy, from the

Teensy to the motor controllers, and finally from the motor controllers to the motors. Additionally, the

computer receives feedback from the Teensy about the motors.

Both the Pi and the Teensy were loaded with software developed specifically for the control

of the DJI Pupper robot. The Teensy was "flashed" with code designed to interpret the signals sent

by the Pi and provide useful information back to the Pi. The Raspberry Pi was loaded with two code

repositories: the Pupper control code and the joystick emulator. The control code contained the main

functions necessary to control the robot, while the joystick emulator allowed the use of a standard

keyboard as controller, by translating certain key inputs to equivalent buttons on a PS4 controller.

Software installation proved to be more difficult and time-consuming than expected, presenting

several unforeseen problems and setbacks. While solving these issues, we developed a detailed and

comprehensive software setup guide to supplement the current Pupper build documentation. This

new guide expanded on areas left vague in the original instructions, hopefully enabling a smoother

installation experience for those without prior robotics experience. Software setup guides and a few

general build tips can be found in the Appendix of this paper.

Circuitry. The foundation of the robot is a printed circuit board (PCB). This board is the core

for how information and power flow throughout the robot. Figure 12 shows a circuit diagram of a

rough recreation of the power elements in the PCB.

17

Figure 12 Circuit diagram of the power drawing elements in the PCB.

In this case, the power outputs are modeled as resistors. Each of the power plugs runs in

parallel to the battery such that each receives 24 V. Additionally, the Teensy also receives 24 V, which

must be stepped down to 5 V with a regulator. However, the Teensy was not connected to the battery

and is drawing its power from the Raspberry Pi, thus the 5V regulator is not necessary. After fixing the

short on the Teensy shield, plugging the Teensy into the battery caused the Teensy to stop working.

As a result, the spare Teensy was used and not connected to the battery but powered through the

Raspberry Pi.

The diagram for the CAN communication in Fig 13.

Figure 13 Flow chart that shows the CAN connections on the board.

18

On each side of the robot the CAN connections run in parallel. Each side connects to a central

CAN transceiver at the center of the PCB, both of which then connect to the Teensy and send feedback

and receive commands from the Teensy.

RESULTS & DISCUSSION

Physical Construction of the Robot. The construction of the robot was ultimately successful,

though not exactly in the expected way. Since a mistake in the manufacturing of the Teensy shield led

to the Teensy being unable to receive commands while drawing power from the battery, we improvised

by chaining power to the Teensy through the Pi. In the completed robot, the battery was connected to

the 5V regulator, which regulated power to the Pi; the Teensy was powered through its USB connection

with the Pi. Though not what the creators of Pupper intended, this way of powering the hardware

works just fine.

In the final stages of construction, the robot was configured to enable it to go mobile. This

involved attaching the battery and the Pi to the robot’s back. The battery was secured using electrical

tape, while the Pi was encased in a 3d-printed Raspberry Pi 4 case, which was then fastened to the

robot’s back using one of the PCB screws. Photos of the standing robot are shown below in Figs. 14

and 15.

19

Figure 14 Picture of the activated robot standing (front).

Figure 15 Picture of the activated robot standing (side).

20

These methods of securing the battery and the Pi work for brief stints of movement, but the

energetic shaking of the robot during its trotting gait causes the battery and Pi to come loose somewhat

quickly. Future teams should find a more permanent solution. The battery should have enough room

to rest inside the robot’s main compartment if the wires are packed in just right, but we were unable to

find an appropriate configuration to allow for this. As for the Pi, a dedicated case should be designed

with holes aligned to the locations of all 4 PCB screws at the robot midsection. This would allow the

Pi to be secured using four screws instead of just one, preventing it from rotating during operation of

the robot.

The finished robot was controlled using a traditional USB keyboard rather than the intended

PS4 controller. While connected to the Pi via USB, the PS4 controller touchpad and mouse feature

worked as expected. However, none of the controller buttons registered on the Pi, without or without

the keyboard joystick interface running. This problem should be investigated in future work. Figure

16 below shows the keyboard-to-robot connection.

Figure 16 Picture showing the keyboard connection to the robot.

With the keyboard controller, we achieved all the out-of-the-box functionality of Pupper.

21

Figures 17, 18, 19, and 20 show the robot’s tilting and rolling functions in action.

Figure 17 Picture of the robot tilting upward.

Figure 18 Picture of the robot tilting downward.

22

Figure 19 Picture of the robot rolling left.

Figure 20 Picture of the robot rolling right.

23

We also achieved walking functionality, which is difficult to show in a still image. For video

of our Pupper walking, check this Box folder.

We found several unforeseen issues related to controlling the robot. One minor issue is the

tendency of the robot to shift and turn even while trotting in place. By design, the robot does not walk

unless the "trot" mode is activated, in which the robot constantly marches by lifting and lowering its

feet. However, the robot can move unintentionally while supposedly trotting in place, slowly rotating

or backing up. This could be due to weight imbalances in the robot causing it to shift without the feet

firmly planted, and is probably an unavoidable issue. Still, it is important that the controller be aware

that the robot never really trots "in place."

Another more substantial problem is the robot’s tendency to reset incorrectly when the legs are

extended (this is shown a several of the Box videos linked above). When the legs near a 180 degree

angle, they have a tendency to reset backwards, with the "knee" of the robot pointing to the front

rather than the rear. This can and will cause fatal errors when the robot tries to move, such as the

front and rear legs clashing with each other or a simple loss of balance, leading to the robot toppling

over. Therefore, whenever one of the robot’s legs resets backward, the problem must be immediately

resolved. This can be done by deactivating the robot completely and re-running the control code with

the zeroing option on, but this is an enormous pain. A quicker solution is to use the "raise/lower"

movement option to make the robot stand up as high as possible, with legs nearly straight vertical.

Then, slowly tap the button to lower the robot while pushing the robot’s knee backward, forcing the

leg to reset to the correct orientation. If multiple legs have bent wrong, this may have to be done

multiple times, once for each leg. Nevertheless, it is a much faster solution than completely resetting

the robot.

It seems as though this problem should be preventable with a change to the robot’s code.

Future groups may want to try implementing a section of code that prevents the knee motors from

ever angling the leg links at greater than 180 degrees (or less than 0, if taking the zeroed state of the

motors as the frame of reference). This feature would save a lot of time and headache with the robot’s

operation, as the legs have a tendency to turn backward often.

24

https://wustl.box.com/s/4q1od8pt5gx3121qznqb91hnggswok5p

Development of New "Jumping" Gait.

As mentioned in a previous section, the main controller has several modes that it can switch between

to achieve different gait. These modes are defined in the <state.py> file.

Figure 21 Controller Modes

In these modes, DEACTIVATED mode is assigned to -1, while mode 0-3 indicating that the

robot is in an ACTIVATED stage. Mode 0 corresponds to the REST mode, where the robot is

ACTIVATED but not performing any actions. Mode 1 corresponds to the TROT mode, where the

robot will be stepping on the same spot initially. Only when the controller receives changes from the

joystick interface, and the foot location (for the next state) of the robot is changed, will the robot start

walking. Both mode 2 and 3 together composed the HOP gait. The HOP gait is a gait where the

robot will jump vertically. Mode 2 corresponds to the movement before the hop, where the knees are

bent, and body is lowered. Mode 3 make the robot’s legs push against the floor to produce a counter

force upward. There are two main parts about gait controls. One is to switch between the modes, and

the other is to design the mode so that it performs the desired tasks. We are going to introduce how

Pupper achieves these in the next several paragraphs.

To enable the transitioning between different modes, the Pupper controller <controller.py> uses

dictionaries Figure (22). These dictionaries allow a 1:1 mapping between modes. If a mapping does

not show up in the dictionary, then the transitioning is disabled. For example, the only mode that can

transit into DEACTIVATED mode is the REST mode, meaning that it is only possible to put the robot

into rest before deactivating it.

25

Figure 22 Mappings Between Modes

For the purpose of this project, we will focus mainly on investigating the hop gait design of

the robot. As mentioned above, the hop gait is composed of two modes: HOP mode and FINISHHOP

mode. The basic idea of this gait is straight forward: 1) Since the hop gait only generates a vertical

movement, there is no net change for the foot location on x(forward) or y(side) directions. 2) For the

HOP mode, knees are bent, body is lowered, thus the distance between the body and foot is short. 3)

For the FINISHHOP mode, the legs are pushed, so the distance between the body and foot is long.

Based on these rationales, the implementation of these two modes is simple: In HOP mode, copy the

default foot locations, apply a net change in the z direction of magnitude |/U|. In FINISHHOP mode,

copy the default foot locations, apply a net change in the z direction of magnitude |/U|. And |/V| <

|/V|. The use of the absolute value is because all Zs should be negative since the foot is below the

body. A gallery of different Z values and their correspondent robot posture is shown in Figure (23a).

26

(a) z = −0.02 (b) z = −0.05 (c) z = −0.09

(d) z = −0.15 (e) z = −0.22

Figure 23 Robot Postures at Different Zs

The default hop gait uses (0.09) for HOP mode and (0.22) for FINISHHOP mode. Upon our

investigation, we figured that (0.22) is the max that the legs can stretch, and (0.09) is a good parameter

for HOP mode. Anything above (0.09) will cause the robot not to leap as high, and figures below

(0.09) have almost the same effects as. A gallery of the complete motion of a hop is shown in Figure

(24a). Note that the robot leaps the moment that it enters FINISHHOP mode and it will stay in the

FINISHHOP mode even after landing because no other instructions were given.

27

(a) REST (b) HOP (c) FINISHHOP

(d) Falling (e) Landing

Figure 24 Complete Motion of A Normal Hop

28

Jump Gait Design.

In this project, we managed to design a jump gait. For the jump gait, we want the robot to achieve the

following: 1) Jump forward. 2) Retain balance with feet on the ground after jumping. Based on the

previous Hop gait analysis, we determined the modifications that need to be done in order to achieve

our goal: 1) Add changes to the x direction so the robot can be pushed forward. 2) Add another mode

after the FINISHHOP so that the legs can contract and provide balance again.

To implement the first modification, we investigated the effects of changes on x direction. To

better observe the results, we set the two front legs to maintain a default posture, and experiment on

the two rear legs:

(a) x = −0.20 (b) x = −0.05 (c) x = +0.05

Figure 25 Robot Postures at Different Xs

We can observe that the changes in the x direction can be positive or negative. If a reference

line was drawn at the location of the hip motors, a positive change makes the foot lands before the

line, and a negative change makes the foot lands after the line. Also, the range on the positive side

is significantly shorter than the negative side. At +0.05, the knee of the robot is touching the floor

to reach the desired foot location. Since the jump gait needs a push in the forward direction, we can

conclude that we need a negative change in the x direction.

To implement the third mode, we first need to define it in the <state.py> file. In our case, we

named it BALANCE and assigned it to mode 4. To note, since the joystick interface for the simulator

is prewritten and unchangeable, we do not have a way to swap between the normal hop gait and the

new jump gait. Therefore, in order to implement the new gait, we overwrite the original hop gait,

29

so that the HOP and FINISHHOP mode are now part of the jump gait. The loop between the three

modes should follow this sequence: HOP -> FINISHHOP -> BALANCE. The logics are: bend knees,

prepare for jumping -> spring off legs to push against floor -> contract legs to provide balance before

landing.

Finally, we need to modify/build the three modes so that each of them performs their designated

tasks. For the HOP mode, we mimicked the posture of a frog, where the two front legs are expanded,

and the two rear legs are contracted. With this posture, the shoulder of the robot is higher than its hip,

making its head to point into an up and forward direction. Based on previous analysis, we summarized

the desired parameters for HOP mode:

Figure 26 HOP Mode Parameters Summary

One thing to note in this table is the choice for the rear legs x direction parameter. Our initial

thought is that it should be a small positive figure. However, after multiple trials, we discovered that

with the other three parameters settled, any positive number for this parameter will result in the knees

of the rear legs to touch the floor. This is not a typical situation where the robot’s knees are contacting

with the floor. Therefore, we decide to assign the rear legs x direction parameter to a small negative

value. The magnitude of this value is dependent on the value of rear legs z direction parameter. In

our case, with rear legs z direction parameter being (-0.11), a value of (-0.01) for rear legs x direction

is sufficient.

For the FINISHHOP mode, the main purpose is to push hard against the floor. From previous

analysis, the max expansion that the legs can have to the negative direction is about (-0.2). However,

we should not assign all parameters to this max value. One key constraint here is that the front legs

should be pushing less hard than the rear legs. This constraint is a conclusion from observations to

the original HOP gait. In the original gait, as the front and rear legs are pushing with the same scale,

the robot will always flip over. In order to prevent this behavior, we decided to design the parameters
30

so that the rear legs contribute to most of the pushing power in both directions. A summary of desired

parameters for FINISHHOP mode is shown here:

Figure 27 FINISHHOP Mode Parameters Summary

For the BALANCE mode, the main purpose is to provide balance for landing. In order to

provide balance, an important constraint for this mode is that the front legs and the rear legs should

be fairly separated. The BALANCE mode should also lower the body of the robot to provide extra

balance. Additionally, we should design the BALANCE MODE so that its transitioning to the HOP

mode is fairly smooth. A summary of desired parameters for FINISHHOP mode is shown here:

Figure 28 BALANCE Mode Parameters Summary

A gallery of the complete motion of a jump is shown in Figure(29a-29e). Although the pictures

cannot fully show the motions during the whole process, it is still observable that the robot jumped

forward and maintained balance after landing. Thus we can conclude that the jump gait is successfully

implemented.

31

(a) Rest (HOP) (b) Pushing (FINISHHOP) (c) Jumping (FINISHHOP)

(d) Falling (FINISHHOP) (e) Landing (FINISHHOP)

Figure 29 Complete Motion of A Jump

32

CONCLUSION

The quadruped robot built in the project was the Stanford Pupper. In this project, we built the

actual quadruped Stanford Pupper robot and designed a new gait for robot to hop forward. Detailed

instructions for the robot assembly, Raspberry Pi 4’s set up, and software set up are created for future

student use. The robot was built and tested to for standing, walking and tilting in different directions.

The team was also able to design a new gait “jumping” which includes 4 states: rest, pushing, jumping,

and landing.

For the future study, many improvements to the robot can be done based on this study. Firstly,

the jump gait simulated by this project can be tested on the robot. In addition, current feedback from

the motor can be used to track the force from each leg and use the control system described in the

gait generation to generate different gaits and compare with theories. In addition, the performance of

the PD controller can be evaluated by comparing the theoretical food location and actual foot location.

Last but not least, computer vision module and trained AI can also be added to the robot software to

control robot travel through obstacles or to chase a specific object.

33

References
[1] Kau, N. and Bowers, S., “Stanford Pupper: A Low-Cost Agile Quadruped Robot for Benchmarking and Education,”

Tech. rep.

[2] Muhammed Arif Sen, V. B. and Kalyoncu, M., “Inverse Kinematic Analysis Of A Quadruped Robot,” Tech. rep.

[3] Katsumi, N., “Affine differential geometry : geometry of affine immersions,” Tech. rep.

[4] “2D affine transformation matrix,” accessed May. 8, 2021, https://commons.wikimedia.org/wiki/File:2D_affine_

transformation_matrix.svg

[5] Craig, J. J., 2005, Introduction to Robotics, 3rd ed., Pearson Education, Upper Saddle River , NJ.

[6] Yasuhiro Fukuoka, Y. H. and Fukui, T., “A simple rule for quadrupedal gait generation determined by leg loading

feedback: a modeling study,” accessed May. 14, 2021, https://www.nature.com/articles/srep08169

34

https://commons.wikimedia.org/wiki/File:2D_affine_transformation_matrix.svg
https://commons.wikimedia.org/wiki/File:2D_affine_transformation_matrix.svg
https://www.nature.com/articles/srep08169

A Robot Startup Guide

Background: Follow this procedure each time you start up the robot. Unless you are extremely

familiar with the process and confident in the precision of your keystrokes, it is recommended to do

this while the Raspberry Pi is connected to a monitor via its micro HDMI port. Once the bot is active

and responsive to commands, the monitor can be disconnected without issue.

(1) Press the robot power button and wait a few seconds. You should hear all the motor controllers

beep and the Raspberry Pi will boot up automatically.

(2) The Pi is currently set to boot to desktop. Open the command terminal by clicking the terminal

icon on the taskbar, or using the keyboard shortcut Ctrl+Alt+T.

(3) Run the command:

sudo ifconfig eth0 10.0.0.52 netmask 255.255.255.0

Note: this command may become unnecessary if a good method can be found to set the ethernet

IP on startup.

Note: "eth0" is the name of our Raspberry Pi ethernet port. The original guide used "en1"

instead. Run the command "sudo ifconfig" to see information on the available wired and wireless

connections. Look for a connection labeled "ethernet".

(4) Run the commands:

cd PupperKeyboardController

python3 keyboard_joystick.py

(5) A separate window should open up and wait for keyboard input, while the terminal will begin to

print status information.

(6) Open a new terminal with the taskbar or Ctrl+Alt+T.

(7) Run the commands:

cd StanfordQuadruped

python3 run_djipupper.py

Note: To re-zero the motors, run “python3 run_djipupper.py –zero”. This should be done

each time the Pi is booted up, but not necessarily for each activation of the "run_djipupper.py"

program.

35

(8) The terminal will say “Waiting for L1 to activate robot.” Navigate to the keyboard controller

window using the mouse or (keyboard shortcut unknown). Once the keyboard controller window

is active, the robot is now ready to use and will receive commands.

Note: When in doubt, press L1/q to deactivate the bot. The motors can move abruptly and

forcefully, so unless you’re very comfortable and familiar with the commands you’re sending,

keep a finger on the deactivation button.

(9) Command list (PS4 controller—keyboard):

Activate/deactivate (L1—q)

Trot/rest (R1—e)

Move forward/back and left/right (left joystick—wasd)

Tilt up/down and yaw left/right (right joystick—arrow keys)

Translate up/down and roll sideways (D-pad—ĳkl)

Note: To move the robot, first press R1/e to trot, then left joystick/wasd to move. The robot can

lift, roll, tilt, etc. without trotting, but it must be trotting to walk around.

B Software Installation Guides

Teensy. Background: the Teensy board is responsible for the fine control of each motor and

takes commands from the Pi, which handles high-level control. Since it does not receive commands

directly from the user and has no interface to interact with, the Teensy must be pre-loaded (or "flashed")

with code via the following process.

Note: The process for flashing the Teensy was successfully completed on a Windows computer.

According to the directions provided by the original Pupper team, it should work with exactly the

same commands and programs on Mac. However, we were unable to flash the Teensy using the Pi

itself due to permissions issues, and so we cannot recommend using Linux for this process.

(1) Install Git for your operating system: https://git-scm.com/downloads

(2) Open a command line. This was done with the Windows command line (Windows+R, type

"cmd"), but it should also work in Windows PowerShell and the Mac terminal.

(3) Navigate to the directory where you want your project files to be located. The command will be

something like:
36

https://git-scm.com/downloads

cd C:\Users\YourName\Documents\PupperProject

(4) Clone the "DJIPupperTests" folder from Github.

git clone https://github.com/Nate711/DJIPupperTests.git

(5) Navigate into the "DJIPupperTests" folder you just created:

cd DJIPupperTests

(6) Run the command:

git submodule update –init

Note: if the terminal doesn’t show various files being updated, check that you’re in the right

directory. You can use "dir" (Windows) or "ls" (Linux) to check the contents of the current

directory, and "cd" (Windows) or "pwd" (Linux) to check the file path.

(7) Install Visual Studio Code: https://code.visualstudio.com/Download.

Note: Even if the Teensy is not being flashed using the Raspberry Pi, it is still handy to install

VSCode on the Pi as well because the "monitor" feature can be used to monitor the Teensy’s

debug information. To install VSCode on the Pi, use the command line to run:

sudo apt update

sudo apt install code

Run VSCode on the Raspberry Pi by typing "code" into the Pi terminal.

(8) Open VSCode and install the PlatformIO extension. To do this, click on the icon with four boxes

on the left toolbar labeled "Extensions" and search for PlatformIO. Locate the extension, install,

then restart VSCode.

(9) Connect the Teensy to the computer using a microUSB cable. The Teensy should register the

connection by blinking its LED several times.

Note: it is also recommended to install the "Python" and "C/C++" extensions for general use

while you’re at it.

(10) Follow the steps in this video: https://knowledge.autodesk.com/community/screencast/cbf5a477-

08e8-4b54-aa1b-aeffc3e5aa3d.

Note: the Github repository has been updated several times over the course of this project. Some

versions may have "ArduinoJson" and "BasicLinearAlgebra" already installed; don’t worry if

this is the case.

37

https://code.visualstudio.com/Download
https://knowledge.autodesk.com/community/screencast/cbf5a477-08e8-4b54-aa1b-aeffc3e5aa3d
https://knowledge.autodesk.com/community/screencast/cbf5a477-08e8-4b54-aa1b-aeffc3e5aa3d

Note: you can click "Upload" first to check for errors, then "Monitor" to print information from

the Teensy to the terminal. The aptly-named "Upload and Monitor" option does both with one

click.

(11) When the code is first uploaded and monitored, the VSCode terminal will print debug information

that indicates the positions of each motor connected to the Teensy.

Note: depending on the code version you clone, the debug info may print very fast and/or

be unreadable. To print human-readable debug information at a comprehensible pace, you

can edit the code in "main.cpp" using the VSCode interface. Open "main.cpp" and change

PRINT_DELAY on line 11 to 1000 (this makes the debug info print once every second). On line

182, comment out "drive.PrintMsgPackStatus(options);" by typing "//" in front of it. On line 180,

uncomment "drive.PrintStatus(options);" by deleting the "//". This will change the debug info

to a list of numbers representing motor positions and velocities. Once the information-printing

code is changed to your liking, re-upload and re-monitor to check that the debug information

now prints correctly.

Raspberry Pi (Keyboard Controller). Background: the keyboard controller allows control

of the robot using a keyboard rather than a PS4 controller. This comes with trade-offs; the controller

is less bulky and provides more intuitive control, but the keyboard allows for command line setup and

robot control with one device.

Note: for ease of access, it is recommended to install the code in the folder "/home/pi". This is the

folder that the terminal will open to by default, and it has a special short name: "~". If your terminal

is not already in the home folder, run the command "cd ~" before following these steps.

(1) Clone the joystick emulator code from the Github page:

git clone https://github.com/stanfordroboticsclub/PupperKeyboardController.git

(2) Python 3 should already be installed on the Pi. If not, run:

sudo apt update

sudo apt install python3

(3) Make sure pip is installed for Python 3:

sudo apt install python3-pip

38

(4) Install PyGame:

pip3 install pygame

(5) Install UDPComms:

git clone https://github.com/stanfordroboticsclub/UDPComms.git

sudo bash UDPComms/install.sh

Raspberry Pi (Control Code). Background: the Pi control code handles high-level control

of the robot. Unlike the Teensy, the Pi receives commands directly from the user while the robot is

operating.

Note: for ease of access, it is recommended to install the code in the folder "/home/pi". This is the

folder that the terminal will open to by default, and it has a special short name: "~". If your terminal

is not already in the home folder, run the command "cd ~" before following these steps.

(1) Clone the control code Github repository:

git clone https://github.com/stanfordroboticsclub/StanfordQuadruped.git

(2) Go to the StanfordQuadruped folder:

cd StanfordQuadruped

(3) Checkout the "dji" branch:

git checkout dji

(4) Connect the Teensy to the Pi and find out the Teensy’s tty device name. In the /dev folder of

the Raspberry Pi, there is a long list of folders labeled "tty[something]", where [something] is a

unique combination of letters and numbers. Whenever you plug the Teensy into the Raspberry

Pi, a new tty folder will be created. Find the name of this folder. The Pupper project doc

recommends running the command "ls /dev | grep tty.usbmodem", but this method did not work

for us because our tty folder name did not include the text "usbmodem". We found the folder

name using the windowed interface rather than the command line. We navigated to the /dev

folder, then plugged and unplugged the Teensy while scrolling through the folder’s contents.

Eventually, we noticed a folder popping in and out of existence as the Teensy was plugged and

unplugged. For us, the folder was named "ttyACM0".

(5) Once the Teensy’s tty folder name is known, open the Python code file

39

" /StanfordQuadruped/djipupper/IndividualConfig.py" with the Pi’s "Text Editor" program.

At the bottom of the file, a line will read "SERIAL_PORT = "/dev/tty.usbmodem73090601"

nathan’s". Edit this line with the name of your tty folder; for us, the line now reads:

SERIAL_PORT = "/dev/ttyACM0". Save and exit the text editor.

(6) Install the "transforms3d" python package. This package is necessary to run the control code

Python file:

pip3 install transforms3d

C Hardware Build Notes

Before Doing Anything.

(1) Make a copy of the official bill of materials (BOM) and add a column representing the number

of each part that you have. Take a full inventory of the kit, recording the number of each part in

your own BOM. This will quickly show which parts you’re missing, if any.

Note: The kit may have some issues, such as missing/badly printed parts. For example, we did

not receive enough clamping D-hubs or M3x8 flathead screws. Also, we received 4 right lower

legs and 3 right hips with 1 left hip. The lower legs are supposed to have small holes to attach

the rubber feet. However, the legs we received with the kit had misprinted, filling the holes and

making it impossible to attach the rubber feet. Expect issues like this, and try to identify them

as soon as possible.

(2) Label each bag of hardware with its actual name! The screws come in bags with an ID number

that’s listed in the BOM, but the actual build pictures use the name of the part. For example,

"92125A128" is an M3x8 flat head screw. Write the part name on the bag so you don’t have to

constantly cross-reference part names/numbers with the BOM. This will save a LOT of time and

prevent potential part mix-ups.

Other Notes.

(1) It can be difficult to keep track of which parts correspond to the right and left legs. We

recommend using a labeling system during assembly. We used tape to mark off different sections

of the table for "front left", "rear left", "front right", and "rear right", which allowed us to sort

40

the parts without putting any marks on them.

(2) In general, the pictures provided on the Pupper product page are more useful than the build video

when assembling the robot. The video should be used to get an idea of the general thing you

should be doing next, while the step-by-step assembly should be done referencing the project

page pictures.

(3) Being able to print replacement 3d-printed parts yourself is very useful, as several parts have

a tendency to break during assembly, or to simply be misprinted to begin with. Of note are

the upper leg shrouds, which are thin and can snap while being screwed on. And as mentioned

before, the lower legs may not mesh with the rubber feet correctly.

(4) At 28:58 in the build video it shows how to attach the golden threaded inserts. Note that the

tool that should be used to attach these inserts is a soldering iron! The inserts are meant to heat

up and melt the plastic around them. It may take a few seconds for the heat to begin melting the

plastic. Press the soldering iron firmly and steadily against the top of the insert until it sinks in.

(5) Screw orientation matters! The purpose of adding one longer/cap head screw on some of the leg

pieces is to restrict the leg range of motion. If these screws are put in the wrong place, the legs

will not be able to move where they’re supposed to move.

(6) The motor-controller pairs need to be calibrated and the controller IDs need to be set according

to the instructions on the project page. Unfortunately, the controller IDs can be difficult to keep

straight. Make sure to keep the motor-controller pairs organized or labeled.

D Recommended Reading and Helpful Resources

There are many resources which were helpful to our project but which were not directly used

to provide any content in the report. Rather than citing these as references, we direct readers to them

here.

(1) Raspberry Pi setup instructions.

(2) A good explanation of many basic linux commands for controlling the Raspberry Pi. See

especially: pwd, cd, ls, locate, sudo, man, and the "Bonus Tips and Tricks" section.

(3) A basic guide to Git and Github, explaining cloning.

(4) Read more about VSCode.
41

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up
https://www.hostinger.com/tutorials/linux-commands
https://www.hostinger.com/tutorials/linux-commands
https://medium.com/@mehulgala77/github-fundamentals-clone-fetch-push-pull-fork-16d79bb16b79
https://code.visualstudio.com/docs

(5) Read more about PyGame.

E Simulator Guide

Please See next page for guides on simulator installations and modifications.

42

https://www.pygame.org/wiki/about

Simulator Guide

This documentation serves as a supplement to the original instructions provided. Specifically,

this documentation aims to help WINDOWS users because most the instructions are oriented

around UNIX systems. Note that some of the steps shown in this document are different from

what are shown in the original instructions. Please FOLLOW THE ORIGINAL INSTRUCTIONS FIRST.

Only refer to the guides in this logbook when you are having trouble with the original instructions.

Here is a glossary of syntax that we used in this document:

<anything> specifies a file. For example: <Atom.exe>

{anything} specifies a folder. For example: {New Folder}

[anything] specifies the path/folder. For example: [C:\Users\abcd\Desktop]

~ specifies something that’s user-particular. For example, we will represent our ip address or

username by ~.

Part I: Simulator Installations/Setup Guide

Original Instructions on:

 <https://github.com/Mark-Bowers/PupperSim.jl/blob/master/README.md> provided by Mark

Bowers.

❖ Step 1: Install MuJoCo and obtain a license

➢ Follow the instructions from MuJoCo website to correctly install all necessary

MuJoCo files.

➢ For the license file, it should be a file called <mjkey.txt>.

➢ First copy the mjkey file to the {bin} folder where you installed the MuJoCo. On

our PC, it's [~\.mujoco\mujoco200_win64\bin].

➢ Once done, open the <simulate.exe>. A window should popup. Don’t close it.

➢ Then go to the parent folder and find the {model} folder. Open it up and then input

(drag) any file with type <.xml> to the <simulate> window.

➢ If it correctly opens up with no warning, then your license is valid, and you are

good to proceed.

❖ Step 2: Install Jullia

➢ Follow EXACTLY as shown in the original instruction.

➢ To note, julia is both case-sensitive and space-sensitive. Pay close attention to the

Caps, spacing, and even the period(.) at the end of the line.

❖ Step 3: Set up the license and the path.

➢ This step corresponds to the “set the environment variable MUJOCO_KEY_PATH

to point to its location.” part in the original instruction. Note that in our guide

we’ve changed the order of the steps slightly.

➢ In WINDOWS search bar, search “Edit environment variables for your account”

➢ In the pop up window, click on “New” on the top half of the window. Notice that

you won’t be able to change anything from the bottom half, so all our guides in

this section will be operating on the top half.

➢ In the new popup, enter “MUJOCO_KEY_PATH” for the variable name.

➢ For variable value, click on “Browse file”, then navigate to your <mjkey.txt> and

select. Make sure you select the file itself but not just the path to it. The variable

value should be set to something like [~\mjkey.txt].

❖ Step 4: Run Simulator From julia

➢ This step corresponds to the “Usage” part of the original instruction. Follow the

EXACT instructions.

➢ If the simulator window shows up, and you can see the Pupper on your screen,

you are good to go. Feel free to jump to Step 6 on some of the basic controls of the Pupper

in the simulator.

➢ If an error shows up saying something about invalid license, don’t panic, go to the

next step.

❖ Step 5: Fix the license path

➢ Copy the <mjkey.txt> file. NOT the path to it, but the file itself.

➢ Paste one copy to the user’s root folder. For example, if your logged in account to

the WINDOWS is called “user”, then the folder should be at [C:\Users\user]. To

check if this is the right folder, open it up and you should see a {.julia} and a

{.mujoco} folder. Paste the <mjkey.txt> file into this {user} folder.

➢ Now find the {bin} folder in the {.mujoco} folder. The path should be something

like [C:\Users\~\.mujoco\mujoco200_win64\bin]. Make a copy of the <mjkey.txt>

here inside the {bin} folder. If this is the initial location where you stored the

<mjkey.txt> you don’t need to replace it.

➢ Now go back to the user’s root folder {user} and open the {.julia} folder. In the

{.julia} folder, find the {iUMEQ} folder WITHIN the {PupperSim} folder. In our case,

the path to it is: [C:\Users\~\.julia\packages\PupperSim\iUmEQ]. Paste a copy of

the <mjkey.txt> in this folder.

➢ Technically you should have 3 or 4 copies of the <mjkey.txt> file at different

locations. That is okay. The ultimate purpose is for MuJoCo to find the license.

➢ Finally, go back to the environment variable set up page again. (Search bar -> Edit

environment variables for your account). Select the MUJOCO_KEY_PATH variable

that you set up in step 3 and click on “Edit”. Change the variable value to

[~\PupperSim\iUmEQ\mjkey.txt].

➢ Go through step 4 again. Now the simulator should be working.

❖ Step 6: Simulator Controls (brief)

➢ The best way to control the simulator is by a PS4 controller.

➢ One can use DS4Windows or x360ce to install necessary drivers and set up the

connection between the PS4 controller and the PC.

➢ Technically you should connect the controller first before running the simulator.

➢ The starting screen of the simulator should be a Pupper standing on the ground

with four legs straight.

➢ To start time (make simulator play), press “SPACE” on your keyboard.

➢ To make the Pupper start walking, press “R1” from the controller.

➢ Use the left analog on the controller for moving and the right analog for turning.

➢ If you want to restart the simulator, press “BACKSPACE” on your keyboard

Part II: Implementing Changes in Simulator

There are no original instructions for this online. Please follow the steps clearly as stated. The

main purpose of this part is to make whatever change you want with the robot and be able to

see its effect in the simulator.

❖ Step 1: Locate julia executable file

➢ If you don’t have a shortcut for julia.exe and always open from the executable

directly, go to Step 2.

➢ Right click on your julia shortcut. For my case, it says <Julia 1.5.3> on my desktop.

➢ In the drop down menu, click on “open file location”

❖ Step 2: Create a PATH to the julia.exe on WINDOWS

➢ Copy the path to the <julia.exe> file. In my case, it is:

 [C:\Users\~\AppData\Local\Programs\Julia 1.5.3\bin]

➢ Right click on your julia shortcut. For my case, it says <Julia 1.5.3> on my desktop.

➢ In WINDOWS search bar, search “Edit environment variables for your account”

➢ In the pop up window, select “Path” on the top half of the window, then click on

“edit”. In the new pop up window, click on “new”, then paste you previously

copied path (path to julie.exe), and click “ok”.

➢ Open WINDOWS command prompt <cmd>. Enter “julia”.

➢ If it runs with no error and you see the “Julia” symbol in <cmd>, proceed.

❖ Step 3: Develop a local version of the package

➢ Here is the rational behind developing local instances of those packages. In Part I,

we installed packages from GitHub to julia. However, julia does not expect us to

make changes to those preexisting packages. Therefore, we need to develop our

own local packages, make change there, and tell julia to run our version of the

packages directly.

➢ Open julia from <cmd>.

➢ Type “dev https://github.com/Mark-Bowers/QuadrupedController.jl”. This

develops a local instance of the QuadrupedController package.

➢ Type “dev https://github.com/Mark-Bowers/PupperSim.jl”. This develops a local

instance of the PupperSim package.

➢ Close down the cmd once the installation process is finished.

➢ Open the {.julia} folder. Again, mine locates at [C:\Users\~\.julia].

➢ Open {dev} folder inside {.julia}

➢ It would be time saving if you add this folder {dev} to quick access. Everything that

you want to edit will be in this folder.

➢ In {dev}, you should see two folders. One named {QuadrupedController}, the other

named {PupperSim}. If you see them, this step is completed.

➢ !!IMPORTANT NOTE!! You can also see these two folders in the {packages} folder.

Like explained earlier, julia does not expect things in the {packages} folder to be

changed. All changes should be made only to things in the {dev} folder. Keep this

in mind.

❖ Step 4: Modify the Manifest file

➢ Find the <Manifest.toml> file in the {.julia} folder. In my case, it is in:

 [C:\Users\~\.julia\environments\v1.5].

 It is also likely that there is <Manifest.toml> file in the:

 […\dev\QuadrupedController] or […\dev\PupperSim] folders.

➢ Make the following steps to ALL the <Manifest.toml> files

➢ Make a copy in case something goes wrong.

➢ Open <Manifest.toml>. If you don’t have an editor to edit it, just open it with the

Notepad.

➢ It should say: “# This file is machine-generated - editing it directly is not advised”

on the top. Ignore that for now.

➢ Find the “[[QuadrupedController]]” chuck, make the following edits:

https://github.com/Mark-Bowers/QuadrupedController.jl
https://github.com/Mark-Bowers/PupperSim.jl

➢ [[QuadrupedController]]

deps = ["Conda", "PyCall", "StaticArrays"]

path = "/users/~/.julia/dev/QuadrupedController/"

uuid = "0a0771de-1099-46b6-8518-8474b76bc44f"

version = "0.1.0"

➢ It’s likely that you don’t need to make any change at all. Then just leave it as it is.

❖ Step 4: Make a change that you want

➢ Note that the simulator provides only a mean to simulate the robot. Changing how

the robot works has nothing to do with julia or MuJuCo. In this part, we will

provide a simple example of how to change one parameter of the robot and see

the effect in simulator. Do not refer to this guide on how to make changes to the

robot. This guide is only about how to implement a change, but not the rational

or logic behind it.

➢ In our case, we’d like to change the walking speed of the robot.

➢ Open the {QuarupedController} folder in the {dev} folder. Again, DO NOT change

anything in the {packages} folder.

➢ The parameter that we are looking for is in the <config.py> file.

➢ Change “max x velocity” to 0.2. This should slow down the robot.

➢ Save your changes.

❖ Step 5: Implement a change

➢ Locate the path to the developed {PupperSim} folder. In my case, it is:

 [C:\Users\~\.julia\dev\PupperSim]

 Copy this directory.

➢ Open <cmd>

➢ Navigate to the {PupperSim} folder. To achieve this, type:

 “cd C:\Users\~\.julia\dev\PupperSim” (“cd” then paste the path)

➢ Now you should see the running directory changed to the {PupperSim} folder

➢ Run julia from this directory. (just type “julia” then enter)

➢ Wait until julia is loaded.

➢ Enter package mode by press “]”. You should see something like:

➢ Enter command “activate .” This forces the use of the local <Manifest.toml> file. Note

the SPACE and PERIOD after the phrase “activate”.

➢ Now you should see:

➢ Press BACKSPACE to return to julia REPL.

➢ Run “Using PupperSim” (Same as how you run simulator in PART I). In general, if

your “Using PupperSim” command finish running in 1 sec, it’s likely something

went wrong and your new changes were not implemented. Normal running time

for us is somewhere between 10-30s.

➢ Run “PupperSim.simulate()” (Same as how you run simulator in PART I).

➢ You should be able to see the changes applied in simulator. In our case, the robot

is now moving slower than before.

➢ Every time you want to make a new change, you need to CLOSE the <cmd> and

REPEAT step 4&5 again.

	Quadruped Pupper Robotics: Dynamics and Control
	Recommended Citation

	tmp.1621368939.pdf.GMBpt

