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ABSTRACT 

Path planning is one of the most vital aspects in robotics. Since the last few decades, it importance has been increasing 

due to the growing effort on the development of autonomous robots. Cell decomposition (CD), voronoi diagram (VD), 

probability roadmap (PRM) and visibility graph (VG) are among the earliest, most established and most popular methods 

in path planning. They have been used in many robotics path planning applications especially for autonomous systems. 

Before designing a path planning method, the three criteria i.e,  path length, computational complexity and completeness 

have to be taken into account. This paper compares the performance of the above-mentioned path planning methods in 

terms of computation time and path length. For the sake of fair and conclusive finding, simulation is performed in three 

type of environments i.e., slightly cluttered, normally cluttered and highly cluttered. The finding shows that the visibility 

graph consistently produces relatively the shortest path while the voronoi diagram the longest. Shortest path is favorable 

for robots as the robots will consume less power/fuel and have an increased life cycle. However, the visibility graph is 

computationally intractable as in runs in polynomial time with respect to the number of obstacles. In contrast, PRM 

consumes the least time in planning a collision-free path. The finding of this paper could be used as a guideline about the 

performance in terms of path length and computation time for those who are interested in path planning using these four 

methods. 
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INTRODUCTION 
From a technical perspective, path planning is a problem of 

determining a path for a robot in a properly defined 

environment from an initial point pinit to an end point pend 

such that the robot is free from collisions with surrounding 

obstacles and its planned motion satisfies the robot’s 

physical/kinematic constraints (Hasircioglu et al., 2008) 

Typically, path planning of a robot A consists of two 

phases. The first phase is called the pre-processing phase in 

which nodes and edges (lines) are built within an 

environment/workspace W with A and obstacles O. In this 

phase, it is common to apply the concept of a configuration 

space (C-space) to represent A and O in W (Lozano- 

Perez, 1979), (Giesbrecht, 2004). In C-space, the robot’s 

size is reduced to a point, and the obstacles’ sizes are 

enlarged according to the size of A. Next, representation 

techniques are used to generate maps of graphs. Each 

technique differs in the way the nodes and edges are 

defined.  

The second phase is termed the query phase in which a 

search for a path from pinit to pend is performed using (graph) 

search algorithms. In this paper, Dijkstra’s algorithm is 

applied as it guarantees that the planned path is the shortest. 

Dijkstra’s algorithm measures the distance of a node n 

(g(n)) with respect to the pend. The cost at the node is non-

negative and has the cost of 

 

𝑓(𝑛) = 𝑔(𝑛) 
 

f(n) is also called the backward cost or cost-to-come. As the 

cost is non-negative, it is monotonically increased. 

Path planning is closely related to autonomy as it may 

increase the capability of a robot to make its own decision 

based on the information presently available captured by 

sensors, and potentially covers the whole range of the 

vehicle’s operations with minimal human intervention 

(Frampton, 2008). Autonomy increases system efficiency 

because all decisions are executed onboard except for 

critical decisions that have to be made by humans (Mitch et 

al., 2007).  

Additionally, as introduced in (Eric, 2007), there are ten 

autonomy levels (applied to Unmanned Aerial Vehicle 

(UAV)) known as Autonomous Control Level (ACL). The 

concept of ACL as a metric to describe the autonomy in 

UAVs is widely accepted. Readers are referred to (Eric, 

2007) for a detailed description of ACL. The most recent 

effort to address the issue of autonomy of UAVs is done by 

(Tanzi et al., 2014). 

Path planning related problems have been extensively 

investigated and solved by many researchers (Nilsson, 

1969), (Tokuta, 1998), (Yu et al., 2015). The important 

criteria for path planning that are commonly taken into 

account are computational time, path length and 

completeness. A path planning algorithm with less 

computational time is vital in real time application, which is 

desirable in dynamic environments. The generated optimal 

path in terms of path length by a path planning technique 

will minimise the mission time and hence prolongs the 

robot’s endurance and life cycle, minimises fuel/energy 

consumption and reduces exposure to possible risks. On the 

other hand, if a path planning method could find a path (if 

the path exists), it means that the method satisfies the 

completeness criterion.  

However, sometimes, there are trade-offs between such 

criteria. For example, in order to increase the computational 

efficiency, a path planning method has to disregard the 

optimality criterion. It means that finding a slightly longer 

path with less computational time may be preferable. On the 

other hand, higher computational complexity is necessary if 

http://www.arpnjournals.com/
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Path planning using Cell Decomposition in 750 x 750 units search space
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Path planning using Probabilistic Roadmap in 750 x 750 units search space
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Path planning using Voronoi Diagram in 750 x 750 units search space

an optimal path is required. In this paper, the performance 

of the cell decomposition (CD), voronoi diagram (VD), 

probability roadmap (PRM) and visibility graph (VG) will 

be investigated and compared with each other. The result 

may be useful for those who are looking for those methods 

for path planning. 

 

ASSUMPTIONS 
This paper considers path planning problem for a robot in a 

two-dimensional (2D or ℝ2) environment through 

stationary polygonal obstacles, 𝑂 = {𝑂1, … , 𝑂𝑛} ⊂ ℝ2, from 

a designated initial point pinit to the end point pend using CD, 

VD, PRM and VG methods. It is assumed that the 

environments are well-built urban areas and 𝑂 are hard, 

rectangle-shaped obstacles (buildings). It is also assumed 

that the knowledge of the entire environment such as the 

geometries, dimensions and locations of 𝑂 are known a-

priori either from surveillance, satellite data or other means. 

The resultant path has to be collision-free. 

 
OVERVIEW OF PATH PLANNING METHODS 
CD are among the most popular methods to represent the 

environment especially for outdoor scenarios as it is the 

most straightforward technique (Zhu et al., 1995), (Dudek et 

al., 2000). This is due to the fact that the cells can represent 

anything such as free space or obstacles (Giesbrecht, 2004).  

The first step in CD is to divide the C-space into simple, 

connected regions termed cells (Russell et. al., 2003). The 

cells are regions that might be square, rectangular or 

polygonal in shape. They are discrete, non-overlapping but 

adjacent to each other. If the cell contains obstacle (or part 

of obstacle), it is marked as occupied, otherwise it is 

marked as obstacle free. A connectivity graph is then 

constructed and a graph search algorithm is used to find a 

path throughout the cells from the initial point to the end 

point. In order to increase the quality of the path, the size of 

the cells has to be made smaller, which in turn increases the 

grid’s resolution, and hence computational time. An 

example of path planning using CD is shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Path planning using CD. 

 

Note that the obstacles (black rectangles) and the regions 

shaded by black lines are the occupied ones while the 

region shaded by yellow lines are obstacle-free. The red, 

linear piece-wise segments are the resulting path.  

Many researches have used VD for path planning 

(Xiao et al., 2006), (Bhattacharya et al., 2007), ( Shao et. 

al., 2010). VD defines nodes as points that are equidistant 

from all the points’ surrounding obstacles. The paths 

generated from a graph by VD are relatively highly safe due 

to the fact that the edges of the paths are positioned as far as 

possible from the obstacles. However, the paths are 

inefficient and not optimal in terms of path length. Figure 2 

shows an example of path planning using VD. The dashed 

black lines are the resulting path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Path planning using VD. 

 

On the other hand, PRM is a popular method for 

path planning as it is easy to apply (Kavraki et al., 1996), 

(Song et al., 2003), (Belghith et al., 2006). It is a learning 

approach, attempts to make planning in large or high-

dimensional spaces tractable. It provides a good 

approximation of the connectivity of the configuration space 

area. This method consists of two phases i.e. learning phase 

and query phase. Learning phase constructs and stores the 

PRM. Learning phase constructs a graph G whose nodes are 

on the free area and edges connect the nodes without 

intersecting any obstacle. On the other hand, query phase 

connects pinit and pend to G. A search algorithm is then used 

to find a path from pinit to pend. Figure 3 shows an example 

of PRM used in path planning, in which the dashed cyan 

lines form a connectivity graph that connect sample points 

to their nearby neighbours points while the resulting path is 

represented by the dashed green lines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Path planning using PRM. 

 

The length of the PRM planned path, as shown in Figure 3, 

can be shortened by pruning the initial path as illustrated in 

Figure 4. The pruned path is shown by the dashed blue 
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Path planning using Visibility Graph in 750 x 750 units search space
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Path planning using Probabilistic Roadmap in 750 x 750 units search space
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lines. The length for the normal PRM path is 1042.9 units 

while the pruned one is 1036.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Path planning using PRM with pruning. 

 

 

On the other hand, VG uses the vertices of the obstacles 

including the starting and target points in the C-space as the 

nodes. A VG network is then formed by connecting pairs of 

mutually-visible nodes by a set of edges E. A pair of 

mutually-visible nodes means that those nodes can be 

linked by a line/edge 𝑒 ∈ 𝐸 that does not intersect with any 

edge of obstacles in the C-space. Additionally, there is a 

cost associated with each E, possibly in terms of Euclidean 

distance. VG has been used by many researchers for path 

planning purpose including (Oommen et al., 1987), (Rao, 

1989), (Tokuta, 1998). Figure 5 shows the path planned by 

VG in a random scenario. Note that the edges are 

represented by the cyan lines while the resulting path is in 

magenta. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Path planning using VG. 

 

SIMULATION SETUP 
Simulation was performed in scenarios, in which the 

number of obstacles were set to 25 (less-cluttered), 50 

(normally-cluttered) and 75 (highly-cluttered). Example of 

these scenarios are illustrated in Figures 6(a) – 6(c). Note 

that the blue triangle is pinit while the magenta square is  

pend. 

To get a fair and conclusive result, for each method, 100 

simulations were performed using 100 random scenarios for 

each number of obstacles. A desktop computer equipped 

with an Intel i5 3360M, 2.40 GHz processor and 2GB RAM 

was used for such purpose.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6(a): A random scenario with 25 obstacles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6(b): A random scenario with 50 obstacles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6(c): A random scenario with 75 obstacles. 
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RESULTS AND DISCUSSION 
The simulation result in terms of computation time for 100 

random scenarios with 25 obstacles is shown in Figure 7. 

The minimum, average and maximum computation time for 

each method is shown in Table 1. It is concluded that, from 

the table, PRM methods had the shortest computation time 

with an average of 0.07 seconds and a maximum of 0.12. 

On the other hand, CD had the highest average and 

maximum computation time, i.e. 1.89 and 2.37 seconds, 

respectively. This is due to the fact that creating the cell 

consumed a considerable time which leads to the higher 

computation time. Table 1 also shows that VD had a faster 

average computation time, i.e 0.14 seconds compared to 

VG, which used 0.41 seconds in average. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Computation time in environment with 25 

obstacles. 

 

 

Table 1: Computation time in environments with 25 

obstacles. 

 

 Computation time (s) 

Method Min Ave Max 

CD 1.77 1.89 2.37 

PRM 0.07 0.07 0.12 

PRM-Pruned 0.07 0.07 0.13 

VD 0.10 0.14 0.26 

VG 0.35 0.41 0.57 

 

As the number of obstacles increased to 50, the computation 

time of VD and VG in finding collision-free paths were also 

increased as illustrated by Figure 8. Table 2 lists the 

minimum, average and maximum time for each method in 

100 random scenarios with 50 obstacles.  

From Table 2, it is found that the average computation time 

of VD and VG were 0.62 and 1.87 seconds, respectively. 

This shows that the increment in the obstacles number has 

significantly increased the computation time of VD and VG. 

However, the simulation with 50 obstacles shows that the 

computation time of CD and both PRM methods have 

increased slightly as compared to the one with 25 obstacles..  

With a further increment of obstacles number to 75, the 

computation time of each method in highly-cluttered 

environment is as depicted by Figure 9. The minimum, 

average and maximum computation time for each method in 

100 scenarios with 75 obstacles is listed in Table 3, which 

shows that the computation time of VG is significantly 

increased to an average of 4.50 seconds. 

The average computation time of VD is also increased to 

1.59 seconds, but not as abrupt as that of VG. It is also 

observed that both PRMs had a slight increase in the 

computation time when the obstacles number was raised 

from 50 to 75.  However, the computation time of CD is 

almost identical with those in the scenarios with 50 

obstacles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Computation time in environment with 50 

obstacles. 

 

 

Table 2: Computation time in environments with 50 

obstacles. 

 

 Computation time (s) 

Method Min Ave Max 

CD 1.73 1.87 2.39 

PRM 0.15 0.17 0.25 

PRM-Pruned 0.15 0.17 0.25 

VD 0.40 0.62 1.24 

VG 1.58 1.87 2.35 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Computation time in environment with 75 

obstacles. 
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Table 3: Computation time in environments with 75 

obstacles. 

 

 Computation time (s) 

Method Min Ave Max 

CD 1.73 1.87 2.39 

PRM 0.27 0.30 0.40 

PRM-Pruned 0.27 0.30 0.41 

VD 0.90 1.59 4.53 

VG 3.91 4.50 5.25 

 

 

As for the path length, it is found that VG produced the 

shortest path among the methods as illustrated in Figures 10 

to 12. This is due to the fact that the waypoints of VG’s 

path pass through the nodes of certain obstacles. As listed in 

Tables 4 to 6, it is observed that the average path length for 

each method did not change significantly with the increase 

of obstacles numbers. 

Comparing the average path lengths of PRM and PRM-

pruned from Tables 4 to 6, it is found that the latter 

produced a slightly shorter path although consumed a bit 

longer computation time than the former. This advantage, 

although small, is particularly useful for a robot in saving its 

energy/fuel and having a longer life cycle.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Path length in environment with 25 obstacles. 

 

 

 

Table 4: Lengths of the planned path in environments with 

25 obstacles. 

 

 Path length (unit) 

Method Min Ave Max 

CD 1131.82 1142.28 1170.55 

PRM 1132.07 1152.35 1214.01 

PRM-Pruned 1131.37 1142.71 1205.76 

VD 1145.25 1374.53 1666.17 

VG 1131.37 1131.70 1132.79 

                

 

 

Table 5: Lengths of the planned paths in environments with 

50 obstacles. 

 

 Path length (unit) 

Method Min Ave Max 

CD 1131.82 1153.41 1180.24 

PRM 1136.66 1160.77 1201.46 

PRM-Pruned 1131.37 1150.11 1194.78 

VD 1181.10 1382.62 1615.57 

VG 1131.37 1132.30 1134.66 

 

 

Table 6: Lengths of the planned paths in environments with 

75 obstacles. 

 

 Path length (unit) 

Method Min Ave Max 

CD 1131.82 1160.48 1189.92 

PRM 1137.04 1169.82 1263.05 

PRM-Pruned 1131.37 1161.56 1245.46 

VD 1219.89 1364.60 1672.81 

VG 1131.37 1132.87 1138.07 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Path length in environment with 50 obstacles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Path length in environment with 75 obstacles. 
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CONCLUSION 

The paper has demonstrated the performance of a number of 

established and popular methods used in path planning i.e., 

cell decomposition (CD), voronoi diagram (VD), 

probabilistic roadmaps (PRMs) and visibility graph (VG). It 

was found that VG produced shortest path consistently. 

However, the computation time of VG was exponentially 

increased with respect to the number of obstacles. With the 

above-mentioned advantage, it is worth researching on VG 

to improve its computation time. On the other hand, VD had 

a consistent increment in computation time as the number of 

obstacles was increased. As for  CD and both PRMs, the 

computation time were almost identical in slightly-, 

normally- and highly-cluttered environments. All four 

methods showed a minimal increase in path length as the 

number of obstacles increased. 
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