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ABSTRACT 

 

A.E. Mieles Garcia. Semiochemical attractants of the parasitic fly Philornis downsi in the 
Galapagos Islands. 132 pages, 6 tables, 22 figures, 2018. APA style guide used 

 
Larvae of the parasitic fly Philornis downsi (Diptera: Muscidae) feed on the blood and 
tissues of passerine chicks. Parasitism by P. downsi contributes to increasing mortality 
and population declines in several bird species in the Galapagos Islands. This dissertation 
focuses on the identification of chemical attractants (food odors, sex or aggregation 
pheromones) for P. downsi. These attractants are important for increased trapping 
efficiency in the management of P. downsi. Dipteran mating and reproductive success 
are dependent on chemical communication, yet little is still known about the chemical 
ecology of most Diptera, with the exception of some agricultural pests and vectors of 
pathogens. My studies of chemical communication in P. downsi found some food odors, 
such as the volatile fermentation products (ethanol and acetic acid) produced by the yeast 
Saccharomyces cerevisiae, to be attractive. Maximal attraction was attained by a mixture 
of 3% ethanol and 0.3% acetic acid. The addition of 250 ml of this solution to an external 
reservoir that dispensed into a McPhail trap prolonged the effectiveness of these 
compounds in the field. Sex and aggregation pheromones are also important in this 
system; experiments identified males as the attractive sex. GC-EAD and GC-MS 
analyses on crude and photo-oxidized cuticular lipids of both sexes identified 18 photo-
oxidation compounds produced by males as potential attractants for females. Genitalia 
extracts of each sex had markedly different volatile compounds. Extracts from male 
genitalia were significantly attractive to females in y-tube olfactometer assays (p= 0.02). 
Based on data presented here, I hypothesize that P. downsi mating begins with feeding 
behaviors, followed by location of host nests by male and female flies. Male flies then 
emit pheromones to attract the females. Mating occurs after mate location by visual 
identification and sexual or contact pheromones. Mating and communication systems in 
the calyptrate muscoids are poorly understood in general. In addition to identifying 
attractants specific to P. downsi, some of the work presented here may be broadly 
applicable to the chemical communication of muscoid flies in general. 
 

Keywords: Philornis downsi, Galapagos, semiochemicals, avian parasite, muscoid 
mating systems 

A.E. Mieles Garcia 
Candidate for the degree of Doctor of Philosophy, August 2018 
Stephen Teale, Ph.D. 
Department of Environmental and Forest Biology 
State University of New York College of Environmental Science and Forestry, 
Syracuse, New York 
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CHAPTER I 

 

INTRODUCTION 

 

Chemical ecology is an interdisciplinary area of study that gained recognition 

when the first insect pheromone was identified by Butenandt (1959). Early studies 

addressed the chemistry of secondary plant metabolites and the ecological interactions 

of insects and plants (Ehrlich & Raven, 1964). This new discipline included the first 

studies of the chemical substances involved in the intra- and interspecific ecological 

interactions of living organisms (Eisner & Meinwald, 1995). 

Chemical compounds or mixtures of chemical compounds that mediate 

intraspecific communication (pheromones) and interspecific communication 

(allelochemicals) are called semiochemicals (Litwack, 2010). Pheromones may mediate 

varied functions, including mate location, aggregation, species and sex recognition, and 

promotion or inhibition of copulation. Allelochemicals can also mediate many functions, 

such as searching for food, recognition of nesting sites, and chemical mimicry 

(Blomquist et al.,1993). 

Insects have evolved sophisticated chemical communication systems that 

regulate much of their behavior. These systems have two components: production of 

highly specific chemical signals and similarly specific receptor systems, which enable 

the organism to discriminate between a meaningful signal and background noise 

(Afonso-Carrillo, 2012). 

The early studies focused mainly on priority species of economic importance. 

Thus, agricultural and forest pests, primarily beetles and moths, have received the most 
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attention. Due to the large number of pests of agriculture and forestry in the 

Lepidoptera, significant effort has been spent on the structural elucidation of long-range 

female sex pheromones in this group. As of 2004, pheromones of more than 530 

species of moths had been identified (Schulz, 2004). 

The first chemical identification of a pheromone was that of a moth, the female 

silkworm, Bombyx mori (Butenandt, 1959). Efforts to elucidate this pheromone, 

"Bombykol," required about 20 years and at least half a million female abdomens 

(Blomquist & Vogt, 2003). The second insect pheromone identification was that of a 

bark beetle and was reported in 1966 (Silverstein et al., 1966). Subsequently, the 

identification of female moth sex pheromones accelerated, with more than 40 reported 

by 1976 (Shorey, 1976). 

Coleoptera is the largest insect order and includes many agricultural and forest 

pests. It also has been the subject of much chemical ecological research (Cardé & Bell, 

1995), including the elucidation of cuticular hydrocarbons as pheromones (Schulz, 

2004; Blomquist & Bagneres, 2010), and aggregation and anti-aggregation pheromones 

(Jacobson, 1972; Cardé & Bell, 1995), among others. 

Studies of chemical ecology have also focused on Diptera, another large order of 

great economic importance. Many species of flies are significant agricultural pests, or 

are vectors of human or animal pathogens (Resh & Cardé, 2009). The first dipteran sex 

pheromone reported, (Z)-9-tricosene, was identified by Rogoff et al. (1964) in the 

common house fly, Musca domestica, and the first study of mating behavior in flies was 

in 1911. In that study, experiments were conducted to determine sex recognition and 

sexual selection problems in Drosophila (Sturtevant, 1915). During the 1970s, 
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pheromones were identified in the tsetse fly, Glossina morsitans (Carlson et al., 1978). 

More recently, the chemical components of pheromones have been elucidated in other 

species such as D. melanogaster (Jacobson, 1972; Scott & Richmond, 1987; Bartelt et 

al., 1988; Howse et al., 1998).  

In muscoids like other flies, the ecological basis of mating systems and 

reproductive success is universally correlated with the success of food foraging (sugar 

or blood), ecological conditions and body size, and chemical communication. In 

addition, the morphology of the species has a strong influence on the evolutionary 

processes of sexual selection and sexual conflicts (Blum & Blum, 2012).  

Very little is known about the mating system of the bird parasite, Philornis 

downsi, a species that has invaded the Galapagos Islands (Kleindorfer & Dudaniec, 

2016; Fessl et al., 2018). This information is crucial to understanding its reproductive 

biology and for finding control methods to reduce its impacts on Darwin’s finches and 

other endemic birds in the archipelago (Causton et al., 2013; Fessl et al., 2018). To 

better understand the mating system of P. downsi, as a first step I will review the factors 

known to influence mating systems in other higher Diptera, in particular calyptrate 

muscoid parasites  including mate searching, resource defense, aerial swarming, 

development and maturation of eggs, host selection, and pheromone production. 

 

Dipteran mating systems  

 

Comparative studies of mating system diversity across related taxa are useful for 

guiding research on the roles of chemical signals in poorly known species such as P. 

downsi. Many complex reproductive behaviors have been described in the Diptera. 
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Among these, associations between the distribution of resources including food and 

oviposition substrates, and mating location are common. This complexity arises 

because flies frequently do not conform to typical simple reproductive systems, but 

rather have diversified their reproductive strategies. Pitnick et al., (1999) and 

Presgraves et al., (1999) suggested that male and female reproductive traits show 

correlated evolutionary change. 

On the other hand, some mating related behaviors have evolved very rapidly 

among groups of closely related flies. For example, differences have been reported in 

precopulatory courtship, duration of fights between males and duration of copulation, 

and these differences in the mating system can influence the rate of speciation 

(Hoikkala et al., 1994; Bonduriansky & Brooks, 1999; Chen et al., 2002; Barbosa, 2011).  

 

Reproductive behavior of Calyptrate muscoid parasitoids 

 

Evolutionary diversity in different ecological systems, have positioned flies as 

model organisms to understand mating systems. According to Emlen & Oriing (1977), 

mating systems in dipterans are influenced by physical and environmental factors of the 

ecosystem (Yeates & Weigmann, 2005). Fly reproductive behavior can be viewed in 

four stages: search for available partners, precopulatory behavior, copulation and post-

copulatory behavior. Additionally, reproductive success involves morphological, 

behavioral, physiological, or biochemical factors. In this sense, patterns in sexual 

selection affect the morphology and behavior of males and females that adopt the 

norms at each encounter site or host (Wilkinson & Johns, 2005). 
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Mate searching.  

 

Strategies for locating ephemeral resources -- food and sexual partners -- have 

been studied in flesh flies (Sarcophagidae) and blow flies (Calliphoridae). Experiments 

indicated that sarcophagids tended to arrive to a resource before the calliphorids and 

the smaller individuals were the last to leave the aggregation sites. In addition, 

experiments showed that olfactory and anemotactic orientation (movement in response 

to air currents) used together are more efficient in pinpointing the resource’s location. 

(Spivak et al., 1991). 

Such resource-seeking behavior was observed in the screwworm, Cochliomyia 

hominivorax (Calliphoridae). Mackley & Long (1983) determined that the activity of this 

fly in a given plant species seems to be related to flowering patterns and possibly to the 

color of the flower. The observed flies appeared to gather, feed and mate in flowering 

vegetation up to five days after eclosing, and then dispersed or died. However, no fly 

activity was observed when the plants were not in flower, except in certain places where 

the males were waiting for the females in the vegetation near blossoms. 

Mate-searching in the hymenopteran brood parasite, Miltogramma rectangularis 

(Sarcophagidae), suggests that males come from the host nesting site or along its 

border, regularly changing perch sites, flying very close to the ground in an irregular 

zigzag, and often turning towards small pebbles or twigs. When two males encounter, 

they seem to rotate one around the other before advancing and landing next to the adult 

females. Most females were receptive for a single copulation, suggesting that the 

search for virgin females benefits males by favoring reproduction (Alcock, 2000). 
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In tachinids several mating strategies have been observed. In many species, 

mate-searching is strongly associated with the antennae and the strategy of waiting for 

females. These observations indicate that in males, the frons is generally narrower and 

the eyes larger than the females. Males wait in a particular place, which is usually 

leaves, bare twigs, or tree trunks. Several congeners may wait or fly close to each 

other, and often spend much time chasing each other (O’Hara, 1996; Stireman, O’Hara, 

& Wood, 2006). A different type of mate-searching behavior in tachinids suggests that 

males visit sites with hosts and inspect them for females, which wait until the male has 

decided that it is a good site for mating (O’Hara, 1996). In another mate-searching 

strategy observed in tachinids including Therobia leonidei, males and females search 

for hosts and mates, flying over and locating the sounds of female grasshoppers 

(Poecilimon thessalicus). This acoustic resonance search behavior has also been 

observed in other tachinids of the genus Ormia (Lehmann et al., 2001; Lakes-Harlan & 

de Vries, 2014). 

In female Hypoderma tarandi (Oestridae), individual flight ability may be very 

important for reproductive success, because they (females) must fly hundreds of 

kilometers in search of their host and a mate. As a strategy, the males dominate an 

area for mating, and the females select a dominant male (Anderson et al., 1994).  

 

Resource defense.  

 

Finding and choosing mates influences the evolution and sexual dimorphism of 

species. Many insect groups, including flies, often develop specific traits or 

characteristics that enhance their ability to obtain and defend resources and hence 
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attract mates; for example, the males of a species tend to have larger bodies, which 

allows them to attract and defend more females (Ding & Blanckenhorn, 2002). 

Resources that attract multiple females, such as oviposition or feeding sites, provide an 

opportunity for mating, and mating systems are typically associated with resource 

advocacy with pre-copulation mating activity (Burk, 1981). 

In stable flies, Stomoxys spp. (Muscidae), the defense of a resource (e.g. a host) 

has been observed in the field. At the same time, the host also presents a defensive 

behavior against the attack of this fly. It was also observed that young flies often spend 

much time defending the resource against adult flies and other competitors, which 

decreases the reproductive success of young flies (Schofield & Torr, 2002). 

Stable flies prefer to feed on adult cows, because calves show higher rates of 

defensive behavior against biting flies and discourage flies from feeding. Other 

competitors, such as the tsetse fly, produce aggregation pheromones on a host, to 

inhibit other parasitic flies, which apparently reduce the feeding of stable flies. In this 

sense, the defensive behavior of an individual stable fly would be determined by its odor 

and the host’s age, as well as by the chemical defenses of competitors (Torr et al., 

2006). 

 

Aerial swarming.  

 

Aerial swarms are one of the most frequent mating behaviors historically 

documented in Diptera. These swarms generally contain from 10 to 1,000 individuals 

grouped within a few cubic meters on a visible, generally high landmark such as a ridge, 

a treetop, a fence post, or even free-floating vegetative mats on the surface of the 
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ocean. These aerial swarms are generally dominated by males, although a few 

examples include swarms of female flies (Wilkinson & Johns, 2005). 

Observations of Stomoxys calcitrans indicate that they tend to create swarms 

near livestock, on vertical surfaces, and near light-colored materials. The males of this 

species rest on waiting stations and then carry out flyovers involving aerial interactions 

in the swarm. Receptive females were also found grouped in waiting stations and then 

copulate with males in the air or on the ground. This behavior of swarming and 

copulation occurs in sunny places in winter and under shade in summer (Buschman & 

Patterson, 1981). 

Swarming behavior of Ophyra leucostoma (Muscidae) involves males hovering 

under tree branches and tall shrubs. This stationary flight is frequently interrupted by 

short pursuits after small flying insects. Additionally, it has been observed that fast 

circular flights and short chases with no apparent objective occur when other males are 

nearby. Longer chases extend to several meters from the swarm site and have been 

observed when other flying insects approach. Swarming behavior in this species closely 

resembles territorial defense behavior (Pajunen, 1982). 

The role of aerial swarming in courtship and mating has also been studied in  

Lispe spp. (Muscidae) in which both sexes perform circular and lateral flights separated 

by regular time intervals. Once landing at a meeting point, a mature adult male performs 

a dance as it approaches the female while young males surround them and fiercely fight 

for a role in the courtship (Frantsevich & Gorb, 2006). 

Observations in the housefly Fannia canicularis (Muscidae) indicate that males 

establish a set of lek-type mating aggregations beneath reference points on vegetation 
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in order to intercept approaching females. The position of the male patrol stations 

relative to the reference point suggests that females approach the reference points from 

the side and cross the dorsal visual field of patrolling males. Males usually approach the 

reference point from below and, in the absence of other flies, patrol the airspace near 

the reference point (Zeil, 1986). 

 

Host selection.  

 

In parasitic muscoids, studies on the feeding and reproductive behavior that 

involves searching for hosts and chemical ecology have focused on tachinids. One of 

the interesting features of the Tachinidae is their diversity of oviposition strategies, 

which may include detection and selection of the host through the use of acoustic cues, 

and direct and indirect parasitization (Nakamura et al., 2013). 

Field observations of Ormia ochracea (Tachinidae) females indicated that these 

flies detect the songs of the cricket Gryllus lineaticeps which vary in chirp frequency, 

chirp duration, or both, but not in amplitude. Ormia ochracea preferred to approach 

songs with higher chirping rates and longer chirp durations (Wagner & Basolo, 2007).  

The evolution of host selection has been studied in Emblemasoma auditrix 

(Sarcophagidae). In this species, the acoustic senses are specialized in the detection 

and parasitization of cicada (Okanagana rimosa) males. The observations of this 

species suggest very complex evolutionary processes because although the auditory 

capacity of E. auditrix does not reach the frequencies produced by the cicadas, the flies 

apparently use a series of adaptations to find their host. The auditory senses of the fly 
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are sensitive to substrate vibrations to which the hearing is fine-tuned (Lakes-Harlan et 

al., 2014). 

Reproductive behavior in relation to host choice has been investigated in the 

horn fly, Haematobia irritans (Muscidae), which is an obligate hematophagous parasite 

of cattle. Observations in the field showed that these flies initially feed on blood from a 

healthy cow and then move to a lower part of the cow’s body, waiting to see when the 

cow defecates. This action triggers an immediate reaction of the fly, which deposits its 

eggs in the fresh manure; this seems to suggest that the choice of the place to lay the 

eggs depends on the freshness of the manure (Kuramochi, 2000).  

Similar behavior in terms of breeding site preferences and feeding strategies was 

also documented in manure-feeding calliphorid and sarcophagid larvae. These 

observations indicated that the selection of feeding site is optimally suited for larval 

development as determined by the hardness of the manure crust (Archer & Elgar, 

2003). 

An investigation of host selection behavior in the hematophagous bird parasite 

Protocalliphora sp. (Calliphoridae) determined that host selection was strongly 

influenced by colony size of nesting birds, nest proximity, multi-year nesting in the same 

site, as well as nest size. Older, larger, and more frequently occupied nests were more 

often infested by these flies (Bennett & Whitworth, 1992).  

Environmental conditions such as wind and temperature are important factors in 

host selection. For example, it has been observed that climatic factors affect the activity 

of the reindeer warble fly, Hypoderma tarandi (Oestridae) which is more active on warm 
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sunny days (15-22°C) with little or no wind. Days with these characteristics were more 

favorable for host-searching and for mating flight activities (Anderson et al., 1994). 

 

Pheromone production.  

 

The Diptera have developed diverse courtship strategies and in many cases sex 

pheromones have been shown to be involved in these processes. Yet, before the 

1960s, little was known about the chemical and biological importance of hydrocarbons 

(the chief component of pheromones) in the behavior of insects and other arthropods. 

Therefore, studies on the structure of hydrocarbons were not of great interest. Since 

then, hydrocarbon studies have identified a variety of behavioral roles, particularly in 

chemical communication (Blomquist & Bagneres 2010). 

Chemoreception, age and nutritional status of individuals play an important role 

in regulating the mating behavior of many Diptera. Additionally, some semiochemicals 

are behavioral primers affecting hormonal function in the receiving individual (Jang, 

2002). Although pheromones are an important component of courtship they are but one 

of many types of signals used by the insect, and in most families of Diptera, the 

functionally active components are not known (Wicker-Thomas, 2007). 

A wide range of functions has been documented in dipteran behavior (dominance 

of aggregation, courtship, mate discrimination) and reproduction (fecundity, sex ratio), 

associated with the role of pheromones in cuticular hydrocarbons (Blomquist & Vogt, 

2003; Blomquist & Bagneres, 2010). The known sex pheromones in dipterans are 

mainly low volatility and non-volatile molecules that are detected over short distances or 

upon contact during courtship (Wyatt, 2003).  
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In some species of flies, pheromones have an effective range of only a few 

centimeters, and trigger courtship behavior or increase mating ‘attack’ activity, as in 

Musca domestica (Prestwich & Blomquist, 1987). For example, the female screwworm 

fly, Cochliomyia hominivorax, produces contact pheromones which are detected by 

males and which function as a pre-copulatory stimulus (Hammack, 1986). 

Laboratory observations of M. domestica showed that the females emit low 

attraction volatiles for both males and females. The results of these tests indicated that 

young (one-day-old) virgin females attracted few or no males, but older (seven-day-old) 

virgin females, alive or freshly killed, consistently attracted virgin males. Virgin males 

often tried to mate with other young males (Murvosh et al., 1964). Similar behaviors 

between young males have also been recorded during captive breeding trials with 

Philornis downsi (Lincango com. pers., 2014). 

 

Philornis downsi 

 

Chemical ecology studies of Philornis downsi, especially those addressing 

attractants, are important because the results can be useful for the monitoring and 

capture of this species using traps (Causton et al., 2013). Preliminary studies suggest 

that P. downsi can produce a pheromone to attract mates, and that flies are attracted by 

fermentation products and odors produced by the breakdown of proteins (Muth, 2007; 

Lincango & Causton, 2009; Collignon, 2011).  

The metabolic processes of fermentation and protein degradation are of 

particular interest in that a wide range of potential attractants, including acetic acid, 

ethanol, many different amino acids and α-keto acids, are produced. 
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Capture methods using potential attractants in various types of traps have been 

tested in the past to evaluate viable alternatives for controlling P. downsi populations in 

the short term, and to assess the success of other management strategies. The results 

of these studies suggest that sticky cylindrical traps are less effective than McPhail 

traps in the capture of adult P. downsi individuals; horizontal, flat adhesive traps are not 

effective at all (Doherty, 2012; Hellman & Fierke, 2009).  

The analysis of potential attractants like BioLure, milk, papaya, amine, 

putrescine, methylamine, indole and (Z)-9-tricosene, indicated that these potential 

attractants were not effective either (Lincango & Causton, 2009). 

Collignon (2011) investigated sexual dimorphism in P. downsi cuticular 

hydrocarbons. His results suggest that males could potentially produce volatile 

pheromones by photo- and auto-oxidation of cuticle hydrocarbon lipids. Evidence 

suggests that females are unlikely to produce long-range pheromones because of the 

low volatility of their cuticular hydrocarbon components, which are more likely contact 

pheromones.  

Additional experiments are required to identify potential attractants of P. downsi 

(nest and/or food odors) as well as determine the role of semiochemicals in mating and 

oviposition. Deciphering the chemical communication system of P. downsi and its hosts 

will provide new insights on the behavior and ecology of these insects. 

 It may also lead to the development of control and monitoring tactics for this 

invasive fly for the benefit of the conservation of Galapagos land birds. Understanding 

the communication system of P. downsi is an important factor in developing techniques 
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to disrupt mating and ultimately develop a management plan to control the fly 

population. 
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CHAPTER II 

 

Identification and optimization of microbial attractants for Philornis downsi, an 

invasive fly parasitic on Galápagos birds 

 

J Chem Ecol. 2016 Nov; 42(11):1101-1111. Epub 2016 Oct 15. 

ABSTRACT 

 

We investigated the role of olfactory cues from actively fermenting yeast 
(Saccharomyces cerevisiae) in attraction of adult Philornis downsi and identified two 
synergistically attractive yeast volatiles. Larvae of this invasive fly parasitize the 
hatchlings of passerines and threaten the Galapagos avifauna. Gas chromatography 
coupled with electroantennographic detection (GCEAD), coupled gas chromatography-
mass spectrometry (GCMS), and field trapping experiments were used to identify volatile 
compounds from a yeast-sugar solution. EAD responses were consistently elicited by 14 
yeast volatiles. In a series of field trapping experiments, a mixture of the 14 EAD-active 
compounds was similarly attractive to P. downsi when compared to the yeast sugar 
solution, and we found that acetic acid and ethanol were essential for attraction. A mixture 
of 0.03 % acetic acid and 3 % ethanol was as attractive as the 14-component blend, but 
was not as attractive as the yeast-sugar solution. Philornis downsi showed positive and 
negative dose-responses to acetic acid in the ranges of 0.01 ~ 0.3 % and 0.3 ~ 9 %, 
respectively. Further optimization showed that the mixture of 1 % acetic acid and 3 % 
ethanol was as attractive as the yeast-sugar solution. Both mixtures of acetic acid and 
ethanol were more selective than the yeast-sugar solution in terms of non-target moths 
and Polistes versicolor wasps captured. These results indicate that acetic acid and 
ethanol produced by yeasts are crucial for P. downsi attraction to fermented materials on 
which they feed as adults and can be used to manage this invasive fly in Galapagos. 
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INTRODUCTION 

 

Philornis downsi Dodge & Aitken (Diptera: Muscidae) is an avian parasite that is 

native to South America with records from Trinidad and Tobago (Dodge & Aitken, 

1968), Brazil (Mendonça & Couri, 1999), Argentina (Silvestri et al., 2011), and mainland 

Ecuador (Bulgarella et al., 2015). Although the adults are fruit feeders, the female flies 

lay eggs in bird nests, and the hematophagous larvae feed on the blood of bird 

hatchlings, reducing growth and causing high levels of mortality (Fessl et al., 2006; 

Kleindorfer & Dudaniec, 2016).  

Through an unknown pathway, this fly has invaded the Galapagos Islands, where 

parasitism by P. downsi has been linked to recent declines in endemic passerine birds 

including species of Darwin’s finches and species that are under threat of extinction 

(Cimadom et al., 2014; Cunninghame et al., 2015; Kleindorfer & Dudaniec, 2016; 

O’Connor et al., 2010).  

Philornis downsi infestation on Darwin’s finches was first reported in 1997 (Fessl 

et al., 2001), but a 1964 specimen in the insect collection of the California Academy of 

Sciences suggests it was introduced to the Galapagos by that date or earlier (Causton 

et al., 2006). Larvae of P. downsi attack at least 16 endemic passerine birds in the 

Galapagos during the breeding season, and are recognized as a serious obstacle to the 

conservation of Darwin’s finches (Causton et al., 2013; Koop et al., 2011).  

The likelihood of extinction of one or more species of these birds is exacerbated 

by their small population sizes (Cunninghame et al., 2015; Koop et al., 2016). Various 

management tools are currently in development to reduce the negative impacts of P. 
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downsi on Darwin’s finches including biological control (Bulgarella et al., 2015), nest 

autofumigation (Knutie et al., 2014), and artificial rearing for use in the sterile insect 

technique (Causton et al., 2013; Lahuatte et al., 2016). Koop et al. (2016) suggest that 

even modest P. downsi mitigation may increase host survival sufficiently to prevent 

extinction. 

Recent studies have demonstrated the pervasive role of microbial volatiles in 

insect attraction (reviewed in Davis et al. 2013). In some insect systems, such as 

Drosophila melanogaster and the codling moth, Cydia pomonella, it has been 

suggested that the attraction of these insects to fruit is actually mediated by volatiles 

produced by yeasts living on the fruit phyllosphere (Becher et al., 2012; Witzgall et al., 

2012).  

It is well known that fermentation volatiles attract a wide range of insects, such as 

moths, wasps, flies, and natural enemies in nature (Landolt et al., 2014; Thomas, 2003; 

Yamazaki, 1998), and recently yeast volatiles have been used successfully to develop a 

strong synthetic attractant to control an important invasive agricultural pest, Drosophila 

suzukii (Cha et al., 2012 b, 2014a, b). Thus, our goal is to understand chemical signals 

involved in the attraction of adult P. downsi to yeast fermentation volatiles to ultimately 

develop a synthetic chemical attractant that can be used in population monitoring and 

suppression. 

 It has been shown that papaya juice becomes gradually more attractive to P. 

downsi in Galapagos after aging for four to five days, suggesting that P. downsi is 

attracted to yeast or other fermentation volatiles (Lincango & Causton 2009). This 

hypothesis has not been tested and any chemicals involved have not been studied. 
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Attractive fermentation -or food- based baits may be effective for monitoring and 

controlling P. downsi. However, the attractiveness of food-baits generally is ephemeral 

so they must be replaced frequently. In addition, fermentation food baits are well known 

for their broad attractiveness to diverse insect groups (see references in Cha et al. 

2015), including muscid flies (Cha et al., 2013, 2015; Landolt et al., 2015).  

A recent study shows that a synthetic chemical lure that is composed of a small 

subset of chemicals released from fermentation baits is more selective for target insects 

than the fermentation bait (Cha et al., 2015). Therefore, synthetic chemical lures can be 

more selective, and once the active behavior modifying chemicals are identified, 

chemical dispenser(s) and chemical release rate(s) can be optimized to prolong the 

attractiveness of the lure in the field.  

Currently, there is no synthetic attractant for P. downsi that is as effective as or 

more selective than food baits. Here, we report on two key attractant volatiles that 

synergistically attract P. downsi to actively fermenting yeast-sugar solutions. 

Specifically, we: 1) identified yeast volatile compounds that could be detected by P. 

downsi antennae, 2) evaluated the attractiveness of various chemical blends in a series 

of field trapping experiments, 3) determined a key set of yeast fermentation volatiles 

that were required for P. downsi attraction, and 4) optimized the dose of the two-

component mixture so that it was as attractive as the original yeast-sugar solution.  

We also examined whether the two-component synthetic chemical lure based on 

yeast-sugar fermentation volatiles was more selective for non-target insects than yeast-

sugar solution. 
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METHODS AND MATERIALS 

 

Insects Material Philornis downsi larvae and pupae were removed from fledged 

and failed nests of the small tree finch (Camarhynchus parvulus) and the warbler finch 

(Certhidae olivacea) in the remnant of the Scalesia forest near ‘Los Gemelos’ in the 

humid highlands (400–700 m a.s.l.) of Santa Cruz Island (0°37′ 34″ S, 90°23′ 10″ W).  

Adults were field-trapped near Puerto Ayora of Santa Cruz Island, Galapagos, 

under permit from the Galapagos National Park Directorate, and shipped or hand-

carried to the quarantine laboratory at the State University of New York, College of 

Environmental Science and Forestry (SUNY-ESF), Syracuse, NY, USA.  

Eclosed adult flies were grouped by sex (4–5 flies/4 l cage), and kept in a growth 

chamber (Percival Scientific, Inc., Perry, IA, USA) at 23.0 °C, 70 % RH, 16:8 L:D on 

blackberry puree, brown sugar, water, and powdered milk prior to testing. Adult flies at 

0–10-d-old were used for GCEAD analyses. 

Field Trapping All field experiments were conducted on Santa Cruz Island, 

Galapagos, at El Barranco (0°44′34.1″S, 90°18′10.4″W, elevation 15–41 m m) - an arid, 

lowland area predominantly composed of Opuntia and Jasminocerus cacti, and Cordia 

lutea, Acacia sp., and Parkinsonia aculeata trees.  

The plastic McPhail-type trap (Naturquim, Guayaquil, Ecuador) was used for field 

trapping. In this, the bottom third of the trap is yellow and the top two-thirds is clear with 

a 5-cm diam bottom entry hole for attracted insects. The trap bottom holds up to 300 ml 

of drowning solution.  
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Each trap was baited with 150 ml of drowning solution containing attractants as 

described below. For each field experiment, a randomized complete block design was 

used with 10 to 30 replicates. Traps were placed at a height of approximately 4 m, and 

were no less than 10 m apart. 

 Female and male P. downsi were counted every 24 h during the trapping period. 

Previously, water controls consistently attracted zero P. downsi (Lincango & Causton, 

2009), so we did not include negative controls in our experiments. Traps and drowning 

solutions were not replaced during the 2–3 d trapping period. After each experiment, 

traps were washed with a strong, unscented detergent and exposed to direct sunlight 

for at least 5 d. 

Volatile Collections Headspace volatiles were collected from fermenting yeast-

sugar solution by using 2.4 L closed volatile collection chambers (ARS, Inc., Gainesville, 

FL, USA; Glass shop, Cornell University, Ithaca, NY, USA) with one air inlet adapter (7 

mm ID) on the top and an outlet adapter (7 mm ID) on the bottom wall.  

Yeast-sugar solution was prepared by adding baker’s yeast (Saccharomyces 

cerevisiae, 2 g; Levapan, Quito, Ecuador) to a solution of sugar (10 g) in distilled water 

(200 ml) at 30–35 °C, and then immediately put into a collection chamber. Clean air 

from a filtering and delivery system (ARS Inc., Gainesville, FL, USA) was pushed into 

the chamber at 0.75 L min−1 through the top inlet port, and volatiles from yeast solution 

were pushed out through activated charcoal sorbent tubes (ORBO32-small, Supelco 

Inc., Bellefonte, PA, USA) on the bottom of the chamber.  
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An additional ORBO filter was used to ensure that no breakthrough of volatiles 

from the adsorbent filter occurred. Adsorbent collections were made over a 3 d period at 

room temperature using the same volatile trap (24.2 ± 0.5 °C, 16 L:8D). Volatiles were 

eluted with 500 μl methylene chloride every 24 h from the filters of a given sample and 

combined across the three collecting days. The extracts were kept at −20 °C and 

subjected to GC-EAD and GC-MS analyses. 

 

Coupled Gas Chromatography-Electroantennographic Detection (GC-EAD)  

 

Analyses  

 

Coupled GC-EAD analyses were performed using an Agilent 5890 Series II gas 

chromatograph equipped with a DB-Wax capillary column (30 m × 0.25 mm ID, 0.25 μm 

film thickness; Agilent Technologies, Wilmington, DE, USA) or an HP-5 capillary column 

(30 m × 0.25 mm ID, 0.25 μm film thickness; Agilent Technologies) in splitless mode 

with 1 min sampling. The oven temperature was programmed for 5 min at 40 °C, 15 

°C/min increase to 250 °C, and then held for 5 min. Injector temperature was set at 250 

°C. Helium gas was the carrier at a constant flow rate of 2 ml/min. The column effluent 

was split 1:1 in the oven via an Y-splitter (Supelco, Bellafonte, PA, USA) with nitrogen 

added as a make-up gas (8 ml/min) using another Y-splitter. One arm of the splitter led 

to the flame ionization detector (FID) (280 °C) and the other to the heated EAD port 

(280 °C) introduced into a cooled humidified air stream (1 L/min) directed toward the 

antennae of the mounted fly. 
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Whole head preparations were made of individual flies, age 3–12 d, for GC-EAD 

analysis, as described previously from similar studies with other species of flies (Cha et 

al. 2011a, b, 2012a, b). The head was excised and its antennae positioned between two 

gold wire electrodes immersed in saline-filled (Drosophila ringer solution; 46 mmol 

NaCl, 182 mmol KCl, 3 mmol CaCl2) micropipettes in an acrylic holder.  

The output signal from the antennae was amplified (10×) by a custom high input 

impedance DC amplifier and recorded on an HP 3393A integrator. For the GC-EAD 

analysis of yeast volatiles, a total of 19 different antennal pairs from 11 female and 8 

male flies (2–9 replicated runs/pair) were tested on adsorbent extracts and SPME 

samples. 

Chemical Analyses  

 

Coupled gas chromatography-mass spectrometry (GC-MS) analyses were 

carried out with an Agilent 5975C MSD coupled with an Agilent 7890GC equipped with 

a DB-WAX capillary column (30 m × 0.25 mm ID, 0.25 μm film thickness; Agilent 

Technologies) or an HP-5 capillary column (30 m × 0.25 mm ID, 0.25 μm film thickness; 

Agilent Technologies). Carrier gas was helium (1.0 ml/min constant flow). The GC 

temperature program was the same as used for the GC-EAD analyses.  

The MS transfer line was held at 250 °C for DB-WAX or 280 °C for HP-5 ms 

columns; the MS source was 230 °C; the MS quad was 150 °C. Mass spectra were 

taken in EI mode (at 70 eV) in the range from 40 m/z to 350 m/z with a scanning rate of 

2.36 scan/s. GC-MS data were processed with the MDS-Chemstation software (Agilent 

Technologies). 
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Volatile compounds that were consistently EAD active were tentatively identified 

by comparison of chromatographic retention times and mass spectra with the NIST 2.0 

mass spectra database and with those of authentic standards analyzed on the same 

instrument. To confirm the identities of EAD-active compounds, authentic standards (10 

ng/μl) were tested on P. downsi antennae and co-injected with the yeast sugar 

adsorbent extracts for EAD response. 

The release rate (mg/day/150 ml yeast-sugar solution) and relative ratio (%) of 

the compounds (Table 1) that elicited EAD responses was derived from the adsorbent 

collection. For quantification, blends of standard compounds containing 0.1, 1, 10, or 

100 ng each of all EAD-active compounds in 1 μl of methylene chloride were prepared 

and analyzed to obtain calibration curves (r2 > 0.99 for all 12 compounds).  

The loading amounts of different EAD-active compounds for trapping 

experiments were calculated according to the relative ratio and so the total amount of 

12 EAD-active chemicals (excluding acetic acid and ethanol) in trap drowning solution 

was approximately 1 μg/μl (Table 1), which resulted in similar GC profiles to yeast-sugar 

solution.  

Estimated concentrations of acetic acid (0.03 %) and ethanol (3 %) in yeast-

sugar solution (e.g., Banat et al. 1998; Erasmus et al. 2004) were used until we 

experimentally optimized the concentration of acetic acid in Experiment 6 and ethanol in 

Experiment 7. 
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Chemicals  

 

Ethyl butyrate (99 %, CAS No. 105–54-4), 2-methylbutyl acetate (99 %, CAS No. 

624–41-9), 3-methylbutyl acetate (98 %, CAS No. 123–92-2), 2-methyl-1-butanol (99 %, 

CAS No. 137–32-6), 3-methyl-1-butanol (98 %, CAS No. 123–51-3), ethyl hexanoate 

(99 %, CAS No. 123–66-0), 2-phenylethyl acetate (99 %, CAS No. 103–45-7), and 2-

phenylethanol (≥ 99 %, CAS No. 60–12-8) were purchased from TCI America (Portland, 

OR, USA).  

Isobutanol (2-methylpropan-1-ol) (99 %, CAS No. 78–83-1), 1-propanol (99 %, 

CAS No. 71–23-8), 3-hydroxybutan-2-one [acetoin] (≥ 96 %, CAS No. 513–86-0), and 

2,3-butanediol (98 %, CAS No. 513–85-9) were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). Ethanol (200 proof, CAS No. 64–47-5) and acetic acid (99.8 %, CAS 

No. 64–19-7) were purchased from Pharmco (Brookfield, CT, USA) and Fisher Scientific 

(Pittsburgh, PA, USA), respectively. 

 

Trapping Experiments 

 

Experiment 1:  

 

Yeast vs. Six-Component Blend (6c) vs. 14-Component Blend (14c) The 

objective of this experiment was to determine whether two different EAD-active 

compound synthetic blends are as attractive to P. downsi as the yeast-sugar solution. 

Traps were baited with (i) yeast-sugar solution, (ii) six-component blend (6c) composed 

of the six most abundant EAD-active compounds, and (iii) 14-component blend (14c) 
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composed of all 14 EAD-active compounds (see Table 1 for chemical composition of 

synthetic blends). 

Yeast-sugar solution was prepared by dissolving 75 g sugar in 1500 ml water 

(30–35 °C) then mixing in 15 g baker’s yeast (Levapan del Ecuador, S.A., Quito, 

Ecuador). Three temporal replicates were carried out during 15–18 October 2015, 24–

27 November 2015, and 12–15 January 2016 due to fluctuations in the population of P. 

downsi, with 10 replicated blocks each (N = 30) maintained for 3 d during each temporal 

replicate. 

Experiment 2:  

 

14-Component Blend (14c) vs. 13-Component Blend (13c) vs. Seven-

Component Blend (7c) In Experiment 1, blend 6c was not as attractive as yeast, and 

blend 14c was as attractive as yeast, suggesting that some or all of the eight volatile 

compounds not included in 6c (see Table 1) were responsible for the difference.  

The objective of this experiment was to determine whether the difference in the 

attractiveness of 6c and 14c was due to acetic acid or to any of the other 7 minor EAD-

active compounds. Traps were baited with (i) 14c, (ii) 13c (6c plus seven minor EAD 

active compounds: testing the effect of seven minor EADactive compounds), and (iii) 7c 

(6c plus acetic acid: testing the effect of acetic acid) (Table 1). Ten replicated blocks 

were maintained for 3 d between 21 and 24 January 2016. 
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Experiment 3:  

 

Seven-Component Blend (7c) Subtraction Test The objective of this experiment 

was to determine which components of the 7c blend, in addition to acetic acid (tested in 

experiment 2), are key to attraction of P. downsi. Thus, we baited traps with (i) 7c, (ii) 7c 

minus ethanol, (iii) 7c minus acetoin, (iv) 7c minus isobutanol, (v) 7c minus 3-methyl-1-

butanol, (vi) 7 c minus 2-methyl-1-butanol, and (vii) 7c minus 2-phenylethanol (Table 1).  

Two temporal replicates consisting of two trapping experiments during 2–5 

February 2016 and 7-10 February 2016 were carried out with seven replicated blocks 

(N = 14) maintained for 3 d during each temporal replicate. 

Experiment 4:  

 

Acetic Acid + Ethanol vs. Seven-Component Blend (7c) The objective of this 

experiment was to determine whether a mixture of acetic acid and ethanol would be as 

attractive as the 7c blend. We baited traps with (i) 0.03 % acetic acid +3 % ethanol, and 

(ii) 7c. Twenty replicated blocks were maintained for 3 d between 23 and 26 February 

2016. 

Experiment 5:  

 

Yeast vs. Acetic Acid + Ethanol The objective of this study was to determine 

whether a mixture of acetic acid and ethanol would be as attractive as yeast-sugar 

solution. We baited traps with (i) 0.03 % acetic acid +3 % ethanol, and (ii) yeast-sugar 

solution. Twenty replicated blocks were maintained for 3 d between 1 and 4 March 

2016. 
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Experiment 6:  

 

Acetic Acid Optimization The objective of this experiment was to determine the 

concentration of acetic acid that would be most attractive to P. downsi in a mixture with 

3 % ethanol. A range of acetic acid concentrations was manipulated in two experiments. 

In the lower range acetic acid experiment, we baited traps with (i) 0.01 % acetic acid +3 

% ethanol, (ii) 0.03 % acetic acid +3 % ethanol, (iii) 0. 1 % acetic acid +3 % ethanol, 

and (iv) 0.3 % acetic acid +3 % ethanol. In the higher range acetic acid experiment, we 

baited traps with (i) 0.3 % acetic acid +3 % ethanol, (ii) 1 % acetic acid +3 % ethanol, 

(iii) 3 % acetic acid +3 % ethanol, and (iv) 9 % acetic acid +3 % ethanol. For the lower 

range experiment, there were two temporal replicates consisting of two trapping 

experiments during 18–20 March 2016 and 20–22 March 2016. For each, 10 replicated 

blocks (N = 20) were maintained for 2 d. For the higher range experiment, 10 replicated 

blocks were maintained for 3 d between 9 and 12 March 2016. 

Experiment 7:  

 

Ethanol Optimization The objective of this experiment was to determine the 

concentration of ethanol that would be most attractive to P. downsi in a mixture with 1 % 

acetic acid. For this experiment, we baited traps with (i) 1 % acetic acid +0.3 % ethanol, 

(ii) 1 % acetic acid +3 % ethanol, (iii) 1 % acetic acid +9 % ethanol, and (iv) 1 % acetic 

acid +15 % ethanol. There were two temporal replicates consisting of two trapping 

experiments during 14–16 March 2016 and 16–18 March 2016. For each, 10 replicated 

blocks (N = 20) were maintained for 2 d. 
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Experiment 8:  

 

Optimized Acetic Acid + Ethanol vs. Yeast This experiment was similar to 

Experiment 5 but used the optimized concentration of acetic acid and ethanol from 

Experiments 6 and 7, respectively. The objective was to determine whether a mixture of 

optimized amount of acetic acid and ethanol would be as attractive as yeast-sugar 

solution to P. downsi. We baited traps with (i) 1 % acetic acid +3 % ethanol and (ii) 

yeast-sugar solution. Twenty replicate blocks were maintained for 2 d between 22 and 

24 March 2016. 

Non-Target Insects  

 

in Experiments 5 and 8 where we compared a mixture of acetic acid and ethanol 

with a yeast-sugar solution, we also counted non-target insects captured in traps to test 

the hypothesis that a mixture of acetic acid and ethanol would be more selective than a 

yeast-sugar solution that would contain many other fermentation volatiles as well as 

acetic acid and ethanol. After P. downsi were counted, non-target insects were 

categorized as three groups and counted: moths (Lepidoptera), Polistes versicolor 

(Hymenoptera: Vespidae), and other flies (calyptrate Diptera other than P. downsi). 

Statistical Analyses  

 

For all studies, a randomized complete block design was used with 10 ~ 30 

replications. Male and female fly trap catches over 2 ~ 3 d were totaled for each 

replicate and analyzed with block as a random factor and different odor sources as a 

fixed factor using SAS Proc Mixed or Proc Glimmix (version 9.4). Fly catch data were 
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square-root transformed to improve normality and homoscedasticity (Zar 1984) and 

subjected to Proc Mixed. 

However, Proc Glimmix with Poisson distribution with log link was used when 

transformation did not improve normality and homoscedasticity (for Experiments 6 and 

7). For all experiments, the treatment means were compared using the Tukey-Kramer 

test (α = 0.05) in SAS Proc Mixed or Proc Glimmix. 
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RESULTS 

 

Trapping Experiments 

 

Experiments 1 & 2:  

 

Importance of Acetic Acid in Attraction of P. downsi to Yeast In Experiment 1, 

traps baited with yeast-sugar solution or a synthetic blend containing all 14 EAD-active 

compounds (14c) captured significantly greater numbers of P. downsi than traps baited 

with a six-component synthetic blend (6c) containing the six most abundant EAD active 

compounds including ethanol but not acetic acid (F2,58 = 24.27, P < 0.001; Table 1).  

The numbers of flies captured in traps baited with yeast-sugar solution or the 14-

component blend were not significantly different (Fig. 2a). The chemical differences 

between traps baited with 14c and 6c blends were eight EAD-active compounds 

including acetic acid (Table 1). In Experiment 2, traps baited with a 13-component blend 

(13c) consisting of 14c minus acetic acid, captured significantly fewer P. downsi than 

traps baited with 14c (F2,18 = 13.39, P < 0.001; Table 1).  

In addition, numbers of P. downsi captured in traps baited with a 7-component 

blend (7c) of 6c plus acetic acid were not significantly different from numbers of P. 

downsi in traps baited with 14c, but were significantly greater than numbers of P. 

downsi in traps baited with 13c (Fig. 2b). 

Experiment 3:  

 

Importance of Ethanol in Attraction of P. downsi to Yeast When components 

other than acetic acid of the seven-component blend (7c) were removed individually and 
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when the resulting six different six-component blends were compared to 7c, only traps 

lacking ethanol (7c – EtOH; Fig. 3) captured significantly fewer P. downsi than traps 

baited with any of the other treatments, while numbers of flies captured by these other 

treatments were not significantly different from each other (F6,78 = 5.97, P < 0.001; Fig. 

3). 

Experiments 4 & 5:  

 

Comparison of Acetic Acid + Ethanol and Yeast In Experiment 4, the numbers of 

P. downsi captured in traps baited with a mixture of acetic acid and ethanol (0.03 % 

acetic acid and 3 % ethanol as tested in Experiments 1–3) were not significantly 

different from numbers in traps baited with blend 7c (F1,19 = 0.22, P = 0.645; Fig. 4a).  

However, the numbers of P. downsi in traps baited with the mixture of 0.03 % 

acetic acid and 3 % ethanol were significantly lower than numbers of P. downsi 

captured in traps baited with yeast-sugar solution (Experiment 5; F1,19 = 11.48, P = 

0.003; Fig. 4b). 

Experiments 6 & 7:  

 

Optimization of the Amounts of Acetic Acid and Ethanol In Experiment 6, when 

acetic acid doses were tested in the lower range between 0.01 % and 0.3 %, traps 

baited with the mixture of 0.3 % acetic acid and 3 % ethanol captured the greatest 

numbers of P. downsi and significantly greater numbers of P. downsi than the mixture of 

0.01 % acetic acid and 3 % ethanol (F3,57 = 3.79, P = 0.015; Fig. 5a).  

As the dose-response at this acetic acid range appeared positive, a higher acetic 

acid dose range also was tested. At the higher range, between 0.3 % and 9 % acetic 
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acid, traps baited with the mixture of 9 % acetic acid and 3 % ethanol captured lower 

numbers of P. downsi and significantly fewer P. downsi than the mixture of 0.3 % acetic 

acid and 3 % ethanol or the mixture of 1 % acetic acid and 3 % ethanol (F3,26 = 4.09, P 

= 0.017; Fig. 5b).  

In the ethanol dose range test, between 0.3 % and 15 %, traps baited with the 

mixture of 1 % acetic acid and 3 % ethanol captured the greatest numbers of P. downsi, 

although the treatment effect was not significant (F3,57 = 2.01, P = 0.122; Fig. 5c). 

In the dose-response test for acetic acid, there was a positive relationship 

between acetic acid concentration and P. downsi trap catches within the range of 0.01 

to 0.3 % with 3 % ethanol (y = 0.6 + 3.2×, r2 = 0.96, P = 0.044, where y = number of P. 

downsi trapped and x = % concentration), while there was a negative relationship within 

the acetic acid range of 0.3 % to 9 % with 3 % ethanol (y = 2.1–0.2×, 2r = 0.96, P = 

0.037).  

We did not observe such a change with ethanol in the range between 0.3 % and 

15 % with 0.03 % acetic acid (y = 0.7 + 0.01×, r2 = 0.33, P = 0.671). 

Experiment 8:  

 

Comparison of Optimized Acetic Acid + Ethanol and Yeast The numbers of P. 

downsi in traps baited with the mixture of the optimized quantities of acetic acid and 

ethanol (1 % and 3 %, respectively) were not significantly different from the number of 

P. downsi captured in traps baited with yeast-sugar solution (F1,19 = 0.09, P = 0.774; 

Fig. 6). 
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Non-Target Insects  

 

Totals of 1224 and 483 P. versicolor, 180 and 119 non-target moths 

(Lepidoptera), and 760 and 172 non-target flies were captured in Experiments 5 and 8, 

respectively. Numbers of Polistes wasps were 24.0-fold (Experiment 5, F1,19 = 172.70, 

P < 0.001) and 3.6-fold (Experiment 8, F1,19 = 38.95, P < 0.001) higher in traps baited 

with yeast-sugar solution compared to a mixture of acetic acid and ethanol (Table 2).  

Similarly, numbers of moths were 22.9-fold (Experiment 5, F1,19 = 85.44, P < 

0.001) and 22.8-fold (Experiment 8, F1,19 = 31.62, P < 0.001) higher in traps baited 

with yeast-sugar solution compared to a mixture of acetic acid and ethanol (Table 2).  

Numbers of non-target flies captured were not significantly different in traps 

baited with a mixture of 0.03 % acetic acid and 3 % ethanol compared to a yeast-sugar 

solution (Experiment 5, F1,19 = 0.00, P = 0.996), while they were 74.4 % higher in traps 

baited with a mixture of 1 % acetic acid and 3% ethanol compared to a yeast-sugar 

solution (Experiment 8, F1,19 = 16.04, P < 0.001; Table 2). 
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DISCUSSION 

 

Our results show that acetic acid and ethanol are two key volatiles involved in the 

attraction of P. downsi to actively fermenting yeast-sugar solution, and suggest strong 

synergy between acetic acid and ethanol. Among 10 blends of synthetic compounds 

tested in Experiments 1, 2, and 3, only the blends that contained both acetic acid and 

ethanol were attractive to P. downsi.  

When either acetic acid or ethanol was subtracted from some of the blends, the 

attractiveness to P. downsi decreased significantly. Similar synergism has been 

reported in other schizophorous Diptera including muscid pests, Muscina stabulans and 

Fannia canicularis (Landolt et al., 2015) and drosophilids, Drosophila suzukii (Cha et al., 

2012b, 2014a; Landolt et al., 2012), Zaprionus indianus (Cha et al., 2014b; Epsky et al., 

2014) and is believed to be related to foraging for carbohydrates. 

 Although sugar is an important energy source, it is odorless, making long-

distance location difficult. Thus, it has been suggested that insects may rely on volatile 

products of sugar metabolism produced by ubiquitous microbes to locate sugar sources 

(Landolt et al., 2015).  

Ethanol is produced from fermentation of sugar by yeasts, and acetic acid is 

produced by acetic acid bacteria fermentation of ethanol, although yeasts also can 

produce small amounts of acetic acid when acetaldehyde is converted to acetate by 

aldehyde dehydrogenase (Modig et al., 2002). 

While acetic acid and ethanol are two key attractants involved in P. downsi 

attraction to yeast, other EAD-active yeast fermentation volatiles may increase 
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attraction to the mixture of acetic acid and ethanol. For example, although the 14-

component blend that contained 0.03 % acetic acid and 3 % ethanol in Experiment 1 

was as attractive as yeast-sugar solution, the 2-component blend composed of only 

0.03 % acetic acid and 3 % ethanol in Experiment 5 was not as attractive to P. downsi 

as yeast-sugar solution.  

We improved the attractiveness of the acetic acid and ethanol mixture by 

optimizing the concentrations of acetic acid and ethanol, and the resulting 2-component 

blend of 1 % acetic acid and 3 % ethanol in Experiment 8 was as attractive as yeast-

sugar solution to P. downsi.  

At this point, it is not known whether the acetic acid concentration in the actual 

yeast-sugar solution was close to 0.03 % or 1 %, although the acetic acid concentration 

was 0.03 % in a yeast fermentation process (e.g., Erasmus et al., 2004). It is also 

possible that there was acetic acid produced by acetic acid bacteria, as we did not 

sterilize samples in both laboratory and field.  

Future research is necessary to determine the concentration of acetic acid in the 

yeast-sugar solution used in this study. If the concentration was indeed lower than 1 %, 

the role of other yeast EAD-active compounds should be determined to further improve 

the attractiveness of acetic acid and ethanol mixture to P. downsi. 

In the dose-response test for acetic acid, there was a positive relationship 

between acetic acid concentration and P. downsi trap catches within the range of 0.01 

to 0.3 % with 3 % ethanol, while there was a negative relationship within the acetic acid 
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range of 0.3 to 9 % with 3 % ethanol. We did not observe such a relationship with the 

ethanol range between 0.3 % and 15 % with 0.03 % acetic acid.  

For certain other muscid flies, a positive relationship has been reported over the 

acetic acid concentrations between 0.008 % and 2 % with 5 % ethanol and also ethanol 

concentrations from 0.2 % and 25 % with 0.5 % acetic acid (Landolt et al., 2015), 

suggesting that different fly species may have differences in optimal ranges of acetic 

acid and ethanol. It still is not clear how acetic acid and ethanol are perceived and 

processed in insect attraction (Cha et al., 2012b).  

For many insect species, acetic acid elicits avoidance behavior, especially at 

high concentrations, and Ai et al. (2010) reported a highly selective olfactory neuron for 

detection of acids that generally is related to acid-avoiding behavior in D. melanogaster, 

although it is well known that D. melanogaster is attracted to acetic acid. This suggests 

complexity in the processing of sensory information related to acetic acid.  

For example, it has been shown that egg-laying preference for and positional 

aversion to food containing acetic acid by D. melanogaster is mediated by trade-offs in 

two distinct sensory modalities the preference for egg-laying on acid-containing food 

depends on gustatory inputs, and the positional avoidance for acetic acid containing 

food depends on olfactory inputs (Joseph et al., 2009). Even less information is 

available for insect olfactory perception and processing of ethanol (Cha et al., 2012b). 

Our non-target results generally provided support for the hypothesis that a 

mixture of acetic acid and ethanol attracts fewer non-target insects than yeast-sugar 

solution. For P. versicolor and moths, the reduction was consistent and often striking.  
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As predicted, traps baited with both the original acetic acid and ethanol lure (0.03 

% acetic acid and 3 % ethanol) and the optimized lure (1 % acetic acid and 3 % 

ethanol) consistently captured significantly fewer Polistes and moths compared to the 

traps baited with yeast-sugar solution. All the Polistes trapped were P. versicolor, also 

an invasive pest in Galapagos (Causton et al., 2006).  

Our results suggest that yeast-sugar volatiles may be a productive starting point 

for developing attractant lures for P. versicolor. Unlike Polistes and moths, however, 

non-target flies did not differentiate traps baited with the original acetic acid and ethanol 

lure and traps baited with yeast-sugar solution. This suggests that these nontarget 

insects also respond to acetic acid and ethanol.  

Similar to P. downsi, the non-target flies also appeared to respond better to the 

optimized acetic acid and ethanol lure with significantly more non-target flies caught in 

traps baited with the optimized blend compared to traps baited with yeast-sugar 

solution.  

These results indicate that in future studies it will be important to identify non-

target flies by species in order to determine if there are endemic or native species that 

could be adversely affected by pest management based on semiochemicals. It is 

possible that the synthetic lure and natural bait attracted different species of nontarget 

flies in different proportions. 

Future studies will test whether acetic acid and ethanol can be released together 

from a long-lasting dispenser (instead of from the drowning solution), whether mass 

trapping can suppress P. downsi infestation, how many and where traps are needed to 
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decrease infestation effectively, and the effect of habitat characteristics on attraction 

efficiency and selectivity.  

This last question is especially important as previous attempts to trap P. downsi 

in the area of the critically endangered mangrove finch have generally not been 

successful using traps baited with papaya juice or yeast, although the rate of parasitism 

on the mangrove finch and others was high in the experimental area (Cunninghame et 

al. 2015, F. Cunninghame pers. Comm.). Vegetation structure, microclimatic factors, 

and competing sources of attraction may all influence semiochemical efficiency. 

In conclusion, as the optimized acetic acid and ethanol lure was as attractive as 

actively fermenting yeast-sugar solution, we anticipate that these compounds can be 

used to develop a highly attractive semiochemical lure with potential for use in 

monitoring and mass trapping. It also is apparent that a chemically defined and simple 

lure tailored to attract P. downsi may also attract fewer non-target insects than food-

based baits. 
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Table 1 compound name, release rate (mg/day/150 ml yeast-sugar solution), and ratio 

(%) of the EAD-active volatiles from the headspace of yeast-sugar solution, and the 

amount loaded (μl/150 ml water/trap) in different chemical blends (14c, 13c, 6c, and 7c) 

used in field experiments. *The concentration of acetic acid and ethanol in yeast-sugar 

solution is based on Banat et al. (1998) and Erasmus et al. (2004). Symbol ○ indicates 

whether a chemical component was included in a tested blend that was released from 

the trap drowning solution. 

 

aThe concentration of acetic acid and ethanol in yeast-sugar solution is based on Banat 
et al. (1998) and Erasmus et al. (2004). Symbol ○ indicates presence of a chemical in the 
corresponding blend. 
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Table 2 Mean (±SE) numbers of non-target Polistes versicolor, moths (Lepidoptera), 
and other flies captured in traps baited with an actively fermenting yeast-sugar solution 
(Yeast) or a mixture of 0.03% acetic acid and 3 % ethanol (experiment 5) and traps 
baited with an actively fermenting yeast-sugar solution (Yeast) or a mixture of 1 % 
acetic acid and 3 % ethanol (experiment 8). For each non-target group, within each 
experiment, different letters on means indicate significant differences by Tukey–Kramer 
tests at P < 0.05. Statistical tests were based on square-root transformed data. Means 
from untransformed data are shown. 
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Identification of EAD-Active Volatiles from Yeast  

 

 

Fig. 1 Analysis of yeast-sugar fermentation headspace volatiles by gas chromatography 
with electroantennographic detection (GC-EAD) on polar GC column showing 14 
responses from antennae of Philornis downsi. Compounds that consistently elicited 
EAD responses were identified as (1) ethanol, (2) ethyl butyrate, (3) 1-propanol, (4) 
isobutanol, (5) 2-methylbutyl acetate, (6) 3-methylbutyl acetate, (7) 2-methyl-1-butanol, 
(8) 3-methyl-1-butanol, (9) ethyl hexanoate, (10) acetoin, (11) acetic acid, (12) 2,3-
butanediol, (13) 2-phenylethyl acetate, and (14) 2-phenylethanol. The release rates, 
relative amounts, and the amounts used in trapping experiments of the EAD-active 
volatiles produced by yeast are listed in Table 1. The amount of combined EAD-active 
volatiles released from 150 ml of yeast-sugar solution, excluding acetic acid and 
ethanol, was 91.3 mg/day/150 ml yeast-sugar solution. 
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Fig. 2 Mean (± SE) numbers of Philornis downsi adult flies captured in (a) Experiment 1 
with traps baited with the six-component lure (6c; Table 1), the 14-component lure 
(14c), or an actively fermenting yeast-sugar solution (Yeast) and (b) Experiment 2 with 
traps baited with the 14-component lure, the 13-component lure (14c minus acetic acid; 
14c – AA), or the seven component lure (6c plus acetic acid; 6c + AA). For each graph, 
different letters on bars indicate significant differences by Tukey–Kramer tests at P < 
0.05. Statistical tests were based on square-root transformed data. Means from 
untransformed data are shown. Total catches in Experiments 1 and 2 were 199 and 283 
P. downsi, respectively. 
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Fig. 3 Mean (± SE) numbers of Philornis downsi adult flies captured in Experiment 3 
with traps baited with the seven-component blend (7c; Table 1), the seven-component 
blend minus ethanol (7c − EtOH), the seven-component blend minus acetoin (7c − AT), 
the seven-component blend minus isobutanol (7c − IBOH), the seven-component blend 
minus 3-methylbutan-1-ol (7c – 3MB), the seven-component blend minus 2-
methylbutan-1-ol (7c – 2MB), or the seven-component blend minus 2-phenylethanol (7c 
– PE). Different letters on bars indicate significant differences by Tukey–Kramer tests at 
P < 0.05. Statistical tests were based on square-root transformed data. Means from 
untransformed data are shown. Total catch of P. downsi was 338. 
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Fig. 4 Mean (± SE) numbers of Philornis downsi adult flies captured in (a) Experiment 4 
with traps baited with the seven-component lure (7c; Table 1) or the mixture of 0.03 % 
acetic acid and 3 % ethanol (AA + EtOH) and (b) Experiment 5 with traps baited with 
the mixture of 0.03 % acetic acid and 3 % ethanol (AA + EtOH) or an actively fermenting 
yeast-sugar solution (Yeast). For each graph, different letters on bars indicate 
significant differences by Tukey–Kramer tests at P < 0.05. Statistical tests were based 
on square-root transformed data. Means from untransformed data are shown. Total 
catches P. downsi were 200 and 147 in Experiments 4 and 5, respectively. 
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Fig. 5 Mean (± SE) numbers of Philornis downsi adult flies captured in traps baited with 
different concentration (indicated as % in 150 ml trap drowning solution) of acetic acid 
with 3 % ethanol in Experiment 6 (a, b) and different concentration (%) of ethanol with 1 
% acetic acid in Experiment 7 (c). For each graph, different letters on bars indicate 
significant differences by Tukey-Kramer tests at P < 0.05. Total catches of P. downsi in 
Experiments 6 and 7 were 99 (76 flies for 0.01 ~ 0.3 % acetic acid and 23 for 0.3 ~ 9 % 
acetic acid), respectively. 
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Fig. 6 Mean (± SE) numbers of Philornis downsi adult flies captured in Experiment 8 
with traps baited with an actively fermenting yeast-sugar solution (Yeast) or the 
optimized mixture of 1 % acetic acid and 3 % ethanol (AA + EtOH “Optimized”). There 
was no significant difference between treatments (Tukey–Kramer tests at P<0.05). 
Statistical tests were based on square-root transformed data. Means from 
untransformed data are shown. Total catch of P. downsi was 125. 
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CHAPTER III 

 

Trapping of Philornis downsi (Diptera: Muscidae) with ethanol and acetic acid 

with controlled release dispensers 

 

To be submitted to J Chem Ecol.  

 

 

INTRODUCTION 

 

Philornis downsi (Diptera: Muscidae) is a hematophagous fly that primarily 

parasitizes passeriform birds and near relatives. Only the larval stages feed on the 

blood of nestlings. In the first developmental stage, P. downsi larvae feed within the 

nasal cavities of nestlings; in later developmental stages the larvae feed externally at 

night and are found in the chicks’ thighs, abdomen and below the wings (Fessl et al., 

2006).  

This parasitic fly is now present on 15 of the 17 main islands of the Galapagos 

archipelago, and has been classified as one of the greatest threats to the avian diversity 

of the archipelago (Fessl et al., 2018). 

Over the last decade, many studies have been carried out to determine the 

negative impacts of P. downsi on its avian hosts. One of these studies indicated that in 

three species of finches nestling blood loss from parasitism could be as high as 18 to 

55%; blood volume loss greater than 25% can be lethal to the chicks (Fessl et al., 

2006).  

Other studies confirmed that blood loss from parasitism resulted in low 

hemoglobin levels and decreased growth of chicks (Dudaniec, 2006). Low hemoglobin 
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levels (anemia) during the high metabolic demand phase of nestling growth logically 

lead to increased mortality (Dudaniec, 2008). This in turn results in high levels of nest 

abandonment which could lead to local extinctions of Darwin finch populations  (Fessl et 

al., 2018).  

When nestlings survive to maturity, the physical damage and deformation from 

parasitism during early development could reduce mating opportunities as adults, thus 

adding to the potential for population decline and local extirpation (Grant et al., 2005; 

Galligan & Kleindorfer, 2009). 

In insects, the search for mates, food sources and oviposition sites often involves 

attraction to semiochemicals such as pheromones, kairomones, and food odors 

(Landolt et al., 2012). Food odors may affect fly behavior, either as a stimulus for 

oviposition or as a trigger to initiate courtship and subsequent mating (Becher et al. 

2010; Jallon 1984; Joseph et al., 2009).  

For example, Landolt et al. (2012) showed that large numbers of Drosophila 

susukii can be captured in traps baited with acetic acid and ethanol odors and 

determined that this mixture was more efficient than a vinegar solution.  

In order to mitigate the negative effects of P. downsi on Galapagos land birds, 

several control and monitoring strategies are under development. These control 

strategies will require identification of chemical attractants such as food odors (Cha et 

al., 2016). Adult P. downsi differ from the larval stage in that they mainly feed on 

decomposing fruits (Fessl et al., 2018).  

Potential attractive food odors are therefore likely to include volatile compounds 

produced by microorganisms such as bacteria and fungi during fermentation (Tait et al., 
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2014). Consistent with this hypothesis, Cha et al. (2016) showed  that volatiles such as 

ethanol and acetic acid produced by baker’s yeast (Saccharomyces cerevisiae) during 

the fermentation of a sugar solution were attractive to P. downsi. 

The attractiveness of compounds produced by yeast fermentation has been 

evaluated previously in flies of the family Drosophilidae. A study conducted by Kleiber et 

al. (2014) suggests that compounds related to fermentation products such as acetic 

acid, ethanol, ethyl acetate and 2-phenethyl alcohol were effective in attracting D. 

suzukii.  

However, combining the compounds did not significantly increase capture rates. 

Some lures made with isolated compounds from yeasts may attract moths and flies of 

both sexes which makes these baits useful for sampling, monitoring, or controlling pests 

in agroecosystems (Landolt, 1993; Landolt & Alfaro, 2001). 

Key to the success of any compound that has potential as a lure is the 

evaporation rate and longevity in the field. Methods have been developed to predict the 

rates and times of evaporation of chemical mixtures that are potential lures (Ranz & 

Marshall, 1952; Spedding et al.,1993).  

However, when the mixture includes two or more compounds that evaporate at 

different rates, measurement becomes more complicated. Although predictions of time-

varying evaporation rates can be made for chemical mixtures, these estimates require 

empirical verification prior to application (Smith, 2001). 

The GC-EAD assays of Cha et al. (2016) indicated that P. downsi antennae can 

detect 14 compounds produced during yeast fermentation. These compounds may be 

attractants that could be effective in monitoring and control of P. downsi. Cha et al. 
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(2016) systematically evaluated combinations of these compounds in the laboratory and 

in the field for attraction of P. downsi.  

Field trials indicated that the most attractive compounds for P. downsi adults 

were ethanol and acetic acid in a ratio of 0.03% acetic acid (AA) and 3% ethanol 

(EtOH). This combination was equally attractive as the full 14-component mixture and 

was as attractive as a yeast-sugar solution. In addition, these trials indicated that the 

simplified two component chemical lure attracted fewer non-target insects than food-

based baits (Cha et al., 2016). 

A potential problem with the simplified lure, however, is that the attraction of the 

mixture of these two compounds is fleeting due to their evaporation and rapid depletion. 

The solution must be replaced frequently in order to maintain attractiveness of the trap. 

Moreover, it is difficult to determine the optimum rates of evaporation of the attractants 

when the solution is used in McPhail traps.  

Thus, a quantitative analysis of the rates of ethanol and acetic acid evaporation 

from the water solution in the trap is needed, as well as methods to manipulate the 

evaporation rates of these compounds. Ideally, a controlled release dispenser system 

would be deployed that would allow optimum chemical release of the blend to be used 

in McPhail traps making the EtOH and acetic acid blend attractive for a longer period of 

time, e.g. weeks rather than days.  

This study was designed to address these concerns by: 

1) Determining the evaporation rates of ethanol and acetic acid individually and in 

aqueous solutions. 
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2) Evaluating release rates of the ethanol and acetic acid mixture from 

experimental dispensers in the field. 

3) Determining the attraction of different ethanol and acetic acid dispensers for 

increased efficiency of P. downsi capture. 
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MATERIALS AND METHODS 

 

Laboratory investigation of ethanol and acetic acid volatilization rates 

 

Chemicals:  

 

For one liter of the lure solution, 965.4 ml of water was mixed with 31.6 ml of a 

3% solution of ethanol and 3 ml of a 0.3% solution of glacial acetic acid. Tap water was 

used in the lure solution in the field in Galapagos.  

The water was assumed to have a mass per mole of 18.02 g mol−1 at 2O°C. 

Stock ethanol (Pharmco; CAS No. 64-47-5) with a mass per mole of 46.07 g mol−1 and 

purity ≥ 99.5% and glacial acetic acid (Pharmco; CAS No. 64-19-7) with a mass per 

mole of 60.05 g mol-1 and purity ≥ 99.4% (wt) were used as attractants in solution.  

 

Characteristics of ethanol and acetic acid 

 

Ethanol or ethyl alcohol (CH3-CH2-OH) is a two carbon alcohol concentrated by 

distillation of dilute solutions. Commercial preparations contain 95% by volume of 

ethanol and 5% of water. Commercial ethanol has a relative density of 0.789 at 20 °C. 

Its diffusion coefficient (D) in air at standard temperature and pressure (25°C, 760 mm) 

is 11.81 x 10-2 cm2s-1(Lugg, 1968). 

Glacial acetic acid, also called ethanoic acid or methylene carboxylic acid (CH3-

COOH), is a two carbon organic acid that commonly occurs in the form of an acetate ion 

(CH3-COO-) in water. The carboxyl group (-COOH) confers acidic properties to the 

molecule. This is the acid responsible for the tart taste and smell of vinegar. Acetic acid 
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has a relative density of 1.049 g cm-3 at 20°C. Its diffusion coefficient in air at standard 

temperature and pressure (25°C, 760 mm) is 12.35 x 102 cm2s-1 (Lugg, 1968).  

Note that the higher the diffusivity of one substance with respect to another in 

solution, the faster the diffusion rate will be for both of the substances. Ethanol and 

acetic acid are very close in diffusivity in air, but the diffusion coefficient of water in air is 

0.282 cm2s-1, much lower than the two carbon molecules.  

Furthermore, the diffusion coefficient for ethanol in water at 25°C is 8.4x10-6 cm2 

s-1 while the D for acetic acid in water is 12.1 x10-6 cm2 s-1. Thus, ethanol and acetic 

acid should both diffuse rapidly into water, but the evaporative behavior of the resulting 

aqueous solution containing both molecules will depend upon the water.  

Thus, the complex nature of diffusivity of a solution containing multiple chemical 

compounds is best understood through empirical measurements, such as presented 

here.  

 

Experiment 1: Evaporation in a confined space. 

  

This experiment measured the rate of evaporation of a solution of ethanol and 

acetic acid, with or without water, contained in a vessel with a reduced aperture. 

Volumetric flasks (10 ml; Pyrex®) with a 5 mm opening at the top were used to allow 

vapor to escape. One of seven treatment solutions (10 ml each) was placed in each 

volumetric flask:  

Treatment 1 (T1) 3% EtOH + 0.3% AA in water 

Treatment 2 (T2) 97% EtOH + 3% AA  

Treatment 3 (T3) 3% EtOH in water 
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Treatment 4 (T4) 0.3% AA in water 

Treatment 5 (T5) 99.5% EtOH 

Treatment 6 (T6) 99.4% AA  

Control (10 ml water)  

Volume and mass (laboratory balance Model AR3130 Ohaus Corp., Pine Brook, NJ) 

were measured every hour for six hours with six replications. 

 

Experiment 2: Evaporation in open space.  

 

In this experiment we measured the rate of evaporation of ethanol and acetic 

acid, with and without water, in glass beakers (50 ml; Corning Pyrex® low-form) with a 5 

cm opening to allow a larger surface area for evaporation of test solutions (Figure 1b). 

Seven beakers were used each containing 50 ml of one of the following:  

Treatment 1 (T1) 3% EtOH + 0.3% AA in water 

Treatment 2 (T2) 97% EtOH + 3% AA  

Treatment 3 (T3) 3% EtOH in water 

Treatment 4 (T4) 0.3% AA in water 

Treatment 5 (T5) 99.5% EtOH 

Treatment 6 (T6) 99.4% AA  

Control (50 ml water) 

Mass and volume were measured every 60 minutes for 6 hours with six replicates. 
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Experiment 3: Evaporation in McPhail traps.  

 

This experiment provide an approximation of the evaporation rates of aqueous 

solutions of ethanol and acetic acid in McPhail traps, but under a laboratory setting. The 

dimensions of the McPhail traps used for this part of the study were 22 cm h ×17 cm 

dia. and the diameter of the funnel was 9 cm. One of three aqueous solutions (150 ml) 

was placed in each McPhail trap:  

Treatment 1 (T1) 3 % EtOH  

Treatment 2 (T2) 0.3 % AA  

Treatment 3 (T3) 3 % EtOH + 0.3 % AA 

Mass and volume were measured every 24 hours for five days. 

 

Experiment 4: External reservoir.  

 

In this experiment, a medical intravenous drip system Exel I.V. Pic 1a (Medical 

and Veterinary supplies, Mettawa, IL, USA) was used to continuously add 3% of EtOH + 

0.3% of acetic acid solution to a volumetric micro flask (1 ml; Pyrex®) with a 3-mm 

opening at the top to allow vapor to disperse.  

The drip rate was one drop per 15 minutes until 1 ml was reached in the flask. 

After filling the flask, the contents of the flask and the bag were weighed to determine 

the amount of solution that evaporated during the filling of the flask. Mass and volume 

were measures and were recorded every 60 minutes for 6 hours with two replicates. 

The initial masses and volumes of the liquids from the four experiments were 

recorded. The containers of liquid were placed inside a stainless steel laboratory oven 
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with adjustable temperature control to 550°F / 287°C max (Global Equipment Company 

Inc., Port Washington, New York, USA); oven temperature was held steady at 32°C. A 

polyethylene tube was used to transfer bench vacuum (airflow of 500 ml/min) to the 

oven to remove volatiles.  

 

Field trapping experiments 

 

Three methods of releasing AA and EtOH into McPhail traps were tested. First, 

the attractant solutions were placed in carbon-impregnated polyethylene bags (CIPB; 

Alpha Scents, Inc., West Linn, OR, USA), which allow controlled penetration by ethanol 

(Figure 2a). Second, the controlled release of the EtOH and AA solution from reservoir 

bags was achieved using an IV drip system (external reservoir) (Figure 2b).  

Lastly, to retard any decomposition of captured insects and potentially increase 

trap captures of P. downsi, boric acid or propylene glycol was added to the trap 

drowning solution. Traps were installed at El Barranco (0°44'25"S, 90°18'25"W) in the 

arid lowlands of Santa Cruz Island. 

 

Experiment 5: Dose-range assay of CIPBs.  

 

The following 150 ml of aqueous solutions were placed in CIPBs (7.5 x 12 cm), 

which were then placed in McPhail traps:  

Treatment 1 (T1) 0.03% AA + 0.3% EtOH + 99.67% water;  

Treatment 2 (T2) 0.1% AA + 1% EtOH + 98.9% water;  

Treatment 3 (T3) 0.3% AA + 3% EtOH + 96.7% water;  
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Treatment 4 (T4) 1% AA + 10% EtOH + 89% water.  

A drowning solution (150 ml) consisting of water and an odorless detergent to 

break the surface tension of the water was placed in the base of the traps. A 

randomized complete block design with 10 blocks was used. The traps were placed in 

the field from April 6 to 10, 2017. P. downsi were removed each day, and the traps were 

moved one position within the block to reduce position effects. Trapping was performed 

with 15 replicates (N=45). 

 

Experiment 6: Effects of propylene glycol and high release rates.  

 

In order to improve the attraction of the drowning solution, propylene glycol (PG) 

was evaluated as a preservative. Due to its antifungal and antimicrobial properties, this 

product might prevent odors produced by decomposing insects within the trap. 

However, propylene glycol might also change the chemical attractive properties of the 

EtOH and AA solution.  

Propylene glycol acts as a surfactant and in the presence of EtOH, can strongly 

bind water (Szumała, 2015), possibly altering evaporation rates and the effectiveness of 

the lure solution. Three experimental treatments were therefore used to empirically test 

the effects of adding propylene glycol to the lure solution as a potential decomposition 

retardant:  

Treatment 1 (T1) 150 ml drowning solution of 1% AA + 3% EtOH + 96% water  

Treatment 2 (T2) Blend of 1% AA + 10% EtOH + 89% water in CIPBs plus 

drowning solution of 150 ml water  
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Treatment 3 (T3) 150 ml drowning solution of 1% AA + 10% EtOH + 20% 

propylene glycol + 69% water  

In all treatments the drowning solution was placed in the base of the McPhail 

traps along with a drop of odorless detergent. Traps were set out in a 

randomized block design. The traps were shifted one position within the block 

each day and the flies were removed. There were 10 spatial blocks and four 

temporal (daily) replicates (N=40) from April 6 to 16, 2017.  

 

Effects of boric acid and controlled release. 

 

Similar to the experiment described above, the main objective of the next set of 

experiments was to minimize the decomposition of specimens trapped during field 

experiments and the associated repellent effect of protein decomposition volatiles by 

the addition of boric acid to the drowning solution.  

Moreover, evaporated compounds in the McPhail traps were replaced with new 

liquid delivered by an IV drip system (external reservoir) (Fig 1a). The effect of boric 

acid and the controlled addition of EtOH and AA from an external reservoir were 

evaluated in two experiments. 

 

Experiment 7: Effects of boric acid and an external reservoir.  

 

The first part of the experiment to evaluate the effectiveness of boric acid (BA) as 

a decomposition retardant in McPhail traps included the following treatments:  

Treatment 1 (T1) 150 ml drowning solution of 0.3% AA + 3% EtOH + 96.7 % water .  
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Treatment 2 (T2) 150 ml drowning solution of 0.3% AA + 3% EtOH + 1% BA + 

95.7% water.  

Treatment 3 (T3) 150 ml drowning solution (DS) of 0.3% AA + 3% EtOH + 96.7 % 

water + external reservoir with 250 ml of DS.  

In all treatments the drowning solution was placed in the base of the McPhail 

traps along with a drop of odorless detergent. Fifteen spatial replicates were used in the 

same experimental design as described above and the traps were installed in the field 

from April 28 to May 3, 2017.  

 

Experiment 8: Effects of boric acid combined with an external reservoir.  

 

In the second experiment, two treatments were tested:  

Treatment 1 (T1) 150 ml drowning solution (DS) of 0.3% AA + 3% EtOH + 1% BA 

96.7 % water + 250 ml DS with 1% of BA in a drip system (external reservoir). 

 Treatment 2 (T2) 150 ml drowning solution of 0.3% AA + 3 % EtOH + 1% BA + 

96.7 % water.  

In all treatments the drowning solution was placed in the base of the McPhail 

traps along with a drop of odorless detergent. Twenty spatial replicates were completed 

with the same experimental design as above and the traps were installed from May 5 to 

9, 2017. 
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Statistical Analyses.  

 

Laboratory assay data were analyzed using two-factor ANOVA with replication (α 

= 0.05). Field trapping data were square root transformed to achieve normality and 

homoscedasticity. However, the Generalized Linear Model for Poisson distribution with 

log link was used when transformation did not achieve normality and homoscedasticity.  

For both laboratory and field experiments, the treatment means were compared 

using the Tukey-Kramer test (α = 0.05). The analyses were carried out using the 

statistical package R version 3.1.3 (R Core Team 2013) and R-Commander package 

(Fox & Bouchet-Valat, 2018).  
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RESULTS 

 

Experiment 1: Evaporation in confined space.  

 

The overall treatment effect on mass loss was significant (F6,42 = 4.577, P = 

0.001). Tukey-Kramer tests showed statistically significant differences in mass loss 

between treatment two (T2), control and treatments (T3 and T6), while the volume loss 

registered differences between T1 and T6.  

On a volume basis, there was also a significant treatment effect (F6,42 = 3.173, P 

= 0.011). Significant differences in the decrease in volume occurred between T1 and 

T6. Thus, 97% EtOH + 3% AA proportionally lost more mass, while the 3% EtOH + 

0.3% AA in water solution lost more volume (Figure 3) (Table 1). 

 

Experiment 2: Evaporation in open space.  

 

Assays in 50 ml glass beakers showed patterns similar to those in Experiment 1 

in the rates of mass and volume loss (Figure 3). The overall treatment effect on mass 

loss was significant (F6,42 = 9.811, P < 0.001).  

Assays of open space showed statistically significant differences in mass loss 

between treatments T2 and T5 contrasted with control and treatments T1, T3, T4, and 

T6, while the volume loss register differences between treatments T2 and T5 contrasted 

with control and treatments T1, T3 and T4 (Tukey-Kramer tests) (Table 1).  

The decrease in volume also showed a significant treatment effect (F6,42 = 

10.898, P < 0.001). Significant differences occurred between T1 and T6. The solutions 
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containing higher proportions of EtOH lost proportionally more in both mass and 

volume.  

Experiment 3: Evaporation in McPhail Traps.  

 

Evaporation of the three solutions (0.03 % acetic acid and 3 % ETOH in water 

[T1 Drowning solution], 3 % EtOH in water [T2], and 0.03 % acetic acid in water [T3]) 

from McPhail traps were not significantly different in either the rate of mass loss (F2,17 = 

0.029, P = 0.972) or volume loss (F2,17 = 1.210, P = 1.000 (Figure 5). Different letters 

next to mean values indicate significant differences in Tukey–Kramer tests at P < 0.05. 

 

Experiment 4: External reservoir.  

 

A solution (3% EtOH + 0.3% AA) dripping into a 1 ml volumetric flask filled in 

approximately 25 hours with an average rate of 1 drop every 15 minutes. The rate of 

evaporation was greater before the drop fell into the flask, that is, the solution 

evaporated from the surface of the drop while it was hanging from the end of the I.V. 

system. After 24 hours, this drip assay indicated that the amount of solution (97% EtOH 

+ 3% AA) evaporated in the volumetric flask (1 ml) was 0.132 ml.  

 

Experiment 5: Dose-range assay of CIPBs.  

 

A total of 24 P. downsi (15 females and 9 males) were caught in the traps using 

CIPBs lures for the release of all concentrations evaluated of EtOH and AA. The 

generalized linear model showed no significant differences between four treatments and 
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total flies captured (X2=2.5666, df=3, P =0.464), treatments and female flies (X2=3.896, 

df=3, P =0.273), also treatments and male flies (X2=2.133, df=3, P =0.545) (Table 2).  

 

Experiment 6: Effects of propylene glycol and high release rates.  

 

A total of 152 P. downsi (66 males and 86 females) were captured in experiment 

6. The generalized linear model detected significant differences among the three 

treatments (Poisson regression, X2=259.449, df=3, P< 0.0001).  

The treatment using a CIPB dispenser as the delivery mechanism for 1% AA and 

10% Ethanol (T2) and the treatment with propylene glycol in the drowning solution in the 

bottom of the McPhail trap with 1% AA and 10% Ethanol (T3) captured significantly 

fewer flies compared to the treatment with 150 ml drowning solution made up of 1% AA 

+ 3% EtOH + 94% water with a drop of detergent (T1) (Tukey-Kramer tests, α=0.05; 

Figure 6).  

 

Effects of boric acid and external reservoir  

 

Experiment 7: Effects of boric acid and an external reservoir.  

 

In this experiment, a total of 71 P. downsi were captured (36 males and 35 

females). The highest number of flies were caught in the treatment with continuous 

replacement of the drowning solution through the IV drip system (external reservoir) 

(Table 3; Poisson regression, X2=11.2207, df=3, P= 0.01059).  
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There was no significant effect of using boric acid. There was no significant effect 

when the sexes were analyzed separately (Sex: X2=0.0206, df=1, P=0.88576; 

Treatment: sex: X2=0.2776, df=2, P=0.87042) (Table 3).  

 

Experiment 8: Effects of boric acid combined with an external reservoir.  

 

A total of 541 P. downsi were captured (240 males and 301 females) in this experiment. 

The treatment without the IV drip system captured more P. downsi than the treatment 

with the IV drip system. The generalized linear model showed significant negative 

deviations between the treatments in the Poisson distribution (X2=60.816, df=2, P< 

0.0001) (Table 4).  
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DISCUSSION 

 

These results indicate that the independent evaporation rates of ethanol and 

acetic acid are different from each other, yet are markedly constant over time. Acetic 

acid evaporation is generally negligible. Ethanol, however, evaporates faster than either 

water or acetic acid due to its high volatility and vapor pressure. When ethanol was 

added to water, the solution evaporated faster than the other solutions.  

The 99.4% acetic acid in treatment 6 of Experiments 1 and 2 lost less mass and 

volume while maintaining its concentration compared to 99.5% EtOH. This effect was 

also reported by Duffey et al. (2013). The concentration of acetic acid in the aqueous 

solution did not change sufficiently on the time scale of Experiment 1 to affect the loss 

of mass and volume.  

Among the containers used in these experiments (semi-closed and open), the 

semi-closed system was more effective at releasing smaller quantities of solutions and 

maintaining the original concentration at higher temperature (>32°C) and a greater air 

flow rate (>500 ml/min). Semi-enclosed containers appear to be useful in the laboratory 

(Romero and Cantero 1998) but not in the field unless the semiochemicals being 

released are at higher concentrations than 3% EtOH + 0.3% AA to begin with. 

The effects of the size of the vessel opening and the surface of the vessel 

material had a significant effect on the rate of evaporation of the contained solution. 

O’Hare et al. (1993), Spedding et al. (1993) and Innocenzi et al. (2008) suggested that 

smooth surfaces may promote increased rates of evaporation.  

The volume of the liquid inside the containers is also important, because when 

approaching the lower limit of the vessel, evaporation accelerates drastically, as was 
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observed in Experiments 3 and 4 with McPhail traps where this effect was observed on 

the fourth day.  

Although Smith (2001), concluded that temperature is the main factor influencing 

the evaporation rates of liquids, other factors such as air flow and ambient humidity also 

influence evaporation rates substantially. The effect of airflow was evidenced in 

Experiments 3 and 4 with McPhail traps because the upper part of the container would 

have prevented airflow and slowed the rate of evaporation.  

This is supported by a comparison of the mass of evaporated solution in the 

McPhail traps compared to that of the open 50-ml glass beakers that were exposed to 

the same airflow and temperature. In the beakers the evaporation rates were higher 

even though the surface area was lower. In this sense, to ensure the longevity of 

synthetic lures and their controlled release from a suitable dispenser, the solution 

should be more stable in terms of its attractiveness over time. 

To extend the effective lifetime of attraction of EtOH and AA in the field, I (1) 

added a greater volume of solution of 3% EtOH + 0.3% of AA + water to the traps, and 

(2) slowed the release rate using carbon-impregnated polyethylene bags inside the 

McPhail traps (Experiment 5).  

The solutions in the CIPBs lasted longer and probably maintained more stable 

concentrations, although this was not measured in the laboratory. Unfortunately the 

slow release of the compounds from the CIPBs was unable to attract P. downsi 

effectively.  

Similarly, Landolt et al. (2012, 2015) found that higher release rates of EtOH and 

AA in vials with larger diameter holes attracted greater numbers of the false stable fly 
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and the little house fly (Diptera, Muscidae). The results of Experiment 6 in this study, 

showed that the placement of EtOH and AA in the drowning solution was significantly 

more attractive than the slower release rate from the CIPBs.  

Interestingly, the addition of 20% propylene glycol to the drowning solution also 

significantly reduced trap catches. It is unclear whether this was due to the surfactant 

effect of propylene glycol altering the release rates of EtOH and AA, or possibly its 

ability to bind water thus changing the original odor of the lure. 

The I.V. devices (external reservoirs) used to supply extra EtOH and AA solution 

to the traps to increase the time that the solution was attractive to P. downsi only 

marginally improved trap catches in Experiment 7 compared to when the chemicals 

attractants were placed in the drowning solution with and without boric acid (BA).  

However, experiment 8 showed that the I.V dispenser was not more attractive 

than direct delivery of the lure solution into the drowning solution of the McPhail trap. 

This is likely due to the fact that when the lure solution is delivered rapidly to the 

drowning solution (no I.V. present), the increased surface area of solution releases 

more of the attractant molecules at one time creating in a stronger stimulus.  

Furthermore, the addition of BA to the drowning solution resulted in the capture 

of more flies than the treatment without BA, as the insects that drowned in the solution 

no longer decomposed and masked the odor of the EtOH-AA mixture or had a repellent 

effect on adult P. downsi. Increased trap catches in traps with EtOH and AA and added 

BA was also documented by Landolt & Alfaro (2001). 

The evaporation rates measured in this study can serve as a basis for estimating 

the effective lifetime of a solution in the field. To do this with the aqueous solution of 
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ethanol (3%) and acetic acid (0.3%).requires an I.V. drip feed into the McPhail traps of 

least 22 ml/day.  

However, because the evaporation rate of EtOH is 1.8 times higher than that of 

AA, it should be possible to load the I.V. drip bags with a solution that has a 

correspondingly higher concentration of EtOH than AA.  

In addition, by reducing the amount of water (and increasing the concentrations 

and amounts of EtOH and AA) and slowing the drip rate, it should be possible to 

optimize the replacement rates of EtOH and AA so that the drowning solution remains 

at constant concentrations of 3% EtOH and 0.3% AA, i.e., the optimum concentration 

determined in Chapter 2. 

The results of my field experiments indicate that it is indeed possible to improve 

the catches of P. downsi for a longer period of time. This requires the addition of boric 

acid to the drowning solution or an external reservoir (I.V. drip system), or both. These 

two alternatives not only proved to be effective in capturing more flies, but they also 

maintained the attraction of the bait for more than five days.  

Additionally, increasing the content of the trap from 150 ml to 250 ml and adding 

BA may be a viable alternative to the use of additional liquid with the I.V. system. 

However, this result is not conclusive, since catching more flies may also be due to an 

increase in the population of flies near the traps. 
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Table 1. Mean (±SE) rates of mass (g/h) and volume (ml/h) loss measured in experiments 1 and 2 under controlled 
conditions, assays including control (water) and six treatments in 10 ml volumetric flasks (confined space) and 50 ml glass 
beakers (open space). 

 

Codes 
Concentrations 

Experiment 1 (10ml) Experiment 2 (50ml) 

∆ Mass ∆ Volume ∆ Mass ∆ Volume 

Control water 0.05 ± 0.06c 0.06 ± 0.01a 0.83 ± 0.16a 0.48 ± 0.10a 
T1 3% EtOH + 0.3% AA in water 0.11 ± 0.14a 0.14 ± 0.02b 0.81 ± 0.14a 0.48 ± 0.09a 
T2 97% EtOH + 3% AA  0.16 ± 0.12b 0.12 ± 0.03a 1.59 ± 0.27bc 2.45 ± 0.44bc 
T3 3% EtOH in water 0.05 ± 0.10a 0.10 ± 0.02a 1.09 ± 0.20a 0.89 ± 0.16a 
T4 0.3% AA in water 0.10 ± 0.10a 0.10 ± 0.02a 0.90 ± 0.15a 0.70 ± 0.13a 
T5 99.5% EtOH 0.12 ± 0.06a 0.06 ± 0.01a 1.71 ± 0.28c 2.89 ± 0.53a 
T6 99.4% AA  0.07 ± 0.06c 0.06 ± 0.01c 1.04 ± 0.18a 1.62 ± 0.29b 
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Table 2. Mean (±SE) numbers of P. downsi captured in experiment 5 in McPhail traps baited with four concentrations of 
ethanol (EtOH) and acetic acid (AA) in CIPBs. 

    Mean P. downsi 
captured 

Sex 

Codes Concentrations Female Male 

T1 0.3% EtOH + 0.03% AA 0.4 ± 0.03 0.4 ± 0.4 0.00 ± 0.00 

T2 1% EtOH + 0.1% AA 0.16 ± 0.07 0.8 ± 0.37 0.8 ± 0.37 

T3 3% EtOH + 0.3% AA 0.10 ± 0.06 0.6 ± 0.6 0.4 ± 0.4 

T4 10% EtOH + 1% AA 0.18 ± 0.06 1.2 ± 0.58 0.6 ± 0.4 
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Table 3. Mean (±SE) numbers of P. downsi captured in experiment 7 in McPhail traps baited with 150 ml drowning solution 
of (EtOH 3% + AA 0.3%) with or without 1% BA or an additional 250 ml solution in an I.V drip bag. 

    Mean P. downsi 
captured 

Sex 

Codes Concentrations Female Male 

T1 3% EtOH + 0.3% AA 0.99 ± 0.51 0.66 ± 0.21 0.66 ± 0.40 NS 

T2 3% EtOH + 0.3% AA + BA 0.99 ± 0.38 0.53 ± 0.19 0.73 ± 0.28 NS 

T3 3% EtOH + 0.3% AA (I.V.) 1.56 ± 0.47 1.13 ± 0.32 1.00 ± 0.31 NS 
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Table 4.  Mean (±SE) numbers of P. downsi captured in experiment 8 in McPhail traps baited with 150 ml drowning 
solution of EtOH 3% + AA 0.3% and BA (1%) in water with or without an external reservoir (I.V.) with an additional 250 ml 
drowning solution (IV). 

    Mean P. downsi 
captured 

Sex 

Codes Concentrations Female Male 

T1 3% EtOH + 0.3% AA + BA +I.V. 7.75 ± 1.55 6.70 ± 1.13 4.40 ± 0.99  *** 

T2 3% EtOH + 0.3% AA + BA 11.78 ± 3.52 8.35 ± 2.24 7.60 ± 2.40   
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Figure 1. Intravenous drip system (IV) used in experiment 4: (a) tubing, (b) tubing and 
volumetric flasks, (c) I.V. attached to plastic reservoir bag.  
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Figure 2. McPhail traps used in assays to extend the time of attraction of the solution 
with ethanol and acetic acid. a) CIPB inside the trap, b) IV drip system outside of the 
trap. 
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Figure 3. Loss of solution by volume and mass from 10 ml flasks in Experiment 1: 
Evaporation in confined space. Blue lines represent the loss of mass and red lines 
represent the loss of volume. Error bars represent standard error. 
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Figure 4. Loss of solution from 50 ml flask in Experiment 2. The left y-axis is the loss of 
mass (blue line) and the right y-axis is the loss of volume (red line). 

 

 



 

78 
 

 

Figure 5. The rate of mass and volume loss in Experiment 3. The left y-axis is the loss 
of mass (blue line) and the right y-axis is the loss of volume (red line). 
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Figure 6. Mean (± SE) numbers of P. downsi adult female (F) and male (M) flies 
captured in experiment 6 . Treatment 1 (drowning solution of 1% AA + 3% EtOH + 96% 
water) contrasted with treatments 2 (1% AA + 10% EtOH + 89% water in CIPB plus 
drowning solution of water) and 3 (1% AA + 10% EtOH + 20% propylene glycol + 69% 
water) indicating significant differences. Statistical tests were based on square-root 
transformed data. Means from untransformed data are shown. For each treatment, 
different letters on bars within sex indicate significant differences Tukey-Kramer tests at 
P <0.05. 
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CHAPTER IV 

 

Identification of potential semiochemicals for the monitoring and control of 

Philornis downsi 

To be submitted to J Chem Ecol. 

 

INTRODUCTION 

 

The parasitic fly Philornis downsi (Dodge & Aitken 1968), in its larval stage, feeds 

on nestling passerine blood causing high rates of mortality in several species of 

Galapagos land birds (Fessl et el., 2018).  

One of the main effects is anemia which has been associated with the mortality 

of the critically endangered Mangrove Finch chicks (Camarhynchus heliobates; Fessl et 

al., 2010) and Small Ground Finch chicks, Geospiza fuliginosa, (Dudaniec et al., 2006), 

among others (Fessl et al., 2018).   

In addition, potential alterations in natural selection and changes in reproductive 

patterns are likely a result of deformities caused by larvae feeding in the nasal cavities 

(Kleindorfer & Sulloway, 2016; Fessl et al., 2018). 

The identification of semiochemicals has led to improved control strategies for 

some species of hematophagous insects, such as Ochlerotatus taeniorhynchus, 

Glossina spp, Anopheles Atropos, among others (Kline, 2007). Yet, the use of 

semiochemical-baited traps for monitoring and control of parasitic flies is relatively new.  

One example is the mass trapping efforts, which have proved successful in the 

control of the tsetse fly, Glossina morsitans, the vector of African sleeping sickness. 

Commercial traps have proved useful in the control this parasitic fly (Kline, 2006). 
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Collignon (2011) initiated the first efforts to identify semiochemicals for P. downsi. 

He documented marked sexual dimorphism in the composition of the cuticular lipids of 

P. downsi following sexual maturation. Immediately following eclosion, male and female 

cuticular lipids were indistinguishable, but by day five, the composition of male cuticular 

lipids changed to the extent that they retained only a single compound in common with 

females.  

This suggests that there may be a cost to an immature male in producing the 

odor of a mature male and therefore a significant benefit in producing the odor signal 

upon reaching sexual maturity (e.g. mate attraction at the appropriate life stage).  

An attractant in the male cuticular lipids could be produced directly, or as a 

precursor that is oxidized to yield an attractive pheromone as has been reported for 

some species of Hymenoptera (Stanley-Samuelson & Nelson, 1993). Photo-oxidation of 

cuticle lipids in P. downsi produced 64 compounds in the males and 36 in females 

(Collignon, 2011). In M. domestica, photo-oxidation yielded nine compounds in males 

and 19 in females. 

Cha et al. (2016) found that ethanol and acetic acid produced by yeast 

fermentation are attractive to P. downsi and can be a productive starting point for the 

development of lures for P. downsi. Eliminating the non-attractive and redundant 

fermentation volatiles greatly increased the species-specificity of the lure; however, 

some non-target insects were also attracted to traps baited with ethanol and acetic acid.  

Also, while the two-component lure is attractive, the compounds evaporate 

quickly (Cha et al., 2016), so a more species-specific and controlled-release system is 

desirable for control efforts.  
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Although the use of attractants with food odors has been widely used especially 

for the control of fruit fly parasites, the use of pheromones in the integrated control of 

pests is more advantageous (Cha et al., 2012; Landolt et al., 2012), since pheromones 

have a greater range of attraction, an advantage of hand-applied dispensers, use in a 

wide variety of traps, specificity attracting one of the sexes (advantage in mating 

disruption) and relative low cost (Witzgall et al., 2010). 

Many insects release pheromones from glands associated with the reproductive 

tract. For example, male Phyllophaga lanceolata (Coleptera: Scarabaeidae) are 

attracted to odors released by females while extending their genitalia. Similarly, female 

Sanninoidea exitiosa (Lepidoptera: Sessidae) raise the abdomen and extend their 

genitalia, releasing a pheromone that attracts males (Jacobson, 1972).  

However a previous study conducted by (Collignon, 2011) did not distinguish 

between compounds present in genitals and cuticular extracts that are possibly masked.  

In the order Diptera, our understanding of pheromone use is far from complete. 

In the early stages of sexual attraction, they may rely primarily on visual cues, such as 

in tsetse and house flies. Male Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae) 

respond to the characteristic frequency of reflected light flashes from passing females 

(178 Hz) and fly from their perch to intercept the female (Eichorn et al., 2017).  

Complex communication in some fruit fly species includes nitrogen-containing 

compounds, terpenes, and aliphatic compounds that compose sexual and aggregation 

pheromones, and host plant volatiles (Howse et al., 1998).  

In muscoid calyptrate flies, the identification of pheromones as stimulating agents 

in mating and courtship behavior has been studied in Sarcophagidae: Metopia 
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campestris (Wcislo, 1986), Tachinidae: Gymnosoma rotundatum (Higaki & Adachi 

2011), as well as several species of Calliphoridae (Furukawa et al., 2002). 

 

The present study aims to identify sex pheromones involved in the mate 

attraction of P. downsi from three potential sources: 1) genitalia, 2) cuticular lipids, and 

3) photo-oxidized lipids.  
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METHODS 

 

Insects. Live adult P. downsi were collected in McPhail traps installed at El 

Barranco (0°44'25"S, 90°18'25"W) in the arid lowlands of Santa Cruz Island, 

Galapagos, Ecuador.  

Additionally, larvae and pupae were removed from abandoned and failed nests of 

the Small Tree Finch (Camarhynchus parvulus) and Warbler Finch (Certhidae olivacea) 

in the Scalesia pedunculata forest remnants near Los Gemelos (0° 37'34"S, 

90°23'10"W) in the highlands (400-700 m.a.s.l.) of Santa Cruz Island.  

In order to extract cuticular lipids, genital extracts and perform assays in the 

laboratories of the College of Environmental Sciences and Forestry of the State 

University of New York (SUNY-ESF) live pupae and larvae were transported under 

appropriate permits to the SUNY-ESF in Syracuse, NY, U.S for use in assays.  

Adult flies were enclosed in plastic containers (0.47 L), grouped by sex (4-5 flies 

per container), and maintained in a growth chamber (Percival Scientific, Inc., Perry, IA, 

U.S.) at 23.0°C, 70% RH, 16:8 L:D, and fed with papaya and blackberry juice, brown 

sugar, water and milk powder. Adult flies 0-10 days post-eclosion were used for 

genitalic extracts and electroantennographic (GC-EAD) analysis. 

 

Sample Preparation.  

 

Genitalia extracts (GE) were prepared from field-trapped male and female P. 

downsi adults and from adults that had eclosed in the lab (at SUNY-ESF) from larvae 

and pupae collected from nests in the Galapagos Islands. The adults that eclosed in the 

laboratory were sampled seven or more days post-eclosion and were virgins.  
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Genitalia extracts (males and females separately) were obtained by excising the 

genitalia and immersing them in 50 μl of hexane in a micro-vial insert for 48 hours. 

Cuticular lipids (CL) of both sexes were extracted from virgin adult P. downsi that 

eclosed in captivity  (>7 days old) and from adults captured in the field in the Galapagos 

Islands. The CLs were extracted by immersing live flies in 0.25 ml of hexane for 30-45 

seconds.  

 

Oxidation of cuticular lipids.  

 

To identify the active component of the cuticular layer in males of P. downsi, CL 

extracts were placed in a screw-top quartz cuvette (5 cm x 1 cm x 1 cm) and 

evaporated to dryness under a stream of nitrogen. The sample cuvettes were sealed 

with a Teflon-lined septum.  

The sample vials were placed at 50 cm distance in front of the light beam of a 

solar simulator (Model 10500, ABET Technologies, Milford, CT, U.S.), which radiates 

full-spectrum light at wavelengths between 300 and 1100 nm. 

To photo-oxidize the compounds in the CL extracts, the samples and their 

respective controls with methylene chloride, were exposed to light produced by the solar 

simulator for 24 hours.  

Volatile products of photo-oxidation were trapped on activated charcoal sorbent 

(ORBO32-small, Supelco Inc., Bellefonte, PA, U.S.) by forcing charcoal-filtered air (8 

mL/min) into the cuvette through the tip of a disposable pipette piercing the cuvette 

septum and out of the cuvette, through a second pipette containing the charcoal 
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sorbent. After collecting the volatiles for 24 hours, trapped compounds were eluted from 

the adsorbent with methylene chloride (100 μL). 

 

Chemical Analysis.  

 

The genitalia extracts, cuticular lipids, and photo-oxidized volatiles were analyzed 

using coupled Gas Chromatography-Mass Spectrometry (GC-MS). Analyses were 

carried out with an Agilent 5975C MSD coupled with an Agilent 7890GC equipped with 

a DB-WAX capillary column (30 m × 0.25 mm ID, 0.25 μm film thickness; Agilent 

Technologies) or an HP-5 capillary column (30 m × 0.25 mm ID, 0.25 μm film thickness; 

Agilent Technologies).  

The carrier gas was helium (1.0 ml/min constant flow). The GC temperature 

program was the same as used for the GC-EAD analyses described below. The MS 

transfer line was held at 250 °C for DB-WAX or 280 °C for HP-5 ms columns; the MS 

source was 230 °C; the MS quad was 150 °C.  

Mass spectra were taken in EI mode (at 70 eV) in the range from 40 m/z to 350 

m/z with a scanning rate of 2.36 scan/s. GC-MS data were processed with the MDS-

Chemstation software (Agilent Technologies). 

 

Electroantennography (GC-EAD).  

 

To perform electroantennography analysis, a gas chromatograph (Hewlett-

Packard 5890 series II), equipped with a DB-Wax capillary column (30 m X 0.25 mm ID, 

0.25 μm film thickness, Agilent Technologies, Wilmington, DE, U.S.) was used.  
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The injector was set to splitless mode at 250°C with 1 minute hold time. The 

oven temperature was programmed for five minutes at 40°C; then the temperature was 

increased 15°C/min until it reached 250°C and then held for five minutes. The carrier 

gas was helium with a constant flow rate of 2 ml/min.  

The column effluent was split 1:1 by a glass Y-connector (Supelco, Bellafonte, 

PA, U.S.) with nitrogen added as make-up gas (8 ml/min) using another glass Y-

connector. Half of the effluent passed to the flame ionization detector (FID) (280°C) and 

the other half passed through a heated (280°C) transfer line through the wall of the GC 

oven to a modified condenser tube (60 mm ID X 50 cm long).  

A stream of cooled, humidified air (1 L/min) passed through the condenser, 

combined with the column effluent flowed over the antennal preparation. 

The head and prothorax of an adult P. downsi were mounted at one end of an 

acrylic holder (Figure 1) filled with saline solution (7.5 g NaCl, 0.21 g CaCl2, 0.35 g KCl, 

0.20 g of NaHCO3, 1L of H2O). A glass capillary tube (1 mm dia) filled with saline was 

placed in contact with the third antennal segment.  

Gold wire electrodes were inserted into the holder close to the back of the fly’s 

head (indifferent electrode) and in the glass capillary (recording electrode). The output 

signal from the electrodes was amplified with the Syntech IDAC 79199 serial-data 

acquisition controller and software (v1.2.4) with a low cut-off (0.05 Hz) and a voltage 

range of 0-312.5 mV. 

GC-EAD analyses were performed on wild caught male and female cuticular lipid 

extracts, male and female genitalia extracts, and based on results obtained in Collignon 

(2011), showing that compounds of cuticular hydrocarbons change remarkably during 
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the maturation of males unlike females of P. downsi, we also included results of photo-

oxidized male cuticular lipids and the response of females to these compounds.  

 
 

Y-tube olfactometer assays.  

 

Olfactory preferences of adult wild caught female and male P. downsi to test 

stimuli of genitalia extract of wild caught male and females were assayed in a vertically 

oriented Y-tube glass olfactometer (23 mm i.d.; stem length 25 cm; arm length 20 cm; 

arm angle 70°) at 25-28°C and 40-70% RH. Air was pulled through the Y-tube at ~1 

L/min with a vacuum pump.  

Odor stimuli and controls were placed in separate Erlenmeyer flasks (250 mL) 

with a two-hole rubber stopper; charcoal-filtered air entered the flask through one hole 

and passed through vinyl tubing to an arm of the olfactometer. For each replicate, the 

position of the odor source was randomly assigned to Y-tube arms.  

A single broad-spectrum fluorescent light tube was centered 15-20 cm above the 

olfactometer. Flies were released individually into the stem, flew upward toward the 

light, and then flew into one or the other olfactometer arms depending on their odor 

preference. A fly that penetrated ≥ 10 cm into one arm within one minute was recorded 

as a responder.  

All non-responding insects were excluded from statistical analyses. Each 

replicate employed a new odor source and fly. The Y-tube was rinsed with isopropyl 

alcohol and dried between replicates. 
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Field trials.  

 

To determine which sex produces pheromone, we devised a trapping system that 

utilized either live, caged adults or solvent extracts of adults that could release 

pheromone and attract wild flies into the traps. We inserted the base of a quartz tube (8 

cm long x 3.5 cm dia; closed top, open bottom) (Figure 2a) into the lure receptacle in 

the top of ball traps (ISCA Technologies, Inc., Riverside, CA, U.S.).  

Quartz was used because it allows the passage of more than 90% of UV light 

(Golimowski and Golimowska 1996; Bender et al. 2000) which is required in some 

insects to photo-oxidize cuticular lipids. In the live fly experiment, flies were placed 

inside the quartz tube with sugar water.  

For the live fly experiment, the top of the quartz tube was covered with white 

paper to minimize heat and dehydration stress caused by exposure to full sun (Figure 

2b) while still allowing sunning behavior in the lower portion of the tube. In the 

experiments testing solvent extracts, the vials with the extracts were placed inside the 

quartz tube with the lid partially open to promote release of the volatiles.  

In addition, a new vial was added every day during the three days of the 

experiment, in order to increase the concentration of the volatiles. 

 

Experiment 1: Field response to live adults.  

 

Dougherty (unpublished data), found that the odor contribution of papaya juice 

was minimal, but that its behavioral effect on calling adults was potentially significant. 

Based on this information, we baited McPhail traps with (a) water (negative control), (b) 
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papaya juice (positive control), (c) one adult male P. downsi + papaya juice, or (d) one 

adult female P. downsi (age) + papaya juice. 

Fresh papaya juice (1-3 days old; 150 mL) was placed in the bottom of each trap 

as a food resource because many species of insects commonly ‘call’ from adult or larval 

food resources. Previous reports (Lincango & Causton, 2009) suggest that papaya juice 

becomes gradually more attractive to adult P. downsi again after 4 to 5 days. 

 

Experiment 2: Field response to genitalia and cuticular lipid extracts.  

 

Field assays were conducted to determine the source of the semiochemicals in 

Experiment 1. We tested solvent extracts of cuticular lipids and genitalia.   

We baited McPhail traps with (a) cuticular lipids from field-caught female adults 

(CLFF), (b) cuticular lipids from virgin female adults emerged in the lab from field-

collected pupae (CLLF), (c) cuticular lipids from field-caught male adults (CLFM), (d) 

cuticular lipids from virgin male adults emerged in the lab from field-collected pupae 

(CLLM), (e) papaya juice (positive control), (f) genitalia of field-caught female adults 

(GFF), (g) genitalia of virgin female adults emerged in the lab from field-collected pupae 

(GLF), (h) genitalia of field-caught male adults (GFM), or (i) genitalia of virgin male 

adults emerged in the lab from field-collected pupae (GLM), all treatments were tested 

with a combination of fresh papaya juice. 

Experiments one and two were carried out in El Barranco (0°44′34.1″S, 

90°18′10.4″W), an arid lowland site and Los Gemelos (0° 37'34"S, 90°23'10"W), a 

humid highlands site, on Santa Cruz Island.  
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The traps were installed at a height of between four and five meters near the top 

of the forest canopy, and the trials with modified McPhail traps with quartz tubes were 

carried out between April 22 and May 23 of 2014 and February 3 and May 1 of 2014, 

while the tests with extracts of cuticular lipids and genitals were carried out between 

April 26 and May 15 of 2017.  

Traps within and among replicates were separated by at least 10 m. Treatments 

were arranged in a randomized complete block design. Traps were checked every 24 

hours; all flies in the traps were collected, identified, and separated by sex.  

Each test replicate was conducted for three consecutive days; then trap 

placement was rotated to account for potential position effects. The papaya juice, live 

flies and extracts were replaced and then a new three-day replicate commenced. 

 

Statistical analysis.  

 

For all studies, a randomized complete block design with 10~45 replicates were 

used. The fly capture data were transformed into square root to improve normality and 

homoscedasticity. However, the GLM function for a Poisson distribution with log link 

was used when transformation did not improve normality and homoscedasticity.  

For all experiments, the treatment means were compared using the Tukey-

Kramer test (α = 0.05). The analyses were carried out using the statistical package R 

version 3.1.3 (R Core Team 2013) and R-Commander package (Fox & Bouchet-Valat, 

2018). 
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RESULTS 

 

Oxidation of cuticular lipids. 

 

Photo-oxidation of male cuticular lipid extracts from field-caught adult males 

resulted in the formation of several new components all of which eluted earlier than the 

parent lipids (Figure 3). The compounds that changed their relative quantities or formed 

after photo-oxidation are listed in Figure 4.  

GC-EAD analysis detected 18 compounds in the photo-oxidized male samples 

that consistently elicited antennal response from virgin female antennae (n=4), 

compounds that elicited the strongest responses were: 3-hexanone, 2-hexanone and 1-

methylcyclopentanol (Figure 5).  

Chemical Analysis.  

 

Distinct differences were observed between field-caught male and female 

genitalia extracts (Figure 6). Male extracts are characterized by methyl-branched and 

unsaturated hydrocarbons (Figure 6a), while female genitalia extracts contained 

substantial quantities of fatty acids (Figure 6b) as well as compounds eluted from 

nonacosane to hexatriacontane. 

 

Y-tube olfactometer assays.  

 

 A total of 178 olfactory choice assays were conducted including all four 

reciprocal tests in response to olfactory preferences of wild caught P. downsi female 

and male adults to stimuli of genital extract of males and females.  
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Significant deviation from random outcomes (i.e., 50/50) occurred only for wild-

caught females responding to wild-caught male genitalic extracts. The binomial test 

showed that the response of wild-caught females to male genitalic extracts was 

significantly different from random chance (P = 0.02) Figure 7. 

 

Field trials 

 

Field response to live adults.  

 

A total of 136 flies (53 males and 83 females) were captured (Figure 8). The 

treatment containing a live male in the presence of papaya juice attracted more P. 

downsi females than papaya juice alone, papaya juice + a female, or water alone.  

The generalized linear model detected significant differences among treatments 

(Poisson regression, X2=183.63, df=4, P< 0.001), and differences between females and 

males captured (X2=6.672, df=1, P< 0.05). Treatment C (live male plus papaya) 

captured significantly more female and male flies (Tukey–Kramer tests at P < 0.05).  

Test showed no significant differences in the number of P. downsi males 

captured in the four treatments. However, the number of females captured in treatment 

C was high in contrast to three other treatments (Tukey-Kramer test at P < 0.05). 

Field response to genitalia and cuticular lipid extracts.  

 

A total of 1,671 flies were captured at El Barranco (1,076 females and 595 

males). The analyses of the generalized linear model with a Poisson distribution show 

statistically significant differences between the effects of the treatments (X2=76.342, 
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df=1, P< 0.001), and in the capture of females and males (X2=76.342, df=1, P <0.001) 

(Figure 9).  

Tukey-Kramer test showed no significant differences in the number of P. downsi 

males captured in the eight treatments and one control. However, the number of 

females captured in the treatment GFF (extracts from genitals of field-caught female 

flies) captured was significantly higher in contrast to the control (papaya juice) and 

treatments CLFM (cuticular extracts from field-caught males) and GLM (genital extracts 

from lab-emerged virgin males) (Tukey-Kramer test p <0.05). 
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DISCUSSION 

 

Although pheromone production by abiotic oxidation of lipids has been 

documented in several insect orders, this area of study is relatively little explored in 

insect chemical ecology (Staples et al., 2010).  

In Diptera, the production of volatile pheromone components from unsaturated 

lipids by oxidation has been studied in Musca domestica (Dilwith et al., 1981), and more 

recently by Collignon (2011) who document that the photo-oxidation of male P. downsi 

cuticular lipids produces new compounds suggesting the production of pheromones. 

The role of cuticular lipids in chemical communication has been extensively 

studied in Drosophila (Blomquist & Vogt, 2003) but in other Diptera the roles of these 

compounds have been addressed only sporadically (Stanley-samuelson & Nelson 

1993). Sexual dimorphism in cuticular lipid profiles of solitary insects including dipterans 

often develops along with post-eclosion maturity (Jackson & Bartelt, 1986; Schaner et 

al., 1989). 

Among the multiple sensory and behavioral interactions involved in dipteran 

mating, female cuticular lipids function as a specific chemosensory conditioned stimulus 

(Tompkins et al., 1983). In D. melanogaster, female cuticular lipid pheromones, which 

are the specific chemosensory cues that function as the conditioned stimulus in 

courtship conditioning, stimulate and suppress mating with virgin and mated females, 

respectively.  

This system of chemical signals mediates male preferential mating with virgin 

females and confirmed the role of CHPs as a component of the conditioned stimulus 

toward targets releasing certain pheromones (Siwicki et al., 2005). 
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Abiotic oxidation of cuticular lipids as a mechanism of pheromone production is 

typically associated with female insects and has been documented in Acantholyda 

erythrocephala (Hymenoptera: Pamphiliidae) (Staples et al., 2010), Cephus cinctus 

(Bartelt et al., 2002), Pikonema alaskensis (Tenthredinidae) (Bartelt & Jones, 1983), 

Macrocentrus grandii (Braconidae) (Swedenborg and Jones, 1992) and Anoplophora 

glabripennis (Wickham et al., 2012) and Musca domestica (Dilwith et al., 1981).   

This is in contrast to both the current study and that of Collingnon & Teale (2011) 

that suggest that males are the pheromone-producing sex in P. downsi. In GC-EAD 

analyses conducted in this study, 18 compounds from the cuticles of male flies that had 

been photo-oxidized elicited EAD responses in virgin female flies.  

In addition, the largest number of responses was recorded in low–molecular 

weight volatile compounds, suggesting that the response of females in GC-EAD 

analysis is due to the formation of volatile oxidized compounds, indicating that oxidation 

may play a role in converting lipid precursors to active pheromones. 

Photochemical oxidation involving UV light, oxygen and cuticular lipids can give 

rise to compounds not present in the original cuticular lipids (Frankel, 2005). The results 

of this study and those of Collignon & Teale (2011) show that photo-oxidation of male P. 

downsi cuticular lipids produces new compounds that are potential attractants.  

Furthermore, photo-oxidation also alters the concentrations of the parent lipids 

(Figure 4). Thus, photo-oxidation may result in the same volatile products, but in 

different proportions (Bartelt et al., 2002).  

The live fly field experiment and the y-tube olfactometer assays both support the 

conclusion that in P. downsi, males are the pheromone-producing sex. Although the live 
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fly field experiment allowed for the possibility of pheromone production by means of 

photo-oxidation by caging the flies in quartz tubes, it did not exclude the possibility of 

pheromone release from genital glands rather than directly from the cuticular lipid layer.  

Significant attraction of adult females to wild-caught adult males genitalia extracts 

in the olfactometer experiment indicates that the pheromone is released from the 

genitalia, though it is still possible that the small amount of cuticle from the terminal 

abdominal segment included in the extracts was the source of the attractant. 

Although the quartz tube field experiment indicated that adult males were 

attractive to females, the degree of attractiveness is very likely dependent on the age of 

the males, which influences cuticular lipid composition. Similarly, in females of M. 

domestica, the production and release of certain compounds, mainly monoenes, 

ketones, epoxides, and dienes, increases with age (Murvosh et al., 1965; Mpuru et al., 

2001).  

The failure of the field experiment (testing cuticular and genitalia extracts) to 

detect a significant treatment effect may have been due to the limited quantity of active 

components in the extracts. Solvent extracts only contain the material present in the 

insect at the time of extraction; that material (pooled samples of 10 flies) was then 

placed in the field for three days.  

Thus, the failure of most of the extracts to attract more adult P. downsi than the 

papaya juice controls could have been due to the use of too little attractant. Ongoing 

and future work will make use of olfactometer assays and solvent extracts, which do not 

have these problems. 
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The production and release of insect sex pheromones is often associated with 

genital glands. In many insects, including certain Coleoptera and Diptera, epidermal 

glands that secrete cuticular lipids are another source of pheromone production (Schal 

et al., 1998). Several species are capable of selectively transporting shorter-chained 

hydrocarbon pheromones and pheromone precursors to the pheromone gland in the 

abdomen. 

 However, a clear comprehension of how the hydrocarbons are transported up to 

the cuticle and its disposition in the surface of the insects is still unknown (Blomquist & 

Bagneres, 2010). Nevertheless, Schal et al. (1998) suggest that glands associated with 

cuticular lipids are often linked with other parts of the body involved with pheromone 

transport. 

The role of the genitalia in insect chemical communication suggests a stimulation 

function. For example, in some species of beetles such as Phyllophaga lanceolata, 

males can feed on the same leaf with a female; however, they are not attracted to the 

female until she extrudes her genitalia scattering pheromones (Jacobson, 1972).  

Additionally, the attraction of sex pheromones produced in the genitalia has been 

investigated in the common house fly, Musca domestica. In petri dishes, males jumped 

on models treated with virgin female genitalia extracts and attempted to copulate with 

them (Jacobson, 1972). 

The use of behavior-modifying odors may give the conservation biologist a useful 

tool when investigating methods to protect species threatened by parasitic insects. Yet, 

despite the growing interest in conservation biology, and in particular endangered 
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species protection, it is striking that little effort has been made to study chemical 

communication (Svensson et al., 2004).  

In this sense, the practical objectives of our research on P. downsi 

semiochemicals are focused on potentializing and using these compounds in control 

programs for the monitoring and reduction of populations of this invasive species. In 

particular, our results demonstrate the usefulness and versatility of pheromone lures for 

monitoring and trapping P. downsi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

100 
 

CONCLUSION 

 

The detection of invasive species by using pheromones or other chemical 

attractants is an established practice in applied entomology (Witzgall et al., 2010). In the 

context of conservation, the potential long-term benefits of monitoring and population 

suppression make semiochemically-based management cost effective, even when the 

semiochemicals require custom synthesis (Larsson & Svensson 2009).  

The efficiency of pheromone-based management stems from the advantage of 

selective exploitation of the species-specific communication channel used in mate 

attraction (Svensson et al., 2012). 

The combined use of GC-EAD and laboratory and field behavioral assays has 

contributed significantly to increasing our understanding of the chemically mediated 

behaviors in the courtship and mating system of P. downsi. The live fly field experiment 

and the laboratory assays demonstrated that males are the pheromone-producing sex 

in P. downsi.  

Furthermore, we have evidence that the pheromone is released from the 

cuticular lipid layer. Additional work is required to verify the anatomical source of this 

chemical signal. Currently, we have evidence that cuticular lipid extracts of male 

genitalia are attractive, although there could be other cuticular sources in intact male 

flies.  

Regardless of the origin of the cuticular lipids, this work shows that photo-

oxidation is required to activate the pheromone. Ongoing work is aimed at identifying 

the active components of the cuticular and genitalia extracts, in order to synthesize and 

use them as lures to massively capture P. downsi. 
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The development of monitoring systems for individual species such as P. downsi 

represents a comparatively large initial investment, but offers unique knowledge about 

model species. The efforts used in early detection with food odor attractant and 

disruption of pheromone parasitism make this conservation-monitoring method with 

semiochemicals cost effective, even when the compounds need to be custom 

synthesized.  

Monitoring with food odors and pheromones represents an advantage in the 

selective apprehension of P. downsi, exploiting the same communication channel and 

usually taking advantage of selection by sex. Furthermore, the detection of alien 

species by using pheromones or synthetic chemical attractants is a rapidly developing 

field in applied entomology. 
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Figure 1. Antennal preparation for coupled gas chromatography-electroantennography 
(GC-EAD). Entire set up (left), and close-up (right). 
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Figure 2. Modification of ball traps used to test attractiveness of male and female P. 
downsi and tissue extracts. (A) Quartz tube installed in the lure receptacle of a ball trap. 
(B) Paper covers on the quartz tubes to decrease internal temperature. 
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Figure 3. Total ion chromatograms (TIC) of cuticular lipid extracts of P. downsi wild-caught adult males. 
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Figure 4. Total ion chromatograms (TIC) of cuticular lipid extracts of P. downsi wild-caught adult males after photo-
oxidation. 
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Figure 5. Recording of antennal responses of P. downsi virgin females (blue: ‘EAD’), elicited by components of photo-
oxidized extracts of cuticular lipid extracts from P. downsi wild-caught adult males (black: ‘GC’). 

 



 

107 
 

 

Figure 6. Total ion chromatograms (TIC) of extract of genitalia from wild-caught adult females (A) and males (B). 
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Figure 7. Olfactory preference responses in Y-Tube olfactometer performed with wild 
caught P. downsi adult females and males reared in the laboratory, responding to 
stimuli from the genitals extract of wild caught males and females. 
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Figure 8. Mean (± SE) number of P. downsi caught with live flies with papaya juice. The 
letters of the treatments indicate significant differences calculated with the Tukey-
Kramer test at P <0.05. 
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Figure 9. Mean (± SE) number of flies captured with baits of cuticle lipid extracts (CL) 
and genital extracts (G) of field-captured (F) and virgin adults eclosed in the laboratory 
(L) female (F) and male (M) flies (E.g. CLFF is the abbreviation for Cuticular Lipid 
extracts of Field-collected adult Females). 
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CHAPTER V 

 

CONCLUSIONS 

 

Insects that feed on vertebrate blood are difficult to control. Investigating the 

ways in which hematophagous insects interact with one another, their environment, and 

their hosts is providing valuable insights that will lead to the development of improved 

control technologies.  

For example, the recent advances in chemical ecology research have led to the 

identification and synthesis of new semiochemicals with great potential for use in lures 

as monitoring and control tools against hematophagous insects (Logan and Birkett 

2007). 

Like other insects, flies – and most likely P. downsi – use sex pheromones as 

part of their mating behavior (Howse et al., 1998). On the other hand, it has been shown 

that during periods without reproductive activity, flies often produce aggregation 

pheromones to bring other individuals of the same species to food sources (e.g. 

fermenting fruit) or a host (Bartelt et al., 1985; Howse et al., 1998).  

The use of semiochemicals by adult P. downsi is apparently complex and the 

exact mating sequence and the semiochemicals that are involved remain largely 

unknown. Kairomones produced by the host bird during nest building, egg laying, 

incubation, brooding, and feeding of the chicks, as well as sex or aggregation 

pheromones are involved in mate location and subsequent parasitism (Fessl et al., 

2006; Kleindorfer and Dudaniec 2016; Dudaniec et al., 2010). 
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Although it has not been possible to directly observe the interactions between 

female and male P. downsi in the field, it is presumed that certain environmental 

conditions, such as temperature, humidity, wind direction, distance between flies and 

hosts, and visual cues are likely to be essential factors affecting the reproductive 

behavior of P. downsi (Kuramochi, 1989).  

Mass rearing P. downsi is crucial to the development of the sterile insect 

technique and for the purpose of producing the insects for research use. Yet, mass 

rearing has been challenged by the fact that the conditions of natural reproduction in the 

field do not resemble those created artificially in the laboratory.  

A significant part of the difficulty is with low mating rates in the laboratory. Thus, 

the results of chemical ecological studies may also provide insight to the mating 

sequence of P. downsi.  

The horn fly, Haematobia irritans (Muscidae), is a good example of the 

complexities involved in the reproductive behavior and parasitism of parasitic flies of this 

family. The reproductive behavior of the horn fly includes a series of semiochemical 

signals that include kairomones, sex and aggregation pheromones, as well as a 

complex system of visual signals used by both sexes before and during mating 

(Kuramochi, 1989.  

Comparing the evidence presented in this thesis with the mating system of the 

horn fly, I hypothesize a sequence of semiochemically mediated adult behavior 

including feeding, host location, mate location, mating and oviposition (Figure 1).  

However, validation of the hypothesized sequence will require future research to 

verify the steps of the sequence and to elucidate the attractive kairomones and 
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pheromones involved. An important aspect of the identification of these semiochemicals 

is the component blends and blend ratios. 

My results suggest that food odors and pheromones derived from virgin female 

genitalia as well as male cuticular hydrocarbons potentially contain chemical signals 

that are vital to the reproductive behavior of P. downsi.  

On the other hand, there is the possibility that some signals that stimulate mating 

and parasitism or oviposition behavior come from the pupal stage of P. downsi, as seen 

in Musca domestica, where the stimulus to lay eggs comes from semiochemicals 

produced by previous clutches of conspecifics (Zvereva, 1984).  

The importance of feeding and food odors in mate searching cannot be 

overstated. Studies carried out on M. domestica suggest that feces are a rich source of 

proteins for adults and are actively sought out (Lam, 2010). Likewise, in P. downsi, 

feeding on fermenting fruit is likely important in obtaining the energy resources needed 

for mate-searching, host-searching and egg production. 

The hypothesized mating sequence and subsequent oviposition of eggs by P. 

downsi begins with feeding then progresses to the location of the host nest by males. 

Once the females and males have fed, both females and males locate the hosts via 

kairomones and park near nests before mating.  

Pheromones and host kairomones then stimulate mating. Mating occurs after 

mate location by visual cues (possibly fluttering of wings) and sexual or contact 

pheromones (Figure 1).  

Once the mating sequence of P. downsi has been confirmed and the 

semiochemicals mediating the steps of the sequence have been identified, artificial 
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rearing will be enhanced by the understanding of the cues required for mating. 

Additionally, the use of semiochemicals, whether food or host kairomones or sex or 

aggregation pheromones, will enable efficient trapping with synthetic lures that will 

surpass that of natural baits.  

This will make possible established applications including semiochemically based 

monitoring, mass trapping and mating disruption. 
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Figure 1. Hypothesized mating sequence and parasitism and the semiochemicals that mediate the five steps in the parasitic 
fly Philornis downsi (left), and comparison with observations derived from Kleindorfer and Dudaniec (2016), Dudaniec et al., 
(2010) and Fessl et al. (2006; middle), and the hypothetical four-step mating sequence of Haematobia irritans proposed by 
Kuramochi (1989; right). 
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