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ABSTRACT 

This thesis investigates how historic shipwrecks potentially shape dispersal of 

deep-sea microbiomes. Processes impacting dispersal of microbiomes around artificial 

structures in the ocean and how they connect to other deep-sea habitats is unknown. 

Dispersal processes are explained for some macroorganisms by theories in ecology, 

specifically the Theory of Island Biogeography and the Wooden Stepping Stone 

hypothesis. These have not been investigated for microorganisms, and thus this work will 

probe if they are applicable to microbial biogeography in this habitat.  Experiments were 

conducted to establish new “island-like” features in near proximity (25-125 m) to 

wooden-hulled historic shipwrecks in the northern Gulf of Mexico (GoM). The 

experiments were to determine if microbiomes exhibit dispersal patterns like those seen 

for macroorganisms. Biofilms formed on experiments, along with sediment and water 

samples collected near the shipwrecks were analyzed for microbiome richness, diversity, 

phylogenetic composition and determination of the source of taxa to biofilms. 

Investigation into the source of biofilms revealed the majority source was unknown for 

bacteria and archaea; however, archaea at one site located at approximately 1800 m water 

depth had high source proportion estimates for sediment. Richness and diversity 

decreased with decreasing proximity to both shipwrecks revealing historic shipwrecks 

may function as island-like habitats. The phylogenetic composition analysis shows strong 

selection by wood type for bacteria, and highlights differences in bacteria, archaea, and 

fungi dispersal patterns. The results of this thesis show that built structures, like 

shipwrecks, impact microbial biogeography in the deep sea.  
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CHAPTER I - INVESTIGATING THE SOURCE OF DEEP-SEA MICROBIOMES 

NEAR HISTORIC SHIPWRECKS 

1.1 Introduction  

1.1.1 Microbial Biogeography  

Microbial biogeography is the study of the distribution of microorganisms across 

space and time (Martiny et al., 2006). Ideas surrounding microbial biogeography were 

formulated early in the field of Microbial Ecology, with the concepts posited by Marcus 

Beijerinck of the principal of microbial ubiquity (Beijerinck, 1913). The concept, in 

short, states that all microorganisms are everywhere at any time. Later, Lourens Baas-

Becking postulated that with regards to environmental microorganisms, “Everything is 

everywhere, but the environment selects” (Baas-Becking, 1934). This statement is based 

on a few different aspects of microorganism biology and ecology. Microorganisms are 

highly abundant and small, so they have high dispersal potential. Microorganisms are 

also highly adaptable and metabolically diverse. Due to these traits, there is the potential 

for any microorganism to be anywhere at any given time. However, when a new 

condition arises in the environment, a certain sub-set of those microorganisms may thrive 

under new conditions and become dominant in the environment. In short, all 

microorganisms can occupy any available habitat, but different phylotypes (an observed 

similarity that classifies a group of organisms by their genetic similarity) will be 

dominant in different habitats. While neither Beijerinck nor Baas-Becking used the 

terminology “biogeography”, their ideas provide the backbone for studies of microbial 

biogeography, and advancements in molecular biology through the early 2000s provide 

the analytical framework for study.  
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Arguments have been made against microorganisms exhibiting biogeographical 

patterns, however no arguments are clear enough to have discouraged ongoing study of 

microbial biogeography. In the early 2000s, theories were put forward that large 

microbial populations are not likely influenced by geographical barriers; thus, their high 

probability of dispersal and unlikely extinction allows them to be ubiquitous (Finlay, 

2002, Fenchel, 2003). Another idea presented was microbial endemism, which states that 

while some prokaryotes are cosmopolitan, some are strictly found in only one location, 

attributed in many cases to evolution in isolation (Finlay, 2002, Hedlund & Staley, 2004). 

Support for endemism was also given by Cho and Tiedje who found genetic distance 

between soil Pseudomonas populations increased with geographical distance, suggesting 

bacteria continue to diversify in isolation when presented with dispersal barriers (Cho & 

Tiedje, 2000). Thus, biogeographical patterns may be related to the biology and habitat of 

the particular phylotype which would determine its dispersal.  

In more recent years, studies have investigated habitats in which different 

microorganisms exhibited different biogeographical patterns. One study in the Antarctic, 

found phylotypes exhibit regional endemism while others were cosmopolitan (Jadoon et 

al., 2012). This study shows that while not all microorganisms may exhibit 

biogeographical patterns, there are at least some patterns evident. The arguments against 

the existence of microbial biogeography patterns only raised more questions and fueled 

further study of how biogeography could be applied to microorganisms.  

In 2006, Martiny et al. published a paper discussing microbial biogeography in 

the context of how the theories concerning macroorganisms apply to microorganisms. 

The study concluded that microorganisms cannot be looked at exclusively with the same 
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rules that apply to macroorganisms in terms of biogeography. This is largely due to two 

key factors which make microbial dispersal different than that of macroorganisms, cell 

size and population density, both of which impact dispersal potential, or the ability to 

spread to and colonize new biogeographic provinces, regions and habitats (Martiny et al., 

2006, Lindstrom & Lagenheder, 2011, Zinger et al., 2011). These key factors, in theory, 

make dispersal potential unlimited, especially in marine environments, including the deep 

sea.  

1.1.2 Features Shaping Biogeography in the Deep Sea 

The deep sea, which begins below 200 m, is the largest habitat on Earth. As this 

habitat accounts for approximately 1.27x1018 m3 globally and is remote, it is difficult to 

access and thus study (Orcutt et al., 2011). While the deep sea may seem like an 

inhospitable environment, especially with cold temperatures, which can be below 0 C, 

and high pressure (pressure increases 1 atm per 10 m of water depth), it is an important 

habitat to study microbial biogeography (Orcutt et al., 2011). This is because 90% of 

Earth’s microorganisms are found there (Colwell & D'Hondt, 2013). Subseafloor 

sediment alone may have as many as 2.9x1029 cells (Kallmeyer et al., 2012) globally. The 

number of microorganisms existing here makes the deep sea a very important habitat, 

which is understudied in terms of microbial biogeography.  

In 2012, Hanson and colleagues conducted a review of microbial biogeography 

studies and found a correlation between microbial community composition and at least 

one measured environmental or habitat feature in 92% of studies they looked at (Hanson 

et al., 2012). Habitat features in the deep ocean include hydrothermal vents, methane 

seeps, seamounts, and organic falls. A number of studies have looked at these features, 
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and hydrothermal vents have often been studied for microbial community structure. 

Huber and colleagues showed the geochemistry of hydrothermal vents is a factor in 

structuring microbial communities (Huber et al., 2007). Vents have also been found to 

host a wide diversity of archaea (Auguet et al., 2010). Anderson et al. (2015) conducted a 

study into the microbial community structure of both archaea and bacteria in 

hydrothermal vents. This study found the community structure at the vents was heavily 

influenced by the location of the vent, in proximity to other vents and seamounts, rather 

than the chemistry of the vent. It has also been revealed that hydrothermal plumes from 

vents host distinct communities and that plumes function as vectors, dispersing 

microorganisms between chemically similar features (Dick et al., 2013). Habitat features 

are important in shaping microbial communities and this has been seen in the deep-sea 

through studies involving natural seafloor features including hydrothermal vents (Huber 

et al., 2007, Dick et al., 2013, Anderson et al., 2015).  

In addition to habitat features, geographic location and water circulation have also 

shown to be a factor to microbial communities. Similarity between deep-sea bacterial 

communities in the subsurface sediment decreases with increasing distance between 

samples, an indication that location is important (Bienhold et al., 2016). Water 

movements in estuarine systems are known to influence microbial spatial distribution and 

community composition (Bell et al., 2018). Circulation has also been shown to be 

important in arctic environments (Galand et al., 2010, Hamdan et al., 2013). However, 

the effect of ocean circulation on deep-sea microbial communities has not been reported.  

Wood of terrestrial origin is also found on the seafloor and presents another type 

of habitat feature. Wood is both naturally derived as wood falls and delivered to the sea 
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through shipwrecks. The latter may be a more significant source of wood to the seabed 

than realized, considering there are over 2,000 known historic shipwrecks in the GoM, 

with the majority made of wood.  The wood delivered in the form of shipwrecks presents 

another habitat feature, and thus could play a role as an anthropogenic influence on deep-

sea microbial biogeography. 

1.1.3 Wood and Biofilms in the Deep Sea 

Wood can arrive to the deep-sea through natural processes when plant material is 

moved off shore by storm events. While wood falls are most common along coastlines, 

they have been seen in all the world’s oceans and at all explored water depths (Wolff, 

1979, Bienhold et al., 2013). Wooden shipwrecks are also a type of wood fall, although 

they arrive on the seabed in a more stochastic manner than materials washed out to sea, 

they can also be found at all explored depths. In either case, wood falls are colonized by 

microorganisms and create hotspots of diversity (Palacios et al., 2009, Fagervold et al., 

2012, Bienhold et al., 2013, Kalenitchenko et al., 2015). 

The immersion time of the wood is a significant factor dictating community 

composition found on wood (Fagervold et al., 2012). As the wood degrades it undergoes 

community succession processes by both macro- and microorganisms (Bienhold et al., 

2013, Fagervold et al., 2012). However, this community succession process is initiated 

and maintained by biofilms.  

Biofilms consist of a community of sessile microorganisms attached to a substrate 

with extracellular polymeric substances (EPS) (Garrett et al., 2008). Biofilm formation 

occurs in three steps: 1) accumulation of macromolecules, such as lipids, on the solid 

surface; 2) accumulation of microorganisms on the surface; and 3) adhesion of 
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microorganisms to the surface (Garrett et al., 2008). The adhesion of the microorganisms 

to the surface leads to formation of a matrix of EPS. The EPS allows other 

microorganisms to settle and grow. After the biofilm reaches maturation, microorganisms 

may disperse from it and continue spreading (Garrett et al., 2008, Mugge et al., 2019).  

The process of biofilm formation, maturation and dispersal on submersed wood 

provides for an opportunity to understand how wood influences biogeography processes 

surrounding habitat features on the seabed made of wood. Thus, the goal of this thesis 

was to determine how wooden shipwrecks influence biofilm dispersal to new introduced 

wood in proximity to wooden shipwrecks.  

The objective of this chapter is to determine the source of biofilms on wood 

introduced to the seafloor near a historic wooden shipwreck. The potential sources of 

biofilms are sediment, water, and a nearby wooden shipwreck. The null hypothesis is the 

biofilm communities on the introduced wood do not derive from any of the potential 

sources. The alternative hypotheses are: (1) the biofilm communities on the introduced 

wood derive from the sediment, (2) the biofilm communities on the introduced wood 

derive from the water, and (3) the biofilm communities on the introduced wood derive 

from the shipwreck. These hypotheses will be tested by determining the source 

proportion of taxa in biofilms on wood using a source tracking algorithm called 

SourceTracker2 (Knights et al., 2011). The analysis was used to reveal (1) the probability 

of the biofilm community originating from sediment, water, shipwreck, or other sources 

and (2) if the source of the biofilm community changes with distance from the shipwreck. 

  Deep-sea currents may also impact microbial dispersal on the seafloor and at or 

around built structures. The GoM is a stratified system with two layers, an upper layer 
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above approximately 800-1200 m, and the lower layer below it to the seafloor (Hamilton, 

2009, Perez-Brunius et al., 2018). The lower layer does have depth-independent currents 

that fluctuate in strength over time (Hamilton et al., 2009). If strong prevailing currents 

are found at shipwreck sites used in this study, they may also impact the trajectory of 

biofilm dispersal to newly placed wood. Therefore, an Acoustic Doppler Current Profiler 

(ADCP) was placed at each shipwreck site to monitor currents for the duration of the 

experiment to help illustrate SourceTracker2 results.  

1.2 Methods  

1.2.1 Study Sites 

Two sites, 15470 and 15711, were never before studied historic shipwrecks until 

experiments were conducted in 2019 by the Microbial Stowaways Project, supported by 

NOAA’s Office of Ocean Exploration and Research. Both sites were identified as 

wooden-hulled, copper-sheathed sailing ships dating to the late 19th century.  

Site 15470, discovered in 2009 during a geophysical survey, was investigated in 

June – July 2019. The site rests at ~1800 m water depth in the Mississippi Canyon lease 

area (Figure A.1). It is ~32 m long x 12 m wide, and oriented with the bow toward the 

West-Southwest at a bearing of ~255. The highest vertical relief of the shipwreck is the 

stem and sternpost at either end of the vessel, but the average vertical relief is less than 1 

m. A large artifact cluster is located on the starboard side of the vessel and contains glass 

bottles, ceramic dishes, and a spyglass.  

Site 15711, discovered in 2013 during a geophysical survey, was investigated in 

June – July 2019. The site rests at ~525 m water depth in the Viosca Knoll lease area 

(Figure A.1). It is ~28 m long x 16 m wide, and oriented with the bow towards the West-
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Southwest at a bearing of ~260. The highest vertical relief of the shipwreck is the bow’s 

stem ~2.5 to 3 m above the seafloor, with the majority of the site having less than 1 m 

vertical relief. Debris extends several meters off the bow and the starboard side of the 

shipwreck, indicating the vessel was listing to the starboard side upon settling on the 

seafloor. The bow of the vessel is mostly intact with visible copper sheathing, but overall, 

the hull is not well preserved.  

1.2.2 Microbial Recruitment Experiments 

Microbial recruitment experiments (MREs) were constructed of PVC with two 

main parts: a floating cover and a sample holder (Figure A.2). The cover had syntactic 

foam in the upper portion allowing for flotation of the cover above the sample holder 

when submerged. A line was tied in the rope in the top of the cover to attach it to the 

sample holder. The line ran through the sample holder, through a cam cleat in the base of 

the tower, and outside the base of the MRE where a stop was set to control cover floating 

height (enough to expose surfaces, but short enough to allow the cover to close without 

malfunction). The sample holder had 24 1.25-in holes where the wooden surfaces for 

collecting biofilm were placed. The wooden surfaces were cut with a miter saw from 

1.25-in diameter wooden dowels and were 1.5-in long. Each MRE contained four pine 

surfaces and four oak surfaces. Surfaces were held in the MRE sample holder with 100% 

silicone water-proof sealant on the inside of the sample holder, away from the sample 

surface. The sample surface, which faced outward from the sample holder, was wiped 

clean with 70% ethanol before deployment. Each individual MRE was then connected 

with a 282 m line in an array with 5 total MREs, and to a lander used for recovery. On 

recovery (described below) the line comes under strain, thus closing the cover. The cam 
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cleat locks when the close event happens and serves to keep the cover down on recovery, 

to protect samples from disturbance during ascent through the water column.   

Five MREs were arranged in an array placed in a single transect, separated by a 

25 m line. The first MRE in the array was connected to a lander used for floatation during 

recovery. The length between the lander and first MRE was 182 m, which was greater 

than the distance between the shipwreck and last MRE. 

For deployment, the array was placed in a rectangular cradle with a rod at each 

corner (Figure A.3). The 182 m line was wrapped around the exterior of the rods and 

secured at each point with a rubber band. The rubber bands secured the lines for descent 

but broke when tugged to release the line. The cradle was bolted to the remotely operated 

vehicle (ROV), and the 182 m line was tied to a lander. A lander was comprised of a 

metal frame connecting three 17-in glass spheres with a flotation of 30-50 lbs each, had a 

Teledyne-Benthos R2K acoustic release in the top sphere, and was attached to sacrificial 

weights, and, for one lander at each site, an Acoustic Doppler Current Profiler (ADCP). 

The ROV held the lander until it reached the drop site (Figure A.4). The shipwreck and 

drop site were located by ROV survey using HYPACK software and Sonar to determine 

the position of the shipwreck and a drop site and transects devoid of archaeological 

debris. At the drop site the ROV released the lander, and the lander was pulled to the 

seafloor by the weights. The ROV then drove forward along the predetermined transect. 

The line was tugged by the ROV as it drove which caused the rubber bands holding the 

lines on the cradle to break and the line to release. Once the 182 m line was deployed, the 

first MRE was pulled out and sat on the seafloor with the cover floating to expose the 

surfaces. An MRE was pulled out every 25 m until the fifth one. The ROV, free of all 
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equipment except the cradle, ascended back to the ship (Figure A.4). Two transects of 

MREs were deployed at both Site 15470 and 15711, and one lander at each site carried an 

ADCP. 

The lander recovery occurred in November 2019 after a ~four-month incubation 

period (136 days at Site 15470, 138 days at Site 15711). The lander was outfitted with a 

Teledyne-Benthos R2K acoustic release prior to deployment. A hydrophone was lowered 

in the water above the drop site and used to send an acoustic signal to the acoustic release 

on the lander. The signal initiated an electrical current to a wire on the base of the lander 

that caused it to dissolve, subsequently dropping the arm that the sacrificial weights were 

attached to. Without the weight, the lander was buoyant, due to the three glass flotation 

spheres. As the line was tugged, the MREs closed and rose with the lander. The lander 

was spotted from the ship and pulled aboard with a grappling hook and crane. A capstan 

was used to bring in the rest of the line and MREs. 

1.2.3 Transect Position  

The first lander at Site 15470 was placed approximately 382 m from the 

shipwreck. The MREs were placed in a northeastern direction north of the shipwreck 

with the closest MRE approximately 100 m from the shipwreck. The remaining four 

MREs in the transect were 125 m, 150 m, 175 m, and 200 m from the shipwreck, 

respectively (Figure A.5). The second lander at Site 15470 was placed approximately 304 

m from the shipwreck. The MREs were placed in a northeastern direction from the 

shipwreck’s stern with the closest MRE approximately 22 m from the shipwreck. The 

remaining four MREs in the transect were 47 m, 72 m, 97 m, and 122 m away from the 

shipwreck, respectively (Figure A.5). 
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The first lander at Site 15711 was placed approximately 294 m from the 

shipwreck. The MREs were placed in an eastern direction from the center of the 

shipwreck with the closest MRE approximately 12 m from the shipwreck. The remaining 

four MREs in the transect were 37 m, 62 m, 87 m, and 112 m away from the shipwreck, 

respectively (Figure A.6). The second lander at Site 15711 was placed approximately 322 

m from the shipwreck. The MREs were placed in a northeastern direction from the 

shipwreck’s stern with the closest MRE approximately 40 m from the shipwreck. The 

remaining four MREs in the transect were 65 m, 90 m, 115 m, and 140 m away from the 

shipwreck, respectively (Figure A.6).  

1.2.4 Acoustic Doppler Current Profiler  

One lander at each site was modified to carry an ADCP by extending a mounting 

frame from the center of the lander and adding additional syntactic foam to counteract the 

weight of the frame and ADCP. The ADCPs monitored the current direction and velocity 

for the four months of incubation.  

1.2.5 Biofilm Sampling 

MREs were recovered during the Microbial Stowaways recovery expedition on 

November 14, 2019, after ~four months on the seafloor. Immediately upon recovery, the 

outer face (which was only in contact with the water column) of the wooden surfaces 

were scraped aseptically with a flame-sterilized scoopula to collect the biofilms which 

were placed in Lysing matrix E tubes. Lysing matrix tubes containing biofilms were 

stored at -80C on the ship and transported to the USM laboratory frozen.  
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1.2.6 Water Sampling 

Water samples were collected by CTD-Rosette at both Sites 15470 and 15711. At 

Site 15470, the CTD was deployed over the shipwreck to a depth of 1821 m and allowed 

to drift in a straight transect to the northeast. Water samples were taken directly over the 

center of the shipwreck, and at 50 m, 100 m, 150 m, and 200 m away from the shipwreck.  

At Site 15711, the CTD was deployed over the shipwreck to a water depth of 566 

m and allowed to drift in a straight transect to the west. Water samples were taken 

directly over the center of the shipwreck, and at 50 m, 100 m, 150 m, and 200 m away 

from the shipwreck. A minimum of 2 L of water was filtered through Sterivex filters 

(Millipore) using a peristaltic pump to concentrate microbial biomass (Hamdan et al., 

2013). Filters were stored at -80°C on the ship and transported to the USM laboratory 

frozen.  

1.2.7 Sediment Sampling 

Sediment samples were collected by Jason-style push cores at both Sites 15470 

and 15711. The ROV used the push cores to collect sediment cores along transects 

beginning at the shipwreck and extending away from it. Transects were determined by 

ROV surveys using HYPACK software and Sonar to determine sampling areas devoid of 

archaeological debris.  

At Site 15470, sediment cores were collected along four transects. Transect 1 

began towards the bow on the starboard side of the shipwreck and ran northwest. 

Sediment cores were taken from this transect at 3 m, 10 m, 20 m, 40 m, and 60 m away 

from the shipwreck. Transect 2 began directly on the bow of the shipwreck and ran 

southwest. Sediment cores from this transect were taken at 6 m, 10 m, 20 m, 40 m, and 
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60 m away from the shipwreck. Transect 3 began directly on the stern of the shipwreck 

and ran northeast. Sediment cores from this transect were taken at 7 m, 10 m, 20 m, 40 m, 

and 61 m away from the shipwreck. Transect 4 began in the center of the port side of the 

shipwreck and ran southeast. Sediment cores from this transect were collected at 4 m, 10 

m, 20 m, 40 m, and 60 m away from the shipwreck.  

At Site 15711, sediment cores were collected along four transects. Transect 1 

began near the bow on the port side of the shipwreck and ran south. Sediment cores from 

this transect were taken at 4 m, 10 m, 18.5 m, 41 m, and 60 m away from the shipwreck. 

Transect 2 began directly on the stern and ran to the east. Sediment cores from this 

transect were taken at 4 m, 10 m, 20 m, 40 m, and 60 m away from the shipwreck. 

Transect 3 began toward the stern on the starboard side of the shipwreck and ran north. 

Sediment cores from this transect were taken at 7 m, 10 m, 20 m, 40 m, and 57 m away 

from the shipwreck. Transect 4 began toward the bow on the starboard side of the 

shipwreck and ran west. Sediment cores from this transect were taken at 7 m, 10 m, 20 m, 

40 m, and 57 m away from the shipwreck.  

Sediment cores underwent destructive sampling down-core by sectioning them at 

4 cm intervals using an extruder. Sediment from the center of each section was placed 

aseptically into sterile, PCR clean conical tubes, frozen on the ship at -80°C, and 

transported to the USM laboratory frozen.  

1.2.8 DNA Extraction and Quantitation  

Biofilms in Lysing matrix E tubes underwent DNA extraction with the 

FastDNA® SPINKit for Soil (MP Biomedicals LLC, Santa Ana, CA, USA). Sediment 

samples were processed and analyzed as previously described in Hamdan et al., 2013. 
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For water samples, the filter barrels were cracked, and the filter was aseptically removed 

and processed as above. Quantitation of total extracted DNA (ng/mL) was performed on 

Qubit 2.0 Fluorometric Quantitation system (Invitrogen, Carlsbad, CA, USA) to assess 

quantity, and a NanoDrop spectrophotometer (ThermoFisher, Waltham, MA, USA) was 

used to assess purity.  

1.2.9 16S rRNA Sequencing of Bacteria and Archaea 

For 16S rRNA gene amplification and sequencing of bacteria and archaea, ~2 

ng/L for each sample was used at the Integrated Microbiome Resource (IMR) facility at 

Dalhousie University (Halifax, Nova Scotia, Canada). Gene amplification was carried out 

as in Comeau et al. (2011), using fusion primers B969F/BA1406R to target the V6-V8 

variable regions of the bacterial 16S rRNA gene, and fusion primers A956F/A1401R to 

target the V6-V8 variable regions of the archaeal 16S rRNA gene. The primers used in 

this analysis have been successfully used before in microbial biogeography studies 

(Comeau et al., 2011, Comeau et al., 2016, Comte et al., 2016). 

1.2.10 Bioinformatics Analysis 

Bioinformatics was performed using Quantitative Insights into Microbial Ecology 

2 (QIIME2) (Caporaso et al., 2012). DADA2 was used to trim and truncate forward and 

reverse reads, dereplicate sequences, denoise, merge paired end reads and identify any 

chimeras (Callahan et al., 2016). DADA2 outputs amplicon sequence variants (ASVs) 

which are sequences with only single nucleotide differences. VSEARCH de novo 

clustering was used for operational taxonomic unit (OTU) clustering of the feature table 

output from DADA2 at 97% similarity. A table containing the abundance of OTUs in 

samples was generated and used for taxonomic identification and phylogenetic 
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alignment. The phylogenetic tree was built using FastTree with a mid-point root and 

incorporated mafft, a denovo multiple sequence alignment, and mask to remove highly 

variable positions. Core metrics were obtained using phylogeny. For taxonomic analysis, 

the SILVA database (v. 132) was used for archaea and bacteria.  

1.2.11 Statistical Techniques 

To determine outliers for the archaeal dataset, the median absolute deviation 

(MAD) was determined using the “mad” command available in the “Stats” package in 

RStudio (v. 1.3.959) (Leys et al., 2013). A coefficient of 0.5 was used to determine the 

threshold for outliers. For archaea, the minimum threshold was 216 non-chimeric reads, 

meaning samples with fewer than 216 non-chimeric reads were eliminated from 

SourceTracker2 analyses.  

In addition, there were 3 MREs that surfaced at recovery open: 140 m MRE from 

Transect 1 at Site 15711, and 100 m and 150 m MREs from Transect 1 at Site 15470. 

Since they were exposed to outside water, the biofilms may have been compromised. 

Therefore, the samples from these MREs were excluded from all SourceTracker2 

analyses. 

1.2.12 SourceTracker2 Analyses 

SourceTracker2 was created to estimate the proportion of contaminants in high 

throughput metagenomic studies from possible sources (Knights et al. 2011). It uses a 

Bayesian approach that models contamination as a mixture of source communities into a 

sink community. In this study, SourceTracker2 was used to identify sources of bacteria 

and archaea OTUs to biofilms. Biofilm samples were treated as sink communities, and 

sediment and water samples were treated as source communities. Analyses were run on 
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sites and wood types separately, but all distances of sediment, water, and biofilm samples 

were included. Therefore, a sediment or water community from any distance was treated 

as a potential source for any biofilm community. Results are reported as proportion 

estimates grouped by distance from the shipwreck.  

1.3 Results 

 SourceTracker2 analyses indicated the source of all bacterial OTUs to biofilms on 

both pine and oak was more than 99% unknown and 0.005% was the highest proportion 

estimate attributed to sediment (Figure A.7). The SourceTracker2 analyses for bacteria 

did not indicate any bacteria found in the biofilm was sourced from water. However, a 

general trend of higher sediment proportion estimates is seen in the first 75 m from the 

shipwreck for all sites and wood types except 15470 oak samples (Figure A.8). 

 SourceTracker2 analysis indicated the source of archaeal OTUs to biofilms at Site 

15711 for pine samples was more than 99% unknown with less than 1% of the archaea in 

biofilms sourcing from sediment. SourceTracker2 analysis for Site 15711 oak samples 

also indicated more than 99% of bacteria in biofilms was unknown, but the remaining 1% 

was sourced from both sediment and water (Figure A.9). Both pine and oak proportion 

estimates for sediment and water declined to zero at distances greater than 100 m for Site 

15711 (Figure A.10). SourceTracker2 proportion estimates for Site 15470 archaea, both 

pine and oak, were majority from unknown sources and less than 1% from water but 

indicated proportion estimates up to 42% for sediment (Figure A.9). The unknown 

proportion estimates for both pine and oak at Site 15470 peak at 75-99 m from the 

shipwreck (Figure A.10). The highest proportion estimate for sediment (42.7%) is seen at 

175-200 m away from the shipwreck in the 15470 pine samples; however, this distance 
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category only contains one sample for this site and wood type. Therefore, similar to 

bacteria, for both sites and wood types, proportion estimates for sediment are generally 

greater in the first 75 m from the shipwreck (Figure A.10). 

 The ADCP at Site 15711 indicated the currents had a velocity ranging from 0-1 

knot with no prevailing current direction during the time of deployment (Figure A.11). 

The ADCP at Site 15470 indicates the currents had a velocity ranging from 0-0.5 knot 

with a prevailing Southward current, but West to Southwest currents also frequently 

occurred (Figure A.12). These current directions mean the flow of water was moving 

over the MREs first before reaching the shipwreck for a majority of the deployment time 

(Figure A.5). 

1.4 Discussion  

 The objective of using a source tracking tool in this study was to determine the 

source of biofilms on wood introduced to the seafloor near a deep-sea historic wooden 

shipwreck. SourceTracker2 (Knights et al., 2011) was used to estimate the proportion of 

taxa that water, sediment, and unknown sources were contributing to the wood biofilm 

samples. It has been used in aquatic environmental studies to estimate sources of 

dispersal in different habitats (Hamdan et al., 2013, Storesund et al., 2017, Comte et al., 

2018, Mugge et al., 2019). This information was aimed at providing insight into how 

shipwrecks promote the dispersal of microorganisms from shipwrecks. The null 

hypothesis stated the biofilm communities on the introduced wood do not derive from 

any of the potential sources. Alternatively, the biofilm communities on the introduced 

wood derive from the sediment, the water, or the shipwreck. The current information 

from the sites was intended to help verify the source of taxa to biofilms. A current would 
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be a factor in the movement of microorganisms and could either positively or negatively 

impact their ability to settle on a biofilm.  

 At Site 15711, current velocity was low, but always non zero, and there was no 

prevailing current. This indicates heterogeneous current around the site during the 

experimental period. Accordingly, microorganisms were not being influenced one 

prevailing current direction, and thus could passively disperse. At Site 15470, the current 

velocity was low, but ranged up to half a knot, and had prevailing currents. The main 

current direction was Southward, with West to Southwest currents also frequently 

occurring. This indicates the current was traveling over the MREs before reaching the 

shipwreck for a majority of the experiment. However, currents measured in all directions, 

meaning the water column could have been homogenizing, so the potential for the 

shipwreck to be a source of taxa to the wood surfaces should not be ruled out based on 

the prevailing currents.   

Source proportion estimates for sediment being a source for both bacteria and 

archaea in biofilms were low (< 0.005% for bacteria and < 1% for archaea) at Site 15711. 

SourceTracker2 proportion estimates for sediment being a source to bacterial biofilms at 

Site 15470 are also low (< 0.005%). While water proportion estimates were nonexistent 

for bacteria and extremely low for archaea (< 0.01%), there were fewer water samples 

taken, so SourceTracker2 may not have had enough input to determine if water was a 

source of taxa to biofilms. However, a previous study investigating the source 

contribution of sediment and water to biofilms on metal surfaces near metal shipwrecks 

also saw very little contribution from water, but higher contributions from sediment, up 

to 22% (Mugge et al., 2019). Since the shipwrecks are historic, no direct samples of 
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wood could be taken from them, thus the specific microorganisms dispersing from the 

shipwreck could lie in the “unknown” portion of the microorganisms in the 

SourceTracker2 proportion estimates.  

The archaea dataset evidenced more variable sediment proportion estimates 

across distances than bacteria. At Site 15711 for archaea, for both pine and oak samples, 

the estimates decreased to zero for samples greater than 75 m from the shipwreck. At Site 

15470 for both pine and oak samples, archaea unknown proportion estimates peak at 75-

99 m.  This pattern could be an indication of an ecotone around the shipwreck, where the 

influence of dispersal from the shipwreck converges with the influence of the 

surrounding ambient environment (Levin et al., 2016). Whale falls, which are also 

organic falls and exhibit similarities to wood falls, have also been shown to exhibit a 

sphere of influence in fauna on the sea floor at a standoff distance from the actual fall 

environment (Smith et al., 2015). In the current study, the peak of dispersal is observed 

more clearly for archaea, indicating that either dispersal patterns for archaea differ from 

bacteria, which seems unlikely, or the selection process for biofilms on wood for archaea 

differ from bacteria.  

For the archaea, proportion estimates for unknown sources are greater at Site 

15711 than at Site 15470. One explanation as to why the proportion estimates for 

unknown sources were greater at Site 15711, is due to the location of the site, in 

shallower water nearer to the Mississippi River plume. Depth and proximity to land are 

known to be important drivers on community composition in sediments (Kallmeyer et. 

al., 2012, Mason et al., 2016, Sanchez-Soto et al., 2018) In the case of Site 15711, 

proximity to land and to the Mississippi River plume likely provides greater nutrient and 
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carbon deposition at the site relative to Site 15470, which is located in a deeper, more 

oligotrophic setting. The increased nutrient availability at Site 15711 allows for a 

community that is not solely based on the presence of the shipwreck. The influx of 

nutrients may allow a more diverse and rich community of microorganisms to exist there.  

Whereas at Site 15470, in more oligotrophic waters, the presence of a shipwreck is a 

greater influence on community composition. 

This work shows that microbial dispersal patterns in the deep sea are different for 

archaea and bacteria, and the source signature is stronger in deep water than it is in 

shallower water. These conclusions are evidence that microbial dispersal in the deep sea 

is complex and further studies are needed.  
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CHAPTER II - HISTORIC SHIPWRECK INFLUENCE ON DIVERSITY, RICHNESS, 

AND PHYLOGENETIC COMPOSITION OF DEEP-SEA MICROBIOMES 

2.1 Introduction  

2.1.1 Island Theory  

The Theory of Island Biogeography (TIB) first published by MacArthur and 

Wilson in 1967 focused exclusively on macroorganisms and explained the mechanisms 

of biogeography relative to islands (MacArthur & Wilson, 1967). There are three main 

considerations in the TIB: size of an island, distance of an island from the mainland 

(isolation), and immigration and extinction rates of colonists. The size of an island is 

important because the number of organisms that can survive there is dictated, in part, by 

space and resource availability. According to TIB, increasing island size decreases the 

rate of species extinction on the island. The distance from the mainland is also important 

because the mainland is the source of new taxa, so increasing distance from that source 

will decrease immigration to the island. According to the TIB, these coupled features of 

island size and isolation impact immigration and extinction rates. The TIB introduces a 

biotic equilibrium model in which the number of species present is plotted against species 

number vs. time. Species richness of an island reaches a steady state when the rate of 

immigration equals the rate of extinction. When an island reaches equilibrium, it can be 

determined through a species extinction plot showing a decrease in species richness and 

diversity with distance from an individual island. When such a distance effect is 

discernable, it can be an indicator of an island or island-like system. 

Some studies have shown aquatic microorganisms to exhibit biogeographic 

patterns in island-like habitats (Bell et al., 2005, van der Gast et al., 2005, Darcy et al., 



 

22 

2018). Bacterial communities in water-filled tree holes and metal cutting machine sump 

tanks were found to exhibit less diversity with decreasing “island” size, so the size of the 

hole or the tank had an effect on microbial diversity (Bell et al., 2005, van der Gast et al., 

2005). Similarly, cryoconite holes, water filled holes on glaciers, also show the 

relationship between hole size and bacterial diversity as well as distance effects between 

holes (Darcy et al., 2018). So, microorganisms exhibit island biogeographical patterns in 

habitats that are not islands in the traditional sense.  

Natural habitat features in the marine environment, including whale falls, vents, 

and seeps are known to structure seafloor communities. Whale falls were found to be an 

island-like system for bacteria by exhibiting a distance effect-with species richness being 

higher at whale fall sites than reference sites (Smith & Baco, 2003, Goffredi & Orphan, 

2010). Anderson et al. (2015) found the community structure at vents was heavily 

influenced by the location of the vent, in proximity to other vents and seamounts. 

Methane seeps were found to be island-like habitats as they harbor distinct microbial 

communities from other seafloor ecosystems (Ruff et al., 2015). 

  Anthropogenic structures, including historic shipwrecks, could also be considered 

as island-like systems. This has been investigated for steel hulled shipwrecks (Hamdan et 

al., in revision) but has yet to be explored for wooden-hulled shipwrecks. However, wood 

falls naturally occuring on the seafloor have been investigated as habitat features for 

seafloor microbiomes and research into the factors influencing microbial community 

composition have commenced. Geographic location and depth have been shown to be 

important in structuring bacterial communities on submerged wood (Palacios et al., 2009, 

Ristova et al., 2017). Different conditions of the wood including wood type and length of 
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immersion were also shown to be important in both bacterial and archaeal submerged 

wood communites (Palacios et al., 2009, Fagervold et al., 2012, Kalenitchenko et al., 

2015).  

2.1.2 Seafloor Habitat Features and the Wooden Stepping Stone Hypothesis 

The stepping stone hypothesis was first posited in 1989 with the first discovered 

whale fall off the coast of California. Smith et al. 1989 hypothesized whale skeletons act 

as stepping stones for dispersal of organisms that rely on chemoautotrophic bacteria 

endosymbionts. The biogeochemistry connected to a whale fall, and their progressive 

mineralization by microorganisms, results in similar geochemical regimes to sulfur rich 

deep-sea habitats (e.g., hydrothermal vents) (Smith & Baco, 2003). Whale falls can 

become biologically formed, but geochemically similar, specialized habitats interspersed 

between geologically formed, but geochemically similar, vent habitats. When located at 

intermediate distances between vents, chemosynthetic whale falls create a link for 

organismal dispersal and range expansion for vent taxa.   

Since sediment biogeochemistry surrounding wood falls and whale falls bears 

similarity to hydrothermal vents, Distel and colleagues evaluated the concept of stepping 

stones by looking at symbiont-containing mussels in wood and bone rich marine systems 

(Distel et al., 2000). Their results indicated wood and bone acted as dispersal steps to 

allow for the transport of these mussels between vents, seeps, or other chemically similar 

habitats. They also suggested wood and bone could be an evolutionary step toward vent 

habitats for species not previously found at vents by providing a habitat where 

endosymbionts could evolve from a heterotrophic endosymbiosis to an autotrophic one. 

In another study, more evidence was provided for the wooden stepping stone hypothesis 
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by studying the shipworm Kuphus polythalamia (Distel et al., 2017). Most shipworms 

have microbial cellulolytic endosymbionts that allow the worms to obtain nutrition from 

the wood they bore into, through a heterotrophic endosymbiosis. Kuphus polythalamia 

has sulfur-oxidizing chemotrophic endosymbionts and burrows into marine sediments. 

This chemosynthetic endosymbiosis likely evolved, displacing the ancestral heterotrophic 

endosymbiosis. It is proposed that the evolutionary stepping stone from heterotrophy to 

chemoautotrophy was submerged wood on the seabed. Accordingly, it is taken to mean 

that K. polythalamia shipworms are no longer confined to a wooden environment because 

of the evolutionary ‘step’ they have employed. This study indicates that microorganisms 

associated with wood on the seabed can use the wood to move between habitats and may 

evolve in the process. It is thus possible to consider that other bacteria, including those 

not associated with hosts, use wood as a both a dispersal and an evolutionary stepping 

stone.  

Prior studies show microbial communities at wood falls are associated with 

chemosynthetic environments similar to those at whale-falls and hydrothermal vents 

(Bienhold et al., 2013, Fagervold et al., 2012).  To date, no study has investigated how 

natural or artificial wood falls support dispersal of free-living or biofilm associated 

microorganisms. Sunken wood on the seafloor hosts diverse microbial communities with 

free-living sulfate reducers, methanogens, and sulfide oxidizers commonly observed 

(Wolff, 1979, Fagervold et al., 2012, Bienhold et al., 2013). If free-living 

microorganisms use wood falls as stepping stones, a community response should be 

evident, with a change in phylogenetic composition across distance away from and 

between “steps”.  While wood falls are ordinarily considered natural deposits of forest 
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material to the seabed, historic wooden shipwrecks would also provide a source of wood 

to the seafloor similar to that seen at natural wood falls. Accordingly, microorganisms, 

like macroorganisms, could use wooden shipwrecks to support both dispersal and 

evolution across the seafloor.  

The objective of this chapter is to investigate how the dispersal of wood 

colonizing microbiomes changes as a function of distance from historic wooden 

shipwrecks, and how this influences diversity, richness and phylogenetic composition in 

the shipwreck’s surrounding environment. The null hypothesis of this work is that 

diversity, richness, and community composition of wood colonizing microbiomes 

(bacteria, archaea, and fungi) are not impacted by proximity to wooden shipwrecks. This 

leads to two alternative hypotheses. First, diversity and richness of wood colonizing 

microbiomes increases with increased proximity to wooden shipwrecks. Second, the 

community composition of wood colonizing microbiomes changes as a function of 

distance from shipwrecks.  

2.2 Methods 

2.2.1 Study Sites 

 In addition to the two sites from the Microbial Stowaways Project described in 

Chapter I (15470 and 15711), two other sites were included in this work. These two sites, 

the Mica and Ewing Bank shipwrecks, are historic shipwrecks previously explored by the 

Gulf of Mexico-Shipwreck Corrosion, Hydrocarbon Exposure, Microbiology and 

Archaeology (GoM-SCHEMA) project in 2014 (Damour et al., 2016, Hamdan et al., 

2018, Mugge et al., 2019). Data from experiments in 2014 at the Mica and Ewing Bank 

shipwrecks were analyzed and integrated into this study. These shipwrecks are similar to 



 

26 

the shipwrecks at Sites 15470 and 15711, as they are also wooden-hulled, copper-

sheathed sailing ships dating to the 19th century.  

The Ewing Bank shipwreck, first surveyed in 2006, was investigated by the GoM-

SCHEMA project in 2014 as reported in previous studies (Damour et al., 2016, Hamdan 

et al., 2018, Mugge et al., 2019). It is a 19th century shipwreck ~45 m long x 12 m wide. 

The site rests at ~600 m water depth in the Viosca Knoll lease area (Figure A.1).  

The Mica shipwreck, first surveyed in 2001, was investigated by the GoM-

SCHEMA project in 2014 as reported in previous studies (Damour et al., 2016, Hamdan 

et al., 2018, Mugge et al., 2019). It is a 19th century shipwreck ~20 m long x 6 m wide. 

The site rests in ~800 m water depth in the Mississippi Canyon lease area (Figure A.1).   

2.2.2 Microbial Recruitment Experiments and Transect Positions 

The same MREs and transect positions as described in Chapter I for Microbial 

Stowaways Sites 15470 and 15711 were used for the analyses described in this chapter.  

 Mica and Ewing Bank both had a single MRE placed 2 m from the shipwreck. 

The single MREs were placed and recovered by ROV in immediate proximity (within 2 

m) to the Mica and Ewing Bank shipwrecks. The single MREs had the same dimensions 

and sampling materials as used in the more recent experiment, but they were not 

connected to a lander/array and were inserted directly into the sediment. The height 

above the seafloor of experimental surfaces is the same in both experiments, and the 

single MREs were recovered inside of a cover which protected biofilms from washing off 

surfaces. The single MREs at Mica and Ewing Bank contained 3 pine surfaces and 3 oak 

surfaces for colonization.  
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2.2.3 Biofilm Sampling 

 MREs from Sites 15711 and 15470 were recovered during the Microbial 

Stowaways recovery expedition on November 14, 2019, after four months on the 

seafloor. Immediately upon recovery, wooden surfaces were scraped aseptically with a 

flame-sterilized scoopula to collect the biofilms which were placed in Lysing matrix E 

tubes. Lysing matrix tubes containing biofilms were stored at -80C on the ship and 

transported to the USM laboratory frozen.  

 MREs from Mica and Ewing Bank were collected by the GoM-SCHEMA project 

in 2014 after four months on the seafloor. Biofilms were collected in the same way as 

above.   

2.2.4 DNA Extraction and Quantitation 

Biofilms in Lysing matrix E tubes underwent DNA extraction with the 

FastDNA® SPINKit for Soil (MP Biomedicals LLC, Santa Ana, CA, USA). Quantitation 

of total extracted DNA (ng/mL) was performed on Qubit 2.0 Fluorometric Quantitation 

system (Invitrogen, Carlsbad, CA, USA) to assess quantity, and a NanoDrop 

spectrophotometer (ThermoFisher, Waltham, MA, USA) was used to assess purity.  

2.2.5 16s Sequencing of Bacteria and Archaea 

For 16S rRNA gene amplification and sequencing of bacteria and archaea, ~2 

ng/L for each sample was used at the Integrated Microbiome Resource (IMR) facility at 

Dalhousie University (Halifax, Nova Scotia, Canada). Gene amplification was carried out 

as in Comeau et al. (2011), using fusion primers B969F/BA1406R to target the V6-V8 

variable regions of the bacterial 16s rRNA gene, and fusion primers A956F/A1401R to 

target the V6-V8 variable regions of the archaeal 16S rRNA gene. The primers used in 
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this analysis have been successfully used before in microbial biogeography studies 

(Comeau et al., 2011, Comeau et al., 2016, Comte et al., 2016). 

2.2.6 ITS2 Sequencing of Fungi 

For fungal analysis, amplification and sequencing of the internal transcribed 

spacer region 2 (ITS2) was performed at IMR with primers ITS86F/ITS4. These primers 

have been shown to be suitable for studying both diversity and community structures of 

fungi (Op De Beeck et al., 2014).  

2.2.7 Bioinformatics Analysis  

Bioinformatics was performed using Quantitative Insights into Microbial Ecology 

2 (QIIME2) (Caporaso et al., 2012). DADA2 was used to trim and truncate forward and 

reverse reads, dereplicate sequences, denoise, merge paired end and identify any 

chimeras (Callahan et al., 2016). DADA2 outputs amplicon sequence variants (ASVs) 

which are sequences with only single nucleotide differences. VSEARCH de novo 

clustering was used for operational taxonomic unit (OUT) clustering of the feature table 

output from DADA2 at 97% similarity. A table containing the abundance of OTUs in 

samples was generated and used for taxonomic identification and phylogenetic 

alignment. The phylogenetic tree was built using FastTree with a mid-point root and 

incorporated mafft, a denovo multiple sequence alignment, and mask to remove highly 

variable positions. Core metrics were obtained using phylogeny. For taxonomic analysis, 

the SILVA database (v. 132) was used for archaea and bacteria, and the UNITE database 

(v. 8.0) was used for fungi. 
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2.2.8 Statistical Techniques 

 To determine outliers for archaeal and fungal datasets, the median absolute 

deviation (MAD) was determined using the “mad” command available in the “Stats” 

package in RStudio (v. 1.3.959) (Leys et al., 2013). A coefficient of 0.5 was used to 

determine the threshold for outliers. For archaea from the Microbial Stowaways data 

(Sites 15711 and 15470), the minimum threshold was 216 non-chimeric reads, meaning 

samples with fewer than 216 non-chimeric reads were eliminated from statistical 

analysis. For archaea from the GoM-SCHEMA data (Mica and Ewing Bank), the 

minimum threshold was 43 non-chimeric reads. For fungi from the Microbial Stowaways 

data, the minimum threshold was 2494 non-chimeric reads. For fungi from the GoM-

SCHEMA data, the minimum threshold was 701 non-chimeric reads. In addition, there 

were 3 MREs that came up open: 140 m MRE from transect 2 at Site 15711, and 100 m 

and 50 m MREs from transect 1 at Site 15470. Since they were exposed to outside water, 

the biofilms may have been compromised. Therefore, the samples from these MREs were 

excluded from all statistical analyses. After removing compromised MREs and outliers 

from the Microbial Stowaways data, 136 bacterial biofilm samples, 103 archaeal biofilm 

samples, and 110 fungal biofilm samples remained for statistical analyses. After 

removing outliers from the GoM-SCHEMA data, 6 bacterial biofilm samples, 4 archaeal 

biofilm samples, and 4 fungal biofilm samples remained for statistical analyses.  

 Shannon index was calculated from 16S rRNA amplicons in QIIME2. OTU 

Richness was determined by the number of non-chimeric reads output by QIIME2. This 

data was used to plot both Shannon index and OTU richness for each individual biofilm 

sample as a function of distance from the shipwreck for each site and wood type.  
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Creation of nMDS plots for each site was carried out using PRIMER v. 6.1.13 13 

(PRIMER-E Ltd., Plymouth, UK). Sequence abundance data was used to generate Bray-

Curtis dissimilarities to determine relatedness between samples. Non-metric 

multidimensional scaling (nMDS) of Bray-Curtis dissimilarities was performed on non-

transformed data to yield a 2-and 3-dimensional representation of microbiome structure. 

This resulted in a nMDS plot with a cluster overlay at 60% similarity to visually explain 

the similarity in terms of community composition and abundance between samples.  

Since Bray-Curtis data was used, the analysis did not reveal similarity as a result of 

phylogeny. A permutational analysis of variance (PERMANOVA, 999 unique 

permutations) was conducted to understand how the three factors in this study (site, wood 

type, proximity to shipwreck) impact community composition patterns. 

To analyze the phylogenetic composition of the bacterial biofilms, a weighted 

UniFrac analysis was performed. QIIME2 core metrics, obtained using phylogeny, output 

the weighted UniFrac distance matrix. This analysis differs from the Bray-Curtis 

dissimilarity matrix because it takes the branch lengths of the phylogenetic tree into 

account and thus measures the phylogenetic distance between the taxa, resulting in 

information on similarity derived from abundance, composition and phylogeny 

(Lozupone & Knight, 2005). The UniFrac results were displayed visually as a Principal 

Coordinates Analysis (PCoA) which were obtained through QIIME2. The UniFrac 

distance matrix was also used in PERMANOVA (999 unique permutations) analyses to 

identify differences in phylogeny between samples. 

QIIME2 also output the relative abundance of each OTU in the community (for 

each domain separately). This output was used in constructing bar plots at the highest 
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level of taxonomic classification possible. Notably, some OTUs can only be annotated to 

the phylum level, but they represent individual phylotypes in the dataset, not a collection 

of phylotypes under that phylum. 

2.3 Results  

2.3.1 Diversity and Richness  

The Shannon index revealed a general decrease in bacterial diversity as a function 

of distance from Site 15711 for biofilms on oak samples and Site 15470 for both pine and 

oak samples (Figure A.13). However, the trend was only significant (p < 0.05) at Site 

15470 for pine samples. Distance from the shipwreck explained up to 23% of variance in 

bacterial diversity data. For pine samples at both 15711 and 15470, diversity is highest 

near the shipwreck, but exhibits a secondary peak at 125 m away from the shipwreck. 

Bacterial OTU richness also declined as a function of distance for all sites and wood 

types except for Site 15711 pine samples (Figure A.14). This trend was significant (p < 

0.05) for Site 15711 oak and Site 15470 pine and oak samples. Richness was also highest 

near the shipwreck but exhibited a secondary peak at 125 away from the shipwreck for 

pine samples at both sites and oak samples at Site 15470.  

 Archaeal Shannon index decreased significantly (p < 0.05) as a function of 

distance at Site 15470 for both pine and oak (Figure A.15), explaining up to 20% of the 

variance in data at that site. However, it increased significantly (p < 0.05) as a function of 

distance at Site 15711 for pine samples and did not indicate a significant relationship or a 

trend for oak samples at this site (Figure A.15). A secondary peak in diversity was 

observed for both wood types at site 15470. Due to compromised sample recovery and 

the MAD analyses for archaea, Site 15711 had very different numbers of samples in each 
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transect. As a result, the Shannon index and OTU richness plotted as function of distance 

from the shipwreck for this site were examined in individual transects (Figure A.16), and 

revealed results were driven by the only complete transect for that site. Archaeal OTU 

richness decreases as a function of distance at both locations and on both wood types, 

however, this relationship was only significant (p < 0.05) at Site 15470 for oak samples 

(Figure A.17). A secondary peak in richness was again observed at 125 m for samples 

from both wood types at Site 15470.  

 The fungal Shannon index decreased slightly or exhibited a flat trend with 

distance from the shipwreck for all sites and wood types except Site 15711 pine samples 

where the relationship was significant (Figure A.18). Diversity in Site 15711 pine 

samples significantly increased with distance from the site (p < 0.05). When Site 15711 

pine samples were looked at as individual transects, no significant differences were seen 

between transects for diversity or richness (Figure A.19, p ≥ 0.05). There were no 

significant trends in fungal OTU richness with distance in any samples (Figure A.20). 

However, the trends did decrease slightly with distance.  

2.3.2 Community Structure and Phylogenetic Composition of Bacteria  

The nMDS plot revealed bacterial communities grouped by two main criteria, 

wood type and site location (Figure A.21). The clustering did not reveal a clear grouping 

of samples by distance from the shipwrecks (Figure A.22). Although not evident from the 

nMDS, the PERMANOVA provided that wood type, site, and proximity (listed from 

greatest to least influence on community composition) are all significant in determining 

bacteria biofilm composition on wood (Table A.1, p < 0.05).  
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 An individual nMDS for Site 15711 again confirmed wood type is the strongest 

influencing factor on community composition in this study. In this analysis, however, the 

effect of distance on community composition was seen, as samples from 0-24 m formed a 

small cluster and samples from 100-124 m formed a small cluster (Figure A.23). The 

PERMANOVA results revealed wood type, proximity to the shipwreck, and transect 

(which indicates different directions and distances around the site) are all significant in 

bacteria biofilm community composition (Table A.2, p < 0.05). An individual nMDS for 

Site 15470 also confirmed wood type is the strongest influencing factor on bacterial 

biofilm community composition, but again, the effect of distance on composition was 

seen (Figure A.24). The PERMANOVA results revealed all three factors were significant 

(Table A.3, p < 0.05), with wood type being the most influential driver followed by 

transect (position and proximity), and then proximity to the shipwreck.  

An nMDS plot was created to place bacteria samples from the previous GoM-

SCHEMA study in context with samples from this study. It revealed Mica and Ewing 

Bank grouped more closely together with Site 15470 (Figure A.25).  With the Mica and 

Ewing Bank data included, the PERMANOVA results again showed that wood type, site, 

and proximity to a shipwreck are significant (Table A.4, p < 0.05).  

The UniFrac ordination for both sites and wood types explained 60.5% of 

variance in the data, with clear grouping by wood type (Figure A.26). When this PCoA 

was viewed by distance, there were some groupings seen, but there is overlap between all 

distance categories (Figure A.27). A PERMANOVA performed on the UniFrac distance 

matrix was in line with the one performed on the Bray-Curtis dissimilarity matrix. Wood 

type, site, and proximity were all significant (Table A.5, p < 0.05).  
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The UniFrac PCoA for Site 15711 pine samples explained 47.5% of the variance 

in the data (Figure A.28). A clear separation of samples based on distance from the 

shipwreck is evident along the two main axes. Axis 1 showed 23.74% of the variance is 

explained by distance category as the groupings were seen mainly along this axis. The 

UniFrac PCoA for Site 15470 pine samples explained 46% of variance in the data, but 

with less clear separation by distance groups (Figure A.29). However, distance category 

still explains the highest percentage seen (17.91%). This contribution of distance 

categories to the variance in the data is an indication that proximity to a shipwreck is a 

driver in phylogenetic composition of pine biofilm communities. 

The UniFrac PCoA for Site 15711 oak samples explained 55% of the variance in 

the data (Figure A.30). A clear separation of samples based on distance from the 

shipwreck was again seen along Axis 1, explaining 27% of variance. The UniFrac PCoA 

for Site 15470 oak samples explained 58% of the variance in the data (Figure A.31). 

Distance category separations were not as clear at this site, but the separation along Axis 

1 did still appear to be driven by distance (30.16%). These results indicate proximity to a 

shipwreck is also a driver in phylogenetic composition of oak biofilm communities.  

The top 25 most relatively abundant bacterial OTUs were selected to visualize 

which OTUs were most abundant at different distances from the shipwreck (Figure 

A.32). For pine samples, Myxococcales (Blrii41) dominated at intermediate distances, 

dropping in abundance at the closer and farther distances. This trend for Myxococcales 

(Blrii41) was also seen in oak, but in much lower abundances. 

Rhodobacteraceae(uncultured) also followed a trend of peaking at intermediate distances 

for pine samples but dominated Site 15711 oak samples across distances. For Site 15470 
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oak samples, another Rhodobacteraceae OTU was seen in higher abundances at farther 

distances. Colwellia and Roseobacter (clade NAC11-7 linkage) are also seen at 15470 

oak samples with a decrease in the middle of the transect. Flavobacteriaceae and 

Flavobacteriaceae(uncultured) were seen in steady abundances across all sites and wood 

types, as is Gammaproteobacteria. Proteobacteria remained in stable abundances across 

pine samples but fluctuated with a slight peak at intermediate distances for oak samples.  

2.3.3 Community Structure and Phylogenetic Composition of Archaea 

The nMDS for archaea at both sites showed archaeal communities were not 

grouped exclusively by wood type (Figure A.33).  A second nMDS revealed samples 

were mainly grouped by site, and to some extent, by distance (Figure A.34). There was a 

cluster with mainly samples between 75 and 124 m. Another cluster contained largely 

samples between 0 and 74 m with a few samples from farther distances. The 

PERMANOVA results indicated site and proximity to a shipwreck were highly 

significant (p < 0.05) to structuring these communities (Table A.6). Unlike bacterial 

communities, archaeal composition was not primarily driven by the wood type that 

biofilms formed on, as the PERMANOVA results confirmed wood type is the weakest 

factor structuring archaeal community composition. Since site is the most significant 

factor in archaea biofilm composition, sites were analyzed separately.  

The nMDs for Site 15711 showed that a few samples at distances greater than 50 

m from the shipwreck did not cluster with the majority of samples from the study (Figure 

A.35). The PERMANOVA for Site 15711 revealed wood type and proximity to the 

shipwreck were both significant to archaea biofilm composition (Table A.7, p < 0.05). 

For Site 15470, the nMDS depicted a separate cluster containing samples from 75-99 m 
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and 100-124 m, while most samples from 125-149 m and 175-200 m fell into a cluster 

with samples from closer distances (Figure A.36). The PERMANOVA for Site 15470 

indicated proximity, transect, and wood type were all significant (p < 0.05, Table A.8).  

An nMDS plot was created to place archaea samples from the previous GoM-

SCHEMA study in context with samples from this study (Figure A.37). This nMDS 

showed samples from Ewing Bank and Mica grouping in the cluster in the lower left that 

previously consisted of largely samples between 75 and 124 m. However, samples from 

these GoM-SCHEMA sites appeared in all of the other clusters. The PERMANOVA 

results indicated site and proximity were significant in archaea biofilm composition (p < 

0.05, Table A.9).   

The UniFrac ordination for both sites and wood types explained 63.95% of 

variance in the data (Figure A.38). The PCoA reveals Axis 1 and Axis 2 are both largely 

driven by distance with samples between 75 - 124 m clustering together on both axes 

(Figure A.38). When the UniFrac is labeled by wood type, it appeared that Axis 1 is 

driven by this feature (Figure A.39). A PERMANOVA on the UniFrac results indicated 

site is still the most significant factor in archaea biofilm composition, but distance and 

wood type are both significant shaping features on phylogenetic composition (p < 0.05, 

Table A.10). These results indicated that there were differences in archaea phylotypes 

that colonize wood, and that distance from the shipwreck also influences phylogenetic 

composition.   

The UniFrac PCoA for Site 15711 pine samples explained 76% of the variance in 

the data and showed distance groupings along Axis 1 which indicated distance from the 

shipwreck explained 51.88% of variance (Figure A.40). The UniFrac PCoA for Site 
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15470 pine samples explained 91% of variance in the data, and Axis 1 showed distance 

from the shipwreck explained 78.26% of variance (Figure A.41).  

The UniFrac PCoA for Site 15711 oak samples explained 62% of the variance in 

the data and showed distance groupings primarily along Axis 1, which revealed distance 

from the shipwreck explained 38% of variance (Figure A.42). The UniFrac PCoA for Site 

15470 oak samples explains 86% of variance in the data, and Axis 1 revealed distance 

from the shipwreck explained 69.56% of variance (Figure A.43).  

OTUs with representation greater than 1% relative abundance of the total 

community were selected to visualize which OTUs were most abundant at different 

distances from the shipwreck (Figure A.44). For Site 15711 pine and oak samples, one 

OTU, Ca. Nitrospumilus, dominated sequence relative abundance for all sample groups 

(average of all distance categories 49% for pine and 55% for oak). For Site 15470 pine 

and oak samples, both Ca. Nitrospumilus (average of all distance categories 25% for pine 

and 34% for oak) and an ambiguous taxon from Nitrospumilaceae (average of all 

distance categories 19% for pine and 21% for oak) dominated sequence relative 

abundance. Since the two most abundant OTUs, Ca. Nitrospumilus and 

Nitrospumilaceae, are of a group known to be ubiquitous in both marine sediments 

(Overholt et al., 2019) and the water column (Tolar et al., 2020), and were dominating 

the visual representation of the archaeal community, they were removed from all plots to 

better view the remainder of the community (Figure A.45). Three OTUs of Crenarcheota 

found in pine samples had variable abundances across the transects. 

Bathyarchaeia(uncultured archaeon) peaked at intermediate distances for  15711 pine, but 

another OTU from the group labeled as Bathyarchaeia declined . This trend was reversed 
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for 15711 oak as Bathyarchaeia(uncultured archaeon) declined and Bathyarchaeia peaked 

at intermediate distances. Euryarchaeota Marine Group II peaked at intermediate 

distances for pine samples at both sites but peaked at the closer distances for oak samples 

at both sites. Another ambiguous taxon from Euryarchaeota Marine Group II also peaked 

at intermediate distances for oak samples, and to some extent, pine samples. 

Thaumarcheota Nitrospumilaceae peaked at intermediate distances for all sites and wood 

types except 15711 oak samples. In 15711 oak samples, it was not found in the samples 

from 0-24 m, then declined for samples from 75-99 m. An ambiguous taxon from 

Thaumarcheota Nitrospumilaceae declined at intermediate distances for both pine and 

oak at Site 15470.  

2.3.4 Community Structure and Phylogenetic Composition of Fungi  

 The nMDS for fungi at both sites showed an ordination of fungal samples that 

was not clearly explained by wood type (Figure A.46), site, or distance (Figure A.47). 

The majority of samples from both sites formed one large group with samples from both 

wood types and all distances. The samples outside of this group also represented both 

sites and wood types and varying distances. PERMANOVA results, revealed that neither 

site, distance, nor wood type are significant structuring features on fungal biofilm 

composition (Table A.11, p > 0.05). This was also the case when sites were visualized 

separately (data not shown).  

The nMDS analysis of fungi from all sites, including GoM-SCHEMA sites Mica 

and Ewing Bank, also did not reveal any patterns for site, wood type, or distance (Figure 

A.48). However, the PERMANOVA indicated that site is significant (Table A.12, p < 

0.05). 
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The UniFrac ordination for both sites and wood types explains 50.65% of 

variance in the data (Figure A.49). The UniFrac PCoA showed mainly a large cluster 

with samples, but some samples, especially 0-24 m, 25-49 m, and 75-99 m, were found 

on the outside of this larger cluster. When the UniFrac is labeled by wood type, it 

appeared that the separation along both Axes 1 and 2 were driven in part by wood type, 

but also by distance from the shipwreck (Figure A.50). A PERMANOVA on the UniFrac 

results indicated all three factors are significant, with site closely followed by wood type 

as the most significant factor (p < 0.05, Table A.13). 

The UniFrac PCoA for Site 15711 pine samples explained 68% of the variance in 

the data, but no one axis had a much higher percentage (Figure A.51). Distance groupings 

appeared to be along both Axis 1 and Axis 2. The UniFrac PCoA for Site 15470 pine 

explained 75.2% of the variance, and distance groupings along Axis 1 showed 42.26% of 

the variance was explained by distance from the shipwreck (Figure A.52).  

The UniFrac PCoA for Site 15711 oak samples explained 76.6% of the variance, 

and Axis 1 showed 40.58% was explained by distance from the shipwreck (Figure A.53). 

The UniFrac PCoA for Site 15470 oak samples explained 87.6% of the variance, and 

Axis 1 showed 43.56% was attributed to distance from the shipwreck (Figure A.54). 

OTUs with representation greater than 1% relative abundance of the total 

community were selected to visualize which OTUs were most abundant at different 

distances from the shipwreck (Figure A.55). The majority of fungal OTUs were not 

assigned taxonomic classifications (average of unassigned OTUs in all samples of 89%). 

Ascomycota was found in variable abundances across transects regardless of site or wood 

type. For 15711 pine, it peaked at 75-99 m, for 15711 oak it peaked at 0-24, for 15470 
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pine it peaked at 175-200 m, and for 15470 oak it peaked greatly at 75-99 m. Ascomycota 

Tetrapisispora peaked at the farthest distance from the shipwreck for 15711 pine and at 

the closest distance for 15711 oak. It had variable abundances across the transect for both 

wood types at Site 15470 but declined at intermediate distances. Basidomycota 

Agaricomycetes abundance peaked at intermediate distances for pine samples from both 

sites but declined at intermediate distances for oak samples at both sites. Basidiomycota 

Agaricales peaked at 0-24 m for 15711 pine and 15470 oak and peaked at 75-99 m for 

15470 pine. Glomeromycota Rhizophagus clarus had a peak at 75-99 m for 15711 oak 

samples. This OTU dominated sequence relative abundance at 100-124 m and 124-149 m 

categories for 15470 oak samples. It was also seen in high abundances at 0-24 m and 25-

49 m categories for 15470 pine samples and dominated sequence relative abundance at 

124-149 m for this site and wood type.  

2.4 Discussion  

The main focus of this work was to determine how proximity to shipwrecks 

influenced diversity, richness, and phylogenetic composition of biofilms formed on 

wood. In terms of diversity and richness, this study shows that both do change as a 

function of distance from both Site 15711 and 15470 for bacteria and archaea. However, 

the same trends are not seen for diversity and richness, or for each site. 

While not always statistically significant, diversity consistently exhibits a 

negative trend for Site 15470 for bacteria and archaea. However, richness consistently 

exhibits a negative trend for bacteria and archaea at both sites. Richness and diversity 

also both have a secondary peak at ~125 m away from the shipwreck for several sites and 

wood types. Richness being more consistent and richness and diversity exhibiting a 
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secondary peak may be due to the presence of an ecotone. An ecotone is a convergence 

zone between two ecosystems that connects them along an environmental gradient, and it 

can function as a diversity hotspot (Levin et al., 2016). If the shipwreck ecosystem 

converging with the background deep-sea ecosystem creates an ecotone, there will be a 

higher diversity and richness of organisms here because there are phylotypes present 

from both types of ecosystems. Since the Shannon Diversity index takes into account 

relative abundance, evenness, and richness, the diversity score may be masking the 

richness trend seen, due to the increased diversity when reaching the ecotone. The 

secondary peak of both richness and diversity at 125 m indicates this is where the 

convergence zone, or ecotone, between the shipwreck environment and the surrounding 

ambient deep-sea environment is found. The presence of an ecotone is evidence that the 

shipwreck has its own diverse community that is different from the background habitat 

and is thus functioning as an island-like system, and that microorganisms dispersing from 

the shipwreck are using the introduced wood as dispersal stepping stones to reach the 

background environment.  

The overall pattern of decreasing diversity and richness is more evident at Site 

15470 for both bacteria and archaea as, overall, there are more significant and negative 

trends (3 for diversity, 3 for richness) seen here than at Site 15711 (1 for richness). The 

two sites are separated by 111 km of seafloor and 1275 m of vertical depth. Both location 

and depth are important factors driving marine sediment community composition 

(Kallmeyer et al., 2012, Hoshino et al., 2020), and thus these may also influence biofilm 

composition. Site 15711 is nearer to the coast and to discharge from the Mississippi River 

which is also known to influence community composition (Mason et al., 2016, Sánchez-
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Soto et al., 2018). Since Site 15711 is only 76 km from the Mississippi River delta, it is 

likely that this site recieves more nutrient and carbon deposition relative to 15470. It is, 

therefore, also likely that 15711 has higher rates of immigration because of its proximity 

to a source of new taxa, or a “mainland” in the terms of TIB. If the immigration remains 

high, is connected to a ‘mainland’ source, and does not equal the extinction rate on the 

proposed shipwreck island, the distance effect created by organisms dispersing from the 

shipwreck would not be as evident as would be seen at an island further from the 

mainland and at equilibrium. Since Site 15470 is in deeper, more oligotrophic waters 

further from the mainland source of taxa, it is more likely to be at equilibrium and 

therefore exhibit the stronger distance effect. The increased nutrient availibilty at Site 

15711 can also be thought of in terms of island-size. A larger island has higher species 

richness because it has more resources. In this case, while 15711 is not actually larger, it 

does have more resources and thus could have more species richness than 15470.  

To summarize the findings for diversity and richness in this study, the differences 

in richness and diversity trends and the secondary peaks in richness and diversity seen at 

125 m reflect an ecotone being present between the shipwreck and background 

environment, which is an indication of the shipwrecks functioning as islands and as 

dispersal stepping stones. However, the extent to which a distance effect may be seen for 

a shipwreck functioning as an island is influenced by its geographic location in proximity 

to a source of taxa and nutrients. In conclusion, while differences in richness and 

diversity and between sites are seen, these results indicate both diversity and richness 

change as a function of distance from a shipwreck. 
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 In addition to diversity and richness, this study also investigated how community 

composition of biofilms on wood was influenced by proximity to a shipwreck. This was 

done in 3 ways: UniFrac PCoAs, PERMANOVAs on the UniFrac distance matrix results, 

and taxonomic bar plots. These results showed that community composition is affected 

by site location, type of wood used, and proximity to a shipwreck.  

 The differences in geographic location between sites explained above can explain 

the statistically significant effect of site in structuring the communities of all three 

domains observed in this study. Geographic location has been found to be important in 

wood associated bacterial communities before as a study by Ristova et al. found that 

sunken wood communities were more similar within one geographic location than 

between different seas (Ristova et al., 2017). However, studies that take wood type into 

account show it to be a strong influence on bacterial communities, and more important in 

bacterial community composition than geographic location or depth (Palacios et al., 

2009, Fagervold et al., 2012, Kalenitchenko et al., 2015). An important finding of the 

current study is that wood type is a selective force on phylogenetic composition for 

bacteria, archaea, and fungi. Wood type is a selective force on all communities, but it is 

not as strong as a driver for archaeal or fungal communities as site is. Therefore, the 

wood type results of this study for bacteria are in line with previous studies, but the 

results also show that wood type does matter, if to a lesser extent than geographic 

location, to archaeal and fungal communities.  

 Along with wood type, proximity to historic wooden shipwrecks also shaped the 

community composition of biofilms on wood for all three domains. The OTU richness – 

extinction curves show that there is evidence of an island effect surrounding the two 
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shipwrecks studied. This indicated that the shipwrecks are a source of taxa to biofilms on 

other wood surfaces, and thus shape dispersal of the seabed. This feature can also be 

viewed through the lens of changes to phylogenetic composition and help explore if 

members of the community use shipwrecks as wooden steps to facilitate their evolution. 

Previous studies have shown specific phylotypes have an affinity for forming biofilms on 

different types of sunken marine wood (Palacios et al., 2009, Fagervold et al., 2012, 

Kalenitchenko et al., 2015). The order Myxococcales has been found in association with 

sunken pine submerged for 20 months in the South Pacific (Fagervold et al., 2012). In the 

current study, one OTU associated with the Myxococcales (Blrii41) was abundant, in 

most samples, but changed in abundance as an apparent function of distance. To visualize 

these changes across distances, a taxonomic bar plot containing this OTU, along with 

other Myxococcales found in the study that were not present in the top 25 most relative 

abundant OTUs, was created (Figure A.56). This figure depicts both Sites 15711 and 

15470 combined; the only separation is wood type. The abundance for Myxococcales 

Blrii41 on pine begins at 5% for 0-24 m, peaks at 20% and 19% for 50-74 m and 75-99 

m, respectively, and ends at 8% for 175-200 m samples. This pattern of peak abundance 

at intermediate distances is also seen in oak, but in lower abundances. For oak, the OTUs 

abundance begins at 1.5% for 0-24 m, peaks at 4.5% and 5% for 50-74 m and 75-99 m, 

respectively, and ends at 0.7% for 175-200 m samples. There are other OTUs in this 

study for all three domains that exhibit this pattern of peak abundance at intermediate 

distances and are in groups known to be associated with marine submerged wood. For 

bacteria this also includes Rhodobacteraceae on oak samples (Kalenitchenko et al., 

2015). For archaea this includes Euryarcheaota Marine Group II (2 OTUs) and 
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Thaumarchaeota Nitrospumilaceae for pine and oak samples (Fagervold et al., 2012, 

Kalenitchenko et al., 2015). For fungi this includes Basidiomycota Agaricomycetes for 

pine samples (Pedersen, 2020). There are 3 scenarios that could lead to this peak in 

abundance at intermediate distances: (1) fluid dynamics leading to a chance encounter, 

(2) microorganisms sourcing from the sediment microbiome, and (3) dilution of 

microorganisms resulting in less competition at intermediate distances allowing for more 

wood associated taxa to survive.  

 The first scenario involves fluid dynamics around the shipwreck creating more 

dispersal of microorganisms to intermediate distances. In Chapter I, Acoustic Doppler 

Current Profiler data was presented that indicated there was no prevailing current 

direction at Site 15711 during the deployment time of the experiments. At Site 15470, 

there was a prevailing Southward current, but other West to Southwest currents were also 

frequently occurring. These heterogeneous current directions in all directions could cause 

MREs closer to the shipwreck to receive less taxa than those at intermediate distances. 

The currents cause more wood associated taxa to be carried from the shipwreck to the 

MREs at intermediate distances. This is the least likely scenario as it relies mainly on a 

chance encounter, but because of the various currents at the sites, cannot be ruled out.  

 The second scenario involves microorganisms at intermediate distances sourcing 

from the sediment more than at other distances. In Chapter I, SourceTracker2 results 

were presented that revealed sediment was a source to biofilms, particularly for archaea. 

For Site 15711, bacteria and archaea proportion estimates for sediment peaked at 

intermediate distances. Site 15470 sediment proportion estimates were more variable but 

did peak at intermediate distances for 15470 pine bacteria. If the sediment was a greater 
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source at intermediate distances, there would be a greater abundance of taxa at those 

distances as well. However, if this was the case, the taxa at the intermediate distances 

would not necessarily be wood associated. Those taxa associated specifically with wood 

would be expected to be in higher abundances at the MRE closest to the main wood 

source (the shipwreck) than at an intermediate distance from it. Since we see the peak 

abundance at intermediate distances for taxa known to be associated with wood as well, 

the sediment as a source does not explain the full story.  

 The third scenario involves dilution of microorganisms resulting in less 

competition at intermediate distances allowing for taxa more suited to utilizing wood to 

thrive there. This study has shown through OTU richness – extinction curves that there is 

evidence of an island effect surrounding the two shipwrecks and the richness of 

organisms decreases as a function of distance. Therefore, as distance from the shipwreck 

increases, competition on the wood surfaces decreases. This decreasing competition 

allows the microorganisms better suited to utilizing wood to thrive in the environment. 

However, eventually they will be diluted, too. So, at close distances to the shipwreck they 

are less abundant due to competition, they peak at intermediate distances where there’s 

less competition and thus more resources and are diluted to lesser abundances at greater 

distances. This finding comes back to Baas-Becking’s statement from 1934, “Everything 

is everywhere, but the environment selects” (Bass-Becking, 1934). All OTUs are still 

present at the intermediate distances, but the environment has selected for those taxa that 

are best suited to it. The microorganisms are using the wood as stepping stones, but they 

are not stepping in isolation. It takes an amount of distance from the source of taxa to 

optimize the concentration of the wood associated taxa relative to the concentration of all 
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taxa. The abundances change across distances as the environment selects for these taxa. 

In order to be selected, microbes will need to diversify and change, and the wooden 

stepping stones provides them a link to do so (Distel et al., 2017). Wooden shipwrecks 

could function in this same way. Their presence on the seafloor provides microorganisms 

with a stepping stone between two environments.  

 To summarize community composition results of this study, the proximity of the 

shipwreck to a mainland source of taxa and wood type of the shipwreck will affect the 

microbiome of the shipwreck and will influence community composition to a different 

extent for different domains. Wood type is a stronger driver than location for bacteria. 

While not as strong as location, wood type is a driver for archaeal and fungal biofilm 

communities. The community composition of biofilms on marine submerged wood also 

changes as a function of distance from the shipwreck for all three domains. The pattern of 

peak abundance at intermediate distances for wood associated taxa indicates that the 

environment does select for taxa best suited to it, and that those taxa could use wooden 

shipwrecks as a stepping stone between environments.  

The combined diversity, richness, and community composition results of this 

study indicate that wood colonizing microbiomes are impacted by historic wooden 

shipwrecks. Therefore, proximity to these anthropogenic structures should be considered 

in studies of marine microbial biogeography.  
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APPENDIX A – Tables and Figures 

Table A.1 PERMANOVA conducted on Bray-Curtis similarity matrix of bacteria samples 

from Sites 15711 and 15470.  

Source 

Degrees 
of 

Freedom 
Sum of 
Squares 

Mean 
Sum of 
Squares Pseudo-F 

significance 
(⍴) 

Unique 
Permutations 

Site 1 37910 37910 65.629 0.001 999 
Wood Type 1 47405 47405 82.066 0.001 998 
Distance 
Category 6 2.53E+03 2532.8 4.3847 0.001 995 
Residuals 112 64696 577.64    

Total  135 2.0059E+o5         
 

Permutational multivariate analysis of variance (PERMANOVA) conducted on bacteria 16s samples to determine differences in 

community similarity based on site, wood type, and proximity to a shipwreck (distance category). PERMANOVA was run using Type 

I (sequential) sum of squares, fixed effects summed to zero with permutation of residuals under a reduced model and 999 

permutations. 
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Table A.2 PERMANOVA conducted on Bray-Curtis similarity matrix of bacteria samples 

from Site 15711. 

Source 

Degrees 
of 

Freedom 
Sum of 
Squares 

Mean 
Sum of 
Squares Pseudo-F 

significance 
(⍴) 

Unique 
Permutations 

Transect 1 1387.3 1387.3 3.0323 0.007 999 
Wood Type 1 35909 35909 78.487 0.001 999 
Distance 
Category 4 8.60E+03 2150 4.6992 0.001 998 
Residuals 54 24706 457.52    

Total  71 8.11E+04         
 

 

Permutational multivariate analysis of variance (PERMANOVA) conducted on bacteria 16s samples to determine differences in 

community similarity based on wood type, proximity to Site 15711, and transect position. PERMANOVA was run using Type I 

(sequential) sum of squares, fixed effects summed to zero with permutation of residuals under a reduced model and 999 permutations. 
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Table A.3 PERMANOVA conducted on Bray-Curtis similarity matrix of bacteria samples 

from Site 15470.  

Source 

Degrees 
of 

Freedom 
Sum of 
Squares 

Mean 
Sum of 
Squares Pseudo-F 

significance 
(⍴) 

Unique 
Permutations 

Transect 1 3207.8 3207.8 5.6312 0.001 999 
Wood Type 1 32981 32981 57.896 0.001 999 
Distance 
Category 5 8.14E+05 1628.3 2.8584 0.001 998 
Residuals 50 28483 569.66    

Total  63 7.97E+04         
 

Permutational multivariate analysis of variance (PERMANOVA) conducted on bacteria 16s samples to determine differences in 

community similarity based on wood type, proximity to Site 15470, and transect position. PERMANOVA was run using Type I 

(sequential) sum of squares, fixed effects summed to zero with permutation of residuals under a reduced model and 999 permutations. 
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Table A.4 PERMANOVA conducted on Bray-Curtis similarity matrix of bacteria samples 

from Sites 15711 and 15470 and Mica and Ewing Bank.  

Source 

Degrees 
of 

Freedom 
Sum of 
Squares 

Mean 
Sum of 
Squares Pseudo-F 

significance 
(⍴) 

Unique 
Permutations 

Site 3 52396 17465 31.555 0.001 999 
Wood Type 1 43930 43930 79.372 0.001 998 
Distance 
Category 6 2.50E+03 2498.4 4.5139 0.001 997 
Residuals 120 66417 553.48    

Total  147 2.21E+05         
 

Permutational multivariate analysis of variance (PERMANOVA) conducted on biofilm samples to determine differences in bacteria 

microbiome community similarity based on site, wood type and proximity to a shipwreck (distance category). PERMANOVA was run 

using Type I (sequential) sum of squares, fixed effects summed to zero with permutation of residuals under a reduced model and 999 

permutations. 
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Table A.5 PERMANOVA conducted on UNIFRAC distance matrix of bacteria samples 

from Sites 15711 and 15470.  

Source Pseudo-F significance (⍴) Unique Permutations 

Site 28.4395 0.001 999 

Wood Type 46.747 0.001 999 

Distance Category 3.13531 0.001 999 
 

Permutational multivariate analysis of variance (PERMANOVA) conducted on a UNIFRAC distance matrix of bacterial biofilm 

samples to determine differences in bacteria microbiome community similarity based on site, wood type and proximity to a shipwreck 

(distance category).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

53 

Table A.6 PERMANOVA conducted on Bray-Curtis similarity matrix of archaea samples 

from Sites 15711 and 15470.  

Source 

Degrees 
of 

Freedom 
Sum of 
Squares 

Mean 
Sum of 
Squares Pseudo-F 

significance 
(⍴) 

Unique 
Permutations 

Site 1 18567 18567 31.857 0.001 999 
Wood Type 1 926.27 926.27 1.5892 0.185 998 
Distance 
Category 6 3.17E+04 5290.5 9.0772 0.001 998 
Residuals 80 46627 582.84    

Total  102 1.17E+05         
 

Permutational multivariate analysis of variance (PERMANOVA) conducted on archaea 16s samples to determine differences in 

community similarity based on site, wood type, and proximity to a shipwreck (distance category). PERMANOVA was run using Type 

I (sequential) sum of squares, fixed effects summed to zero with permutation of residuals under a reduced model and 999 

permutations. 
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Table A.7 PERMANOVA conducted on Bray-Curtis similarity matrix of archaea samples 

from Site 15711.  

Source 

Degrees 
of 

Freedom 
Sum of 
Squares 

Mean 
Sum of 
Squares Pseudo-F 

significance 
(⍴) 

Unique 
Permutations 

Transect 1 1861.6 1861.6 1.7151 0.128 999 
Wood Type 1 1193.8 2293.8 2.1132 0.067 998 
Distance 
Category 4 8.27E+03 2067.7 1.9049 0.025 998 
Residuals 38 41247 1085.4    

Total  54 6.46E+04         
 

Permutational multivariate analysis of variance (PERMANOVA) conducted on archaea 16s samples to determine differences in 

community similarity based on wood type, proximity to Site 15711, and transect position. PERMANOVA was run using Type I 

(sequential) sum of squares, fixed effects summed to zero with permutation of residuals under a reduced model and 999 permutations. 
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Table A.8 PERMANOVA conducted on Bray-Curtis similarity matrix of archaea samples 

from Site 15470.  

Source 

Degrees 
of 

Freedom 
Sum of 
Squares 

Mean Sum 
of Squares Pseudo-F 

significance 
(⍴) 

Unique 
Permutations 

Transect 1 4466.3 4466.3 11.615 0.001 999 
Wood Type 1 1397.2 1397.2 3.6335 0.02 999 
Distance 
Category 5 31417 6.28E+03 16.341 0.001 999 
Residuals 35 13458 384.52    

Total  47           
 

Permutational multivariate analysis of variance (PERMANOVA) conducted on archaea 16s samples to determine differences in 

community similarity based on wood type, proximity to Site 15470, and transect position. PERMANOVA was run using Type I 

(sequential) sum of squares, fixed effects summed to zero with permutation of residuals under a reduced model and 999 permutations. 
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Table A.9 PERMANOVA conducted on Bray-Curtis similarity matrix of archaea samples 

from Sites 15711 and 15470 and Mica and Ewing Bank.  

Source 

Degrees 
of 

Freedom 
Sum of 
Squares 

Mean 
Sum of 
Squares Pseudo-F 

significance 
(⍴) 

Unique 
Permutations 

Site 3 21888 7295.9 11.437 0.001 998 
Wood Type 1 165.3 265.3 0.41586 0.702 998 
Distance 
Category 6 3.17E+04 5280.3 8.277 0.001 998 
Residuals 87 55502 637.95    

Total  113 1.33E+05         
 

Permutational multivariate analysis of variance (PERMANOVA) conducted on archaea biofilm samples to determine differences in 

community similarity based on site, wood type, and proximity to a shipwreck (distance category). PERMANOVA was run using Type 

I (sequential) sum of squares, fixed effects summed to zero with permutation of residuals under a reduced model and 999 

permutations. 
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Table A.10 PERMANOVA conducted on UNIFRAC distance matrix of archaea samples 

from Sites 15711 and 15470. 

Source Pseudo-F significance (⍴) Unique Permutations 

Site 31.9512 0.001 999 

Wood Type 4.31825 0.002 999 

Distance Category 2.22786 0.001 999 
 

Permutational multivariate analysis of variance (PERMANOVA) conducted on a UNIFRAC distance matrix of bacterial biofilm 

samples to determine differences in archaea microbiome community similarity based on site, wood type and proximity to a shipwreck 

(distance category).  
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Table A.11 PERMANOVA conducted on Bray-Curtis similarity matrix of fungi samples 

from Sites 15711 and 15470.  

Source 

Degrees 
of 

Freedom 
Sum of 
Squares 

Mean 
Sum of 
Squares Pseudo-F 

significance 
(⍴) 

Unique 
Permutations 

Site 1 988.12 988.12 2.5705 0.051 999 
Wood Type 1 705.98 705.98 1.8365 0.122 999 
Distance 
Category 6 3.73E+03 621.13 1.6158 0.072 999 
Residuals 84 32291 384.42    

Total  107 4.69E+04         
 

Permutational multivariate analysis of variance (PERMANOVA) conducted on fungal biofilm samples to determine differences in 

community similarity based on site, wood type, and proximity to a shipwreck (distance category). PERMANOVA was run using Type 

I (sequential) sum of squares, fixed effects summed to zero with permutation of residuals under a reduced model and 999 

permutations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

59 

Table A.12 PERMANOVA conducted on Bray-Curtis similarity matrix of fungi samples 

from Sites 15711 and 15470 and Mica and Ewing Bank.  

Source 

Degrees 
of 

Freedom 
Sum of 
Squares 

Mean 
Sum of 
Squares Pseudo-F 

significance 
(⍴) 

Unique 
Permutations 

Site 3 9425.6 3141.9 7.2207 0.001 999 
Wood Type 1 887.73 887.73 2.0402 0.094 999 
Distance 
Category 6 3.66E+03 610.24 1.4025 0.145 998 
Residuals 89 38726 435.12    

Total  116 6.54E+04         
 

Permutational multivariate analysis of variance (PERMANOVA) conducted on fungal biofilm samples from Sites 15711 and 15470 

and Mica and Ewing Bank to determine differences in community similarity based on site, and proximity to a shipwreck (distance 

category). PERMANOVA was run using Type I (sequential) sum of squares, fixed effects summed to zero with permutation of 

residuals under a reduced model and 999 permutations. 
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Table A.13 PERMANOVA conducted on UNIFRAC distance matrix of fungi samples 

from Sites 15711 and 15470. 

Source Pseudo-F significance (⍴) Unique Permutations 

Site 9.57768 0.001 999 

Wood Type 8.67313 0.001 999 

Distance Category 1.68039 0.006 999 
 

 Permutational multivariate analysis of variance (PERMANOVA) conducted on a UNIFRAC distance matrix of bacterial biofilm 

samples to determine differences in fungal microbiome community similarity based on site, wood type and proximity to a shipwreck 

(distance category).  
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Figure A.1 Site Map  

Map depicts location of Sites 15711 and 15470 described in Chapter One. Sites Ewing Bank and Mica will be described in Chapter 

Two.  

 

 

 

 

 

 



 

62 

  

Figure A.2 Diagram of an MRE 

A. Diagram of an MRE: (A) cover (B) sample holder (C) knot attaching cover to sample holder (D) syntactic foam (E) 1.25-in holes 

(F) cleat (G) knot determining cover floating height (H) lines connecting MREs. B. Actual MRE deployed on the seafloor. 
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Figure A.3 MRE array placed in cradle  

The cradle is bolted to the ROV for deployment.  
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Figure A.4 MRE deployment by ROV 

A. Diagram of lander and MRE deployment (A) ROV tether (B) ROV (C) lander (D) ADCP (E) MREs in cradle attached to ROV (F) 

sacrificial weights (G) ROV navigates to lander drop zone and releases lander (H) ROV travels along the transect and MREs are 

deployed (I) ROV returns to ship. B. Actual ROV prepped for deployment. 
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Figure A.5 Transects at Site 15470 

The ADCP was located on Lander 2. Red arrows indicate the directions of prevailing currents. 
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Figure A.6 Transects at Site 15711 

ADCP was located on Lander 2.  
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Figure A.7 Bacteria SourceTracker2 Proportion Estimates 

SourceTracker2 analyses were conducted on each site and wood type separately. Bacteria biofilms were treated as a sink community 

while sediment and water were treated as a source community. Results are reported as proportion estimates. Water proportion 

estimates were not reported in any of the bacteria analyses.  
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Figure A.8 Bacteria SourceTracker2 proportion estimates for sediment only 

The unknown sources bar was removed in order to visualize the sediment proportion estimates for bacteria more closely.  
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Figure A.9 Archaea SourceTracker2 proportion estimates 

SourceTracker2 analyses were conducted on each site and wood type separately. Archaea biofilms were treated as a sink community 

while sediment and water were treated as source communities. Results are reported as proportion estimates.  
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Figure A.10 Archaea SourceTracker2 proportion estimates for sediment and water only 

Asterisk denotes the scale for Site 15711 is different from that of Site 15470. The unknown sources bar was removed in order to 

visualize the sediment and water proportion estimates for archaea more closely. 
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Figure A.11 Acoustic Doppler Current Profiler data from Site 15711 

A. Speed of current in mm/s at depths 540 m to 560 m from June 30, 2019 to November 12, 2019. B. Direction of the current at depths 

540 m to 560 m for the same time period. 
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Figure A.12 Acoustic Doppler Current Profiler data from Site 15470 

A. Speed of current in mm/s at depths 1520 m to 1530 m from July 1, 2019 to November 14, 2019. B. Direction of the current at 

depths 1520 m to 1530 m for the same time period.
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Figure A.13 Bacteria Shannon Diversity for Sites 15711 and 15470.  

Shannon diversity of 16s rRNA bacteria reveals diversity does significantly decrease as a function of distance from the shipwreck for 

Site 15470 pine (p < 0.05). While not significant, the trends for oak at both sites are negative.  
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Figure A.14 Bacteria OTU Richness for Sites 15711 and 15470.  

OTU richness of 16s rRNA bacteria reveals richness does significantly decrease as a function of distance from the shipwreck for all 

sites and wood types except 15711 pine. Asterisk denotes statistical significance of p < 0.05. 

 



 

75 

     

Figure A.15 Archaea Shannon Diversity for Sites 15711 and 15470. 

Shannon diversity of 16s rRNA archaea reveals diversity does significantly decrease as a function of distance from the shipwreck at 

Site 15470 for both wood types. Shannon diversity at Site 15711 significantly increases with distance for pine samples and remains 

stable for oak samples. Asterisk denotes statistical significance of p < 0.05.  
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Figure A.16 Archaea Shannon Diversity and OTU richness for Site 15711 pine samples.  

16s rRNA for archaea at Site 15711 for pine samples are separated by transect to show there were many samples removed from 

transect 2 and only Shannon diversity for transect one is statistically significant (p < 0.05). 
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Figure A.17 Archaea OTU Richness for Sites 15711 and 15470.  

OTU richness of 16s rRNA archaea reveals richness does decrease as a function of distance from the shipwreck at Site 15470 for oak 

samples (p < 0.05). 
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Figure A.18 Fungi Shannon Diversity for Sites 15711 and 15470.  

Shannon diversity for ITS2 fungi show no significant relationships decreasing with decreased proximity to the shipwreck. Only 15711 

pine samples depict a significant relationship, and it shows an increase in diversity with decreased proximity. Asterisk denotes 

statistically significant relationship of p < 0.05.  
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Figure A.19 Fungi Shannon Diversity and OTU Richness for Site 15711 pine samples.  

Shannon diversity and OTU richness of ITS fungi for individual transects of Site 15711 pine samples do not reveal any significant 

relationships of one transect over the other. 
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Figure A.20 Fungi OTU Richness for Sites 15711 and 15470.  

OTU richness for ITS2 fungi does not reveal any significant relationships. 
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Figure A.21 Bacteria nMDS for Sites 15711 and 15470 labeled by wood type and site.  

nMDS of 16s rRNA bacteria depicts samples grouping out by wood type and site (label) at 60 percent Bray-Curtis similarity. Samples 

fall into four main groupings: Site 15470 pine, Site 15470 oak, Site 15711 pine, and Site 15711 oak.  
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Figure A.22 Bacteria nMDS for Sites 15711 and 15470 labeled by collapsed distances 

and site.  

nMDS of 16s rRNA bacteria depicts samples grouping out by wood type and site (label) at 60 percent Bray-Curtis similarity. Samples 

fall into four main groupings: Site 15470 pine, Site 15470 oak, Site 15711 pine, and Site 15711 oak.  
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Figure A.23 Bacteria nMDS for Site 15711.  

nMDS for 16s rRNA bacteria at Site 15711 at 60 percent Bray-Curtis similarity indicates strong grouping by wood type (label), but 

some distance groupings can be seen.  
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Figure A.24 Bacteria nMDS for Site 15470.  

nMDS for 16s rRNA bacteria at Site 15470 at 60 percent Bray-Curtis similarity indicates strong grouping by wood type (label), but 

some distance groupings can be seen. 
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Figure A.25 Bacteria nMDS for Sites 15711, 15470, Mica, and Ewing Bank. 

nMDS for 16s rRNA bacteria at all four sites at 60 percent Bray-Curtis similarity indicates GoM-SCHEMA sites grouping together 

despite wood type.  
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Figure A.26 UniFrac PCoA for bacteria from Sites 15711 and 15470 labeled by wood 

type.  

UniFrac PCoA reveals grouping by wood type. 
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Figure A.27 UniFrac PCoA for bacteria from Sites 15711 and 15470 labeled by distance 

category.  

UniFrac PCoA reveals grouping by distance category is driven by Axis 1.  
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Figure A.28 UniFrac PCoA for bacteria from Site 15711 pine samples. 

UniFrac PCoA reveals grouping by distance category is driven by Axis 1. 
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Figure A.29 UniFrac PCoA for bacteria from Site 15470 pine samples. 

UniFrac PCoA reveals grouping by distance category is driven by Axes 1 and 2.  
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Figure A.30 UniFrac PCoA for bacteria from Site 15711 oak samples. 

UniFrac PCoA reveals grouping by distance category is driven by Axis 1. 
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Figure A.31 UniFrac PCoA for bacteria from Site 15470 oak samples. 

UniFrac PCoA reveals grouping by distance category is driven by Axis 1. 
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Figure A.32 Top 25 most relative abundant bacterial OTUs at Level 7 classification for 

Sites 15711 and 15470.  
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Figure A.33 Archaea nMDS for Sites 15711 and 15470 labeled by wood type.  

nMDS of 16s rRNA archea depicts samples grouping out slightly by wood type within clusters.  
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Figure A.34 Archaea nMDS for Sites 15711 and 15470 labeled by collapsed distances.  

nMDS of 16s rRNA archaea at Sites 15711 and 15470 at 60 percent Bray-Curtis similarity depicts samples grouping out slightly by 

site (labels) and by distance category.
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Figure A.35 Archaea nMDS for Site 15711. 

nMDS of 16s rRNA archaea at Site 15711 at 60 percent Bray-Curtis similarity depicts samples grouping out by distance category.
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Figure A.36 Archaea nMDS for Site 15470.  

nMDS of 16s rRNA archaea at Site 15470 at 60 percent Bray-Curtis similarity depicts samples grouping out by distance category.
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Figure A.37 Archaea nMDS for Sites 15711, 15470, Mica and Ewing Bank.  

nMDS of 16s rRNA archaea for Sites 15711 and 15470 and Mica and Ewing Bank reveals samples from Mica and Ewing Bank in all 

clusters, including several in the left most one. 
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Figure A.38 UniFrac PCoA for archaea at Sites 15711 and 15470 labeled by collapsed 

distance.  

UniFrac PCoA reveals grouping by distance category along Axis 1.  
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Figure A.39 UniFrac PCoA for archaea both Sites 15711 and 15470 labeled by wood 

type.  

UniFrac PCoA reveals grouping by wood type along Axis 2.  
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Figure A.40 UniFrac PCoA for archaea at Site 15711 pine samples. 

UniFrac PCoA reveals grouping by distance category along Axis 1.  
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Figure A.41 UNIFRAC PCoA for archaea at Site 15470 for pine samples. 

UniFrac PCoA reveals grouping by distance category along Axis 1.  
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Figure A.42 UniFrac PCoA for archaea at Site 15711 oak samples. 

UniFrac PCoA reveals grouping by distance category along Axis 1.  
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Figure A.43 UNIFRAC PCoA for archaea at Site 15470 oak samples. 

UniFrac PCoA reveals grouping by distance category along Axis 1.  

  

 

 

  

 

 



 

104 

    

Figure A.44 OTUs with greater than 1% relative abundance of the total archaea 

community at Level 7 classification for Sites 15711 and 15470.  
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Figure A.45 OTUs with greater than 1% relative abundance of the total archaea 

community at Level 7 classification for Sites 15711 and 15470 with the top 2 most 

relatively abundant OTUs removed.  
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Figure A.46 Fungi nMDS for Sites 15711 and 15470 labeled by wood type.  

nMDS of ITS2 fungi for Sites 15711 and 15470 at 60 percent Bray-Curtis similarity reveal no patterns for site, wood type, or distance.  
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Figure A.47 Fungi nMDS for Sites 15711 and 15470 labeled by collapsed distances.  

nMDS of ITS2 fungi for Sites 15711 and 15470 at 60 percent Bray-Curtis similarity reveal no patterns for site, wood type, or distance.  
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Figure A.48 Fungi nMDS for Sites 15711 and 15470, Mica, and Ewing Bank.  

nMDS of ITS2 fungi for Sites 15711 and 15470 and Mica and Ewing Bank at 60 percent Bray-Curtis similarity reveal no patterns for 

site, wood type, or distance. 
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Figure A.49 UniFrac PCoA for fungi from Sites 15711 and 15470 labeled by distance 

category. 

UniFrac PCoA results reveal distance category groupings along Axes 1 and 2.  
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Figure A.50 UniFrac PCoA for fungi from Sites 15711 and 15470 labeled by wood type. 

UniFrac PCoA results reveal distance category groupings along Axis 2.  
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Figure A.51 UniFrac PCoA for fungi from Site 15711 pine samples. 

UniFrac PCoA results reveal distance category groupings along Axes 1 and 2.  
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Figure A.52 UniFrac PCoA for fungi from Site 15470 pine samples. 

UniFrac PCoA results reveal distance category groupings along Axis 1.  
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Figure A.53 UniFrac PCoA for fungi from Site 15711 oak samples. 

UniFrac PCoA results reveal distance category groupings along Axis 1.  
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Figure A.54 UniFrac PCoA for fungi from Site 15470 oak samples. 

UniFrac PCoA results reveal distance category groupings along Axis 1.  
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Figure A.55 OTUs with greater than 1% relative abundance of the total fungi community 

at Level 7 classification for Sites 15711 and 15470.  
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Figure A.56 Bacterial OTUs from the order Myxococcales. 
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