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ABSTRACT

Krylov Subspace Spectral (KSS) Methods have demonstrated to be highly scalable

methods for PDEs. However, a current limitation of these methods is the requirement of a

rectangular or box-shaped domain. Smooth Extension Embedding Methods (SEEM) use

fictitious domain methods to extend a general domain to a simple, rectangular or box-shaped

domain. This dissertation describes how these methods can be combined to extend the

applicability of KSS methods, while also providing a component-wise approach for solving

the systems of equations produced with SEEM.
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NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this text represents fairly standard mathematical and computational
usage. In many cases these fields tend to use different preferred notation to indicate the same
concept, and these have been reconciled to the extent possible, given the interdisciplinary
nature of the material. In particular, the notation for partial derivatives varies extensively,
and the notation used is chosen for stylistic convenience based on the application. While it
would be convenient to utilize a standard nomenclature for this important symbol, the many
alternatives currently in the published literature will continue to be utilized.

The blackboard fonts are used to denote standard sets of numbers: R for the field of real
numbers, C for the complex field, Z for the integers, and Q for the rationals. The capital
letters, A,B, · · · are used to denote matrices, including capital greek letters, e.g., Λ for a
diagnonal matrix. Functions which are denoted in boldface type typically represent vector
valued functions, and real valued functions usually are set in lower case roman or greek
letters. Caligraphic letters, e.g., V, are used to denote spaces such as V denoting a vector
space, H denoting a Hilbert space, or F denoting a general function space. Lower case
letters such as i, j,k, l,m,n and sometimes p and d are used to denote indices.

Vectors are typset in square brackets, e.g., [·], and matrices are typeset in parenthesese,
e.g., (·). In general the norms are typeset using double pairs of lines, e.g., || · ||, and the
abolute value of numbers is denoted using a single pairs of lines, e.g., | · |. Single pairs of
lines around matrices indicates the determinant of the matrix.

x



Chapter 1

INTRODUCTION

Consider the second-order boundary value problem,{
Au = f in Ω

Bu = g on Γ = ∂Ω
(1.1)

where A represents a second-order differential operator, such as the Laplace operator, and B

represents a boundary operator, such as the trace Dirichlet operator. In this boundary value
problem, Ω represents the general domain while Γ represents the boundary. There exists
numerical methods that are efficient and accurate when Ω is a simple domain, such as a
rectangular or box-shaped domain. These numerical methods, for instance, spectral methods,
are not directly applicable for a more complicated domain Ω. A different approach to these
intricate general domains, Ω, is to use a fictitious domain. Fictitious domain methods allow
the general domain, Ω, to be embedded into a simpler fictitious domain, B , which is larger
than the original general domain. The simpler domain, B, allows numerical methods, such
as spectral methods, to be easily implemented.

As with many approaches, there is a drawback with fictitious domain methods. The
original boundary value problem (BVP) is only defined on the general domain Ω. Since the
general domain has been embedded into a larger, simpler domain B, the general domain has
now become a proper subset of the fictitious domain B, (Ω⊂ B). As a result, the original
BVP, after spatial discretization, provides an underdetermined set of equations for unknowns
on the larger fictitious domain B. Some approaches extend the solutions, u, of the original
BVP to the underdetermined system resulting in discretizations not being able to accurately
approximate them. Other methods have approached this matter by smoothly extending
the BVP to the entire fictitious domain in such a way that the resulting system was no
longer underdetermined. This second approach introduces new difficulties of appropriately
extending the data while ensuring that the original BVP equations are satisfied, [4].

An alternative approach for extending the data to the fictitious domain comes from
a Smooth Extension Embedding Method (SEEM), which uses the BVP as a constraint
to ensure a smooth solution. Background of SEEM and more details of this process are
described in Section 2.1. While SEEM ensures a smooth solution within this fictitious
domain, the method used to solve the solution has several weaknesses. A drawback of this

1



method is the lack of scalability. As the number of grid points increases, the systems of
equations become ill-conditioned. These ill-conditioned systems of equations cause iterative
methods to converge slowly, while the overall computational expense increases substantially.
To avoid the drawbacks of solving the solution using the current method of SEEM, we
introduce Krylov Subspace Spectral (KSS) Methods. Background of KSS and further details
are given in Section 2.2. Using this method allows the systems of equations to be solved
with a component-wise approach. KSS methods have been proven to be highly scalable
on simple domains. With the benefits of SEEM properly extending a general domain to a
simple domain, we can broaden the applicability of KSS methods to general domains, while
also improving the scalability of SEEM.

2



Chapter 2

BACKGROUND

In order to extend the capability of KSS methods to general domains and improve the
scalability of SEEM, we need an understanding of the backgrounds of each method. In this
chapter, we will first discuss the background of SEEM and how this method extends general
domains to fictitious domains in such a way that a smooth solution is ensured using an
optimization problem. This smooth solution is important in order to apply spectral methods.
We will further discuss the spectral discretization process and how the optimization problem
reduces to the normal equation that will be used for approximating the solution. Next, we
will discuss the background of KSS methods and how solutions are approximated using a
component-wise approach.

2.1 Smooth Extension Embedding Method

The Smooth Extension Embedding Method (SEEM), by Daniel Agress [2], uses fictitious
domain methods with a different approach for smoothly extending the BVP. SEEM utilizes
the BVP as a constraint to ensure a smooth solution by minimizing the constrained optimiza-
tion problem defined on the entire fictitious domain B. Like many numerical methods, this
approach has its own limitations. While SEEM ensures that a smooth solution is chosen,
it requires the solution of the BVP to have a smooth extension to a rectangular domain
that includes the original domain. For simplification, the BVP from (1.1) is written as one
equation, Cu = b, where

C=

(
A

B

)
and b =

(
f
g

)
.

Given a smoothing norm ‖ · ‖S on B, we attempt to solve the following constrained opti-
mization problem

argmin{Cu=b}
1
2
‖u‖2

S. (2.1)

The operators A and B are left in their original form; the operators are only constrained
on their original domains Ω and Γ (∂Ω), respectively. The norm ‖ · ‖S on B is chosen to
enforce a smooth solution that satisfies the constraint. Since a smooth solution has been
selected, a spectral discretization can be used to approximate the solution with a high degree
of accuracy.

3



Since the solution can be approximated using spectral methods, we can now briefly
discuss the discretization process and solving the minimization problem. The fictitious
domain B is discretized by a Chebyshev grid Bm. It is important to note here the choice
of using a Chebyshev grid. The previous method of SEEM, [1], was implemented using a
Fourier series with a periodic extension. This approach allowed the use of the Fast Fourier
Transform (FFT) which made discretizations simple and was computationally efficient.
Although this method proved to effectively solve the BVP, it had a few drawbacks. The
first problem was due to the periodic extension of the BVP on [−π,π)d , where d is the
dimension. The original domain Ω occupied only a small fraction of the extended domain,
while the entire periodic domain was essential in order to smoothly extend the BVP into
a periodic function. Due to this, computational resources were wasted from solving the
extension on a much larger grid than required for the solution of the BVP. Another drawback
impacted the accuracy of the discretized solution due to the 2π-periodic extension of the
solution needing a larger optimization norm than the solution itself. In order to force the
extension to be periodic, the derivatives outside of the original domain were required to be
large. This requirement negatively affected the accuracy. These drawbacks were mitigated
when switched to a Chebyshev extension instead of a Fourier series. Using a Chebyshev
grid allows the extension to be on a non-periodic box where the domain B= [−1,1]d . Since
the extension is no longer on a periodic domain, much more of the original domain Ω is
included in the new domain B, which saves computational expense. Also, the optimization
norm used for the extension of the solution is not significantly larger than the norm for
the solution itself. This increases the accuracy of the discretized solution compared to the
method implementing the Fourier series. In [2], numerical experiments were performed
showing that the accuracy was equivalent on significantly smaller grids when compared with
the Fourier series discretizations. Lastly, it is relevant to mention the Chebyshev method
maintains the same efficiency of SEEM based on the Fourier method since the FFT can also
be used to carry out computations on the Chebyshev grid.

Now that we understand the purpose of the fictitious domain B being discretized using a
Chebyshev grid Bm, we can continue the brief dicussion of the discretization process. The
original domain Ω can be discretized as

Ω
m = Ω∩Bm,

with Ωm representing the interior points. The original boundary Γ can be discretized as

Γ
m = {y1, . . . ,yNΓ

m
},

with Γm representing the boundary points where NΓ
m is the number of boundary points. The

4



operators C and S are discretized as

Cm =

[
Am

Bm

]
and Sm. The interior discrete differential operator Am comes from discretizing the second
order differential operator A at the interior points Ωm. Bm is a discrete form of the boundary
operator B from discretizing at the boundary points Γm. Lastly, the matrix Sm represents a
discretization that approximates the smoothing norm S. In order to uphold the accuracy of
the method, spectral discretization is selected for these operators. The original minimization
problem (2.1) can now be represented using the previously discretized operators. After
dropping indexes for clarity, the optimization problem reduces to the following regularized
normal equation

u = S−1CT (CS−1CT )−1b. (2.2)

The linear system can now be efficiently approximated with chosen spectral methods. As will
be shown later in experiments, SEEM can be used to attain spectrally accurate methods that
work with general domains. The same can also be shown for general boundary conditions
and differential operators with constant or variable coefficients. The approach using SEEM
has a quite simple implementation, requiring only discretization of the BVP matrix C and
the regularizing norm S−1 on a rectangular grid.

2.1.1 Discretization of Domain

The use of Chebyshev polynomials discretized on the Chebyshev roots’ grid allows functions
to be approximated while maintaining spectral accuracy on the fictitious domain B. The
domain B is discretized by a regular grid Bm using Chebyshev roots, where the BVP is
posed in Ω⊆ [−1,1]d . Here, d represents the number of dimensions for general purpose.
The domain [−1,1]d is discretized by a product set of the Chebyshev grid Bm, given by

Bm =
{
(x1, . . . ,xd)

∣∣∣ xi ∈ Cm for 1≤ i≤ d
}
,

where
Cm =

{
cos
(

π
2k+1

2m

) ∣∣∣∣ 0≤ k ≤ m−1
}
.

The discretized interior, Ωm, is then defined as the points of the original domain Ω that
intersect with the discretized fictitious domain Bm, (Ωm = Ω∩Bm). The discretized interior
contains Nm

Ω
:= |Ωm| points. The discretized boundary, Γm, is defined by choosing equally

spaced points along the boundary Γ, creating a set Γm = {yi, . . . ,yNm
Γ
} where Nm

Γ
represents

the number of boundary points (Nm
Γ

:= |Γm| points). It is important to note that the boundary

5



points do not need to exist on the regular grid Bm but instead must be a portion of the
boundary Γ. Increasing the number of discretized points on the boundary improves the
accuracy, which leaves the choice of the density of the boundary points. However, the matrix
can become severely ill-conditioned if the regular grid cannot distingush the boundary points.
This occurs when the boundary points are spaced closer together than the regular Chebyshev
grid points, [2]. In the numerical results, m

2 boundary points are placed per unit length for
a two-dimensional problem. Figure 2.1 displays an example of a general domain, in this
case, a disc-shaped domain that has been embedded into a simpler, fictitious domain which
is then discretized using a Chebyshev grid.

Figure 2.1: Disc-Shaped Domain
The Chebyshev grid, Bm, is represented by the smaller black dots covering the entire
box. The solid orange line of the disc-shaped domain represents the boundary Γ where
{(r,θ)|r < 0.75}. The larger blue circles represent the discretized boundary or boundary
points, Γm. The interior points, Ωm, are represented by the red crosses where the Chebyshev
grid points lie inside the boundary.

2.1.2 Discretization of Differential Operators

Recall that we are solving a boundary value problem of the following form,{
Au = f in Ω

Bu = g on Γ
,

where SEEM uses the entire BVP as a system of constraints to an optimization problem over
the fictitious domain B. This approach requires the discrete solution to satisfy the discretized

6



interior differential equation and the discretized boundary condition. The discretized interior
differential equation corresponds to the discretization A of the operator A at the interior
points Ωm. The discretized boundary condition corresponds to the discretization B of the
operator B at the boundary points Γm. These discretizations are constructed in the setting of
the Chebyshev grid.

We first discuss the discretization of the interior differential operator A. The discretiza-
tion A is an Nm

Ω
×md matrix constructed from values over the entire Chebyshev grid Bm to

approximate the second order differential operator A at the interior points Ωm. Recall that
Nm

Ω
represents the number of interior points and d represents the dimension. Therefore, the

matrix A has as many rows as the number of interior points and as many columns as the
number of points in the Chebyshev grid Bm. The interior operator for a general second order
elliptic BVP has the following form,

Au =−ai juxix j +biuxi + cu.

The derivatives are evaluated using discrete differentiation matrices for a Chebyshev grid.
Next, we discuss the discretization of the boundary operator B. The discretization B is

an Nm
Γ
×md matrix constructed from values on the entire Chebyshev grid Bm to approximate

the boundary operator B at the boundary points Γm. Recall that Nm
Γ

represents the number
of boundary points. Therefore, the matrix B has as many rows as the number of boundary
points and as many columns as the number of points in the Chebyshev grid Bm. For some
smooth functions a and b defined on the boundary Γ (∂Ω), the boundary operator has the
following form

[B]i• = a(yi)δyi +b(yi)(δyi ◦O) ·νyi,

where yi is a point from the set of discretized boundary points, Γm = {yi, . . . ,yNm
Γ
}. The unit

outward pointing normal vector to Γ at the point yi is represented with νyi . The matrix B is
constructed by each row where the i-th row of B, denoted by i•, represents the evaluation
of the boundary condition at the i-th point of Γm. The spectral interpolation operators δy

and δy ◦O are used to evaluate the trace operator and the normal derivative on the boundary,
respectively. It is important to note that Dirichlet boundary conditions corresponds to a≡ 1
and b≡ 0, while a≡ 0 and b≡ 1 corresponds to Neumann boundary conditions.

2.1.3 Chebyshev Smoothing Norm

The smoothing or regularizing norm S in (2.1) is chosen so that it can be efficiently computed
on a Chebyshev grid. Implementing SEEM on a Chebyshev grid first requires defining the
operator D. By letting the operator D = M

[√
1− x2

]
◦ ∂

∂x , the Chebyshev polynomials
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satisfy the following eigenvalue equation

−D2Tj(x) = j2Tj(x).

The benefit of the eigenvalue equation is to make the matrix used to define the norm below
easily diagonalizable. This allows the norm to be readily computed and the inverse to be
quickly found. Therefore, we have the following smoothing norm

‖ · ‖2
Sp

=

∥∥∥∥∥
(

1−
d

∑
i=1

D2
i

)p/2

u

∥∥∥∥∥
2

L2

which uses the operator D along each dimension number i. Because of this, the smoothing
operator

S−1
p u = C−1 ◦M

[
(1+ |k|2)−p]◦Cu

can be applied efficiently. Here, C is the Chebyshev transform, (k)k∈Nd is the Chebyshev
frequency vector, or the degrees of the Chebyshev polynomial, and M[•] represents multi-
plication by the function. Similarly, given the Chebyshev grid Bm, the discrete Chebyshev
functions also satisfy a discrete eigenvalue equation

−D2
mTj(x•) = j2Tj(x•), j ∈ {0, . . . ,m−1},

where x• represents a vector of grid points. The discrete norm is defined in an analogous
way, resulting in the discrete smoothing operator

S−1
p u = C−1

m ◦M
[
(1+ |k•|2)−p

]
◦Cmu. (2.3)

Here, Cm is the discrete Chebyshev transform denoting the diagonalization of the operator
Sp from the eigenvalue equation, (k•)k∈{0,...,m−1}d is the discrete Chebyshev frequency
vector on the d-dimensional box Bm, and M[•] represents multiplication by the function or
entry-wise multiplication of vectors.

2.1.4 Previous Method for Solving

Recall the form of the solution in (2.2) for the BVP using SEEM

u = S−1CT (CS−1CT )−1b.

The previous approach used Preconditioned Conjugate Gradient Method (PCG). The linear
operators C, CT , and S−1 are easily implemented using the FFT which leads to fast com-
putation for iterative methods. The matrix CS−1CT is a symmetric positive definite matrix.
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A drawback of PCG is that the smoothing operator is very ill-conditioned for large grids,
which in return, requires good preconditioning. However, preconditioning is more effective
for lower order smoothers. PCG was chosen since it is an iterative solver which relies on the
implicit form of the linear operator. This choice allowed solving the system on a larger grid
than compared to the use of explicit matrices with a QR decomposition, [1].

2.2 Krylov Subspace Spectral Methods

We now introduce KSS methods in order to combine with and improve the approaches used
in SEEM. Unlike the current method implemented in SEEM, KSS methods use a component-
wise approach to compute matrix function-vector products such as the regularized normal
equation in (2.2). Beyond improving the scalabilty of SEEM with this component-wise
approach, the method used in SEEM for general domains extends the current capabilities of
KSS methods. KSS methods are highly scalable on a simple, rectangular domain. Using
the fictitious domain approach in SEEM allows KSS to expand its applicability for general
domains.

Consider the parabolic PDE on the interval (0, 2π),

ut +Lu = 0, t > 0, (2.4)

with initial data, u(x,0) = u0(x). L is a self-adjoint, positive definite, second-order differ-
ential operator. Using the spatial discretization of the parabolic PDE in (2.4), a system of
ODEs can be created. The resulting system of ODEs is as follows,

u′(t)+Au = 0,

with the initial condition, u(t0) = u0, coming from the initial data of the PDE. Both u(t) and
u0 are N-vectors, and A is an N×N matrix. The solution of the PDE can be approximated by
solving the previous system of ODEs, where u(t) = e−Atu0. After applying suitable initial
conditions and periodic boundary conditions, the solution is represented using a Fourier
series

u(x, t) =
1√
2π

∞

∑
ω=−∞

eiωxû(ω, t),

where the Fourier coefficients, û(ω, t), are given by

û(ω, t) =
〈

1√
2π

eiωx,u(x, t)
〉
=

1√
2π

∫ 2π

0
e−iωxu(x, t) dx

and the wave number of each Fourier component is represented by ω . Note that 〈., .〉
signifies the standard inner product of functions on (0,2π).
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The general approach of KSS methods is to approximate each Fourier coefficient inde-
pendently of each other. This approach allows a different approximation of the solution
operator e−L∆t that is tailored to best suit each Fourier coefficient of the solution. The
computed solution u(x, tn) at time tn = n∆t is given. Using the previous time-step, the
Fourier coefficients of the solution can be computed at time tn+1. Each Fourier coefficient is
given by

û(ω, tn+1) =

〈
1√
2π

eiωx,exp[−L∆t]u(x, tn)
〉
.

Spatial discretization of each Fourier coefficient at time tn+1 yields a bilinear form

uH f (A)v, (2.5)

where u and v are N-vectors on a uniform N-point grid. The vector u consists of the values
of 1√

2π
eiωx and the vector v consists of the values of u(x, tn). Also, f (λ ) = exp(−λ∆t) and

the matrix A comes from discretizing the operator L, where A = LN is an N×N symmetric
positive definite matrix.

2.2.1 Approximating Bilinear Forms

We now discuss how to approximate the bilinear form in (2.5) where the definitions provided
after this equation still hold. The matrix A has real positive eigenvalues

b = µ1 ≥ µ2 ≥ ·· · ≥ µN = a > 0,

and associated orthonormal eigenvectors q j, where j = 1, . . . ,N. As a result, uH f (A)v can
be rewritten in terms of its spectral decomposition,

uH f (A)v =
N

∑
j=1

f (µ j)uHq jqH
j v.

Previous research from Golub and Meurant [5, 6] allow us to express the bilinear form as a
Reimann-Stieltjes integral

uH f (A)v = I[ f ] =
∫ b

a
f (λ )dα(λ ),

where

α(λ ) =


0, if λ < a
∑

N
j=i α jβ j, if µi ≤ λ < µi−1 , α j = uHq j, β j = qH

j v.
∑

N
j=i α jβ j, if b≤ λ

Gaussian quadrature is used to approximate I[ f ], resulting in the following form

I[ f ] =
K

∑
j=1

ω j f (λ j)+R[ f ].
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The nodes λ j, j = 1, . . . ,K, and weights ω j, j = 1, . . . ,K, are obtained using the Lanczos
algorithm. When u and v are real vectors, this Gaussian quadrature rule is exact for
polynomials up to degree 2K−1. It can then be generalized to the complex case with the
appropriate complex conjugation.

Now, the case where u 6= v is considered. In this case, the weights are typically not
positive real numbers. As a result, the quadrature rule can numerically destabilize [3]. As
another option, the following block approach is considered [7],

[ u v ]H f (A)[ u v ].

The nodes and weights needed for the quadrature rule are acquired by applying the block
Lanczos algorithm:

X0 = 0, X1 = [ u v ] (QR factorization)
for j = 1,2, . . . ,K

V = AX j

M j = XH
j V

if j < K

R j =V −X j−1BH
j−1−X jM j

R j = X j+1B j (QR factorization)
end

end

The outcome of executing the block Lanczos algorithm is two 2×2 matrices, M j and B j,
where B j is upper triangular. Together these matrices form the block tridiagonal matrix, TK :

TK =


M1 BH

1
B1 M2 BH

2
. . . . . . . . .

BK−2 MK−1 BH
K−1

BK−1 MK

 . (2.6)

This matrix can be viewed as a matrix-valued Riemann Stieltjes integral∫ b

a
f (λ ) dµ(λ ) =

[
uH f (A)u uH f (A)v
vH f (A)u vH f (A)v

]
.

Let the following equations be defined as

E12 = [ e1 e2 ],
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X1 = [ u v ],

XK = [X1,X2, . . . ,XK].

Then, using the block approach,

[ u v ]H f (A)[ u v ]

= XH
1 f (A)X1

= EH
12XH

K f (A)XKE12

= EH
12 f (XH

K AXK)E12 + error (2.7)

where

TK = XH
K AXK

TK =UKΛKUH
K

TK =
2K

∑
j=1

λ ju juH
j

f (TK) =
2K

∑
j=1

f (λ j)u juH
j .

It is important to note that λ j is a scalar and by using f (TK), (2.7) can be rewritten as

EH
12 f (TK)E12 + error =

2K

∑
j=1

f (λ j)EH
12u juH

j E12 + error.

After setting v j =EH
12u j, where v j is a 2-vector, the following quadrature formula is obtained,

∫ b

a
f (λ ) dµ(λ ) =

2K

∑
j=1

f (λ j)v jvH
j + error . (2.8)

The block tridiagonal matrix, TK , produces the nodes and the weights required from (2.8).
The nodes are λ j and consist of the eigenvalues of TK . The "weights" are the 2 x 2 matrices
v jvH

j , where v j is a 2-vector containing the first two components of each eigenvector of TK .

2.2.2 Block KSS

The block KSS method for the parabolic PDE in (2.4) starts by first defining

R0 = [ êω un ] ,

12



where the first column in the matrix, êω , is a discretization of 1√
2π

eiωx and the second
column, un, is a discretization of the approximate solution u(x, t) at time tn = n∆t. The
second step is to compute the QR Factorization of R0,

R0 = X1(ω)B0(ω)

which then gives the output
X1(ω) = [ êω

un
ω

‖un
ω‖2

]

and
B0(ω) =

[
1 êH

ω un

0 ‖un
ω‖2

]
,

where
un

ω = un− êω êH
ω un = un− êω û(ω, tn). (2.9)

From this, the next step is to apply the block Lanczos algorithm to the matrix LN with initial
block X1(ω). The matrix LN comes from the discretization of L. This algorithm constructs
a block tridiagonal matrix TK (2.6). Every entry of TK is a function of ω . After that, at time
tn+1, each Fourier coefficient of the solution is approximated by

[ûn+1]ω = [B0(ω)HEH
12exp[−TK(ω)∆t]E12B0(ω)]12.

2.2.3 Asymptotic Analysis of Block Lanczos Iteration

The main idea behind KSS methods is computing each Fourier component of the solution
independently. This is done by using an approximation that is tailored to best suit the
Fourier component. From this, every component has a polynomial approximation that is
best suited for that specific component. These polynomials are approximations of S(LN ;∆t).
The function S is determined by the solution operator of the given PDE. In the case of
the previously discussed PDE in (2.4), the function S(LN ;∆t) = e−LN∆t . LN comes from
the spatial discretization of the differential operator. The polynomial approximations are
acquired from interpolating the function S(λ ;∆t). This interpolation is executed at the nodes
chosen for each Fourier component. The form of the computed solution in Fourier space is
as follows,

un+1 = S(LN ;∆t)un =
2K

∑
j=0

D j(∆t)A jun,

where D j(∆t) = T−1
N D̂ j(∆t)TN . Here, D̂ j(∆t) is a diagonal matrix and TN is the matrix of

the N-point FFT. Each row of D̂ j(∆t) corresponds to a specific component and the diagonal
entries represent the coefficients of the interpolating polynomials. This section covers
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previous work demonstrating a much faster way of computing interpolation points. This
approach was discovered while studying the block Lanczos behavior when ω is the wave
number in the limit as |ω| → ∞.

In KSS Methods, R0 = [ êω un ] is used as the initial block for each ω = −N
2 +1, . . . , N

2 .
The vector un, defined in the previous section, is the discretization of the approximate
solution on a uniform N-point grid. The approximate solution is u(x, t) at time tn = n∆t.
The first block Lanczos iteration starts with the QR-factorization of R0:

R0 = X1B0, (2.10)

where
X1 = [ êω

un
ω

‖un
ω‖2

] and B0 =

[
1 û(ω, tn)
0 ‖un

ω‖2

]
(2.11)

The vector un
ω is defined from (2.9). As |ω| → ∞ , |û(ω)|n→ 0, if the solution u is at least

piecewise continuous. From the previous statement, B0 converges to a diagonal matrix.
The next step is to compute

M1 = XH
1 LNX1. (2.12)

The matrix LN is the spectral discretization of L, where L is the operator defined by Lu =

puxx + q(x)u. By substituting the value of X1 from (2.11) into (2.12), the following is
obtained:

M1 =

 ω2 p+ q̄ L̂Nun
ω (ω)

‖un
ω‖2

L̂Nun
ω (ω)

‖un
ω‖2

R(LN ,un
ω)

 .
Previous expressions are defined as: q̄ is the mean of q(x) on (0,2π), L̂Nun

ω(ω) = êH
ω LNun

ω

is the Fourier coefficient of the grid function LNun
ω associated to the wave number ω , and

lastly, R(LN ,un
ω) =

〈un
ω ,LNun

ω 〉
〈un

ω ,un
ω 〉

is the Rayleigh quotient of LN and un
ω .

It was previously discussed that if the function is continuous, then the Fourier coefficients
go to zero as |ω| increases. With this, the non-diagonal entries of M1 become negligible as
long as the solution is sufficiently regular. Therefore,

M1 ≈
[

ω2 p+ q̄ 0
0 R(LN ,un)

]
.

Since it is known that the Fourier coefficients go to zero, they can be neglected. Terms that
are of lower order in ω can also be neglected. Proceeding with the iteration results in the
following,

R1 = LNX1−X1M1 ≈
[

q̃êω
LNun

ω

‖un
ω‖2
−R

(
LN ,un

ω

un
ω

‖un
ω‖2

) ]
,

where multiplication of vectors is component-wise. Also, q is a vector comprised of the
values of q(x) at the grid points (q̃ = q− q̄).
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This process was continued in [18]. In this high-frequency limit, it was discovered that
the block tridiagonal matrix TK , produced by applying block Lanczos to R0 (2.10), converges
to a simpler matrix. This simpler matrix is obtained from first, applying the "non-block"
Lanczos iteration to the columns of R0 separately and second, alternating the columns and
rows of the tridiagonal matrices produced from these iterations. Since TK converges to this
previously discussed simpler matrix, the columns and rows of TK can be reordered. They are
reordered to group together the even-numbered and odd-numbered columns and rows. With
this reordering, the eigenvalue problem for this matrix was found to approximately decouple.
The block Gaussian quadrature nodes can be obtained by computing the eigenvalues of
these smaller, tridiagonal matrices. This non-block Lanczos algorithm can be used to, at the
minimum, estimate the true block Gaussian quadrature nodes.
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Chapter 3

COMPONENT-WISE APPROACH

3.1 Introduction

In this chapter, we will introduce the new component-wise approach for solving the reg-
ularized normal equation in (2.2). Now that we have discussed the backgrounds for each
method (KSS and SEEM), we can further discuss how the two will be combined in a way
that brings benefits to both methods. Recall the form of the solution from (2.2),

u = S−1CT (CS−1CT )−1b, (3.1)

where S is the discretized Chebyshev smoothing norm, C contains the discretized differential
operator A and the discretized boundary operator B, and b is the right hand side from the
BVP. KSS methods approximate these forms of matrix function-vector products such as the
bilinear form discussed in (2.5). For this research, uT f (A)v is the bilinear form used in the
following algorithms.

3.2 Algorithm

The solution from (3.1) can be represented as

um = S−1y

where
y =CT (CS−1CT )−1b (3.2)

Each component of y is a bilinear form uT f (A)v where the vector u represents the columns
of C (u = c j), the matrix A represents the matrix being inverted (A =CS−1CT ), the vector
b represents the right hand side (v = b), and the function f performs the inverse of the
matrix A, where f (λ ) = 1/λ for A−1. Each bilinear form is approximated using KSS. After
implementing KSS, a post-process is performed by applying the inverse of the Chebyshev
smoothing norm, S−1, to the computed y to obtain the approximate solution. This original
approach will be referred to as ‘KSS Solve 1’.
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3.3 Other Approaches

As with most research, different approaches are tested in order to improve the method. There
are several factors that can improve between methods whether that be the error compared to
the exact solution, the computational expense from storage to number of iterations or time,
rate of convergence, and so on. To have an efficient, highly scalable method, there must
be a choice in determining what is the trade-off. In this section, we discuss a few different
approaches for approximating the solution using KSS methods.

A second approach is representing the solution from (3.1) as

um = S−1CT y,

where
y = (CS−1CT )−1b. (3.3)

Each component of y is a bilinear form uT f (A)v with the same representations of A =

CS−1CT , v = b, and f (λ ) = 1/λ for A−1. The difference in this approach is the repre-
sentation for the vector u, where instead of u representing the columns of C, it represents
the standard basis (u = e j). Another difference in this approach is in the post-processing.
Similarly, as in the first approach, each bilinear form is approximated using KSS. After
implementing KSS, the post-processing is completed by applying S−1CT to the computed y
to obtain the approximate solution. This second approach will be referred to as ‘KSS Solve

2’.
For the next two approaches, the inverse smoothing operator, S−1, is broken down

into the individual components as defined in (2.3). The goal of writing the solution in
this way is to be able to compute the coefficients of the solution in a basis of Chebyshev
polynomials. Since higher-degree Chebyshev polynomials oscillate more rapidly, this makes
the approach more similar to the Fourier KSS method, in which both cases are using bases
of functions that are, to some extent, concentrated in frequency. Using the original definition
and dropping indexes for clarity, the inverse smoothing operator can be rewritten as

S−1 = C−1MC, (3.4)

where C is the discrete Chebyshev transform and M is the diagonalized matrix from the
eigenvalue equation that performs dampening in frequency space. By substituting (3.4) into
(3.1), the following is obtained

um = C−1MCCT (CS−1CT )−1b. (3.5)
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Using the decomposed version of the inverse smoothing operator in (3.5), the third
approach can be defined. For this approach, CCT has been rewritten so that it is represented
as a single transpose. This is necessary to have a bilinear form for KSS methods. The
solution for the third approach is now expressed as the following equation

um = C−1M(CCT )T (CS−1CT )−1b. (3.6)

The solution can be represented similarly to the first two approaches as

um = C−1My,

where
y = (CCT )T (CS−1CT )−1b. (3.7)

Again, each component of y is a bilinear form uT f (A)v with the same representations of
A =CS−1CT , v = b, and f (λ ) = 1/λ for A−1. The difference in this approach comes from
the representation of the vector u and the post-processing. For this method u = (CCT ) j. KSS
is applied to solve the bilinear form. Post-processing implements C−1M on the computed y
to approximate the solution. This approach will be referred to as ‘KSS Solve 3’.

The last approach is similar to the third approach in which the solution in (3.5) with the
decomposed version of the inverse smoothing operator, S−1, is used. For this approach, the
matrix M that performs dampening in frequency space is included as part of the bilinear
form instead of implementing M in the post-processing stage. To accomplish this, MCCT

must be rewritten as a single transpose. This is represented in the following equation

um = C−1(CCT M)T (CS−1CT )−1b. (3.8)

The solution can now be expressed as

um = C−1y,

where
y = (CCT M)T (CS−1CT )−1b. (3.9)

Similary to the other approaches, each component of y is a bilinear form uT f (A)v with the
same representations of A =CS−1CT , v = b, and f (λ ) = 1/λ for A−1. The difference in
this last approach is how the vector u is represented and the post-processing application. In
this fourth approach u = (CCT M) j. KSS is implemented to approximate the bilinear form.
Post-processing applies C−1 on the computed y to obtain the approximate solution. This
approach will be referred to as ‘KSS Solve 4’.
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Chapter 4

RESULTS

In this chapter, we offer several numerical experiments to demonstrate the accuracy of the
component-wise approach. The first section will cover results for each method discussed in
the previous chapter. We will compare each KSS approach and discuss the most efficient
approach of the four proposed algorithms. The following sections will use the most efficient
algorithm compared with the previous PCG method. These numerical results are performed
for Dirichlet, Neumann, and Robin boundary conditions on several different two-dimensional
BVPs. All results will be computed on one of the following two-dimensional complex
domains,

Ω1 = {(r,θ)|r < 0.95}

Ω2 = {(r,θ)|r < 0.75(1+0.2cos(5θ))},

where Ω1 is a disc-shaped domain and Ω2 is a star-shaped domain, also referred to as a
flower-shaped domain with five petals. These complex domains are shown in Figure 4.1.

(a) Ω1 (b) Ω2

Figure 4.1: Complex Domains
Figure 4.1a is the domain Ω1 and Figure 4.1b is the domain Ω2, both discretized on the

Chebyshev grid.
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The numerical results shown in this chapter were computed on a disc-shaped domain and a
star-shaped domain using the number of interior points and the number of boundary points
for each grid size shown in Figures 4.1 and 4.2, respectively.

Table 4.1: Number of Points - Disc-Shaped Domain (Ω1). This table includes the number of
interior points Ωm and boundary points Γm for each grid size m2 that were used to compute
the numerical results on the disc-shaped domain, Ω1.

Grid Size (Bm) 82 162 242 322 402

# of Interior Points (Nm
Ω

) 24 104 240 408 652

# of Boundary Points (Nm
Γ

) 10 19 29 38 47

Table 4.2: Number of Points - Star-Shaped Domain (Ω2). This table includes the number of
interior points Ωm and boundary points Γm for each grid size m2 that were used to compute
the numerical results on the star-shaped domain, Ω2.

Grid Size (Bm) 82 162 242 322 402

# of Interior Points (Nm
Ω

) 16 54 132 228 358

# of Boundary Points (Nm
Γ

) 9 18 27 36 44

The tables in this chapter containing the numerical results include information for each
grid size m2 used and each order p of the smoothing operator S in (2.3). In these tables,
‘# iter’ represents the average number of iterations, ‘error’ represents the L2 norm of the
approximate solution compared with the exact solution, and the last row of the table shows
the rate of convergence for each order of the smoothing norm.

The figures in this chapter containing the error plots show the errors computed using the
L2 norm and L∞ norm, respectively, compared with the exact solution for each grid size m2.
Each plotted line represents the error with respect to the order of the smoothing operator,
where the index of S corresponds to the value of p.
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4.1 Example 1 - Dirichlet Problem on Ω1

In this section, we show the numerical results for each of the four proposed component-wise
KSS approaches along with results from the previous method of PCG. These results were
executed using the following Dirichlet BVP on a disc-shaped domain of radius 0.95 (Ω1)
shown in Figure 4.1a {

−∆u =−6x+6y in Ω1
u = x3− y3 on Γ = ∂Ω1

. (4.1)

The grid sizes used for this initial example vary compared to the grid sizes used for later
examples. For this reason, Table 4.3 has been included to show the number of interior points
and boundary points for each grid size used in this section. Recall that the grid sizes in Table
4.3 come from the disc-shaped domain Ω1 discretized on a Chebyshev grid.

Table 4.3: Example 1 - Number of Points - Disc-Shaped Domain (Ω1). This table includes
the number of interior points Ωm and boundary points Γm for each grid size m2 that were
used to compute the following numerical results for Equation (4.1).

Grid Size (Bm) 82 122 162 202 242

# of Interior Points (Nm
Ω

) 24 60 104 164 240

# of Boundary Points (Nm
Γ

) 10 15 19 24 29

In the following results, the value p corresponds to the order of the smoothing operator
S from (2.3). In the numerical results for Equation (4.1), we use the grid sizes m2 where
m = 8,12,16,20,24 for each order p = 1,2,3.

In addition to the numerical results tables and the error plot figures previously described,
other figures are included in this first section of the original numerical experiments for
each proposed algorithm. These figures, such as Figures 4.3, 4.4, 4.5 for the first approach,
contain visualizations of the coefficients of Y = [y1,y2, . . . ,ym] on a logarithmic scale for
p = 1,2,3, respectively, and each grid size m2, where m = 8,16,24. The visualizations in
these figures help to understand the magnitude of the coefficients and how they are changing
as the grid size increases and as the order of the smoothing operator increases. This plays an
important role in understanding why one of the four algorithms is chosen to precede with
for the remaining numerical results.
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4.1.1 ‘KSS Solve 1’

The first numerical results are computed using the original algorithm, ‘KSS Solve 1’ from
Section 3.2, where y =CT (CS−1CT )−1b in (3.2) is the bilinear form being approximated
with KSS. The computed solution for this approach comes after post-processing where
um = S−1y. The results come from solving Example 1 (4.1) with Dirichlet boundary
conditions on the disc-shaped domain Ω1. The error plots are shown in Figure 4.2. The
error for the highest order smoother, p = 3, jumps up at the grid size m = 24. By looking at
the numerical results in Table 4.4, it can be seen that this jump in error causes the rate of
convergence to become very low at −2.63. This low convergence rate does have some effect
from only computing results up to the grid size of 24. Computing the solution for larger grid
sizes does raise the convergence rate as the error decreases. However, the overall rate of
convergence is still not as desired. The numerical results for the previous PCG method are
shown at the end of this section in Table 4.8 along with the error plots in Figure 4.18. By
comparing ‘KSS Solve 1’ with PCG, it can be seen that KSS has a better rate of convergence
for the lower order smoother p = 1 along with much fewer iterations. For p = 2, both
methods have around the same number of iterations, where PCG still has fewer iterations
for p = 3.

Before reviewing the results for the second approach, ‘KSS Solve 2’, the visualizations
of the magnitude of the coefficients of Y for ‘KSS Solve 1’ are investigated. Recall that
Y = [y1,y2, . . . ,ym] on a logarithmic scale. The idea behind observing these values is that
KSS methods when used with a Fourier series tend to have negligibly small higher frequency
components. When that happens, we can neglect the higher frequency components and only
compute the lower frequency components while maintaining accuracy. We hope to see a
similar trend for KSS methods in a Chebyshev basis. Figures 4.3, 4.4, and 4.5 contain the
visualizations of the magnitude of the coefficients for the bilinear form on a logarithmic
scale before post-processing. Each figure contains the results for grid sizes m = 8,16,24
and smoothing order p = 1,2,3, respectively. Looking at the figures, it can be seen that they
do not have the same benefits of small higher frequency components.
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Table 4.4: Numerical Results (‘KSS Solve 1’) - Example 1 - Dirichlet Problem on Ω1. The
results in this table show the average number of iterations and error using the L2 norm for
each grid size and order p, along with the rate of convergence for each order p for the
approximate solution of Equation (4.1) computed using ‘KSS Solve 1’.

p = 1 p = 2 p = 3

Grid Size # iter error # iter error # iter error

82 = 64 17 5.58E-02 18 3.42E-02 18 2.86E-02

122 = 144 33 1.01E-01 38 6.55E-03 54 5.30E-01

162 = 256 48 4.52E-02 58 3.93E-03 77 2.95E-03

202 = 400 57 1.32E-01 72 5.98E-02 92 3.82E-04

242 = 576 76 4.63E-02 99 1.55E-02 145 5.12E-01

Rate of Conv. 0.17 0.72 -2.63

Figure 4.2: Error Plots (‘KSS Solve 1’) - Example 1 - Dirichlet Problem on Ω1

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.1) computed using ‘KSS Solve 1’. The
index of S represents the value of p.
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(a) (b) (c)

Figure 4.3: Y Value: ‘KSS Solve 1’ with p = 1
Figures 4.3a, 4.3b, and 4.3c visualize the coefficients of Y on a logarithmic scale for each
grid size 82,162,242, respectively, where i and j correspond to the grid point indices. Here,

y =CT (CS−1CT )−1b from (3.2) is used while approximating Equation (4.1).

(a) (b) (c)

Figure 4.4: Y Value: ‘KSS Solve 1’ with p = 2
Figures 4.4a, 4.4b, and 4.4c visualize the coefficients of Y on a logarithmic scale for each
grid size 82,162,242, respectively, where i and j correspond to the grid point indices. Here,

y =CT (CS−1CT )−1b from (3.2) is used while approximating Equation (4.1).

(a) (b) (c)

Figure 4.5: Y Value: ‘KSS Solve 1’ with p = 3
Figures 4.5a, 4.5b, and 4.5c visualize the coefficients of Y on a logarithmic scale for each
grid size 82,162,242, respectively, where i and j correspond to the grid point indices. Here,

y =CT (CS−1CT )−1b from (3.2) is used while approximating Equation (4.1).
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4.1.2 ‘KSS Solve 2’

The next numerical results are computed using the second algorithm, ‘KSS Solve 2’ from
Section 3.3, where y = (CS−1CT )−1b in (3.3) is the bilinear form being approximated
with KSS. The computed solution for this approach comes after post-processing where
um = S−1CT y. The results come from solving Example 1 (4.1) with Dirichlet boundary
conditions on the disc-shaped domain Ω1. The error plots are shown in Figure 4.6 where
it can already be seen that the convergence rate is better than that of the first approach,
‘KSS Solve 1’. The numerical results are shown in Table 4.5. From this table, a further
comparison can be made with the numerical results in Table 4.4 for the first approach to see
that the second algorithm has fewer iterations overall. If comparing with the PCG numerical
results in Table 4.8, it can be seen that ‘KSS Solve 2’ has fewer iterations for the lower order
smoother p = 1. For p = 2, the number of iterations are roughly the same. The number
of iterations for ‘KSS Solve 2’ tend to grow for the higher order smoother p = 3. Overall,
this second algorithm retains nearly the same accuracy as PCG. However, this approach is
not getting the same benefits as in the KSS Fourier case since the number of iterations are
increasing as the smoothing order increases.

Again, the visualizations of the magnitude of the coefficients of Y on a logarithmic
scale before post-processing are considered. Due to the selection of the bilinear form, the
dimensions of Y differ here than other methods. Instead of having the dimensions of the
number of grid points as the other methods, this bilinear form only has dimensions of the
number of interior points and boundary points. Each figure contains the results for grid sizes
m = 8,16,24 and smoothing order p = 1,2,3, respectively. Looking at Figures 4.7, 4.8, and
4.9, the advantages of any frequency components being negligibly small is still not seen.
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Table 4.5: Numerical Results (‘KSS Solve 2’) - Example 1 - Dirichlet Problem on Ω1. The
results in this table show the average number of iterations and error using the L2 norm for
each grid size and order p, along with the rate of convergence for each order p for the
approximate solution of Equation (4.1) computed using ‘KSS Solve 2’.

p = 1 p = 2 p = 3

Grid Size # iter error # iter error # iter error

82 = 64 17 5.98E-02 19 3.53E-02 19 2.14E+00

122 = 144 24 6.65E-02 39 2.29E-02 49 1.33E-02

162 = 256 31 6.06E-02 48 1.05E-02 68 1.97E-01

202 = 400 35 9.76E-02 55 5.84E-03 83 2.49E-02

242 = 576 44 1.05E-01 62 7.34E-03 117 3.16E-02

Rate of Conv. -0.51 1.43 3.84

Figure 4.6: Error Plots (‘KSS Solve 2’) - Example 1 - Dirichlet Problem on Ω1

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.1) computed using ‘KSS Solve 2’. The
index of S represents the value of p.
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(a) (b) (c)

Figure 4.7: Y Value: ‘KSS Solve 2’ with p = 1
Figures 4.7a, 4.7b, and 4.7c visualize the coefficients of Y on a logarithmic scale for each

grid size 82,162,242, respectively. Here, y = (CS−1CT )−1b from (3.3) is used while
approximating Equation (4.1).

(a) (b) (c)

Figure 4.8: Y Value: ‘KSS Solve 2’ with p = 2
Figures 4.8a, 4.8b, and 4.8c visualize the coefficients of Y on a logarithmic scale for each

grid size 82,162,242, respectively. Here, y = (CS−1CT )−1b from (3.3) is used while
approximating Equation (4.1).

(a) (b) (c)

Figure 4.9: Y Value: ‘KSS Solve 2’ with p = 3
Figures 4.9a, 4.9b, and 4.9c visualize the coefficients of Y on a logarithmic scale for each

grid size 82,162,242, respectively. Here, y = (CS−1CT )−1b from (3.3) is used while
approximating Equation (4.1).
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4.1.3 ‘KSS Solve 3’

The following numerical results are computed using another approach, ‘KSS Solve 3’ from
Section 3.3, where y = (CCT )T (CS−1CT )−1b in (3.7) is the bilinear form being approx-
imated with KSS. The computed solution for this approach comes after post-processing
where um = C−1My. The results come from solving Example 1 (4.1) with Dirichlet bound-
ary conditions on the disc-shaped domain Ω1. This is the first algorithm in which the
coefficients of the solution are computed in a basis of Chebyshev polynomials. The error
plots for this approach are shown in Figure 4.10. Looking at the error plots and comparing
with the first two KSS approaches, it can be seen that this third approach, ‘KSS Solve 3’, has
performed the best so far. The numerical results for this third algorithm are shown in Table
4.6. Comparing with the PCG results in Table 4.8, it can be seen that ‘KSS Solve 3’ performs
better for the lower order smoother p = 1 with less iterations and a better convergence rate
of 0.96 compared to that of −0.9 for PCG. This KSS approach maintains the same accuracy
as PCG for the higher order smoothers. Regardless, with this third algorithm, the number of
iterations are still increasing as the smoothing order increases.

The visualizations of the magnitude of the coefficients of Y on a logarithmic scale are
examined to see if there is any similar behavior to that of the Fourier case with KSS methods.
These visualizations are shown in Figures 4.11, 4.12, and 4.13 for the grid sizes m = 8,16,24
and order p = 1,2,3, respectively. The way that the basis of Chebyshev polynomials has
been normalized in this third approach seems to have the opposite effect of creating small
higher frequency components. The figures show that the higher frequency components
have the largest magnitude. Also, as the order increases, the coefficients are increasing for
lower-degree Chebyshev polynomials. This does not allow room to neglect any frequencies
in order to improve the method.
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Table 4.6: Numerical Results (‘KSS Solve 3’) - Example 1 - Dirichlet Problem on Ω1. The
results in this table show the average number of iterations and error using the L2 norm for
each grid size and order p, along with the rate of convergence for each order p for the
approximate solution of Equation (4.1) computed using ‘KSS Solve 3’.

p = 1 p = 2 p = 3

Grid Size # iter error # iter error # iter error

82 = 64 12 5.63E-02 14 3.42E-02 17 2.86E-02

122 = 144 37 3.40E-02 47 6.91E-03 63 1.60E-03

162 = 256 60 2.78E-02 61 3.81E-03 86 3.67E-04

202 = 400 60 2.91E-02 77 2.76E-03 90 2.36E-04

242 = 576 128 1.97E-02 116 1.39E-03 138 1.23E-04

Rate of Conv. 0.96 2.92 4.96

Figure 4.10: Error Plots (‘KSS Solve 3’) - Example 1 - Dirichlet Problem on Ω1

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.1) computed using ‘KSS Solve 3’. The
index of S represents the value of p.
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(a) (b) (c)

Figure 4.11: Y Value: ‘KSS Solve 3’ with p = 1
Figures 4.11a, 4.11b, and 4.11c visualize the coefficients of Y on a logarithmic scale for

each grid size 82,162,242, respectively, where i and j correspond to the Chebyshev
polynomial degrees in x or y. Here, y = (CCT )T (CS−1CT )−1b from (3.7) is used while

approximating Equation (4.1).

(a) (b) (c)

Figure 4.12: Y Value: ‘KSS Solve 3’ with p = 2
Figures 4.12a, 4.12b, and 4.12c visualize the coefficients of Y on a logarithmic scale for

each grid size 82,162,242, respectively, where i and j correspond to the Chebyshev
polynomial degrees in x or y. Here, y = (CCT )T (CS−1CT )−1b from (3.7) is used while

approximating Equation (4.1).

(a) (b) (c)

Figure 4.13: Y Value: ‘KSS Solve 3’ with p = 3
Figures 4.13a, 4.13b, and 4.13c visualize the coefficients of Y on a logarithmic scale for

each grid size 82,162,242, respectively, where i and j correspond to the Chebyshev
polynomial degrees in x or y. Here, y = (CCT )T (CS−1CT )−1b from (3.7) is used while

approximating Equation (4.1).
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4.1.4 ‘KSS Solve 4’

The following numerical results are computed using the final KSS approach, ‘KSS Solve 4’
from Section 3.3, where y = (CCT M)T (CS−1CT )−1b in (3.9) is the bilinear form being ap-
proximated with KSS. The computed solution for this approach comes after post-processing
where um = C−1y. The results come from solving Example 1 (4.1) with Dirichlet boundary
conditions on the disc-shaped domain Ω1. The error plots are shown in Figure 4.14 where
the trends and rate of convergence are somewhat similar to that of ‘KSS Solve 3’ in Figure
4.10. Looking at the numerical results in Table 4.7, the drastic change in results can be seen
when compared to the previous algorithm. The number of iterations considerably decreased
while still sustaining the same accuracy. For a small comparison, on the largest grid size
with the highest order smoother, the number of iterations for ‘KSS Solve 3’ is 138, whereas
the number of iterations for ‘KSS Solve 4’ is a much smaller 18.

From looking at the numerical results, it can already be seen that this algorithm has
some of the same benefits as in the Fourier case for KSS since the number of iterations are
decreasing as the smoothing order increases. Recall that the basis of Chebyshev polynomials
is normalized differently than in ‘KSS Solve 3’. In this algorithm, the dampening of frequency
space has been included inside the bilinear form.

The magnitude of the coefficients of Y on a logarithmic scale are viewed for grid sizes
m = 8,16,24 and order p = 1,2,3, respectively. The Figures 4.15, 4.16, and 4.17 show
optimistic results with similarities to that of the Fourier KSS case. The figures show that as
the degree of the Chebyshev polynomials increases, the magnitude of the coefficients are
decreasing. Also, as the order p increases, the drop-off in magnitude is more pronounce, or
the coefficients decrease faster as p increases. These results leave the question considering
if this final approach, ‘KSS Solve 4’, can be improved to be more efficient. It may be
possible to only compute the lower frequency components and neglect the higher frequency
components similar to that in the Fourier cases of KSS methods.
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Table 4.7: Numerical Results (‘KSS Solve 4’) - Example 1 - Dirichlet Problem on Ω1. The
results in this table show the average number of iterations and error using the L2 norm for
each grid size and order p, along with the rate of convergence for each order p for the
approximate solution of Equation (4.1) computed using ‘KSS Solve 4’.

p = 1 p = 2 p = 3

Grid Size # iter error # iter error # iter error

82 = 64 8 5.64E-02 8 3.41E-02 9 2.86E-02

122 = 144 32 3.36E-02 30 6.99E-03 26 1.64E-03

162 = 256 42 2.84E-01 37 3.89E-03 22 4.60E-04

202 = 400 28 2.93E-02 22 3.13E-03 17 9.39E-04

242 = 576 46 2.15E-02 29 2.28E-03 18 5.88E-04

Rate of Conv. 0.88 2.46 3.53

Figure 4.14: Error Plots (‘KSS Solve 4’) - Example 1 - Dirichlet Problem on Ω1

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.1) computed using ‘KSS Solve 4’. The
index of S represents the value of p.
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(a) (b) (c)

Figure 4.15: Y Value: ‘KSS Solve 4’ with p = 1
Figures 4.15a, 4.15b, and 4.15c visualize the coefficients of Y on a logarithmic scale for

each grid size 82,162,242, respectively, where i and j correspond to the Chebyshev
polynomial degrees in x or y. Here, y = (CCT M)T (CS−1CT )−1b from (3.9) is used while

approximating Equation (4.1).

(a) (b) (c)

Figure 4.16: Y Value: ‘KSS Solve 4’ with p = 2
Figures 4.16a, 4.16b, and 4.16c visualize the coefficients of Y on a logarithmic scale for

each grid size 82,162,242, respectively, where i and j correspond to the Chebyshev
polynomial degrees in x or y. Here, y = (CCT M)T (CS−1CT )−1b from (3.9) is used while

approximating Equation (4.1).

(a) (b) (c)

Figure 4.17: Y Value: ‘KSS Solve 4’ with p = 3
Figures 4.17a, 4.17b, and 4.17c visualize the coefficients of Y on a logarithmic scale for

each grid size 82,162,242, respectively, where i and j correspond to the Chebyshev
polynomial degrees in x or y. Here, y = (CCT M)T (CS−1CT )−1b from (3.9) is used while

approximating Equation (4.1).
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4.1.5 PCG

These results are computed using the previous PCG method and used to compare with
the component-wise KSS approaches. The results come from solving Example 1 (4.1)
with Dirichlet boundary conditions on the disc-shaped domain Ω1. The numerical results
are shown in Table 4.8 with the error plots shown in Figure 4.18. By comparing the last
algorithm, ‘KSS Solve 4’, with the results from PCG, it can be seen that the KSS method has
a very close rate of convergence with PCG but with a significantly less number of iterations.
Overall, the component-wise approach of the ‘KSS Solve 4’ algorithm has maintained the
same accuracy as that of PCG.

From the four algorithms provided in this section, ‘KSS Solve 4’ performed the best and
has the highest chance of optimization in the future. For the rest of the examples in the
numerical results, the last algorithm, ‘KSS Solve 4’, will be used in comparison with PCG.
The simplified term of KSS may also be used when referring to this last algorithm.

Table 4.8: Numerical Results (PCG) - Example 1 - Dirichlet Problem on Ω1. The results in
this table show the average number of iterations and error using the L2 norm for each grid
size and order p, along with the rate of convergence for each order p for the approximate
solution of Equation (4.1) computed using PCG.

p = 1 p = 2 p = 3

Grid Size # iter error # iter error # iter error

82 = 64 34 5.63E-02 17 3.42E-02 19 2.86E-02

122 = 144 75 3.21E-02 36 6.91E-03 28 1.59E-03

162 = 256 123 3.01E-02 39 3.81E-03 30 3.65E-04

202 = 400 188 3.85E-02 41 2.76E-03 31 2.36E-04

242 = 576 269 1.51E-01 69 1.37E-03 49 1.21E-04

Rate of Conv. -0.9 2.93 4.97
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Figure 4.18: Error Plots (PCG) - Example 1 - Dirichlet Problem on Ω1

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.1) computed using PCG. The index of S
represents the value of p.
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4.2 Example 1 - Dirichlet Problem on Ω2

For an example on a more complex domain, we consider the star-shaped domain Ω2 shown
discretized in Figure 4.1b. Recall that this domain is also referred to as a flower-shape with
five petals of the form

Ω2 = {(r,θ)|r < 0.75(1+0.2cos(5θ))}.

Using this more complex domain, we have the following example of a Dirichlet BVP,{
−∆u =−6x+6y in Ω2
u = x3− y3 on Γ = ∂Ω2.

(4.2)

The numerical results in this section are computed using ‘KSS Solve 4’ and PCG. It is a little
difficult to compare with this example on the disc-shaped domain (4.1) since the number
of grid points used has increased and the smoothing order p = 4 has been included. For
the grid sizes and smoothing orders that are in common, the error plots in Figures 4.19 and
4.20 for KSS and PCG, respectively, have the same trends as the error plots for Ω1, with
the disc-shaped domain having a slightly smaller error. The numerical results for KSS are
shown in Table 4.9 and the numerical results for PCG are shown in Table 4.10. Although
both methods still perform well overall for this star-shaped domain example, the number of
iterations needed for this domain has, to some extent, increased. When comparing between
KSS and PCG, ‘KSS Solve 4’ has a higher convergence rate for the lower order smoother,
while having close to the same convergence rate for p = 2. For the higher order smoothers,
PCG achieves a smaller error but with a significantly larger amount of iterations needed.
‘KSS Solve 4’, on the other hand, produces accurate results for any order smoother with a
very low number of iterations.
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Table 4.9: Numerical Results (‘KSS Solve 4’) - Example 1 - Dirichlet Problem on Ω2. The
results in this table show the average number of iterations and error using the L2 norm for
each grid size and order p, along with the rate of convergence for each order p for the
approximate solution of Equation (4.2) computed using ‘KSS Solve 4’.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

82 = 64 14 8.92E-02 13 4.30E-02 13 3.22E-02 14 2.72E-02

162 = 256 33 4.67E-02 32 1.01E-02 30 3.35E-03 24 2.37E-03

242 = 576 57 5.66E-02 48 7.55E-03 37 1.71E-03 28 9.58E-04

322 = 1024 69 3.73E-02 51 2.40E-03 35 2.63E-03 27 7.19E-04

402 = 1600 74 4.34E-02 49 1.84E-03 32 2.75E-03 25 8.59E-04

Rate of Conv. 0.45 1.96 1.53 2.15

Figure 4.19: Error Plots (‘KSS Solve 4’) - Example 1 - Dirichlet Problem on Ω2

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.2) computed using ‘KSS Solve 4’. The
index of S represents the value of p.
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Table 4.10: Numerical Results (PCG) - Example 1 - Dirichlet Problem on Ω2. The results in
this table show the average number of iterations and error using the L2 norm for each grid
size and order p, along with the rate of convergence for each order p for the approximate
solution of Equation (4.2) computed using PCG.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

82 = 64 25 9.12E-02 21 4.30E-02 22 3.22E-02 25 2.72E-02

162 = 256 72 7.47E-02 36 9.94E-03 47 2.81E-03 72 7.39E-04

242 = 576 159 8.08E-02 53 7.35E-03 83 1.09E-03 159 1.67E-04

322 = 1024 264 6.50E-01 51 1.88E-03 100 2.07E-04 235 2.72E-05

402 = 1600 402 9.77E-01 61 1.06E-03 124 9.63E-05 319 9.26E-06

Rate of Conv. -1.47 2.3 3.61 4.96

Figure 4.20: Error Plots (PCG) - Example 1 - Dirichlet Problem on Ω2

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.2) computed using ‘KSS Solve 4’. The
index of S represents the value of p.
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4.3 Example 2 - Dirichlet Problem on Ω1

We now consider a different Dirichlet BVP on the disc-shaped domain Ω1,{
−∆u = 0 in Ω1
u = x2− y2 on Γ = ∂Ω1.

(4.3)

The numerical results in this section are computed using ‘KSS Solve 4’ and PCG. The error
plots are shown in Figures 4.21 and 4.22 for KSS and PCG, respectively. The numerical
results for KSS are shown in Table 4.11 with the results shown for PCG in Table 4.12.
Looking at the tables for this example, ‘KSS Solve 4’ produced better results for the lower
order smoother for both convergence rate and number of iterations. When comparing the
higher order smoothers, the error for KSS does not decrease as quickly as PCG, however,
KSS computes an accurate solution with notably less iterations overall. Similarly in other
numerical methods, there are trade-offs such as rate of convergence versus a low number of
iterations.

Table 4.11: Numerical Results (‘KSS Solve 4’) - Example 2 - Dirichlet Problem on Ω1.
The results in this table show the average number of iterations and error using the L2 norm
for each grid size and order p, along with the rate of convergence for each order p for the
approximate solution of Equation (4.3) computed using ‘KSS Solve 4’.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

82 = 64 6 5.88E-02 5 8.81E-03 4 1.92E-03 4 5.49E-04

162 = 256 21 3.00E-02 11 2.01E-03 8 6.91E-04 7 2.79E-05

242 = 576 26 2.64E-02 8 4.52E-03 6 5.98E-04 5 9.99E-04

322 = 1024 23 1.78E-02 6 3.57E-03 4 6.27E-04 4 1.01E-03

402 = 1600 29 1.80E-02 8 1.69E-03 5 1.42E-04 4 5.33E-05

Rate of Conv. 0.74 1.02 1.62 1.45
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Figure 4.21: Error Plots (‘KSS Solve 4’) - Example 2 - Dirichlet Problem on Ω1

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.3) computed using ‘KSS Solve 4’. The
index of S represents the value of p.

Table 4.12: Numerical Results (PCG) - Example 2 - Dirichlet Problem on Ω1. The results in
this table show the average number of iterations and error using the L2 norm for each grid
size and order p, along with the rate of convergence for each order p for the approximate
solution of Equation (4.3) computed using PCG.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

82 = 64 34 5.88E-02 17 8.81E-03 15 1.92E-03 17 5.46E-04

162 = 256 123 2.88E-02 38 1.58E-03 29 9.71E-05 43 2.84E-06

242 = 576 269 4.01E-02 68 5.01E-04 46 2.17E-05 65 7.68E-07

322 = 1024 446 8.97E-02 62 3.17E-04 47 8.41E-06 68 2.22E-07

402 = 1600 699 1.27E-01 78 2.10E-04 55 3.41E-06 83 4.69E-08

Rate of Conv. -0.48 2.32 3.94 5.82
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Figure 4.22: Error Plots (PCG) - Example 2 - Dirichlet Problem on Ω1

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.3) computed using PCG. The index of S
represents the value of p.
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4.4 Example 2 - Dirichlet Problem on Ω2

Similar to the previous example, we have the same Dirichlet BVP now considered on the
star-shaped domain Ω2, {

−∆u = 0 in Ω2
u = x2− y2 on Γ = ∂Ω2.

(4.4)

The numerical results in this section are computed using ‘KSS Solve 4’ and PCG. The
error plots are shown in Figures 4.23 and 4.24 for KSS and PCG, respectively. Looking
at the numerical results in Table 4.13 for KSS and Table 4.14 for PCG, it can be seen
that the overall rate of convergence is better for PCG. However, ‘KSS Solve 4’ still solves
the example retaining a small error between 10−2 and 10−4 with far fewer iterations than
PCG. Looking at the last column p = 4 in Table 4.13 for KSS, the rate of convergence has
decreased compared to the lower order smoothers. This drop in convergence rate brought the
idea of looking into the tolerance level that is used for checking convergence in the Block
Lanczos algorithm. In Chapter 5.1, we will further investigate the effects of lowering the
tolerance level. A simple comparison can also be made with this example on the disc-shaped
domain (4.3). For the more complicated star-shaped domain, the total number of iterations
increases substantially for PCG while they only increase by a handful for KSS.

Table 4.13: Numerical Results (‘KSS Solve 4’) - Example 2 - Dirichlet Problem on Ω2.
The results in this table show the average number of iterations and error using the L2 norm
for each grid size and order p, along with the rate of convergence for each order p for the
approximate solution of Equation (4.4) computed using ‘KSS Solve 4’.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

82 = 64 10 2.33E-02 8 1.05E-02 8 2.45E-03 8 4.97E-04

162 = 256 19 4.68E-02 14 3.97E-03 11 1.24E-03 10 1.24E-04

242 = 576 29 4.61E-02 17 4.65E-03 12 4.24E-04 9 1.56E-04

322 = 1024 33 3.32E-02 17 1.92E-03 12 5.24E-04 9 7.17E-04

402 = 1600 32 2.79E-02 17 1.85E-03 11 3.53E-04 8 3.02E-04

Rate of Conv. -0.11 1.08 1.2 0.31
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Figure 4.23: Error Plots (‘KSS Solve 4’) - Example 2 - Dirichlet Problem on Ω2

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.4) computed using ‘KSS Solve 4’. The
index of S represents the value of p.

Table 4.14: Numerical Results (PCG) - Example 2 - Dirichlet Problem on Ω2. The results in
this table show the average number of iterations and error using the L2 norm for each grid
size and order p, along with the rate of convergence for each order p for the approximate
solution of Equation (4.4) computed using PCG.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

82 = 64 25 8.72E-02 21 1.05E-02 21 2.45E-03 23 4.91E-04

162 = 256 72 6.03E-02 35 4.32E-03 46 3.61E-04 72 3.45E-05

242 = 576 159 6.00E-02 51 3.89E-03 83 2.45E-04 159 9.42E-06

322 = 1024 264 5.43E-02 55 9.45E-04 96 2.99E-05 233 1.02E-06

402 = 1600 402 5.32E-02 65 6.68E-04 124 1.86E-05 320 5.57E-07

Rate of Conv. 0.31 1.71 3.03 4.21
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Figure 4.24: Error Plots (PCG) - Example 2 - Dirichlet Problem on Ω2

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.4) computed using PCG. The index of S
represents the value of p.
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4.5 Example 2 - Neumann Problem on Ω1

We now introduce an example with different boundary conditions. For the results in this
section we consider a BVP with Neumann boundary conditions on the disc-shaped domain
Ω1, {

−∆u = 0 in Ω1
∂u
∂ν

= 2(x2− y2) on Γ = ∂Ω1.
(4.5)

The exact solution is given by x2− y2. The numerical results in this section are computed
using ‘KSS Solve 4’ and PCG. Looking at the error plots in Figure 4.26 and the numerical
results in Table 4.16 for PCG, it can be seen that this method performs poorly for this
boundary condition. Although KSS performs somewhat better, as seen in the error plots
in Figure 4.25 and the numerical results in Table 4.15, implementation of SEEM on a
Chebyshev grid does not work well for this example with Neumann boundary conditions. In
[1], proper results can be found for this problem using SEEM with a Fourier series. Future
work includes trying to improve the numerical results for this example by subtracting u(0,0)
to ensure a unique solution.

Table 4.15: Numerical Results (‘KSS Solve 4’) - Example 2 - Neumann Problem on Ω1.
The results in this table show the average number of iterations and error using the L2 norm
for each grid size and order p, along with the rate of convergence for each order p for the
approximate solution of Equation (4.5) computed using ‘KSS Solve 4’.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

82 = 64 10 2.90E-01 8 4.32E-02 7 9.75E-02 6 1.07E-01

162 = 256 41 7.40E-01 21 5.02E-02 15 1.02E-01 9 1.08E-01

242 = 576 71 8.07E-01 24 4.30E-02 12 1.07E-01 6 1.08E-01

322 = 1024 54 8.95E-01 17 4.35E-02 7 1.08E-01 4 1.08E-01

402 = 1600 99 8.13E-01 18 8.37E-02 8 1.08E-01 4 1.08E-01

Rate of Conv. -0.64 -0.41 -0.06 -0.01
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Figure 4.25: Error Plots (‘KSS Solve 4’) - Example 2 - Neumann Problem on Ω1

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.5) computed using ‘KSS Solve 4’. The
index of S represents the value of p.

Table 4.16: Numerical Results (PCG) - Example 2 - Neumann Problem on Ω1. The results
in this table show the average number of iterations and error using the L2 norm for each grid
size and order p, along with the rate of convergence for each order p for the approximate
solution of Equation (4.5) computed using PCG.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

82 = 64 34 4.46E+00 34 1.14E+01 34 1.27E+01 34 1.28E+01

162 = 256 123 2.89E+00 123 1.23E+01 123 1.31E+01 123 1.32E+01

242 = 576 269 1.86E+00 269 1.23E+01 269 1.29E+01 269 1.29E+01

322 = 1024 446 1.00E+00 446 1.19E+01 446 1.28E+01 446 1.28E+01

402 = 1600 699 1.15E+00 699 1.25E+01 699 1.27E+01 699 1.27E+01

Rate of Conv. 0.84 -0.06 -0.0 0.0
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Figure 4.26: Error Plots (PCG) - Example 2 - Neumann Problem on Ω1

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.5) computed using PCG. The index of S
represents the value of p.
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4.6 Example 2 - Robin Problem on Ω2

We now look at an example with a combination of previous boundary conditions. In this
section, we consider the BVP with Robin boundary conditions on the star-shaped domain
Ω2, {

−∆u = 0 in Ω2

u+ ∂u
∂ν

=
(

x2− y2 + ∂ (x2−y2)
∂ν

)∣∣∣
Γ

on Γ = ∂Ω2.
(4.6)

The exact solution is given by x2− y2. The numerical results in this section are computed
using ‘KSS Solve 4’ and PCG. Looking at the error plots for KSS in Figure 4.27, it can be
seen that the error decreases as the smoothing order increases. The error is decreasing to
less than 10−4 on the larger grid sizes for smoothing order p = 4. By simply comparing
with the error plots for PCG in Figure 4.28, KSS achieves a smaller error and seems to have
performed better throughout for this problem. The numerical results are shown in Tables
4.17 and 4.18 for KSS and PCG, respectively. For the lower order smoothers of p = 1 and
p = 2, KSS and PCG have the same convergence rates. KSS, however, has considerably less
iterations than PCG. For PCG, the higher order smoothers are not converging, even with the
large number of iterations. KSS converges for the higher order smoothers, p = 3 and p = 4,
while decreasing the error and the number of iterations as the smoothing order increases.
Overall, ‘KSS Solve 4’ performed better than PCG for this example with Robin boundary
conditions.

Table 4.17: Numerical Results (‘KSS Solve 4’) - Example 2 - Robin Problem on Ω2. The
results in this table show the average number of iterations and error using the L2 norm for
each grid size and order p, along with the rate of convergence for each order p for the
approximate solution of Equation (4.6) computed using ‘KSS Solve 4’.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

82 = 64 12 3.99E-01 9 1.23E-01 8 2.46E-02 9 4.25E-03

162 = 256 25 6.85E-01 16 1.33E-01 15 7.44E-03 11 5.12E-04

242 = 576 41 6.61E-01 19 5.44E-02 14 3.39E-04 11 6.12E-05

322 = 1024 52 8.26E-01 19 4.22E-02 13 6.35E-04 8 5.06E-05

402 = 1600 64 7.94E-01 19 2.39E-02 12 5.59E-04 7 1.23E-04

Rate of Conv. -0.43 1.02 2.35 2.2
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Figure 4.27: Error Plots (‘KSS Solve 4’) - Example 2 - Robin Problem on Ω2

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.6) computed using ‘KSS Solve 4’. The
index of S represents the value of p.

Table 4.18: Numerical Results (PCG) - Example 2 - Robin Problem on Ω2. The results in
this table show the average number of iterations and error using the L2 norm for each grid
size and order p, along with the rate of convergence for each order p for the approximate
solution of Equation (4.6) computed using PCG.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

82 = 64 25 3.99E-01 25 1.23E-01 25 2.47E-02 25 4.10E-03

162 = 256 72 6.85E-01 72 1.33E-01 72 1.15E-02 72 1.53E-02

242 = 576 159 6.61E-01 159 5.45E-02 159 1.54E-02 159 4.43E-03

322 = 1024 264 8.27E-01 264 4.29E-02 264 1.38E-02 264 4.65E-02

402 = 1600 402 7.94E-01 402 2.35E-02 402 7.21E-02 402 5.73E-03

Rate of Conv. -0.43 1.03 -0.67 -0.21
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Figure 4.28: Error Plots (PCG) - Example 2 - Robin Problem on Ω2

This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution for Equation (4.6) computed using PCG. The index of S
represents the value of p.
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4.7 Random Example 3

The following numerical results are computed using random functions. These random
examples are created using the following approach.
For each grid size:

• Choose order of decay (d = 2,4,6)

• Create random Discrete Cosine Transform (DCT) coefficients

• Apply the smoothing operator d number of times

• Apply the Inverse Discrete Cosine Transform (IDCT)

The order of decay determines the smoothness of the function with d = 6 being the most
smooth function. The random functions are created for the grid sizes of m = 16,24,32,40
and each smoothing order p = 1,2,3,4. It is important to note that a random function for a
certain decay is created for each grid size.

The first random example is created. The functions in Random Example 3 were created
using a decay of 2; therefore, these are the least smooth functions of the random examples.
The L2 error plot for ‘KSS Solve 4’ in Figure 4.29 shows convergence for each smoothing
order in this example with the error around 10−1. Similar results are shown on the L2 error
plot in Figure 4.30 for the higher order smoothers of PCG. In PCG, the error for p = 1 tends
to grow for the larger grid sizes (m > 24). The numerical results are shown in Tables 4.19
and 4.20 for KSS and PCG, respectively, where the convergence rate is around 0.86 for
each smoothing order of KSS and for the higher order smoothers for PCG. It is important to
note that the rate of convergence in the random examples differs from previous examples
since a random function of a certain decay is created for each grid size. For p = 2,3,4,
KSS and PCG achieve approximately the same accuracy and also skew towards the same
number of iterations. For this random example 3, KSS performs better than PCG for the
lower order smoother p = 1 with a convergence rate of 0.86 compared to 0.01 for PCG,
while also maintaining a lower number of iterations.
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Table 4.19: Numerical Results (‘KSS Solve 4’) - Random Example 3. The results in this table
show the average number of iterations and error using the L2 norm for each grid size and
order p, along with the rate of convergence for each order p for the approximate solution
computed using ‘KSS Solve 4’ for the random example 3.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

162 = 256 43 5.71E-01 29 5.51E-01 27 5.53E-01 31 5.65E-01

242 = 576 83 3.12E-01 52 3.14E-01 51 3.15E-01 61 3.17E-01

322 = 1024 95 3.02E-01 50 2.79E-01 62 2.84E-01 84 2.87E-01

402 = 1600 106 2.61E-01 37 2.52E-01 63 2.53E-01 102 2.55E-01

Rate of Conv. 0.86 0.85 0.85 0.87

Figure 4.29: Error Plots (‘KSS Solve 4’) - Random Example 3
This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution computed using ‘KSS Solve 4’ for the random example 3.
The index of S represents the value of p.

52



Table 4.20: Numerical Results (PCG) - Random Example 3. The results in this table show
the average number of iterations and error using the L2 norm for each grid size and order p,
along with the rate of convergence for each order p for the approximate solution computed
using PCG for random example 3.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

162 = 256 114 5.70E-01 34 5.51E-01 29 5.53E-01 45 5.65E-01

242 = 576 255 3.13E-01 55 3.14E-01 44 3.15E-01 65 3.17E-01

322 = 1024 427 4.33E-01 57 2.87E-01 47 2.85E-01 75 2.87E-01

402 = 1600 676 5.64E-01 64 2.53E-01 54 2.53E-01 92 2.55E-01

Rate of Conv. 0.01 0.85 0.85 0.87

Figure 4.30: Error Plots (PCG) - Random Example 3
This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution computed using PCG for the random example 3. The
index of S represents the value of p.
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4.8 Random Example 4

We consider the next random example. Random Example 4 was created using a decay of
4, creating a smoother function than the previous example. The error plots for KSS and
PCG are shown in Figures 4.31 and 4.32, respectively. Looking at the L2 error plots, it can
be seen that for the higher order smoothers, KSS and PCG have very similar graphs and
convergence rates with the error around 10−2. Comparably, to the first example, the error
for the lower order smoother is smaller for KSS. The numerical results are shown in Table
4.21 for KSS and Table 4.22 for PCG. For the higher order smoothers, p = 2,3,4, KSS and
PCG maintain the same accuracy with a convergence rate around 2.72. KSS, however, has
approximately half the number of iterations as PCG. As for the lower order smoother p = 1,
KSS has a better convergence rate of 2.2 compared to 1.2 for PCG and tremendously less
iterations.

Table 4.21: Numerical Results (‘KSS Solve 4’) - Random Example 4. The results in this table
show the average number of iterations and error using the L2 norm for each grid size and
order p, along with the rate of convergence for each order p for the approximate solution
computed using ‘KSS Solve 4’ for the random example 4.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

162 = 256 32 2.21E-01 19 2.41E-01 16 2.39E-01 20 2.38E-01

242 = 576 57 4.56E-02 34 2.89E-02 22 2.89E-02 29 2.90E-02

322 = 1024 65 2.84E-02 31 1.18E-02 21 1.22E-02 31 1.18E-02

402 = 1600 61 2.95E-02 27 1.98E-02 22 1.99E-02 31 1.98E-02

Rate of Conv. 2.2 2.73 2.71 2.71
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Figure 4.31: Error Plots (‘KSS Solve 4’) - Random Example 4
This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution computed using ‘KSS Solve 4’ for the random example 4.
The index of S represents the value of p.

Table 4.22: Numerical Results (PCG) - Random Example 4. The results in this table show
the average number of iterations and error using the L2 norm for each grid size and order p,
along with the rate of convergence for each order p for the approximate solution computed
using PCG for the random example 4.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

162 = 256 114 2.22E-01 34 2.39E-01 28 2.39E-01 42 2.38E-01

242 = 576 255 4.47E-02 59 2.89E-02 41 2.89E-02 62 2.89E-02

322 = 1024 427 1.14E-01 58 1.18E-02 45 1.18E-02 70 1.18E-02

402 = 1600 676 7.37E-02 67 1.98E-02 52 1.98E-02 85 1.98E-02

Rate of Conv. 1.2 2.72 2.72 2.71
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Figure 4.32: Error Plots (PCG) - Random Example 4
This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution computed using PCG for the random example 4. The
index of S represents the value of p.
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4.9 Random Example 5

Lastly, we consider the final example for the numerical results. Random Example 5 was
created using a decay of 6. This example is the smoothest of the random functions. The
error plots for KSS and PCG are shown in Figures 4.33 and 4.34, respectively. Comparably,
with the previous random examples, the trends of the error plots for KSS and PCG are
very similar for the higher order smoothers with some error values in this example getting
smaller than 10−3. The numerical results are shown in Table 4.23 for KSS and Table 4.24
for PCG. For the higher order smoothers, p = 2,3,4, KSS maintains the same accuracy
as PCG with convergence rates around approximately 6.75. Furthermore, the number of
iterations for KSS is significantly lower than the number of iterations for PCG, where the
number of iterations needed for KSS decrease as the smoothing order p increases. Again,
KSS performs better for the lower order smoother p = 1 with a much higher convergence
rate of 4.32 compared to the convergence rate of 2.5 for PCG. KSS also achieves this higher
rate with far fewer iterations.

Table 4.23: Numerical Results (‘KSS Solve 4’) - Random Example 5. The results in this table
show the average number of iterations and error using the L2 norm for each grid size and
order p, along with the rate of convergence for each order p for the approximate solution
computed using ‘KSS Solve 4’ for the random example 5.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

162 = 256 35 1.81E+00 18 1.93E+00 12 1.93E+00 10 1.93E+00

242 = 576 65 3.15E-02 20 8.01E-04 16 4.46E-04 10 4.31E-04

322 = 1024 75 2.84E-02 17 4.92E-04 12 3.64E-04 9 3.99E-04

402 = 1600 36 3.46E-02 18 4.12E-03 12 4.38E-03 8 3.72E-03

Rate of Conv. 4.32 6.71 6.64 6.82
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Figure 4.33: Error Plots (‘KSS Solve 4’) - Random Example 5
This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution computed using ‘KSS Solve 4’ for the random example 5.
The index of S represents the value of p.

Table 4.24: Numerical Results (PCG) - Random Example 5. The results in this table show
the average number of iterations and error using the L2 norm for each grid size and order p,
along with the rate of convergence for each order p for the approximate solution computed
using PCG for the random example 5.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

162 = 256 114 1.81E+00 35 1.93E+00 26 1.93E+00 37 1.93E+00

242 = 576 255 3.06E-02 57 5.28E-04 37 4.24E-04 51 4.24E-04

322 = 1024 427 2.90E-02 58 3.85E-04 39 3.67E-04 58 3.67E-04

402 = 1600 676 1.83E-01 66 3.90E-03 49 3.85E-03 68 3.85E-03

Rate of Conv. 2.5 6.77 6.79 6.79
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Figure 4.34: Error Plots (PCG) - Random Example 5
This figure contains the error for different order smoothers using the L2 norm and the L∞

norm of the approximate solution computed using PCG for the random example 5. The
index of S represents the value of p.
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Chapter 5

DISCUSSIONS AND CONCLUSION

In this chapter, we will discuss further techniques for optimization and provide a conclusion
for the component-wise algorithm. We will view some results that show a brief insight of
a couple optimization techniques such as changing the tolerance and eigenvalue behavior.
We will also compare the results from the block lanczos algorithm to the non-block lanczos
algorithm. We will finish with the conclusion of the component-wise approach.

5.1 Changing Tolerance

In this section, we will look at one possible technique for improving the results. We
considered how changing the tolerance level would affect the results. For all numerical
results in the previous chapter, a tolerance level of 1e−5 was used to check convergence
in the Block Lanczos algorithm. The tolerance level was lowered to 1e− 8 to see what
difference it would make in the numerical results. The following results, shown in Tables
5.1 and 5.2, were computed using the first example (4.1) with Dirichlet boundary conditions
on the disc-shaped domain Ω1.

Looking at the column p = 3 in Table 5.1 where the tolerance level is 1e−5, the rate
of convergence is 3.53. By comparing this same column (p = 3) from Table 5.2 where the
tolerance level is 1e−8, it can be seen that the rate of convergence has raised to 4.96. While
lowering the tolerance made a decent increase in the rate of convergence, it also increased
the number of iterations for each grid size. Again, looking at the last columns (p = 3) for
Tables 5.1 and 5.2, the number of iterations has increased drastically. For the tolerance level
of 1e− 5 in Table 5.1, the highest number of iterations for a grid size is 26, whereas for
the tolerance level of 1e−8 in Table 5.2, the highest number of iterations for a grid size is
107. For this case, the increase in the rate of convergence may not be worth the increase in
number of iterations. This leads to the discussion that there may be a different tolerance
level with a better trade-off between improving the rate of convergence while keeping the
number of iterations low.
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Table 5.1: Changing Tolerance (1e−5) - Example 1 - Dirichlet Problem on Ω1. The results
in this table show the average number of iterations and error using the L2 norm for each grid
size and order p, along with the rate of convergence for each order p for the approximate
solution of Equation (4.1) computed using ‘KSS Solve 4’ with a tolerance level of 1e−5.

p = 1 p = 2 p = 3

Grid Size # iter error # iter error # iter error

82 = 64 8 5.64E-02 8 3.41E-02 9 2.86E-02

122 = 144 32 3.36E-02 30 6.99E-03 26 1.64E-03

162 = 256 42 2.84E-01 37 3.89E-03 22 4.60E-04

202 = 400 28 2.93E-02 22 3.13E-03 17 9.39E-04

242 = 576 46 2.15E-02 29 2.28E-03 18 5.88E-04

Rate of Conv. 0.88 2.46 3.53

Table 5.2: Changing Tolerance (1e−8) - Example 1 - Dirichlet Problem on Ω1. The results
in this table show the average number of iterations and error using the L2 norm for each grid
size and order p, along with the rate of convergence for each order p for the approximate
solution of Equation (4.1) computed using ‘KSS Solve 4’ with a tolerance level of 1e−8.

p = 1 p = 2 p = 3

Grid Size # iter error # iter error # iter error

82 = 64 16 5.63E-02 15 3.42E-02 16 2.86E-02

122 = 144 38 3.42E-02 45 6.91E-03 46 1.60E-03

162 = 256 61 2.79E-02 60 3.81E-03 62 3.67E-04

202 = 400 74 3.02E-02 64 2.77E-03 59 2.35E-04

242 = 576 130 2.12E-02 104 1.37E-03 107 1.23E-04

Rate of Conv. 0.89 2.92 4.96

We now consider a second example of how changing the tolerance level affects the
results. Again, the tolerance level for checking convergence is lowered from 1e− 5 to
1e−8. The following results, shown in Tables 5.3 and 5.4, were computed using the second
example (4.4) with Dirichlet boundary conditions on the star-shaped domain Ω2.
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Looking at the last column p = 4 of Table 5.3 where the tolerance level is 1e−5, the
rate of convergence is quite low at 0.31. By comparing this result with the last column p = 4
of Table 5.4 where the tolerance level is 1e−8, it can be seen that the rate of convergence
has notably increased to 3.36. Of course, with lowering the tolerance level, the number
of iterations has increased. Looking at the same column (p = 4) in Tables 5.3 and 5.4,
the highest number of iterations for a grid size in the first table is 10, whereas the highest
number of iterations for a grid size in the latter table is 50. Although there is an increase in
iterations with the smaller tolerance level, the number of iterations still remain low when
compared with PCG (Table 4.14). Overall, for this example with the increase in iterations,
the higher rate of convergence may be a better payoff. More results would need to be ran
for different types of examples to conclude the best choice of a tolerance level for checking
convergence.

Table 5.3: Changing Tolerance (1e−5) - Example 2 - Dirichlet Problem on Ω2. The results
in this table show the average number of iterations and error using the L2 norm for each grid
size and order p, along with the rate of convergence for each order p for the approximate
solution of Equation (4.4) computed using ‘KSS Solve 4’ with a tolerance level of 1e−5.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

82 = 64 10 2.33E-02 8 1.05E-02 8 2.45E-03 8 4.97E-04

162 = 256 19 4.68E-02 14 3.97E-03 11 1.24E-03 10 1.24E-04

242 = 576 29 4.61E-02 17 4.65E-03 12 4.24E-04 9 1.56E-04

322 = 1024 33 3.32E-02 17 1.92E-03 12 5.24E-04 9 7.17E-04

402 = 1600 32 2.79E-02 17 1.85E-03 11 3.53E-04 8 3.02E-04

Rate of Conv. -0.11 1.08 1.2 0.31

62



Table 5.4: Changing Tolerance (1e−8) - Example 2 - Dirichlet Problem on Ω2. The results
in this table show the average number of iterations and error using the L2 norm for each grid
size and order p, along with the rate of convergence for each order p for the approximate
solution of Equation (4.4) computed using ‘KSS Solve 4’ with a tolerance level of 1e−8.

p = 1 p = 2 p = 3 p = 4

Grid Size # iter error # iter error # iter error # iter error

82 = 64 14 2.36E-02 16 1.05E-02 17 2.45E-03 14 4.91E-04

162 = 256 35 4.73E-02 31 4.32E-03 35 3.61E-04 31 3.48E-05

242 = 576 74 4.51E-02 50 3.89E-03 60 2.44E-04 45 9.50E-06

322 = 1024 112 1.99E-02 61 9.53E-04 72 2.97E-05 50 1.52E-06

402 = 1600 134 2.44E-02 67 6.68E-04 77 1.94E-05 48 2.21E-06

Rate of Conv. -0.02 1.71 3.01 3.36

5.2 Eigenvalue Behavior

In this section, we discuss another approach of possible optimization. In the following
figures, the magnitude of the eigenvalues of the block tridiagonal matrix Tk, from the Block
Lanczos algorithm, are studied. The idea is to find a trend of the eigenvalues between the
orders of the smoothing operator. If there is a trend, the eigenvalues can possibly be modeled
by a polynomial without the need to compute each eigenvalue explicitly. Similar research
was done with the Fourier KSS method [17]. The numerical results in Figures 5.1, 5.2, 5.3,
and 5.4 were computed using Example 1 (4.1) with Dirichlet boundary conditions on the
disc-shaped domain Ω1. These figures are computed on a grid size of 162 for each order
p = 1,2,3,4. Only a few components are chosen to give an insight into the behavior of the
eigenvalues of the block tridiagonal matrix TK .

Looking at the Figures 5.1, 5.2, 5.3, and 5.4, it can be seen that as the order p increases,
the shape of the graph becomes more prominent. Similar results were seen when looking at
the graphs for the star-shaped domain Ω2. One will notice that the higher order smoothers
and higher-degree components have only a handful of iterations. This may be a result of
the coefficients of the higher-degree Chebyshev polynomials having a smaller magnitude
as seen when visualizing the coefficients of Y in Figures 4.15, 4.16, and 4.17. Although
more examples would need to be tested to confirm this hypothesis, the trend shown in this
example gives a good prediction that the eigenvalues could be modeled with a polynomial.
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(a) (b)

(c) (d)

Figure 5.1: Eigenvalues - Example 1 on Ω1 (p = 1)
These figures contain the magnitude of the eigenvalues |λi| for each index number i. The

results are from computing Example 1 (4.1) on the grid size of 162 with p = 1.

(a) (b)

(c) (d)

Figure 5.2: Eigenvalues - Example 1 on Ω1 (p = 2)
These figures contain the magnitude of the eigenvalues |λi| for each index number i. The

results are from computing Example 1 (4.1) on the grid size of 162 with p = 2.
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(a) (b)

(c) (d)

Figure 5.3: Eigenvalues - Example 1 on Ω1 (p = 3)
These figures contain the magnitude of the eigenvalues |λi| for each index number i. The

results are from computing Example 1 (4.1) on the grid size of 162 with p = 3.

(a) (b)

(c) (d)

Figure 5.4: Eigenvalues - Example 1 on Ω1 (p = 4)
These figures contain the magnitude of the eigenvalues |λi| for each index number i. The

results are from computing Example 1 (4.1) on the grid size of 162 with p = 4.
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5.3 Block vs. Non-Block Lanczos

In this section, we show a little motivation for the choice of computing the Block Lanczos
algorithm rather than the Non-Block Lanczos algorithm. We will look at the numerical
results of one example using both approaches. First, the bilinear form, uT f (A)v, for Non-
Block Lanczos is computed by

uT f (A)v =
1
4
[
(u+v)T f (A)(u+v)− (u−v)T f (A)(u−v)

]
.

The numerical results to follow were computed using Example 1 (4.1) with Dirichlet
boundary conditions on the disc-shaped domain Ω1. The results from the Block Lanczos
algorithm are shown in Table 5.5, whereas the results from the Non-Block Lanczos algorithm
are shown in Table 5.6. By comparing the two tables, it can be seen that the Non-Block
Lanczos does not provide an appropriate error for the solution; even after a high number
of iterations, this approach does not converge. The reason behind this behavior is that the
Non-Block Lanczos tends to a different selection of quadrature nodes than that of the Block
Lanczos, generally leading to less accuracy [9].

Table 5.5: Block Lanczos - Example 1 - Dirichlet Problem on Ω1. The results in this table
show the average number of iterations and error using the L2 norm for each grid size and
order p, along with the rate of convergence for each order p for the approximate solution of
Equation (4.1) computed using ‘KSS Solve 4’ with the Block Lanczos algorithm.

p = 1 p = 2 p = 3

Grid Size # iter error # iter error # iter error

82 = 64 8 5.64E-02 8 3.41E-02 9 2.86E-02

122 = 144 32 3.36E-02 30 6.99E-03 26 1.64E-03

162 = 256 42 2.84E-01 37 3.89E-03 22 4.60E-04

202 = 400 28 2.93E-02 22 3.13E-03 17 9.39E-04

242 = 576 46 2.15E-02 29 2.28E-03 18 5.88E-04

Rate of Conv. 0.88 2.46 3.53
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Table 5.6: Non-Block Lanczos - Example 1 - Dirichlet Problem on Ω1. The results in this
table show the average number of iterations and error using the L2 norm for each grid size
and order p, along with the rate of convergence for each order p for the approximate solution
of Equation (4.1) computed using ‘KSS Solve 4’ with the Non-Block Lanczos algorithm.

p = 1 p = 2 p = 3

Grid Size # iter error # iter error # iter error

82 = 64 68 5.63E-02 68 3.42E-02 68 2.86E+00

122 = 144 150 1.16E+01 150 3.82E+00 150 6.15E+00

162 = 256 245 8.84E-02 246 4.20E-02 246 4.18E+01

202 = 400 351 2.13E+00 376 4.98E-02 376 1.28E+01

242 = 576 520 1.79E+00 533 2.86E-01 538 6.16E+01

Rate of Conv. -3.15 -1.93 -2.79

5.4 Conclusion

The applicability of KSS methods has been expanded with the introduction of SEEM. KSS
methods were previously only able to be applied on rectangular or box-shaped domains.
Now, when combined with SEEM, they can be applied to general domains. Futhermore,
when compared to the previous PCG solving method for SEEM, the component-wise KSS
approach requires far fewer iterations while maintaining roughly the same accuracy. It
is worth noting that SEEM has been applied to a three-dimensional case [2] and that the
approach in ‘KSS Solve 4’ of choosing the bilinear form does extend for a three-dimensional
problem, as well. There are also certain benefits of KSS that can be used to gain advantage
over the PCG method. PCG always has the requirement that each component must be
computed. Since KSS is a component-wise approach, there are ways to optimize the
algorithm and possibly only solve for certain components while approximating for the rest.
This idea was discussed briefly in a previous section. There are different techniques of
optimization that can improve our method in this way.

One idea comes from a discussion in the previous chapter where the coefficients of the
bilinear forms were visualized. With those visualizations for ‘KSS Solve 4’, it could be seen
that the magnitude of the coefficients of the higher-degree Chebyshev polynomials decreased
as the smoothing order p increased. Therefore, it could be possible to neglect these higher-
degree Chebyshev polynomials and only compute the lower-degree Chebyshev polynomials,
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thus improving the efficiency of this method. More tests would need to be ran and results
compared to verify this idea; however, the results shown give a good indication that this
same optimization technique used in the Fourier KSS method extends to the Chebyshev grid
as well.

The second idea comes from a discussion in a previous section of approximating the
eigenvalues of the block triadiagonal matrices, resulting from the Block Lanczos algorithm,
with a polynomial. If this is possible, only a few components would need to be computed
and a polynomial approximation could be used for the rest. With only a brief look into
the eigenvalues, the results shown give an optimistic prediction of being able to apply this
approach. Similarly in [17], this technique can be applied in addition with the optimization
above of neglecting the higher degree components to further enhance the performance of
KSS methods in a Chebyshev basis.

Of course, there are other components of this research that can be evaluated to improve
this component-wise method. This includes determining if the tolerance level in the Block
Lanczos algorithm is worth adjusting for overall rate of convergence in comparison with the
number of iterations. For all numerical results, an average of the number of iterations for
each component was used. Another idea is to see if the number of iterations varies based
on the degree of the Chebyshev polynomial. It could be possible that the higher frequency
components converge more slowly. We previously discussed that these higher frequency
components have, so far, shown to be smaller. Therefore, computational expense could
possibly be gained by neglecting these values.

In conclusion, this component-wise approach of KSS methods maintained the accuracy
needed to compare with the previous PCG method while opening the door to several ways
in which it can continue to be optimized. Additionally, incorporating SEEM with KSS
extended the bounds of applying KSS methods in general.
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Appendix A

Python Code

A.1 Block Lanczos Code

Python Code for Block Lanczos Algorithm:
1 def BLanczos(A,R):

2 # QR Factorization:

3 x, B = np.linalg.qr(R,mode='reduced ')

4 # B0 for Computing Solution

5 B0 = B.copy()

6 oldx = np.zeros(x.shape)

7 j = 0

8 tol = 1

9 s=R.shape

10 mx=s[0]

11 X=x.copy()

12 # Stopping Criterion

13 # Max Iteration and Tolerance

14 while j < mx and tol > 1e-5:

15 V1 = A*x[:,0]

16 V2 = A*x[:,1]

17 V = np.zeros ((len(V1) ,2))

18 V[:,0] = V1

19 V[:,1] = V2

20 M = x.T.dot(V)

21 R = V-x.dot(M)-oldx.dot(B.T)

22 oldx = x.copy()

23 # Save Previous B
24 oldB = B.copy()

25 # QR Factorization:

26 x, B = np.linalg.qr(R,mode='reduced ')

27 # Full Reorthogonalization

28 x=x-X.dot(X.T.dot(x))

29 x, B2 = np.linalg.qr(x,mode='reduced ')

30 X=np.append(X,x,axis =1)

31 if j == 0:

32 T = M

33 else:

34 # Store Previous B
35 # Create New Columns

36 newcol = np.zeros ((2*j,2))

37 # Supdiagonal = BT

38 newcol [-2:] = oldB.T

39 # Create New Rows w/Diagonal

40 newrow = np.zeros ((2,2*j+2))
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41 # Subdiagonal = B
42 newrow [0:2,-4:-2] = oldB

43 # Diagonal = M
44 newrow [0:2 ,-2:] = M

45 T = np.append(np.append(T,newcol ,axis =1),newrow ,axis =0)

46 # Column Vector

47 e = np.zeros ((2*j+2,2))

48 e[0,0] = 1

49 e[1,1] = 1

50 # Solve T*FT=e Instead of Computing Inverse Explicitly

51 FT=scipy.linalg.solve(T,e)

52 FT_12=FT[0:2 ,0:2]

53 # Alternate Procedure for FT12
54 if j==0:

55 Z=np.linalg.inv(M)

56 D=M.copy()

57 D1=np.linalg.inv(D)

58 C=np.eye(2)

59 else:

60 G=T[2*j:2*j+2,2*j -2:2*j]

61 Om=T[2*j:2*j+2,2*j:2*j+2]

62 L=G.dot(D1)

63 D=Om-G.dot(L.T)

64 D1=np.linalg.inv(D)

65 C=L.dot(C)

66 term=C.T.dot(D1.dot(C))

67 Z=Z+term

68 FT_12=Z.copy()

69 y = B0.T.dot(FT_12.dot(B0))

70 if j == 0:

71 oldy = 0

72 if j > 0:

73 # Check Convergence of (1,2) Entry

74 tol = abs(y[0,1]-oldy [0 ,1])

75 oldy = y.copy()

76 j = j+1

77 return y,j

A.2 ‘KSS Solve 1’ Code

Python Code for ‘KSS Solve 1’:
1 def kss_solve(self ,interior ,boundary):

2 # f :

3 rhs1 = interior(self.gdata.x1[self.gdata.flag ],...

4 self.gdata.x2[self.gdata.flag]);

5 # g :

6 rhs2 = boundary(self.gdata.b[:,0],self.gdata.b[:,1]);

7 # b = v :

8 rhs = np.hstack ((rhs1 ,rhs2));

9 # Grid Size m2 :

10 m = self.gdata.m
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11 Y = np.zeros(m**2)

12 J = np.zeros(m**2)

13 for i in range(m**2):

14 e = np.zeros(m**2)

15 e[i] = 1

16 # u =C :

17 u_vec = self.C(e)

18 # *self.C =C
19 l = len(rhs)

20 R0 = np.zeros((l,2))

21 R0[:,0] = u_vec

22 R0[:,1] = rhs

23 # Block Lanczos Algorithm:

24 y,J[i] = BLanczos(self.MM ,R0)

25 # Y =CT (CS−1CT )−1b :

26 Y[i] = y[0,1]

27 Y = np.reshape(Y,(m,m))

28 # um = S−1Y :

29 u = self.ker(Y)

30 # *self.ker = S−1

31 # Average Number of Iterations:

32 it = np.mean(J)

33 return u,it

A.3 ‘KSS Solve 2’ Code

Python Code for ‘KSS Solve 2’:
1 def kss_solve2(self ,interior ,boundary):

2 # f :

3 rhs1 = interior(self.gdata.x1[self.gdata.flag ],...

4 self.gdata.x2[self.gdata.flag]);

5 # g :

6 rhs2 = boundary(self.gdata.b[:,0],self.gdata.b[:,1]);

7 # b = v :

8 rhs = np.hstack ((rhs1 ,rhs2));

9 l = len(rhs)

10 Y = np.zeros(l)

11 J = np.zeros(l)

12 for i in range(l):

13 e = np.zeros(l)

14 e[i] = 1

15 # u = Standard Basis Vector:

16 u_vec = e

17 R0 = np.zeros((l,2))

18 R0[:,0] = u_vec

19 R0[:,1] = rhs

20 # Block Lanczos Algorithm:

21 y,J[i] = BLanczos(self.MM ,R0)

22 # Y = (CS−1CT )−1b :

23 Y[i] = y[0,1]

24 # um = S−1CTY :
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25 u = self.ker(self.Ct(Y))

26 # *self.ker = S−1

27 # *self.Ct =CT

28 # Average Number of Iterations:

29 it = np.mean(J)

30 return u,it

A.4 ‘KSS Solve 3’ Code

Python Code for ‘KSS Solve 3’:
1 def kss_solve3(self ,interior ,boundary):

2 # f :

3 rhs1 = interior(self.gdata.x1[self.gdata.flag ],...

4 self.gdata.x2[self.gdata.flag]);

5 # g :

6 rhs2 = boundary(self.gdata.b[:,0],self.gdata.b[:,1]);

7 # b = v :

8 rhs = np.hstack ((rhs1 ,rhs2));

9 # Grid Size m2 :

10 m = self.gdata.m

11 Y = np.zeros(m**2)

12 J = np.zeros(m**2)

13 for i in range(m**2):

14 e = np.zeros(m**2)

15 e[i] = 1

16 # u =CCT :

17 u_vec = self.C(self.kerC(e))

18 # *self.C =C
19 # *kerC = CT

20 l = len(rhs)

21 R0 = np.zeros((l,2))

22 R0[:,0] = u_vec

23 R0[:,1] = rhs

24 # Block Lanczos Algorithm:

25 y,J[i] = BLanczos(self.MM ,R0)

26 # Y = (CCT )T (CS−1CT )−1b :

27 Y[i] = y[0,1]

28 Y = np.reshape(Y,(m,m))

29 # um = C−1MY :

30 u = self.kerCinvM(Y)

31 # *self.kerCinvM = C−1M
32 # Average Number of Iterations:

33 it = np.mean(J)

34 return u,it

Python Code for CT :
1 def kerC(self ,w,l=None):

2 if l == None:

3 l = self.l

4 w = np.reshape(w,(self.gdata.m,self.gdata.m))
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5 w = np.real(dctnT(w))

6 # *dctnT = Discrete Cosine Transform Transpose

7 return w.flatten ()

Python Code for C−1M:
1 def kerCinvM(self ,w,l=None):

2 if l == None:

3 l = self.l

4 w = np.reshape(w,(self.gdata.m,self.gdata.m))

5 w = np.real(idctn(w*(1+ self.gdata.fx**2 +...

6 self.gdata.fy**2)**-l))/...

7 (2* self.gdata.m)**2

8 # *idctn = Inverse Discrete Cosine Transform

9 return w.flatten ()

A.5 ‘KSS Solve 4’ Code

Python Code for ‘KSS Solve 4’:
1 def kss_solve4(self ,interior ,boundary):

2 # f :

3 rhs1 = interior(self.gdata.x1[self.gdata.flag ],...

4 self.gdata.x2[self.gdata.flag]);

5 # g For Dirichlet BC :

6 rhs2 = boundary(self.gdata.b[:,0],self.gdata.b[:,1]);

7 # g For Neumann BC:

8 # rhs2 = boundary(self.gdata.bn[:,0],self.gdata.bn[: ,1]);

9 # g For Robin BC:

10 # rhs2 = boundary(self.gdata.g_grid)

11 # b = v :

12 rhs = np.hstack ((rhs1 ,rhs2));

13 # Grid Size m2 :

14 m = self.gdata.m

15 Y = np.zeros(m**2)

16 J = np.zeros(m**2)

17 for i in range(m**2):

18 e = np.zeros(m**2)

19 e[i] = 1

20 # u =CCT M :

21 u_vec = self.C(self.kerCM(e))

22 # *self.C =C
23 # *kerCM = CT M
24 l = len(rhs)

25 R0 = np.zeros((l,2))

26 R0[:,0] = u_vec

27 R0[:,1] = rhs

28 # Block Lanczos Algorithm:

29 y,J[i] = BLanczos(self.MM ,R0)

30 # Y = (CCT M)T (CS−1CT )−1b :

31 Y[i] = y[0,1]

32 Y = np.reshape(Y,(m,m))
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33 # um = C−1Y :

34 u = self.kerCinv(Y)

35 # *self.kerCinv = C−1

36 # Average Number of Iterations:

37 it = np.mean(J)

38 return u,it

Python Code for CT M:
1 def kerCM(self ,w,l=None):

2 if l == None:

3 l = self.l

4 w = np.reshape(w,(self.gdata.m,self.gdata.m))

5 w = np.real(dctnT(w*(1+ self.gdata.fx**2 +...

6 self.gdata.fy**2)**-l))

7 # *dctnT = Discrete Cosine Transform Transpose

8 return w.flatten ()

Python Code for C−1:
1 def kerCinv(self ,w,l=None):

2 if l == None:

3 l = self.l

4 w = np.reshape(w,(self.gdata.m,self.gdata.m))

5 w = np.real(idctn(w))/(2* self.gdata.m)**2

6 # *idctn = Inverse Discrete Cosine Transform

7 return w.flatten ()
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