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ABSTRACT

Optimizing the approximation of bilinear forms using a one-sided perturbation, where

the computation of the approximate solution is generated faster while using less storage

or reusing information is possible. Standard methods for approximation like Lanczos and

others exist; however, separating the work a little bit and having the bilinear form relate to

the quadratic form can yield a more efficient algorithm. When we have an application where

the needs are different, it is helpful to understand how the processes like symmetric Lanczos

and unsymmetric Lanczos relate to one another so that we can find a way to break things

down to accommodate specific cases. The objective of this research is to build an efficient

algorithm to approximate bilinear forms with matrix functions utilizing the quadrature rule

for approximating quadratic forms without applying the standard methods of approximation.
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NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this text represents fairly standard mathematical and computational
usage. In many cases these fields tend to use different preferred notation to indicate the same
concept, and these have been reconciled to the extent possible, given the interdisciplinary
nature of the material. The blackboard fonts are used to denote standard sets of numbers:
R for the field of real numbers and C for the complex field. The capital letters, A,B, · · ·
are used to denote matrices, including capital greek letters, e.g., Λ for a diagnonal matrix.
Functions which are denoted in boldface type typically represent vector valued functions,
and real valued functions usually are set in lower case roman or greek letters. Lower case
letters such as i, j,k, l,m,n and sometimes p and d are used to denote indices, while lower
case bold letters are used to denote vectors. Vectors are typset in square brackets, e.g., [·],
and matrices are typeset in parenthesese, e.g., (·). In general the norms are typeset using
double pairs of lines, e.g., || · ||, and the abolute value of numbers is denoted using a single
pairs of lines, e.g., | · |.

x



Chapter 1

Introduction

1.1 Introduction

The aim of this dissertation is to optimize the approximation of bilinear forms involving
infinitely differentiable matrix functions. Numerical algorithms are used and sometimes
developed to solve or derive an approximate solution to problems that emerge in scientific
applications. The main goal is to develop a more efficient algorithm for approximating
bilinear quantities of the form

uT f (A)v (1.1)

where u and v are given N-vectors, A is an N×N symmetric matrix, and f is a smooth
function on a given interval on the real line to produce good approximations of bilinear
forms involving matrix functions using fewer steps and less storage.

Many applications require approximations of the quantity (1.1), such as approximation
in signal processing (the scattering amplitude), error estimation in the conjugate method
and least-squares problems, estimation of the trace of the inverse and the determinant, and
spectral methods for PDEs, to name a few. Motivations for seeking approximations of
bilinear quantities may include, computing a solution directly is not an option, elements
of a very large matrix function are too costly to compute, approximate solutions within
specific error bounds are sufficient, or simply approximating bilinear quantities can be
done efficiently. Methods used to approximate bilinear forms include, but is not limited to,
Conjugate Gradient Method (CG), Biconjugate Gradient Method (BiCG), Galerkin Method
[7], and Aitken’s Method [8]. Instead, we will consider an approximation approach based
on the Lanczos algorithm to optimize bilinear forms.

In building an efficient algorithm, we seek to express every step in the algorithm of
approximating bilinear forms in terms of the corresponding steps of approximating quadratic
forms utilizing one quadrature rule. In [10], techniques pioneered by Golub and Meurant of
approximating bilinear forms with matrix functions allows bilinear quantities to be written
as matrix Riemann-Stieltjes integrals

uT f (A)v =
∫ b

a
f (λ )dα(λ ) = I[ f ], (1.2)
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and approximated using a Gaussian quadrature rule over the spectrum of A, where nodes
and weights can be computed implementing the symmetric Lanczos algorithm if u = v and
the unsymmetric Lanczos algorithm if u 6= v. When numerically approximating an integral,
we are approximating our integrand f (λ ) by a polynomial that interpolates f at the nodes,
and the quadrature rule integrates the interpolating polynomial exactly. Chapter 2 is devoted
to background and theory of the relationship between the Gaussian quadrature rule and the
Lanczos algorithms (symmetric and unsymmetric). We will also discuss the role orthogonal
polynomials play in computing the coefficients of the three-term recurrence relations, since
approximation via Gauss quadrature requires orthogonal polynomials with respect to our
integral measure α(λ ) in (1.2). The Lanczos algorithm with the correct inner-product can
always find the right set of orthogonal polynomials; due to this fact, we choose Gauss
quadrature compared to some other integration rules.

Introduced in [16], Lambers applied these techniques in developing a numerical method
called a Krylov Subspace Spectral (KSS) method, which utilizes Gaussian quadrature to
compute components of the solution of variable coefficient diffusion problems. Each Fourier
coefficient of the linear parabolic partial differential equation (PDE), once spatial discretized,
results in a bilinear form involving a matrix function uT f (A)v. This method proved more
accurate than the traditional spectral method. However, accurately approximating (1.1) for
u 6= v using Gaussian quadrature and implementing the unsymmetric Lanczos algorithm has
its limitations. For u and v not sufficiently close, may lead to a bad approximation, and can
lead to negative weights which numerically destabilizes the quadrature rule [1]. Thus, the
work of Lambers in [14, 16] gives rise to our motivations for developing a more accurate
approximation approach of (1.1). If we can handle the quadratic form

uT f (A)u (1.3)

analytically, which is what KSS methods can do, then it’s not a good idea to just run
unsymmetric Lanczos in the ordinary way with the following perturbation

uT f (A)(u+dv), (1.4)

especially if u depends on a parameter as in KSS methods [14]. It is preferable to be able to
compute bilinear form quantities directly from quadratic form quantities (1.3), instead of
performing Lanczos all over again because it is wasteful.

As a result, we utilize an alternative approach to approximate bilinear forms like (1.1)
for u 6= v using the same quadrature rule discussed previously to overcome these limitations.
Additionally, we keep in mind that when the initial vectors u and v are equal, positive
weights are guaranteed. By continuity, if the initial vectors u and v are close enough,

2



positive weights are guaranteed. We derive the perturbation (1.4) which arises out of
expressing (1.1) as a difference quotient involving the following perturbation

uT f (A)v =
1
d
[uT f (A)(u+dv)−uT f (A)u], (1.5)

where A is still an N×N symmetric positive definite matrix, u is the left-side initial N-vector,
u+dv is the right-side initial N-vector as a pertubation of the left, and d is a small positive
constant [1, 14]. Thus, we approximate the perturbed bilinear form (1.4) by carrying out
the Perturbation Approach algorithm to compute the perturbed quantities of the modified
Jacobi matrix, which we will thoroughly explain in Chapter 3.

Chapter 4 provides the numerical results to show the efficiency of our algorithm discussed
previously, when approximating bilinear quantities in the form of (1.1). Additionally, the
outcomes from investigating the measurement of sensitivity of Gaussian Quadrature nodes
and weights, and recursion coefficients associated with the Gaussian Quadrature rules are
presented in this chapter. The sensitivity measures are utilized to help choose d so that
the β̂ j are all positive real numbers, because real positive β̂ j guarantees positive Gaussian
quadrature weights. Thus, the sensitivity study of all quantities for d = 0 will ultimately aid
in determining if Lanczos is ill-conditioned or not. Conclusions will follow in Chapter 5.

3



Chapter 2

BACKGROUND

In this chapter, we present the Lanczos algorithms, symmetric and unsymmetric (commonly
referred to as nonsymmetric). We also provide the framework for the motivations to pursue
this work. For our information, what we refer to today as the Lanczos algorithm was born as
a numerical method developed by Cornelius Lanczos in 1950 to solve the classic Eigenvalue

Problem, which Lanczos called the Method of Minimized Iterations[19]. Let us first define
the types of problems we are working with, quadratic forms and bilinear forms for real
symmetric matrices.

2.1 Quadratic and Bilinear Forms

Quadratic forms, for an N-vector u and an N×N real symmetric matrix A is a scalar
function Q defined by

Q(u) = uT Au =
N

∑
i=

N

∑
j=

ai juiu j. (2.1)

A quadratic form is said to be postive definite whenever A is a positive definite matrix. In
other words, Q(u) is a positive definite form if and only if uT Au > 0 for all u 6= 0 [21].

For N-vectors u and v, and an N×N symmetric matrix A, a function B of the form

B(u,v) = uT Av =
n

∑
i=

n

∑
j=

ai juiv j (2.2)

is called a bilinear form. A bilinear form is symmetric if the scalar product B(u,v)=B(v,u).
B(u,v) is positive definite if the scalar product B(u,u)> 0 for all u 6= 0 [23].

Since A is symmetric, it has real eigenvalues

a = λ1 ≤ λ2 ≤ ·· · ≤ λN = b, (2.3)

and orthonormal eigenvectors q1, q2, . . . , qN such that

Aq j = λ jq j, j = 1,2, ...,N. (2.4)
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Expressing A in terms of its eigenvalues λ j and eigenvectors q j allows the bilinear quantity
involving matrix function f to be written as follows,

uT f (A)v = uT f

(
N

∑
j=

λ jq jq
T
j

)
v =

N

∑
j=

f (λ j)uT q jq
T
j v (2.5)

As presented in [10], it follows that the bilinear form (2.2) can also be written as a matrix
Riemann-Stieltjes integral

uT f (A)v =
N

∑
j=

f (λ j)uT q jq
T
j v =

∫ b

a
f (λ )dα(λ ) = I[ f ], (2.6)

where a and b are the smallest and largest eigenvalues, and the measure α(λ ) is defined as

α(λ ) =


0 λ < a,

∑
k
j=uT q jqT

j v λk ≤ λ < λk+,

∑
N
j=uT q jqT

j v λ ≥ b.

The Riemann-Stieltjes integral with matrix function f ,

I[ f ] =
∫ b

a
f (λ )dα(λ ) (2.7)

can be approximated using a Gaussian quadrature rule over the spectrum of A using tech-
niques developed by Golub and Meurant, where nodes and weights can be computed
implementing the symmetric Lanczos algorithm if u = v, and the unsymmetric Lanczos
algorithm if u 6= v. When numerically approximating an integral (2.7), we are approximating
our integrand f (λ ) by a polynomial that interpolates the function f at the nodes, and the
quadrature rule integrates the interpolating polynomial exactly.

2.2 Approximation via Gaussian quadrature

This section provides an overview of the approximation of an expression of the form (2.2)
using Gaussian quadrature and techniques covered in [10].

To use Gauss quadrature, we need polynomials that are orthogonal with respect to our
integral measure α(λ ). We choose Gauss quadrature compared to some other integration
rules because we can always find the right set of orthogonal polynomials. The Lanczos
algorithm with the correct inner-product will give us the orthogonal polynomials needed.
The benefit of Gauss quadrature is that we start with an orthogonal polynomial of degree
0, which is a constant, and then the recurrence relation generates polynomials of degree
1,2, . . . ,N. Once we have the polynomial of degree N, we stop. This is equivalent to having

5



our N×N Jacobi matrix, and roots of the Nth degree polynomial are the nodes. In general,
polynomial roots are difficult to obtain; our work is the best way to get the roots, because, if
the roots we want are the eigenvalues of a symmetric matrix (the Jacobi matrix is symmetric),
then we can compute the roots efficiently and they are better conditioned. Eigenvalues of a
symmetric matrix are well conditioned; this is a guarantee. We are actually not using this
aspect of Gauss quadrature; however, it is such an important benefit. Benefits of Gauss
quadrature we are making use of include:

• The degree of accuracy

• We are guaranteed to have positive weights as long as our measure is positive and
increasing. This is why it’s important to choose u and v close.

• Because Gauss quadrature has positive weights, we can be sure that as the number of
nodes builds to infinity that approximation really is converging.

Positive weights are good for robustness, and degree of accuracy is good for efficiency.

2.3 Symmetric Lanczos Algorithm

To accurately approximate I[ f ] (2.7) for u = v using Gaussian quadrature, we can apply the
symmetric Lanczos algorithm to A with initial vector u as follows [17]:

Let X1 = x1 be an N×1 given matrix, such that XT
1 X1 = I2. Let x0 = 0 and r0 = u. Then,

for j = 1,2, . . . , we compute

r0 = u
x0 = 0
for j = 1, . . . ,K

β j−1 = ‖r j−1‖2

x j = r j−1/β j−1

v j = Ax j

α j = xT
j v j

r j = v j−α jx j−β j−1x j−1

end

where r j is computed using the 3−term recurrence relation that defines the orthogonal
polynomials needed to use Gauss quadrature, and whose output is stored after each iteration.

6



The recursion coefficients α1, . . . ,αK and β1, . . . ,βK computed by the symmetric Lanczos
iteration yields the tridiagonal matrix TK

TK =


α1 β1
β1 α2 β2

. . . . . . . . .
βK−2 αK−1 βK−1

βK−1 αK

 (2.8)

which is the Jacobi matrix. Finally, we obtain the approximation

uT f (A)u =
∫ b

a
f (λ )dα(λ )

=
K

∑
j=

f (t j)w j + error

where the nodes t j are the eigenvalues of TK produced by the symmetric Lanczos algorithm,
and the weights w j are equal to the squares of the first components of the normalized
eigenvectors of TK .

2.4 Unsymmetric Lanczos

For the case u 6= v, we can apply the unsymmetric Lanczos algorithm to A with initial
vectors u and v. Here we will assume that u and v are sufficiently close in effort to ensure
a numerically stable quadrature rule. To accurately approximate I[ f ] (2.7) for u 6= v using
Gaussian quadrature, we can apply the unsymmetric Lanczos algorithm to A with initial
vectors u and v as follows: After K iterations, we have

AXK = XKTK +βKxK+1eT
K, (2.9)

where XH
K XK = IK , and

T̂K =


α̂1 β̂1

β̂1 α̂2 β̂2
. . . . . . . . .

β̂K−2 α̂K−1 β̂K−1

β̂K−1 α̂K

 (2.10)

is the symmetric and tridiagonal Jacobi matrix. The recursion coefficients α̂1, . . . , α̂K and
β̂1, . . . , β̂K are produced by the Unsymmetric Lanczos iteration as follows: Let X̂1 = x̂1 be
an N×1 given matrix, such that X̂T

1 X̂1 = Î1. Let x̂0, ŷ0 = 0, p̂0 = u and r̂0 = v. Then, for
j = 1,2, . . . , we compute

7



p̂0 = u
r̂0 = v
x̂0 = 0
ŷ0 = 0
for j = 1, . . . ,K

β̂ 2
j−1 = p̂T

j−1r̂ j−1

x̂ j = r̂ j−1/β̂ j−1

ŷ j = p̂ j−1/β̂ j−1

ŵ j = Ax̂ j

t̂ j = Aŷ j

α̂ j = ŷT
j ŵ j

r̂ j = ŵ j− α̂ jx̂ j− β̂ j−1x̂ j−1

p̂ j = t̂ j− α̂ jŷ j− β̂ j−1ŷ j−1

end

Then, we have X̂K =
[

x̂1 · · · x̂K
]

and T̂K obtained from storage of α̂1, . . . , α̂K and
β̂1, . . . , β̂K−1. Finally, we obtain the approximation

uH f (A)v =
K

∑
j=1

f (t j)w j +R[ f ] (2.11)

where the nodes t1, . . . , tK are the eigenvalues of TK , and the weights w1, . . . ,wK are equal to
β0 = uT v times the squares of the first components of the normalized eigenvectors of T̂K .
The error R[ f ] is

R[ f ] =
f (2K)(η)

(2K)!

∫ b

a

K

∏
j=1

(λ − t j)
2 dα(λ ). (2.12)

For general u 6= v, the tridiagonal matrix TK is not necessarily symmetric because β̂ j−1

might not be positive [10]. This outcome can lead to negative weights, which numerically
destabilizes the quadrature rule (2.11) [1]. However, for u and v sufficiently close, the dot
product p̂T

j−1r̂ j−1 ≥ 0 would yield positive weights, and TK would be symmetric.

2.5 Motivation for Perturbation

Quadratic forms are approximated by running the symmetric Lanczos algorithm which
guarantees positive weights. When approximating a bilinear form, we can simply run
unsymmetric Lanczos; however, this is not a good idea because the initial vectors u and
v can be arbitrary. Therefore, we are not guaranteed positive weights, which can lead to

8



a bad approximation [10]. So, for u 6= v, we consider the following methods for a good
approximation of bilinear forms involving matrix functions (2.6) yielding positive weights:

• For initial vectors u and v not close enough, one can apply the unsymmetric Lanczos
algorithm to A using the block approach described in [10], with initial block

[
u v

]
,

which is similar to two full Lanczos runs,

• For initial vectors u and v sufficiently close, one can apply the symmetric Lanczos
algorithm to A twice, u+ v and u− v; however, the subtraction involved in both
formulas can produce cancellation error,

• For initial vectors u and v close enough, one can apply our Perturbation Approach

algorithm to A with a right-side initial vector that is a perturbation of the left,
uT f (A)(u+dv) as in (1.4).

In Chapter 3, we will discuss the discoveries made through the investigation of how to
efficiently approximate bilinear forms involving matrix functions implementing our Pertur-

bation Approach.
This approximation method, using a right-side initial vector that is a perturbation of the

left, is motivated by the work of Lambers, Fourier Spectral Methods for Variable Coefficient

PDEs. KSS Methods treats uT f (A)v (1.1) as a perturbation, but the challenge was how to
get from the tridiagonal matrix TK (2.4) to T̂K (2.10) with as little work as possible [17]. It
could be done analytically using formulas and brute force. The dilemma of KSS Methods
with using unsymmetric Lanczos for Krylov subspace spectral (KSS) methods involved
computing uT f (A)v where u is varying over a fixed set (eiωx), where omega is an integer
parameter), and v changing from one time-step to the next. For each case, he would have to
compute uT f (A)u, uT f (A)(u+dv) as in (1.4), and then subtract and divide to get uT f (A)v.
Since he had an easier way of handling the quadratic form case, was there a way to get the
Jacobi matrix (2.10) more directly for uT f (A)(u+dv) as in (1.4) without applying Lanczos
each and every time?

Approximating in the "regular" way using unsymmetric Lanczos would generate an
overwhelming number of Krylov subspaces. As discussed in [17], if u is varying over a set
of size N, it is necessary to compute 2N Krylov subspaces. The Perturbation Approach lets
us compute only one Krylov subspace, which comes from generating all the ṽ j (detailed in
Chapter 3). Every time we generate a new ṽ, we have to multiply by A. Multiplying by A is
the operation we want to carryout as rarely as possible, because matrix vector multiplication
is the most expensive. An additional benefit of our study is we are able to express bilinear
forms using quantities we have already computed for quadratic forms, and information reuse

9



is efficient. Under normal circumstances, if we simply approximate uT f (A)u as in (1.3) and
then approximate uT f (A)v as in (1.1), there is no information reuse.
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Chapter 3

PERTURBATION METHOD

We began the pursuit of developing a more efficient algorithm for approximating bilinear
forms with matrix functions (1.1) by attempting to derive Closed-form expressions for
α̂ j and β̂ j, the entries of the modified Jacobi matrix (2.10). Following the unsymmetric
Lanczos iteration outlined in Section 2.4, we did succeed for lower indicies without general
relationship. However, simplifying the perturbed quantities beyond the third iteration
became extremely difficult. As displayed in the tables below, the sum of terms in each
hatted quantity compounds with each iteration. The outcome of this work, in the simplest
expressions achieved, is presented here utilizing the 3-term recurrence relation ṽ j,

ṽ j =


0 j =−1,
v j = 0,
Aṽ j−1− α̂ jṽ j−1− β̂ 2

j−1ṽ j−2 j ≥ 1.
(3.1)
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Table 3.1: First Iteration to Discover Closed-form Expressions

Symmetric
Quantities

Unsymmetric (Perturbed) Quantities

r0 = u (initial vector) p̂0 = r0 (le f t − initial vector)
ṽ0 = v
r̂0 = u+dṽ0 (right − initial vector)

β
2
0 = rT

0 r0 β̂
2
0 = p̂T

0 r̂0

= β
2
0 +drT

0 ṽ0

x1 =
r0

β0
x̂1 =

r̂0

β̂0

=
r0

β̂0
+

d

β̂0
ṽ0

ŷ1 =
p̂0

β̂0

=
r0

β̂0

α1 = xT
1 Ax1

=
rT

0 Ar0

β 2
0

α̂1 = ŷT
1 Ax̂1

= α1 +
β0d

β̂ 2
0

r1
T ṽ0
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Table 3.2: Second Iteration to Discover Closed-form Expressions

Symmetric
Quantities

Unsymmetric (Perturbed) Quantities

p̂1 = (A− α̂1I)ŷ1− β̂0ŷ0

=
β0

β̂0
r1 +

(α1− α̂1)

β̂0
r0

ṽ1 = (A− α̂1I)ṽ0

= Aṽ0− α̂1ṽ0

r1 = (A−α1I)x1

=
Ar0−α1r0

β0

r̂1 = (A− α̂1I)x̂1− β̂0x̂0

=
β0

β̂0
r1 +

(α1− α̂1)

β̂0
r0 +

d

β̂0
v1 +

d(α1− α̂1)

β̂0
v0

=
β0

β̂0
r1 +

(α1− α̂1)

β̂0
r0 +

d

β̂0
ṽ1

β
2
1 = rT

1 r1 β̂
2
1 = p̂T

1 r̂1

=
β 2

0 β 2
1

β̂ 2
0

+
β0d

β̂ 2
0

rT
1 v1 +

β0d(α1− α̂1)

β̂ 2
0

rT
1 v0

=
β 2

0 β 2
1

β̂ 2
0

+
β0d

β̂ 2
0

rT
1 ṽ1

x2 =
r1

β1
x̂2 =

r̂1

β̂1

=
β0

β̂0β̂1
r1 +

(α1− α̂1)

β̂0β̂1
r0 +

d

β̂0β̂1
ṽ1

ŷ2 =
p̂1

β̂1

=
β0

β̂0β̂1
r1 +

(α1− α̂1)

β̂0β̂1
r0

α2 = xT
2 Ax2

=
rT

1 Ar1

β 2
1

α̂2 = ŷT
2 Ax̂2

= α2 +(α1− α̂1)+
β0β1d

β̂ 2
0 β̂ 2

1

r2
T v1 +

β0β1d(α1− α̂1)

β̂ 2
0 β̂ 2

1

r2
T v0

= α2 +(α1− α̂1)+
β0β1d

β̂ 2
0 β̂ 2

1

r2
T ṽ1
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Table 3.3: Third Iteration to Discover Closed-form Expressions

Symmetric Quantities Unsymmetric (Perturbed) Quantities

p̂2 = (A− α̂1I)ŷ1− β̂0ŷ0

=
β0

β̂0
r1 +

(α1− α̂1)

β̂0
r0

ṽ2 = (A− α̂2I))ṽ1− β̂
2
1 ṽ0

= Aṽ1− α̂2v̂1− β̂
2
1 ṽ0

r2 = (A−α2I)x2−β1x1

=
Ar1−α2r1

β1
− β1r0

β0

r̂2 = (A− α̂2I)x̂2− β̂1x̂1

=
β0β1

β̂0β̂1
r2 +

(α1− α̂1)β0

β̂0β̂1
r1 +

(α2− α̂2)β0

β̂0β̂1
r1

+
(β 2

1 − β̂ 2
1 )

β̂0β̂1
r0 +

(α1− α̂1)(α1− α̂2)

β̂0β̂1
r0 +

d

β̂0β̂1
ṽ2

β
2
2 = rT

2 r2 β̂
2
2 = p̂T

1 r̂1

=
β 2

0 β 2
1 β 2

2

β̂ 2
0 β̂ 2

1

+
(α1− α̂1)

2(α1− α̂2)
2β 2

0

β̂ 2
0 β̂ 2

1

+
(β 2

1 − β̂ 2
1 )

2β 2
0

β̂ 2
0 β̂ 2

1

+
2(α1− α̂1)(α1− α̂2)(β

2
1 − β̂ 2

1 )β
2
0

β̂ 2
0 β̂ 2

1

+
β 4

0 β 4
1 d2

β̂ 6
0 β̂ 6

1

r2
T ṽ1rT

2 ṽ1

−
β 2

0 β1d2

β̂ 4
0 β̂ 4

1

r2
T ṽ1rT

1 ṽ2 +
β0β1d

β̂ 2
0 β̂ 2

1

r2
T ṽ2

+
(α1− α̂1)(α1− α̂2)d

β̂ 2
0 β̂ 2

1

rT
0 ṽ2

+
(β 2

1 − β̂ 2
1 )d

β̂0β̂1
rT

0 ṽ2

x3 =
r2

β2
x̂3 =

r̂1

β̂1

=
β0β1

β̂0β̂1β̂2
r2 +

(α1− α̂1)β0

β̂0β̂1β̂2
r1 +

(α2− α̂2)β0

β̂0β̂1β̂2
r1

+
(β 2

1 − β̂ 2
1 )

β̂0β̂1β̂2
r0 +

(α1− α̂1)(α1− α̂2)

β̂0β̂1β̂2
r0 +

d

β̂0β̂1β̂2
ṽ2
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Table 3.4: Third Iteration to Discover Closed-form Expressions

ŷ3 =
p̂2

β̂2

=
β0β1

β̂0β̂1β̂2
r2 +

(α1− α̂1)β0

β̂0β̂1β̂2
r1 +

(α2− α̂2)β0

β̂0β̂1β̂2
r1

+
(α1− α̂1)(α1− α̂2)β0

β̂0β̂1β̂2
r0
(β 2

1 − β̂ 2
1 )

β̂0β̂1β̂2
r1

α3 = xT
3 Ax3

=
rT

2 Ar2

β 2
2

α̂3 = ŷT
2 Ax̂2

= α2−
β0d

β̂ 2
0

r1
T ṽ0 +

β0β1d

β̂ 2
0 β̂ 2

1

r2
T ṽ1 +

β0β1(α1− α̂1)d

β̂ 2
0 β̂ 2

1

r2
T ṽ0

3.1 Relations, Definitions, and Notation

After many months of tedious examination and pain staking manipulation of the perturbed
quantities and relations in the tables above to derive Closed-form expressions for α̂ j and
β̂ j, the need for a different approach to achieve this goal became abundantly clear. As an
alternative, we define the relations needed to generate the perturbed quantities utilized in our
Perturbation Approach algorithm to compute the modified Jacobi matrix T̂K (2.10). We
will refer to these definitions and relations for the remainder of Chapter 3 and throughout
Chapter 4.

We see it is possible to generate α̂ j and β̂ j by relying on those previously computed plus
r j and ṽ j. The coefficients for a change of basis, C j, are how r̂ j (3.11) relate to r j. C j are
the intermediate quantities that help to compute the perturbed α j and β j. Furthermore, C j

and F j, j, make generating these quantities simpler. So, we define the recursive relations for
the coefficients C j and F j, j. For i, j ≥ 0 and i≤ j, we have

j

∑
i=0

Ci, jri = (A− α̂ jI)
j−1

∑
i=0

Ci, j−1

β̂ j−1
ri−

β̂ j−1

β̂ j−2

j−2

∑
i=0

ri (3.2)

where

Ari = αi+1ri +βiri+1 +
β 2

i
βi−1

ri−1. (3.3)

After substitution of (3.3) into (3.2) and setting all terms equal to zero, we shift the indicies
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on each summation so that all r terms have an index of i such that

0 =
j−1

∑
i=0

Ci, j−1αi+1

β̂ j−1
ri +

j

∑
i=1

Ci−1, j−1βi−1

β̂ j−1
ri +

j−2

∑
i=0

Ci+1, j−1β 2
i+1

β̂ j−1βi
ri−

j−1

∑
i=0

Ci, j−1α̂ j

β̂ j−1
ri

−
j−2

∑
i=0

Ci, j−2β̂ j−1

β̂ j−2
ri−

j

∑
i=0

Ci, jri.

The indicies on each summation in (3.4) are modified (i = 0 to i = 1, i = j and i = j−1 to
i = j−2) to consolidate the terms into one large sum. As a consequence, the outlier r terms
with an index other than i are appended to the large summation as follows

0 =
j−2

∑
i=1

(
Ci, j−1αi+1

β̂ j−1
ri +

Ci−1, j−1βi−1

β̂ j−1
ri +

Ci+1, j−1β 2
i+1

β̂ j−1βi
ri−

Ci, j−1α̂ j

β̂ j−1
ri−

Ci, j−2β̂ j−1

β̂ j−2
ri

−Ci, jri
)
+

C0, j−1α1

β̂ j−1
r0 +

C j−1, j−1α j

β̂ j−1
r j−1 +

C j−1, j−1β j−1

β̂ j−1
r j +

C j−2, j−1β j−2

β̂ j−1
r j−1

+
C1, j−1β 2

1

β̂ j−1β0
r0−

C0, j−1α̂ j

β̂ j−1
r0−

C j−1, j−1α̂ j

β̂ j−1
r j−1−

C0, j−2β̂ j−1

β̂ j−2
r0−C0, jr0−C j, jr j

−C j−1, jr j−1. (3.4)

This is important since we are now able to identify the coefficients for each vector r in terms
of C( j), α j, and β j. Combining all like terms for each index of r yields the recurrence
relation,

0 =
j−2

∑
i=1

(
Ci, j−1αi+1

β̂ j−1
+

Ci−1, j−1βi−1

β̂ j−1
+

Ci+1, j−1β 2
i+1

β̂ j−1βi
−

Ci, j−1α̂ j

β̂ j−1
−

Ci, j−2β̂ j−1

β̂ j−2
−Ci, j

)
ri

+

(
C0, j−1α1

β̂ j−1
+

C1, j−1β 2
1

β̂ j−1β0
−

C0, j−1α̂ j

β̂ j−1
−

C0, j−2β̂ j−1

β̂ j−2
−C0, j

)
r0

+

(
C j−1, j−1α j

β̂ j−1
+

C j−2, j−1β j−2

β̂ j−1
−

C j−1, j−1α̂ j

β̂ j−1
−C j−1, j

)
r j−1

+

(
C j−1, j−1β j−1

β̂ j−1
−C j, j

)
r j

Thus, we are able to compute the coefficients for r1, . . . ,r j. Since r j is orthogonal, their
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coefficients must be zero and determined by the following recurrence relations

j−2

∑
i=1

(
Ci, j−1αi+1

β̂ j−1
+

Ci−1, j−1βi−1

β̂ j−1
+

Ci+1, j−1β 2
i+1

β̂ j−1βi
−

Ci, j−1α̂ j

β̂ j−1
−

Ci, j−2β̂ j−1

β̂ j−2
−Ci, j

)
= 0,(

C0, j−1α1

β̂ j−1
+

C1, j−1β 2
1

β̂ j−1β0
−

C0, j−1α̂ j

β̂ j−1
−

C0, j−2β̂ j−1

β̂ j−2
−C0, j

)
= 0,(

C j−1, j−1α j

β̂ j−1
+

C j−2, j−1β j−2

β̂ j−1
−

C j−1, j−1α̂ j

β̂ j−1
−C j−1, j

)
= 0,(

C j−1, j−1β j−1

β̂ j−1
−C j, j

)
= 0.

We solve each case of the recurrence relation for the indicies 0-apart (C j, j), 1-apart (C j−1, j),
and the 2 or more apart (Ci, j). Then we have

Ci, j =
Ci, j−1αi+1

β̂ j−1
+

Ci−1, j−1βi−1

β̂ j−1
+

Ci+1, j−1β 2
i+1

β̂ j−1β̂i
−

Ci, j−1α j

β̂ j−1
−

Ci, j−2β j−1

β̂ j−2
,(3.5)

C0, j =
C0, j−1α1

β̂ j−1
+

C1, j−1β 2
1

β̂ j−1β0
−

C0, j−1α̂ j

β̂ j−1
−

C0, j−2β̂ j−1

β̂ j−2
, (3.6)

C j−1, j =
C j−1, j−1α j

β̂ j−1
+

C j−2, j−1β j−2

β̂ j−1
−

C j−1, j−1α̂ j

β̂ j−1
, (3.7)

C j, j =
C j−1, j−1β j−1

β̂ j−1
, (3.8)

and

F j, j =
F j−1, j−1

β̂ j−1
. (3.9)

We now examine the computation of the folllowing recursive relations for j ≥ 1,

• Recurrence relation for p̂ j:

p̂ j = (A− α̂ jI)ŷ j− β̂ j−1ŷ j−1

=
j

∑
i=0

Ci, jri (3.10)

• Representation of r̂ j in terms of the defined quantities Ci, j, F j, j, r j and ṽ j:

r̂ j = (A− α̂ jI)x̂ j− β̂ j−1x̂ j−1

=
j

∑
k=0

Ck, jrk +F j, jṽ j
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• Recurrence relation for β̂ 2
j−1:

β̂
2
j−1 = p̂T

j−1r̂ j−1 (3.11)

=

(
j−1

∑
i=0

Ci, j−1ri

)T ( j−1

∑
i=0

Ci, j−1ri +F j−1, j−1ṽ j−1

)

=
j−1

∑
i=0

β̂
2
i C2

i, j−1 +
j−1

∑
i=0

Ci, j−1F j−1, j−1rT
i ṽ j−1

• Recurrence relation for α̂ j:

α̂ j =
1

β̂ 2
j−1

p̂T
j−1Ar̂ j−1

=
1

β̂ 2
j−1

(
j−1

∑
i=0

Ci, j−1ri

)T

A

(
j−1

∑
k=0

Ck, j−1rk +F j−1, j−1ṽ j−1

)

=
1

β̂ 2
j−1

(
j−1

∑
i=0

Ci, j−1Ck, j−1rT
i Ark +

j−1

∑
k=0

Ci, j−1F j−1, j−1rT
i Aṽ j−1

)

=
1

β̂ 2
j−1

 j−1

∑
i=0,
|i−k|≤1

Ci, j−1Ck, j−1βiβkTi+1,k+1 +
j−1

∑
k=0

Ci, j−1F j−1, j−1(Ari)
T ṽ j−1


(3.12)

where Ti+1,i+1 = αi+1 and Ti,i+1 = Ti+1,i = βi.

3.2 Perturbation Approach Algorithm

The Perturbation Approach is based on the unsymmetric Lanczos algorithm. Lanczos lends
itself to the kind of optimization we want to do. Let’s remember, our goal has always been
to get from unperturbed α j and β j to the perturbed ones α̂ j and β̂ j as direCtly as possible.
We approximate the perturbed bilinear form uT f (A)(u+δv) from (3.11) for u 6= v using
Gaussian quadrature, and we apply The Perturbation Approach algorithm to A with initial
vectors u and (u+δv). Putting the relations (3.1), (3.5), (3.8), (3.9), (3.11), (3.12) together
and attaining α j and β j from the Jacobi matrix TK (2.4) after carrying out the symmetric
Lanczos iteration yields the following algorithm.

Let p̂0 = u, ṽ0 = v an N×1 given matrix, r̂0 = (u+dv), C0,0 = 1, and F0,0 = d. Then,
for i, j = 1,2, . . . , we compute

C1,1 = 1
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F1,1 = d

ṽ1 = v
for j = 1, . . . ,K

β̂ 2
j−1 = C2

j−1, j−1β j−1 +C j−1, j−1F j−1, j−1r j−1ṽ j−1

F j, j = F j−1, j−1/β̂ j−1

α̂ j = (C j, j−1C j, j−1β j−1β j−1α̂ j−1 +C j, j−1F j−1, j−1ArT
j ṽ j−1)/β̂ 2

j−1

ṽ j = Aṽ j−1− α̂ jṽ j−1− β̂ 2
j−1ṽ j−2

Ci, j =
Ci, j−1αi+1

β̂ j−1
+

Ci−1, j−1βi−1

β̂ j−1
+

Ci+1, j−1β 2
i+1

β̂ j−1β̂i
− Ci, j−1α j

β̂ j−1
− Ci, j−2β j−1

β̂ j−2

end

Finally, we obtain the modified Jacobi matrix T̂K with the recursion coefficients α̂1, . . . , α̂K

and β̂1, . . . , β̂K computed by the Perturbation Approach algorithm,

T̂K =



α̂1 β̂1

β̂1 α̂2 β̂2
. . . . . . . . .

β̂K−2 α̂K−1 β̂K−1

β̂K−1 α̂K


. (3.13)

It is worth noting that each p̂ j depends on all r j generated by the symmetric Lanczos
algorithm. Additionally, each r̂ j depends on all the r j generated by the symmetric Lanczos
algorithm, the ṽ j generated by the Perturbation Approach algorithm, C j and F j, j. We
utilize the "unhatted" quanitities (α j, β j, and r j) from the symmetric Lanczos iteration
together with C j and Fj, j to compute the perturbed quantities α̂ j and β̂ j. As a fortunate
consequence, p̂ j and r̂ j are never generated, never stored. Now, we are interested in r j

expressed as a linear combination of the inverse of C j with the columns of matrix P̂ j. This
relationship is given in the following lemma.

Lemma 3.2.1. For j = 0,1,2, . . . there exists a ( j+1)×( j+1) nonsingular upper triangular

matrix C̃ such that

r j =
j

∑
i=0

C̃i, jp̂i

Proof. We define the N× ( j+1) matrices P̂ j and R j by

P̂ j =
[

p̂0 p̂1 p̂2 · · ·
]
, R j =

[
r0 r1 r2 · · ·

]
.
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We define C j in the following way,

C j =



C0,0 C0,1 · · · · · · C0, j

0 C1,1 C1,2 · · ·
...

... . . . . . . . . . ...

0 0 . . . Ci, j

0 0 · · · 0 C j, j


, (3.14)

which has nonzero elements on the diagonal by (3.8). Thus, by definition, the inverse of C j

exists and is upper triangular. We let C̃ j be the inverse of C j, with entries

C̃ j =



1
C0,0

C̃0,1 · · · · · · C̃0, j

0 1
C1,1

C̃1,2 · · ·
...

... . . . . . . . . . ...

0 0 . . . C̃i, j

0 0 · · · 0 1
C j, j


. (3.15)

Each column of P̂ j can be expressed as a linear combination of the columns of R j as defined
in (3.10) such that

[
p̂0 p̂1 p̂2 · · ·

]
=
[

r0 r1 r2 · · ·
]


C0,0 C0,1 · · · · · · C0, j

0 C1,1 C1,2 · · ·
...

... . . . . . . . . . ...

0 0 . . . Ci, j

0 0 · · · 0 C j, j


. (3.16)

Since C j is invertible, with some manipulations we can write R j as linear combinations of
the columns of P̂ j and C̃ j. We solve (3.16) for R j in terms of C̃ j:

[
r0 r1 r2 · · ·

]
=
[

p̂0 p̂1 p̂2 · · ·
]


C̃0,0 C̃0,1 · · · · · · C̃0, j

0 C̃1,1 C̃1,2 · · ·
...

... . . . . . . . . . ...

0 0 . . . C̃i, j

0 0 · · · 0 C̃ j, j


.
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Theorem 1. For j ≥ 0,
β̂

2
j = C2

j, jβ
2
j +C j, jF j, jrT

j ṽ j

Proof. By Lemma 3.2.1,

r j =
j

∑
i=0

C̃i, jp̂i

=
j−1

∑
i=0

C̃i, jp̂i + C̃ j, jp̂ j

=
j−1

∑
i=0

C̃i, jp̂i +
1

C j, j
p̂ j.

As a consequence,

p̂ j = C j, jr j−
j−1

∑
i=0

C j, jC̃i, jp̂i.

It follows from recurrence (3.10) that

β̂
2
j = p̂T

j r̂ j

=

(
C j, jr j−

j−1

∑
i=0

C j, jC̃i, jp̂i

)T

r̂ j.

= C j, jrT
j r̂ j−

j−1

∑
i=0

C j, jC̃i, jp̂T
i r̂ j.

By orthogonality and recurrence 3.11, we conclude

β̂
2
j = C j, jrT

j r̂ j

= C j, jrT
j

(
j

∑
k=0

Ck, jrk +F j, jṽ j

)

= C j, jC j, jrT
j r j +C j, jrT

j

(
j−1

∑
k=0

Ck, jrk

)
+C j, jF j, jrT

j ṽ j

= C2
j, jβ

2
j +C j, jF j, jrT

j ṽ j.

Theorem 2. For j ≥ 1,

α̂ j = αj−C j−1, j−1F j−1, j−1rT
j−1ṽ j−2 +C j, jF j, jrT

j ṽ j−1
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Proof. In recurrence relation (3.7), we isolate α̂j:

C j−1, j =
C j−1, j−1α j

β̂ j−1
+

C j−2, j−1β j−2

β̂ j−1
−

C j−1, j−1α̂ j

β̂ j−1

=
C j−1, j−1

β̂ j−1
(α j− α̂j)+

C j−2, j−1β j−2

β̂ j−1

C j−1, j−1

β̂ j−1
(α j− α̂j) = C j−1, j−

C j−2, j−1β j−2

β̂ j−1

(α j− α̂j) = C j−1, j

(
β̂ j−1

C j−1, j−1

)
−

C j−2, j−1β j−2

β̂ j−1

(
β̂ j−1

C j−1, j−1

)

α̂j = α j−
C j−1, jβ̂ j−1

C j−1, j−1
+

C j−2, j−1β j−2

C j−1, j−1
. (3.17)

Utilizing recurrence relation (3.11), we rewrite C j−1, j in terms of F j, j and ṽ j as follows,

r̂ j =
j

∑
i=0

Ci, jri +F j, jṽ j

=
j−3

∑
i=0

Ci, jri +C j, jr j +C j−1, jr j−1 +C j−2, jr j−2 +F j, jṽ j

r̂T
j (r j−1) =

j−3

∑
i=0

Ci, jrT
i (r j−1)+C j, jrT

j (r j−1)+C j−1, jrT
j−1(r j−1)

+C j−2, jrT
j−2(r j−1)+F j, jṽT

j (r j−1)

= C j−1, jrT
j−1(r j−1)+F j, jṽT

j (r j−1)

= C j−1, jβ
2
j−1 +F j, jṽT

j (r j−1)

C j−1, jβ
2
j−1 = r̂T

j (r j−1)−F j, jṽT
j (r j−1).

Thus,

C j−1, j =
r̂T

j (r j−1)

β 2
j−1

−
F j, jṽT

j (r j−1)

β 2
j−1

. (3.18)

Reducing the indicies by 1 in the above relation for C j−1, j also yields

C j−2, j−1 =
r̂T

j−1(r j−2)

β 2
j−2

−
F j−1, j−1ṽT

j−1(r j−2)

β 2
j−2

. (3.19)
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We substitute (3.18) into α̂ j (3.17) and obtain

α̂ j = α j−
C j−1, jβ̂ j−1

C j−1, j−1
+

C j−2, j−1β j−2

C j−1, j−1

= α j−

(
r̂T

j (r j−1)

β 2
j−1

−
F j, jṽT

j (r j−1)

β 2
j−1

)
β̂ j−1

C j−1, j−1
+

C j−2, j−1β j−2

C j−1, j−1

= α j−
r̂T

j r j−1β̂ j−1

C j−1, j−1β 2
j−1

+
F j, jrT

j−1ṽ jβ̂ j−1

C j−1, j−1β 2
j−1

+
C j−2, j−1β j−2

C j−1, j−1
. (3.20)

As a consequence of Lemma 3.2.1, reduCing each index of r j by 1 we have

r j−1 =
j−2

∑
i=0

C̃i, j−1p̂i + C̃ j−1, j−1p̂ j−1 (3.21)

Now we substitute relation (3.21) and formula (3.19) into α̂ j (3.17):

α̂ j = α j−
r̂T

j r j−1β̂ j−1

C j−1, j−1β 2
j−1

+
F j, jrT

j−1ṽ jβ̂ j−1

C j−1, j−1β 2
j−1

+
C j−2, j−1β j−2

C j−1, j−1

= α j−
r̂T

j (∑
j−2
i=0 C̃i, j−1p̂i + C̃ j−1, j−1p̂ j−1)β̂ j−1

C j−1, j−1β 2
j−1

+
F j, jrT

j−1ṽ jβ̂ j−1

C j−1, j−1β 2
j−1

+
C j−2, j−1β j−2

C j−1, j−1

= α j +
F j, jrT

j−1ṽ jβ̂ j−1

C j−1, j−1β 2
j−1

+
C j−2, j−1β j−2

C j−1, j−1

= α j +
F j, jrT

j−1ṽ jβ̂ j−1

C j−1, j−1β 2
j−1

+

(
r̂T

j−1r j−2

β 2
j−2

−
F j−1, j−1rT

j−2ṽ j−1

β 2
j−2

)
β j−2

C j−1, j−1

= α j +
F j, jrT

j−1ṽ jβ̂ j−1

C j−1, j−1β 2
j−1
−

F j−1, j−1β j−2rT
j−2ṽ j−1

β 2
j−2C j−1, j−1

Using recurrence relation (3.1):

rT
j−1ṽ j = r j−1(Aṽ j−1− α̂ jṽ j−1− β̂

2
j−1ṽ j−2)

= (Ar j−1)
T ṽ j−1− α̂ jrT

j−1ṽ j−1− β̂
2
j−1rT

j−1ṽ j−2

= β j−1rT
j ṽ j−1 +α jrT

j−1ṽ j−1 +
β 2

j−1rT
j−2ṽ j−1

β j−2
− α̂ jrT

j−1ṽ j−1

−β̂
2
j−1rT

j−1ṽ j−2
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Substitute (3.22) into α̂ j (3.22) yields

α̂ j = α j +
F j, jβ̂ j−1

C j−1, j−1β 2
j−1

(
β j−1rT

j ṽ j−1 +α jrT
j−1ṽ j−1 +

β 2
j−1rT

j−2ṽ j−1

β j−2
− α̂ jrT

j−1ṽ j−1

−β̂
2
j−1rT

j−1ṽ j−2

)
−

F j−1, j−1β j−2rT
j−2ṽ j−1

β 2
j−2C j−1, j−1

= α j +
F j, jβ̂ j−1β j−1rT

j ṽ j−1

C j−1, j−1β 2
j−1

+
F j, jβ̂ j−1α jrT

j−1ṽ j−1

C j−1, j−1β 2
j−1

+
F j, jβ̂ j−1β 2

j−1rT
j−2ṽ j−1

C j−1, j−1β 2
j−1β j−2

−
F j, jβ̂ j−1α̂ jrT

j−1ṽ j−1

C j−1, j−1β 2
j−1

−
F j, jβ̂

3
j−1rT

j−1ṽ j−2

C j−1, j−1β 2
j−1

−
F j−1, j−1β j−2rT

j−2ṽ j−1

C j−1, j−1β 2
j−2

= α j +
F j, jβ̂ j−1rT

j−1ṽ j−1

C j−1, j−1β 2
j−1

(α j− α̂ j)+
F j, jβ̂ j−1β j−1rT

j ṽ j−1

C j−1, j−1β 2
j−1

+
F j−1, j−1β̂ j−1rT

j−2ṽ j−1

C j−1, j−1β j−2β̂ j−1

−
F j−1, j−1rT

j−2ṽ j−1

C j−1, j−1β j−2
−

F j, jβ̂
3
j−1rT

j−1ṽ j−2

C j−1, j−1β 2
j−1

= α j +
F j, jβ̂ j−1rT

j−1ṽ j−1

C j−1, j−1β 2
j−1

(α j− α̂ j)+
F j, jβ̂ j−1β j−1rT

j ṽ j−1

C j−1, j−1β 2
j−1

−
F j, jβ̂

3
j−1rT

j−1ṽ j−2

C j−1, j−1β 2
j−1

Subtracting α j from both sides of (3.22), using the formulas for C j, j (3.8) and F j, j (3.9)
yields the desired result

α̂j−α j−
F j, jβ̂ j−1rT

j−1ṽ j−1

C j−1, j−1β 2
j−1

(α j− α̂ j) =
F j, jβ̂ j−1β j−1rT

j ṽ j−1

C j−1, j−1β 2
j−1

−
F j, jβ̂

3
j−1rT

j−1ṽ j−2

C j−1, j−1β 2
j−1

−(αj− α̂ j)

(
1+

F j, jβ̂ j−1rT
j−1ṽ j−1

C j−1, j−1β 2
j−1

)
=

F j, jβ̂ j−1β j−1rT
j ṽ j−1

C j−1, j−1β 2
j−1

−
F j, jβ̂

3
j−1rT

j−1ṽ j−2

C j−1, j−1β 2
j−1

−(αj− α̂ j)

(
C j−1, j−1β 2

j−1

C j−1, j−1β 2
j−1

+
F j, jβ̂ j−1rT

j−1ṽ j−1

C j−1, j−1β 2
j−1

)
=

F j, jβ̂ j−1β j−1rT
j ṽ j−1

C j−1, j−1β 2
j−1

−
F j, jβ̂

3
j−1rT

j−1ṽ j−2

C j−1, j−1β 2
j−1

−(αj− α̂ j)

(
C2

j−1, j−1β 2
j−1

C j−1, j−1β 2
j−1

+

C j−1, j−1F j−1, j−1rT
j−1ṽ j−1

C j−1, j−1β 2
j−1

)
=

C j−1, j−1F j, jβ̂j−1β j−1rT
j ṽ j−1

C j−1, j−1β 2
j−1

−
C j−1, j−1F j, jβ̂

3
j−1rT

j−1ṽ j−2

C j−1, j−1β 2
j−1

,
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and by Theorem 1

−(αj− α̂ j)

(
β̂ 2

j−1

C j−1, j−1β 2
j−1

)
=

C j−1, j−1F j, jβ̂j−1β j−1rT
j ṽ j−1

C j−1, j−1β 2
j−1

−
C j−1, j−1F j, jβ̂

3
j−1rT

j−1ṽ j−2

C j−1, j−1β 2
j−1

,

isolating −(αj− α̂ j) we have

−(αj− α̂ j) =
C j−1, j−1β 2

j−1

β̂ 2
j−1

(
C j−1, j−1F j, jβ̂j−1β j−1rT

j ṽ j−1

C j−1, j−1β 2
j−1

−
C j−1, j−1F j, jβ̂

3
j−1rT

j−1ṽ j−2

C j−1, j−1β 2
j−1

)

−αj + α̂ j =
C2

j−1, j−1β 2
j−1

β̂ 2
j−1

(
F j, jβ̂j−1β j−1rT

j ṽ j−1

C j−1, j−1β 2
j−1

−
F j, jβ̂

3
j−1rT

j−1ṽ j−2

C j−1, j−1β 2
j−1

)

−αj + α̂ j =
C j−1, j−1F j, jβ j−1rT

j ṽ j−1

β̂ j−1
−C j−1, j−1F j, jβ̂ j−1rT

j−1ṽ j−2

α̂ j = αj−C j−1, j−1F j−1, j−1rT
j−1ṽ j−2 +C j, jF j, jrT

j ṽ j−1

Thus, Closed-form expressions for α̂ j and β̂ j are realized and proven. Iterations that
follow make use of these expressions to generate an optimal algorithm to approximate the
perturbed bilinear form (1.4).
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Table 3.5: First Iteration with Closed-form Expressions

Symmetric
Quantities

Unsymmetric Quantities
(In terms of C j, j, F j, j, ṽ)

r0 = u (initial vector) p̂0 = r0 (le f t − initial vector)
= C(0,0)r0

r̂0 = u+dv0 (right − initial vector)
= C(0,0)r0 +F(0,0)ṽ0

β
2
0 = rT

0 r0 β̂
2
0 = p̂T

0 r̂0

= β
2
0 +F(1,1)rT

0 ṽ0

x1 =
r0

β0
x̂1 =

r̂0

β̂0

=
r0

β̂0
+F(1,1)ṽ0

ŷ1 =
p̂0

β̂0

=
r0

β̂0

α1 = xT
1 Ax1

=
rT

0 Ar0

β 2
0

α̂1 = ŷT
1 Ax̂1

= α1 +C(1,1)F(1,1)r1
T ṽ0
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Table 3.6: Second Iteration with Closed-form Expressions

Symmetric
Quantities

Unsymmetric Quantities
(In terms of C j, j, F j, j, ṽ)

p̂1 = (A− α̂1I)ŷ1− β̂0ŷ0

= C(1,1)r1 +C(0,1)r0

r1 = (A−α1I)x1

=
Ar0−α1r0

β0

r̂1 = (A− α̂1I)x̂1− β̂0x̂0

= C(1,1)r1 +C(0,1)r0 +F(1,1)ṽ1

β
2
1 = rT

1 r1 β̂
2
1 = p̂T

1 r̂1

= C2
(1,1)β

2
1 +C(1,1)F(1,1)rT

1 ṽ1

x2 =
r1

β1
x̂2 =

r̂1

β̂1

=
C(1,1)

β̂1
r1 +

C(0,1)

β̂1
r0 +

F(1,1)

β̂1
ṽ1

ŷ2 =
p̂1

β̂1

=
C(1,1)

β̂1
r1 +

C(0,1)

β̂1
r0

α2 = xT
2 Ax2

=
rT

1 Ar1

β 2
1

α̂2 = ŷT
2 Ax̂2

= α2 +C(2,2)F(2,2)r2
T ṽ1−C(1,1)F(1,1)rT

1 ṽ0
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Table 3.7: Third Iteration with Closed-form Expressions

Symmetric
Quantities

Unsymmetric Quantities
(In terms of C j, j, F j, j, ṽ)

p̂2 = (A− α̂2I)ŷ2− β̂1ŷ1

= C(2,2)r2 +C(1,2)r1 +C(0,2)r0

r2 = (A−α2I)x2

=
Ar1−α2r1

β1

r̂2 = (A− α̂2I)x̂2− β̂1x̂1

= C(2,2)r2 +C(1,2)r1 +C(0,2)r0 +F(2,2)ṽ2

β
2
2 = rT

2 r2 β̂
2
2 = p̂T

2 r̂2

= C2
(2,2)β

2
2 +C(2,2)F(2,2)rT

2 ṽ2

x3 =
r2

β2
x̂3 =

r̂2

β̂2

=
C(2,2)

β̂2
r2 +

C(1,2)

β̂2
r1 +

C(0,2)

β̂2
r0 +

F(2,2)

β̂2
ṽ1

ŷ3 =
p̂2

β̂2

=
C(2,2)

β̂2
r2 +

C(1,2)

β̂2
r1 +

C(0,2)

β̂2
r0

α3 = xT
3 Ax3

=
rT

2 Ar2

β 2
2

α̂3 = ŷT
3 Ax̂3

= α3 +C(3,3)F(3,3)r3
T ṽ2−C(2,2)F(2,2)rT

2 ṽ1

3.3 The Closed-form Perturbation Method: An Efficient Algorithm

Because we have the algorithm for α̂ j and β̂ j, we no longer need to explicitly use the
unsymmetric Lanczos algorithm. It is preferable to avoid it because it suffers from serious
breakdown which occurs when p̂ j and r̂ j are orthogonal; a terrible condition for unsymmetric
Lanczos. Fortunately, symmetric Lanczos does not have a problem with this condition.

So, by separating the work a little bit and having the bilinear form related to the quadratic
form we now have an algorithm that is more efficient. In addition, not having to compute r̂ j
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at all saves expense. Let p̂0 = u, ṽ0 = v be an N×1 given matrix, r̂0 = (u+dv), C0,0 = 1,
and F0,0 = d. Then, for i, j = 1,2, . . . and Ci, j = 0 for i > j, we compute

C1,1 = 1
F1,1 = d

ṽ1 = v
for j = 1, . . . ,K

β̂ 2
j−1 = C2

j−1, j−1β 2
j−1 +C j−1, j−1F j−1, j−1rT

j−1ṽ j−1

F j, j = F j−1, j−1/β̂ j−1

C j, j =
C j−1, j−1β j−1

β̂ j−1

α̂ j = α j +C j, jF j, jrT
j ṽ j−1−C j−1, j−1F j−1, j−1rT

j−1ṽ j−2

ṽ j = Aṽ j−1− α̂ j−1ṽ j−1− β̂ 2
j−1ṽ j−2

end

Finally, we obtain the modified Jacobi matrix T̂K with the recursion coefficients α̂1, . . . , α̂K

and β̂1, . . . , β̂K computed by the Perturbation Approach algorithm,

T̂K =



α̂1 β̂1

β̂1 α̂2 β̂2
. . . . . . . . .

β̂K−2 α̂K−1 β̂K−1

β̂K−1 α̂K


. (3.22)

3.4 Formulas for Derivatives: Derivatives of the Jacobi Matrix and Quadratic Forms

Taking the derivative of all the quantities in the Perturbation Approach algorithm with
respect to d, and then evaluating at d = 0 gives us a sensitivity measure. We take the
algorithm and differentiate at every step, then the output will be the derivatives of every
quantity.

To obtain the derivative of the matrix (3.22) produced by Perturbation algorithm, it will
be helpful to first obtain the Jacobi matrix (2.4) produced by symmetric Lanczos applied
to A with initial vector u, and also its derivatives. The following algorithm does so; its
derivation mainly relies on applying the product rule to the steps of the Lanczos algorithm.

function [X ,X ′,J,J′,β0,β ′0] = deriv_lanczos(A,A′,r0,r′0,n)
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x0 = 0
x′0 = 0
for j = 1. . . . ,n

β j−1 = ‖r j−1‖2

β ′j−1 = Re(rT
j−1r′j−1)/β j−1

x j = r j−1/β j−1

x′j = (β j−1r′j−1− r j−1β ′j−1)/β 2
j−1

v j = Ax j

v′j = A′x j +Ax′j
α j = xT

j v j

α ′j = (x′j)T v j +xT
j v′j

r j = v j−α jx j−β j−1x j−1

r′j = v′j−α ′jx j−α jx′j−β ′j−1x j−1−β j−1x′j−1

end

The derivation of the recursion coefficients α1, . . . ,αK and β1, . . . ,βK yields the Jacobi
matrix (TK)

′

(TK)
′ =



α ′1 β ′1

β ′1 α ′2 β ′2
. . . . . . . . .

β ′K−2 α ′K−1 β ′K−1

β ′K−1 α ′K


. (3.23)

Additionally, the derivation of the "hatted" quantities are computed in the Perturbation

Approach Closed-form algorithm. A helpful consequence is that in every perturbed (hatted)
quantity, the ṽ j and C j all depend on d. But, when d = 0, each of the perturbed quantities
equal the ”unhatted” case. Because we are performing the product rule, many of our
quantities simplify quite a bit when d = 0. So, when we take the derivatives at each step
of the algorithm and take the simplifications into account, we get the simplest possible
formulas for the derivatives. In general, the algorithm to compute the derivatives of every
quantity of unsymmetric Lanczos follows.

function [X ,X ′,J,J′,β0,β ′0] = deriv_unsymlanczos(A,A′,p̂0,p̂′0,r̂0,r̂′0,n)
p̂0 = u
r̂0 = v
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x̂0 = 0
x̂′0 = 0
ŷ0 = 0
ŷ′0 = 0
for j = 1. . . . ,n

β̂ 2
j−1 = p̂T

j−1r̂ j−1

β̂ ′j−1 = (p̂′Tj−1r̂ j−1 + p̂T
j−1r̂′j−1)/(2β̂ j−1)

x̂ j = r̂ j−1/β̂ j−1

x̂′j = (β̂ j−1r̂′j−1− r̂j−1β̂ ′j−1)/(β̂
2
j−1)

ŷ j = p̂ j−1/β̂ j−1

ŷ′j = (β̂ j−1p̂′j−1− p̂j−1β̂ ′j−1)/(β̂
2
j−1)

ŵ j = Ax̂ j

ŵ′j = A′x̂ j +Ax̂′j
t̂ j = Aŷ j

t̂′j = A′ŷ j +Aŷ′j
α̂ j = ŷT

j ŵ j

α̂ ′j = ŷ′Tj ŵ j + ŷT
j ŵ′j

r̂ j = ŵ j− α̂ jx̂ j− β̂ j−1x̂ j−1

r̂′j = ŵ′j− α̂ ′jx̂ j− α̂ jx̂′j− β̂ ′j−1x̂ j−1− β̂ j−1x̂′j−1

p̂ j = t̂ j− α̂ jŷ j− β̂ j−1ŷ j−1

p̂ j = t̂′j− α̂ ′jŷ j− α̂ jŷ′j− β̂ ′j−1ŷ j−1− β̂ j−1ŷ′j−1

end

The algorithm to compute the derivatives of every quantity of the Perturbation Approach

follows.
Let p̂0 = u, ṽ0 = v be N×1 randomly chosen matrices, r̂0 = (u+dv), C0,0 = 1, and

F0,0 = d. Then, for i, j = 1,2, . . . and Ci, j = 0 for i > j, we compute

C1,1 = 1
C′1,1 = 0
F1,1 = d

F′1,1 = 1
ṽ1 = v
ṽ1 = 0∗v
for j = 1, . . . ,K

β̂ 2
j−1 = C2

j−1, j−1β 2
j−1 +C j−1, j−1F j−1, j−1rT

j−1ṽ j−1
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(β̂ 2
j−1)

′ = (C2
j−1, j−1)

′β 2
j−1 +(F′j−1, j−1rT

j−1ṽ j−1)/2β j−1

F j, j = F j−1, j−1/β̂ j−1

F′j, j = F′j−1, j−1/β j−1

C j, j = (C j−1, j−1β j−1)/β j−1

C′j, j = C′j−1, j−1− β̂ j−1
′
β̂ j−1

α̂ j = α j +C j, jF j, jrT
j ṽ j−1−C j−1, j−1F j−1, j−1rT

j−1ṽ j−2

α̂ ′j = F′j, jrT
j ṽ j−1−C j−1, j−1F′j−1, j−1rT

j−1ṽ j−2

ṽ j = Aṽ j−1− α̂ j−1ṽ j−1− β̂ 2
j−1ṽ j−2

ṽ j = Aṽ′j−1−α j−1ṽ′j−1− α̂ ′j−1ṽ j−1−2β j−1β̂ ′j−1ṽ j−2

end

When we make the perturbation r0 +dv0, the derivatives give us an idea of how much
α j and β j are going to change to get α̂ j and β̂ j. So, they could tell us if even a small
perturbation in r0 could lead to an unexpectedly large change in α j and β j. This is the kind
of information our sensitivity analysis will provide in Chapter 4.
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Chapter 4

NUMERICAL RESULTS

In this chapter, we will compare the output of the modified Jacobi matrix generated by
the unsymmetric Lanczos algorithm and the Perturbation Approach algorithm. Having an
understanding of the α̂ j and β̂ j and how they relate to the "unhatted" quantities can give us
an understanding of sensitivity. Given a certain v, we get an understanding of how much
the Jacobi matrix (2.4) will change. When we take a derivative of the "hatted" quantites
with respect to the parameter d, it is with a perturbation in the direction of v j in mind. We
think of the derivatives of each perturbed quantity as a condition number, which helps to
determine whether perturbing r0 by dv0 is going to cause a small change or a large change
in α j and β j. So, if we change v j, we change the derivatives. For testing, we use a random
choice v, because it gives us a fuller picture of the changes in the output when we change
the initial vector. We will also use Newton’s Method to aid in choosing a "good" value for
our parameter d to ensure positive weights. All numerical experiments are conducted in
MATLAB R2015b.

4.1 Error

We will investigate the error to determine how stable the Closed-form Perturbation algorithm
is compared to the unsymmetric Lanczos algorithm. Our first study is without reorthogonal-
ization within the unsymmetric Lanczos algorithm. The error behaves differently with or
without reorthogonalization. The error without reorthogonalization grows fairly quickly and
then tails off again, in a cyclical pattern. The error with reothogonilization puts off the error
growth for a time, but when it grows it gets really large.
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Error: Closed-form vs. Unsymmetric Lan. w/o Reorthogonalization

N d = 0.1 d = 0.01 d = 0.001

5 1.3282e-15 5.5992e-16 5.6936e-16

10 2.9060e-14 8.5553e-15 3.8532e-14

20 0.0902 0.0126 0.2009

50 1.4121 0.9617 0.3497

100 2.2320 1.0005 1.0128

Error: Closed-form vs. Unsymmetric Lan. w/ Reorthogonalization

N d = 0.1 d = 0.01 d = 0.001

5 1.9853e-16 1.6430e-16 2.2773e-16

10 2.6188e-16 2.2473e-16 1.5626e-16

20 4.3206e-11 1.2749e-12 3.5855e-13

50 1.1616e+04 1.0000 0.7788

100 NAN NAN NAN

Table 4.1: Accuracy of Perturbation Approach: Norms of the error between the Closed-form
Perturbation Approach algorithm with Derivatives (Coeffs2CFwDeriv) and the Unsymmet-
ric Lanczos Algorithm without reorthogonalization (UnsymLanczosPHD) with random
symmetric N×N matrix A for N=5,10,20,50,100.

We will investigate the large error for N = 50, N = 100 and N = 250 by computing the
error in blocks to determine how long the algorithms remain stable. We will also look at the
error in α̂ j and β̂ j to provide insight as to why instability occurs.
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Error: CF - Leading principal submatrix (N=50) w/o Reorth.

k× k d = 0.1 d = 0.01 d = 0.001

5 2.6630e-16 5.1023e-16 1.2203e-15

10 7.5104e-12 6.1025e-12 1.1542e-11

20 0.2233 0.1743 0.1768

35 0.2341 0.5790 0.1768

50 1.4121 0.9617 0.3497

Table 4.2: Accuracy of Perturbation Approach: Error in leading principal submatrix (k× k
block) for N = 50 to determine when the large error occurs. Closed-form (CF) algorithm
with Derivatives (Coeffs2CFwDeriv) vs. Unsymmetric Lanczos Algorithm with and without
reorthogonalization (UnsymLanczosPHD)
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(a) (α̂ j): N=50, d=0.1 (b) (β̂ j): N=50, d=0.1

(c) (α̂ j): N=50, d=0.01 (d) (β̂ j): N=50, d=0.01

(e) (α̂ j): N=50, d=0.001 (f) (β̂ j): N=50, d=0.001

Figure 4.1: Order of Magnitude: α̂ j, β̂ j for N = 50

Error: CF - Leading principal submatrix (N=50) w/ Reorth.

k× k d = 0.1 d = 0.01 d = 0.001

5 1.4441e-16 2.0029e-16 6.1336e-16

10 1.6331e-16 2.0029e-16 6.1336e-16

20 1.0251e-11 5.1538e-13 2.0967e-13

35 0.4935 0.9879 0.7702

50 1.1616e+04 0.9879 0.7702

Table 4.3: Accuracy of Perturbation Approach: Error in leading principal submatrix (k× k
block) for N = 50 to determine when the large error occurs. Closed-form algorithm with
Derivatives (Coeffs2CFwDeriv) vs. Unsymmetric Lanczos Algorithm without reorthogonal-
ization (UnsymLanczosPHD)
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(a) (α̂ j): N=50, d=0.1 (b) (β̂ j): N=50, d=0.1

(c) (α̂ j): N=50, d=0.01 (d) (β̂ j): N=50, d=0.1

(e) (α̂ j): N=50, d=0.001 (f) (β̂ j): N=50, d=0.1

Figure 4.2: Order of Magnitude: α̂ j, β̂ j for N = 50

Error: CF - Leading principal submatrix (N=100) w/o Reorth.

k× k d = 0.1 d = 0.01 d = 0.001

5 3.9907e-16 2.6991e-16 2.9719e-16

10 1.6617e-09 6.3712e-11 9.2793e-10

20 0.7324 0.5112 0.7105

50 0.9779 1.0175 0.9807

100 2.2320 1.0005 1.0128

Table 4.4: Accuracy of Perturbation Approach: Error in leading principal submatrix (k× k
block) for N = 100 to determine when the large error occurs. Closed-form (CF) algorithm
with Derivatives (Coeffs2CFwDeriv) vs. Unsymmetric Lanczos Algorithm with and without
reorthogonalization (UnsymLanczosPHD)
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(a) (α̂ j): N=100, d=0.1 (b) (β̂ j): N=100, d=0.1

(c) (α̂ j): N=100, d=0.01 (d) (β̂ j): N=100, d=0.01

(e) (α̂ j): N=100, d=0.001 (f) (β̂ j): N=100, d=0.001

Figure 4.3: Order of Magnitude: α̂ j, β̂ j for N = 100

Error: CF - Leading principal submatrix (N=100) w/ Reorth.

k× k d = 0.1 d = 0.01 d = 0.001

5 1.4327e-16 1.9934e-16 1.4327e-16

10 1.4327e-16 1.9934e-16 1.4327e-16

20 1.4316e-09 1.6350e-11 1.4682e-11

50 1.0000 1.0000 1.0000

100 NaN NaN NaN

Table 4.5: Accuracy of Perturbation Approach: Error in leading principal submatrix (k× k
block) for N = 100 to determine when the large error occurs. Closed-form algorithm with
Derivatives (Coeffs2CFwDeriv) vs. Unsymmetric Lanczos Algorithm without reorthogonal-
ization (UnsymLanczosPHD)
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(a) (α̂ j): N=100, d=0.1 (b) (β̂ j): N=100, d=0.1

(c) (α̂ j): N=100, d=0.01 (d) (β̂ j): N=100, d=0.1

(e) (α̂ j): N=100, d=0.001 (f) (β̂ j): N=100, d=0.1

Figure 4.4: Order of Magnitude: α̂ j, β̂ j for N = 100

Error: Closed-form vs. Unsymmetric Lan. w/ Reorthogonalization

N d = 0.1 d = 0.001 d = 0.00001 d = 0.1e-6

50 (R) 1.0000 1.0000 0.5698 0.5166

50 (RSp) 1.1196e+21 2.9247e-04 4.0151e-06 3.3946e-08

Table 4.6: Accuracy of Perturbation Approach: Error in leading principal submatrix (k× k
block) for N = 50 to determine when the large error occurs. Closed-form algorithm with
Derivatives (Coeffs2CFwDeriv) vs. Unsymmetric Lanczos Algorithm without reorthogonal-
ization (UnsymLanczosPHD)
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In general, the sensitivity study seems to favor the perturbation parameter d = 0.1e-6,
since the error is better longer for this value of d. However, as discussed in ??, the results of
our study failed to show the accuracy of our Closed-form Perturbation algorithm due to the
growth in rounding errors in the algorithms. A consequence of the Lanczos algorithms is the
loss of orthogonality of the computed Lanczos vectors, r j for symmetric Lanczos and r̂ j, p̂ j

for unsymmetric Lanczos. We added reorthogonalization code to both Lanczos algorithms
to correct this loss at each iteration. However, there is currently no reorthogonalization
counterpart to correct the loss in the Closed-form Perturbation algorithm.

4.2 Newton’s Method

Newton’s method works well in general for solving f (x) = 0 where f is analytic. Suppose
xk is an approximate solution of f (x) = 0 and f ′(xk) 6= 0, by definition as in [1], the next
approximation is given by

xk+1 = xk−
f (xk)

f ′(xk)
.

When running unsymmetric Lanczos, if β̂ 2
j = p̂T

j r̂ j = 0, the algorithm can experience
break-down. Let G(d) = β̂ 2

j where G(d) is some function that depends on d. We would
like to solve this equation for d, but we are unable to do that because the equation is too
complicated. But, we do not have to solve it exactly; we estimate a solution since d is small
using Newton’s method. However, we are just performing one iteration where the previous
iterate is zero. If d = 0, there is no perturbation at all which yields β 2

j , the dot product of r j

and r j. Then G′(0) is the derivative, (β̂ 2
j )
′. Therefore, one iteration of Newton’s Method is

d =− G(0)
G′(0)

, (4.1)

where
G(0) = β

2
j (4.2)

and
G′(0) = (β̂ 2

j )
′. (4.3)

Thus, as each iteration computes β̂ j and its derivative (β̂ j)
′, a d is generated. But, we want

to choose a d that is safe. We want to choose a d small enough that break-down does not
occur, thus taking care not to perturb by too much. This parameter d we will call d∗ which
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is computed as follows,

d∗ = −
β̂ 2

j

(β̂ 2
j )
′

= −
β 2

j

(β̂ 2
j )
′

= −
β 2

j

2β̂ jβ̂
′
j

= −
β 2

j

2β jβ̂
′
j

= −
β j

2β̂ ′j
. (4.4)

We take the minimum of d∗ over j as a guideline, because we are only solving G(d) = 0
approximately. A "good" d is smaller than the absolute value of the minimum of d∗. We
decide to be conservative and cut d∗ by a factor of 10 to achieve a safe d,

"Good" d =
min| d∗ |

10
. (4.5)

The thing to keep in mind is that the generated d from Newton’s Method is a very
crude estimate for a safe d for each β̂ j. There is a trade-off. If we choose d too large we
get negative weights. If we pick d too small we get cancellation error from subtraction
(round-off). Since the matrix A is symmetric, the weights will be positive. We want to
choose a d smaller than the computed d.

Choosing a "Good" d

N min |d∗| "Good" d

10 0.0198 0.0020

20 0.1277 0.0128

50 0.0463 0.0046

100 0.0594 0.0059

Table 4.7: Using Newton’s Method to choose a "Good" d to ensure positive weights.
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4.3 Sensitivity

The perturbation parameter d is useful for computing bilinear forms using our perturbation
method. The d values that are produced are independent of the d chosen to execute the
algorithm. If we choose a d value larger than the largest d produced for a "good" d, then
TK is complex. The ’MatGen’ code (A.1) generates and saves a random N×N symmetric
matrix A, initial vector u and initial vector v for numerical results testing.

If any derivative is particularly large, then we know those quantities are extra sensitive.
Our function produces the Jacobi matricies T̂K and (T̂K)

′ that we take the norm of to
determine if our Lanczos process is ill-conditioned or not. We test the accuracy of the
derivatives by comparing the computed derivatives of the modified Jacobi matrix using
the Perturbation Approach Closed-form algorithm with its equivalent difference quotient
(T̂K−TK)/d derived by the difference of the Closed-form modified Jacobi matrix T̂K and
Jacobi matrix TK generated by the Lanczos algorithm all divided by d for a small symmetric
matrix A.

Accuracy of Derivative, N = 5, d = .001

Derivative Derivative of Modified T̂K

T̂K−TK
d

0.5056 0.1901 0 0 0
0.1901 0.3714 0.0237 0 0

0 0.0237 0.0626 0.0296 0
0 0 0.0296 0.0441 0.0112
0 0 0 0.0112 0.0275

(T̂K)’

0.5058 0.1901 0 0 0
0.1901 0.3716 0.0238 0 0

0 0.0238 0.0626 0.0296 0
0 0 0.0296 0.0441 0.0112
0 0 0 0.0112 0.0276

Error = 4.4815e-04

Table 4.8: Accuracy of derivatives: Compare the computed derivative of the modified
Jacobi matrix T̂K using the Perturbation Approach Closed-form algorithm with its equivalent
difference quotient (T̂K−TK)/d for N = 5, d = .001
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Convergence of Finite Difference Approximation of (T̂K)’

N d = 0.01 d = 0.001 d = 0.0001 d = 0.00001

10 0.0072 7.2221e-04 7.2270e-05 7.2275e-06

20 0.0733 0.0518 0.0670 0.0571

50 0.1904 0.0699 0.0412 0.0182

100 16.5746 7.3038 0.0465 0.0263

Table 4.9: Confirming the accuracy of the derivatives using the same MATLAB codes as
Accuracy of Derivative study.

The condition number is an application of the derivative since it is a ratio of the change in
output to the change in input. The absolute value of each derivative is the absolute condition
number. As defined in [18], the relative condition number for the derivatives of α̂ j are
computed to determine the sensitivity of these quantities as follows,

Krel =

∣∣∣∣(α̂ j)
′

α̂ j

∣∣∣∣ . (4.6)

In other aspects of numerical linear algebra, it is expensive to compute a condition number
because it is a difficult process. However, if needed, computing the condition number
of all of our quantities is attained easily with little expense. The following graphs are
plots of the computed condition numbers of α̂ j for N=25, N=50, N=100 and d=0.1 with
reorthogonalization.

The first graph shows that one of the α̂ j quantities is far more sensitive than the others.
The second and third graph show that the α̂ j quantities are insensitive for a longer period
of time then spike for a particular α̂ j, which illustrates the care needed in choosing a small
enough perturbation parameter d. Thus, to arbitrarily choose a parameter d value to achieve
an optimal approximation of a bilinear form (1.1) would not be wise.
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(a) (α̂ j): N=25, d=0.1

(b) (α̂ j): N=50, d=0.1

(c) (α̂ j): N=100, d=0.1

Figure 4.5: Relative Condition Number: α̂ j for N = 25, N = 50, N = 100 and d = 0.1 with
reorthogonalization 44



Chapter 5

CONCLUSION

In this dissertation, we developed an algorithm to efficiently approximate bilinear forms
expressing every step in the algorithm of approximating bilinear forms in terms of the
corresponding steps of approximating quadratic forms. Although the number of steps
to approximate in our perturbation method are basically the same as those used in the
unsymmetric Lanczos method, we did achieve approximation utilizing less storage by
attaining closed-form expressions for the recursion coefficients needed to develop our
Closed-form Perturbation Approach algorithm. Algorithms that are more efficient in terms
of computation and storage for certain applications by which bilinear forms are approximated
are needed. Thinking about approximation in this way opens the door for people to look
at other situations that have not been thought of yet, instead of using the more common
algorithms. A process could be broken down to meet the needs of the application. In this
dissertation, we develop algorithms that mimic the unsymmetric Lanczos algorithm with
efficiency due to information sharing. When we have these standard methods like Lanczos
and others, we can always use them. But, when we have an application where the needs are
a little different, it’s helpful to understand how the processes like symmetric Lanczos and
unsymmetric Lanczos relate to one another so that we can find a way to break things down to
accommodate specific cases like Lambers’ case. Let’s not just settle for the straightforward
methods, because sometimes gains can be made from getting a deeper understanding of all
these algorithms and how they relate to one another.

The unsymmetric Lanczos algorithm suffers horribly from rounding error due to loss of
orthogonality, and studies have been conducted to correct this issue. Future work would be
to develop code to amend the Closed-form Perturbation algorithm to improve its stability
and accuracy, because reorthogonalization at every iteration comes at great cost. In addition,
reorthogonalizing the Lanczos vectors achieved stability for a longer length of time but did
not achieve complete stability. Testing developed reothogonalization methods would benefit
the study as well.
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Appendix A

MATLAB CODES

A.1 ’MatGen.m’

We write the MATLAB function ’MatGen.m’ to produce and save symmetric matrix A and
randomly choose initial vectors u and v for numerical analysis.

%Generate matrices for sensitivity testing

n=50;

A=rand(n);

%Symmetric

A=A+A’;

u=rand(n,1);

v=rand(n,1);

save matrices A u v n

A.2 ’LanczosPHD.m’

We write the MATLAB function ’LanczosPHD.m’ which implements the Lanczos algorithm
on a randomly generated symmetric N×N matrix A with initial vector u, where n is the
number of iterations to produce the Jacobi matrix Tk (2.4) that contains the quantities α j

and β j computed by the algorithm.

function [R,Al,B] = Lanczos_PHD(A,u,n)

T = zeros(n);

N = length(u);

R = zeros(N,n);

Al = zeros(n,1);

B = zeros(n-1,1);

% Variable assignments

r = u;

x = 0;
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%Initialize storage of x’s

X = [];

% Lanczos Algorithm: Calculations of alpha & beta

%(recur. relation coeffs.)

for j = 1:n

%Reorthogonalization

if j>1

r=r-X*X’*r;

end

Beta = norm(r);

B(j) = Beta;

old_x = x;

x = r/Beta;

%Store new x

X=[ X x ];

R(:,j) = r;

Alpha = x’*A*x;

% store alpha in T Matrix

T(j,j) = Alpha;

Al(j) = Alpha;

r = (A*x - Alpha*x)- Beta*old_x;

end

R(:,n+1) = r;

A.3 ’UnsymLanczosPHD.m’

We write the MATLAB function ’UnsymLanczosPHD.m’ which implements the unsym-
metric Lanczos algorithm on a randomly generated symmetric N×N matrix A with initial
vectors u and v where n is the number of iterations to produce the modified Jacobi matrix T̂k

(2.10) that contains the hatted quantities α̂ j and β̂ j computed by the algorithm.

function [ThU,Rh,AhU,BhU] = UnsymLanczos_PHD(A,u,v,n)

ThU = zeros(n);
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N = length(u);

Rh = zeros(N,n);

AhU = zeros(n,1);

BhU = zeros(n,1);

Ph = zeros(N,n);

% Variable assignments

ph = u;

rh = v;

xh = 0;

yh = 0;

% Initialize storage of x’s, y’s

X=[];

Y=[];

% Unsymmetric Lanczos Algorithm: Calculations of alpha-hat,

%beta-hat recur relation coeffs.

for j = 1:n

%Reorthogonalization

if j>1

rh=rh-X*Y’*rh;

ph=ph-Y*X’*ph;

end

Betah = sqrt(ph’*rh);

if j>1

ThU(j-1,j) = Betah;

ThU(j,j-1) = Betah;

end

BhU(j) = Betah;

old_x = xh;

xh = rh/Betah;

Rh(:,j) = rh;

%Store new x
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X=[ X xh ];

old_y = yh;

yh = ph/Betah;

Ph(:,j) = ph;

%Store new y

Y=[ Y yh ];

Alphah = yh’*A*xh;

% store alpha in T Matrix

ThU(j,j) = Alphah;

AhU(j) = Alphah;

rh = (A*xh - Alphah*xh)- Betah*old_x;

ph = (A’*yh - Alphah*yh)- Betah*old_y;

end

ThU2 = Y’*A*X;

err = norm(ThU-ThU2(1:n,1:n))/norm(ThU)

A.4 ’Coeffs2.m’

We write the MATLAB function ’Coeffs2.m’ to compute the approximation of the perturbed
bilinear form uT f (A)(u+dv) (1.4) by generating Ci, j, F j, j, and ṽ j using the recurrence
relation definitions to compute the modified Jacobi matrix T̂k 2.10. The unhatted quantities
computed by ’LanczosPHD.m’ are used to implement this algorithm.

function [Th2,C,RhC] = Coeffs2(A,Al,B,R,v,d,n)

C = zeros(n);

F = zeros(n,1);

Th2 = zeros(n);

Ah = zeros(n,1);

Bh = zeros(n-1,1);

RhC = zeros(size(R));

% Variable assignments
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C(1,1) = 1;

F(1,1) = d;

vt(:,1) = v;

Alpha = Al;

Beta = B;

for j = 2:n+1

%Generate Beta_hats

BCpart = 0;

Fpart1 = 0;

for m = 1:j-1

BCpart = (BCpart+(Beta(m))^2*(C(m,j-1))^2);

Fpart1 = Fpart1+(C(m,j-1)*F(j-1,j-1)*(R(:,m))’*vt(:,j-1));

end

Betah = sqrt(BCpart + Fpart1);

if j>2

Th2(j-1,j-2) = Betah; %Betahat stored in Th2, sub & super diag

Th2(j-2,j-1) = Betah;

end

Bh(j-1) = Betah; %Allows me to call Beta_hats as a vector

%Generate F Coefficients

FCoeff = (F(j-1,j-1))/Bh(j-1);

F(j,j) = FCoeff; %Store F Coefficeints in F Matrix

%Generate Alpha_hats

Alphah = 0;

Fpart2 = 0;

for h = 1:j-1

for k = 1:j-1

if h==k

Alphah = (Alphah +(C(h,j-1)*C(k,j-1)*Beta(h)*Beta(k)*Alpha(h)));

elseif h-k==1

Alphah = (Alphah +(C(h,j-1)*C(k,j-1)*Beta(h)*Beta(k)*Beta(k+1)));

elseif h-k==-1
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Alphah = (Alphah +(C(h,j-1)*C(k,j-1)*Beta(h)*Beta(k)* Beta(h+1)));

end

end

Fpart2 = Fpart2+(C(h,j-1)*F(j-1,j-1)*(A*R(:,h))’*vt(:,j-1));

end

Alphah = (1/(Bh(j-1))^2)*(Alphah+Fpart2);

Th2(j-1,j-1) = Alphah; %Store Alphahat, Th Matrix as diag entries

Ah(j-1) = Alphah; %Allows me to call Alphahats as a vector

if j==2 %Generating v~s

vt(:,j) = (A*vt(:,j-1)) - (Ah(j-1)*vt(:,j-1));

else

vt(:,j) = (A*vt(:,j-1))- Ah(j-1)*vt(:,j-1))-((Bh(j-1))^2)*(vt(:,j-2));

end

for i = 1:j

if i==1 && j==2

C(1,2) = (Alpha(1)-Ah(1))/(Bh(1));

%Coeff Case 2 of recurrence;

elseif i==1 && j>=3

Coeff = ((C(1,j-1)*Alpha(1))/Bh(j-1))...

+((C(2,j-1)*(Beta(2))^2)/(Bh(j-1)*(Beta(1))))...

-((C(1,j-1)*(Ah(j-1)))/(Bh(j-1)))-((C(1,j-2)...

*Bh(j-1)))/(Bh(j-2));

C(i,j) = Coeff;

%Coeff Case 3 of recurrence;

elseif i==j-1 && j>2

Coeff = ((C(j-1,j-1)*Alpha(j-1))/(Bh(j-1)))+(C(j-2,j-1)...

*(Beta(j-2))/((Bh(j-1))))-(C(j-1,j-1)*Ah(j-1))/Bh(j-1);

C(i,j) = Coeff;

%Coeff Case 4 of recurrence;

elseif i==j && j>=2

Coeff = ((C(j-1,j-1)*Beta(j-1))/Bh(j-1));
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C(i,j) = Coeff;

else

%i

%j

Coeff = ((C(i,j-1)*Alpha(i))/Bh(j-1))...

+((C(i-1,j-1)*Beta(i-1))/Bh(j-1))...

+((C(i+1,j-1)*(Beta(i+1))^2)/(Bh(j-1)*Beta(i)))...

-((C(i,j-1)*Ah(j-1))/Bh(j-1))...

-((C(i,j-2)*Bh(j-1))/Bh(j-2));

%Store each coefficient in C Matrix

C(i,j) = Coeff;

end

end

%Generate r_hats using Cs

RhC_Cpart = 0;

for p = 1:j-1

RhC_Cpart = (C(p,j-1)*(R(:,p)));

end

RhC_Fpart = F(j-1,j-1)*vt(:,j-1);

RhC(:,j-1) = RhC_Cpart+RhC_Fpart;

end

A.5 ’Coeffs2CFwDeriv.m’

We write the MATLAB function ’Coeffs2CFwDeriv.m’ to compute the approximation of the
perturbed bilinear form uT f (A)(u+dv) (1.4) by generating C j, j, F j, j, and ṽ j using their
closed-form definitions to compute the modified Jacobi matrix T̂k (2.10) as discussed in
Chapter 3. The unhatted quantities from the quadratic form computed by ’LanczosPHD.m’
are used to implement this algorithm we call The Closed-form Perturbation Approach algo-
rithm. We also compute the derivatives of each quantity for our sensitivity study.

function [ThCF,ThCFdrv,Cs,Ah,Ahdrv,Bh,Bhdrv] = Coeffs2CFwDeriv

(A,Al,B,R,v,d,n)

%Space Allocation for speed
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Cs = zeros(n);

Csdrv = zeros(n);

F = zeros(n,1);

Fdrv = zeros(n,1);

ThCF = zeros(n);

ThCFdrv = zeros(n);

Ah = zeros(n,1);

Ahdrv = zeros(n,1);

Bh = zeros(n-1,1);

Bhdrv = zeros(n-1,1);

% Variable assignments

Cs(1,1) = 1;

Csdrv(1,1) = 0;

Cs0(1,1) = 1;

F(1,1) = d;

Fdrv(1,1) = 1;

vt(:,1) = v;

vt0(:,1) = v;

vtdrv(:,1) = 0*v;

Alpha = Al;

Beta = B;

for j = 2:n+1

%Generate Beta_hats

Betah = sqrt((Cs(j-1,j-1))^2*(Beta(j-1))^2

+(Cs(j-1,j-1))* F(j-1,j-1)*(R(:,j-1))’*vt(:,j-1));

if j>2

ThCF(j-1,j-2) = Betah; %Betahat stored in Th

ThCF(j-2,j-1) = Betah;

end

Bh(j-1) = Betah; %Allows me to call Betahats as a vector

%Generate Derivatives of Beta_hats

Betahdrv = (Csdrv(j-1,j-1)*Beta(j-1))+(Fdrv(j-1,j-1)*(R(:,j-1))’...
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*vt0(:,j-1))/(2*Beta(j-1));

if j>2

ThCFdrv(j-1,j-2) = Betahdrv; %Derivative of Betahats stored in Th

ThCFdrv(j-2,j-1) = Betahdrv;

end

Bhdrv(j-1) = Betahdrv; %To call the derivs of Betahats as a vector

%Generate F Coefficients

FCoeff = (F(j-1,j-1))/Bh(j-1);

F(j,j) = FCoeff; %Store F Coefficeints in F Matrix

FCoeffdrv = Fdrv(j-1,j-1)/Beta(j-1);

Fdrv(j,j) = FCoeffdrv;

%Generate C Coefficients;

Coeff = ((Cs(j-1,j-1)*Beta(j-1))/Bh(j-1));

Cs(j,j) = Coeff; %Store each coefficient in Cs Matrix

Cs0(j,j) = Cs0(j-1,j-1);

%Generate Derivatives of C Coefficients;

Coeffdrv = Csdrv(j-1,j-1)-(Bhdrv(j-1)*Cs0(j-1,j-1))/(Beta(j-1));

Csdrv(j,j) = Coeffdrv;

%Generating Alpha_hats

%Betahat stored in Th

if j==2

Alphah = (Alpha(j-1) + Cs(j,j)*F(j,j)*(R(:,j))’*vt(:,j-1));

else

Alphah = (Alpha(j-1) + Cs(j,j)*F(j,j)*(R(:,j))’*vt(:,j-1)...

- Cs(j-1,j-1)*(F(j-1,j-1)*(R(:,j-1))’*vt(:,j-2)));

end

ThCF(j-1,j-1) = Alphah; %Store each Alphahat in Th as diag entries

Ah(j-1) = Alphah; %Allows me to call Alphahats as a vector

%Betahat stored in Th
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%Generate Derivatives of Alpha_hats

if j==2

Alphahdrv = (Cs0(j,j)*Fdrv(j,j)*(R(:,j))’*vt0(:,j-1));

else

Alphahdrv = (Cs0(j,j)*Fdrv(j,j)*(R(:,j))’*vt0(:,j-1)-Cs0(j-1,j-1)...

*(Fdrv(j-1,j-1)*(R(:,j-1))’*vt0(:,j-2)));

end

ThCFdrv(j-1,j-1) = Alphahdrv; %Store Alphahat in Th as diag entries

Ahdrv(j-1) = Alphahdrv; %To call Alphahats as a vector

%Generate v~s

if j==2

vt(:,j) = (A*vt(:,j-1)) - (Ah(j-1)*vt(:,j-1));

vt0(:,j) = (A*vt0(:,j-1)) - (Alpha(j-1)*vt0(:,j-1));

else

vt(:,j) = (A*vt(:,j-1))-(Ah(j-1)*vt(:,j-1))-((Bh(j-1))^2)*(vt(:,j-2));

vt0(:,j) = (A*vt0(:,j-1))-(Alpha(j-1)*vt0(:,j-1))-((Beta(j-1))^2)...

*(vt0(:,j-2));

end

%Generate Derivatives of v~s

if j==2

vtdrv(:,j) = (A*vtdrv(:,j-1)) - (Alpha(j-1)*vtdrv(:,j-1)...

- Ahdrv(j-1)*vt0(:,j-1));

else

vtdrv(:,j) = (A*vtdrv(:,j-1))-(Alpha(j-1)*vtdrv(:,j-1))-(Ahdrv(j-1)...

*vt0(:,j-1))-(2*Beta(j-1)*Bhdrv(j-1))*vt0(:,j-2)...

+(Beta(j-1))^2*vtdrv(:,j-2);

end

end

A.6 ’TestPHD.m’

We write the MATLAB code ′TestPHD.m′ to generate the outputs for ’LanczosPHD.m’,
’UnsymLanczosPHD’, ’Coeffs2’,and ’Coeffs2CFwDeriv’. This code also computes our
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"Good" d and the error to show code accuracy discussed in Chapter 4.

load matrices

d=0.001; %make smaller if T-hat has any complex entries

Bh2 = zeros(n,1);

[R,Al,B] = Lanczos_PHD(A,u,n);

[ThU,Rh,AhU,BhU] = UnsymLanczos_PHD(A,u,u+d*v,n);

[Th2,C,RhC] = Coeffs2(A,Al,B,R,v,d,n);

[ThCF,ThCFdrv,Cs,Ah,Ahdrv,Bh,Bhdrv] = Coeffs2CFwDeriv

(A,Al,B,R,v,d,n);

T = diag(Al)+diag(B(2:end),1)+diag(B(2:end),-1);

%ThFD (Th Forward difference/Finite difference)

%Should be approx equal to Thdrv

ThFD = (ThCF-T)/d;

%Newton’s Method for a "Good" d

ds = abs(B ./(2*Bhdrv));

MINd = min(ds);

Gd = MINd/10;

%Testing for Error

%Coeffs2wDeriv vs Unsymmetric Lanczos

ThError1 = norm(ThCF - ThU)/norm(ThCF);

ThError1_10 = norm(ThCF(1:10,1:10) - ThU(1:10,1:10))...

/norm(ThCF(1:10,1:10));

ThError1_25 = norm(ThCF(1:25,1:25) - ThU(1:25,1:25))...

/norm(ThCF(1:25,1:25));

ThError1_50 = norm(ThCF(1:50,1:50) - ThU(1:50,1:50))...

/norm(ThCF(1:50,1:50));

ThError1_100 = norm(ThCF(1:100,1:100) - ThU(1:100,1:100))...

/norm(ThCF(1:100,1:100));

ThError1_150 = norm(ThCF(1:150,1:150) - ThU(1:150,1:150))...

/norm(ThCF(1:150,1:150));
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%Coeffs2 vs Unsymmetric Lanczos

ThError2 = norm(Th2 - ThU)/norm(Th2);

ThError2_10 = norm(Th2(1:10,1:10) - ThU(1:10,1:10))...

/norm(Th2(1:10,1:10));

ThError2_25 = norm(Th2(1:25,1:25) - ThU(1:25,1:25))...

/norm(Th2(1:25,1:25));

ThError2_50 = norm(Th2(1:50,1:50) - ThU(1:50,1:50))...

/norm(Th2(1:50,1:50));

ThError2_100 = norm(Th2(1:100,1:100) - ThU(1:100,1:100))...

/norm(Th2(1:100,1:100));

ThError2_150 = norm(Th2(1:150,1:150) - ThU(1:150,1:150))...

/norm(Th2(1:150,1:150));
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