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Activation of carbonic anhydrase isoforms involved in modulation of emotional
memory and cognitive disorders with histamine agonists, antagonists and
derivatives

Gustavo Provensia , Alessio Nocentinia , Maria Beatrice Passanib, Patrizio Blandinaa and Claudiu T. Supurana

aDepartment of NEUROFARBA, University of Florence, Section of Pharmacology and Toxicology, Firenze, Italy; bDepartment of Health Science,
University of Florence, Section of Clinical Pharmacology and Oncology, Firenze, Italy

ABSTRACT
Carbonic anhydrases (CAs, EC 4.2.1.1) activators were shown to be involved in memory enhancement and
learning in animal models of cognition. Here we investigated the CA activating effects of a large series of
histamine based compounds, including histamine receptors (H1R – H4R) agonists, antagonists and other
derivatives of this autacoid. CA activators may be thus useful for improving cognition as well as in diverse
therapeutic areas (phobias, obsessive-compulsive disorder, generalised anxiety, post-traumatic stress disor-
ders), for which activation of this enzyme was recently shown to be involved.
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1. Introduction

CO2 is generated in most metabolic processes, being one of the
simplest molecules involved in crucial physiologic processes in all
life kingdoms1,2. The carbonic anhydrases (CAs, EC 4.2.1.1) are
metalloenzymes which catalyse its interconversion to bicarbonate
(Equation (1)3–6, generating also a proton, and thus a pH disequi-
librium, which is used in most biological systems as a readily avail-
able buffering system7.

CO2 þ H2O�HCO3
� þ Hþ (1)

The reaction also occurs without a catalyst, but at physiological
pH values it is exceedingly slow for meeting metabolic needs, as
CO2 is a poorly water-soluble gas, which can also damage cellular
components (e.g. membranes, mitochondria, etc.)6,7. On the other
side, its conversion to water-soluble ions (bicarbonate and pro-
tons) counteracts this effect, and although interfering with the pH
balance, is used to control homeostasis and metabolism, making
CAs crucial enzymes in many physiological and pathological con-
ditions3–7. In fact, in vertebrates at least 16 CA isoforms belonging
to the a-CA genetic family are known, whereas in other organisms
all over the phylogenetic tree at least seven other CA families
were described so far, the b-, c-, d-, f-, g-, h- and i-CAs8–14. In
humans 15 CAs are expressed, 12 of which are catalytically active:
the cytosolic CA I-III, VII and XIII, the membrane-bound CA IV, the
mitochondrial CA VA and VB, the secreted (in saliva and tears) CA
VI, and the transmembrane CA IX, XII and XIV (the acatalytic forms
are CA VIII, X and XI)4,15–19. many of these enzymes are drug tar-
gets, as their inhibitors show pharmacological applications for
drugs treating edoema, glaucoma, obesity, epilepsy and
tumours4–6.

The human central nervous system (CNS), as well as the chor-
oid plexus, contains a multitude of CA isoforms, although their
particular functions are not yet completely understood17. We will
consider here mainly the CAs present in CNS, as the compounds
investigated here for modulating their activity (i.e. the CA activa-
tors – CAAs) may also have interesting applications in therapy,
which started to be considered only recently20–23. The nervous
system CA isoforms comprise: the cytosolic CA I (expressed in the
motor neurons in the spinal cord), CA II (present in the choroid
plexus, oligodendrocytes, myelinated tracts, astrocytes and myelin
sheaths); CA III (in the choroid plexus), the membrane-associated
CA IV (located on the luminal surface of cerebral capillaries and
associated with the blood-brain barrier, being present also in the
cortex, hippocampus and thalamus). The mitochondrial CA VA is
expressed in astrocytes and in neurons, whereas CA VB seems to
be absent in the SNC17. CA VII and VIII are present in high levels
throughout the cortex, hippocampus and thalamus, although CA
VIII is acatalytic, whereas CA VII shows a good enzymatic activity
with CO2/bicarbonate as substrates4. The acatalytic CA X is
expressed in the myelin sheath, whereas CA XI (also acatalytic) is
present in the neural cell body and astrocytes17. CA IX and CA XII
are transmembrane proteins overexpressed in many neurologic
cancers18,19, whereas CA XIII seems not to be present in the brain.
CA XIV is expressed in nuclei and nerve tracts associated with
pontine, medullary and hippocampal functions being also located
on the plasma membrane of some neurons and on axons of mam-
malian brain17.

The most investigated CAAs are the amino acids, the biogenic
amines (histamine, serotonin, catecholamines and their deriva-
tives), and to some extent also the oligopeptides or small
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proteins, although these activators were less investigated20. The
CAAs were demonstrated to participate in the catalytic cycle of
the enzyme, forming enzyme-activator complexes, as described in
Equation (2):20

EZn2þ � OH2 þ A�½EZn2þ � OH2 � A��½EZn2þ � HO� � AHþ�
� EZn2þ � HO� þ AHþ

(2)

The activator molecule forms a complex with the enzyme, binding
in an active site region distinct of that of the classical CA inhibi-
tors24,25, which generally bind to the metal ion4–6. The activator
molecule must incorporate proton shuttling moieties, which take
part to the rate-determining step of the catalytic cycle, i.e. the
transfer of protons from the zinc-coordinated water molecule to
the external reaction medium, with formation of the nucleophilic,
zinc hydroxide species of the enzyme20. In the wild type enzyme,
this proton shuttling is achieved by residue His64 (in many CA iso-
forms), found within the middle of the active site cleft, and which
possess the imidazole moiety able to transfer protons in the pH
range of 6–820–24. His64 was shown to possess two conformations:
the in one, orientated towards the bottom of the active site, and
the out one, orientated towards the external part of the active
site, favouring thus the proton wiring20,24. In such processes,
within the enzyme-activator complexes, the proton transfer
becomes intramolecular, being more efficient compared to the
intermolecular transfer to buffer molecules (which are not bound
within the enzyme cavity)20. X-ray crystallography has been per-
formed on several other hCA I/II – activator complexes, among
which those with histamine, L- and D-His, L- and D-Phe, D-Trp, L-
adrenaline as well as pyridinium derivatives of histamine20,23–26. A
schematic representation of the activators bound to CA is shown
in Figure 1.

Thus, histamine was the main compound used to obtain new
CAAs27, but many of its rather simple derivatives as well as drugs
belonging to the histamine receptors (H1R, H2R, H3R and H4R)
agonists/antagonists, were not yet been investigated for their
potential activating effects. Here we report the first such study,
including in our investigations 28 such derivatives which have
been assayed as activators of four pharmacologically significant
isoforms, hCA I, II and VII (cytosolic isoforms) and hCA IV (mem-
brane-anchored enzyme).

2. Materials and methods

2.1. Chemistry

Histamine 1 and compounds 2–30 were commercially available,
highest purity reagents from Sigma-Aldrich, Milan Italy.

2.2. Carbonic anhydrase activation

A stopped-flow method28 has been used for assaying the CA cata-
lysed CO2 hydration activity with Phenol red as indicator, working
at the absorbance maximum of 557 nm, following the initial rates
of the CA-catalysed CO2 hydration reaction for 10–100 s. For each
activator, at least six traces of the initial 5–10% of the reaction
have been used for determining the initial velocity. The uncata-
lyzed rates were determined in the same manner and subtracted
from the total observed rates. Stock solutions of activator (0.1mM)
were prepared in distilled-deionized water and dilutions up to
0.1 nM were done thereafter with the assay buffer. The activation
constant (KA), defined similarly with the inhibition constant (KI),
was obtained by considering the classical Michaelis–Menten

Equation (3), which has been fitted by nonlinear least squares by
using PRISM 3:

v ¼ vmax= 1þ KM=½S� 1þ ½A�f=KA
� �� �

(3)

where [A]f is the free concentration of activator.
Working at substrate concentrations considerably lower

than KM ([S]�KM), and considering that [A]f can be repre-
sented in the form of the total concentration of the enzyme
([E]t) and activator ([A]t), the obtained competitive steady-state
equation for determining the activation constant is given by
Equation (4):

v ¼v0KA=
n
KA þ

�
½A�t–0:5fð½A�t þ ½E�t þ KAÞ

–ð½A�t þ ½E�t þ KAÞ2–4½A�t½E�t1=2g
�o

(4)

where v0 represents the initial velocity of the enzyme-catalysed
reaction in the absence of an activator29–32. Enzyme concentra-
tions in the assay system were in the range of 6.5–12.0 nM.

3. Results and discussion

As mentioned above, histamine 1 (Figure 2) was one of the first
CAAs to be investigated in detail24, but except for histidine (L-
and D-enantiomers), other histamine derivatives were not yet
assayed for their potential CA activating effects.

Considering the relatively large number of histamine receptors
(H1R-H4R) as well as the huge number of agonists/antagonists
developed for the management of various disorders, among
which allergies, gastritis and gastric ulcers, narcolepsy, acute uni-
lateral vestibulopathy, and atopic dermatitis33,34, there is a large
number of compounds incorporating fragments of the histamine
chemotype as well as a wealth of structural modifications which
mimic this autacoid.

Some of these compounds, possessing structures 2–30 (Figure
1), were included in our study for investigating their possible CA
activating effects against four pharmacologically relevant human
isoforms, hCA I, II, IV and VII. The compounds were numbered
according to their similarity to the lead histamine 1 and are: the
H1R agonist 2-(2-aminoethyl)thiazole 6; the H2R agonists impromi-
dine 16 and nordimaprit 19; the H3R agonists Np-methylhistamine
3, a-methylhistamine 4, methimmepip 8, proxyfan 9, imetit 14,
VUF16839 23; the H1R antagonists pyrilamine 24, loratadine 29;
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Figure 1. CA activation mechanisms. Activators bind in the middle of the active
site and contain a proton shuttle moiety (PSM) of the amine, imidazole or carb-
oxylate type with an appropriate pKa for the proton transfer processes, usually in
the range of 6–8.
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the H2R antagonists metiamide 12, cimetidine 13, ranitidine 17,
tiotidine 18, zolantidine 20; the H3R antagonists ciproxifan 10, clo-
benpropit 15, ABT239 22, GSK189254A 28, GSK334429B 30; the
H4R antagonists JNJ39758979 25, JNJ7777120 26, A940894 27; the
mixed modulators of the histaminergic system Ns-methylhistamine
2, 4-methylhistamine 5, 1-methylhistidine 7, burimamide 11, beta-
histine 21.

In some of these compounds, such as the methyl-histamines
2–5, the thiazolyl derivative 6 or s-methyl-His 7, the histamine
chemotype is readily observable, whereas the remaining com-
pounds incorporate more drastic changes of the basic structure,

but all of them possess moieties which can in principle shuttle
protons in the pH range of 6–8 which, as mentioned earlier20,
lead to CA activation.

The following structure-activity relationship (SAR) can be
worked out from the data reported in Table 1 for activation of the
four isoforms hCA I, II, IV and VII:

i. Compounds 17, 20, 22, 25–30 did not induce any activation
of the tested CA isoforms (KAs >100 mM). Consistently, these
derivatives do not possess the histamine chemotype in their
structures and/or other moieties that clearly make CA

Figure 2. Histamine 1 and derivatives 2–30 acting as histamine receptors agonists/antagonists (for reviews see refs.33,34) investigated here as CAAs.
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activation possible. As a unique exception, compound 30
reported a 5.06 mM selective activation of hCA VII. It should
be stressed that other derivatives, such as 18, 19, 21, 23 and
24, do not directly include imidazole-like scaffolds in their
chemical structure, but showed however to possess signifi-
cant CA activation profiles in a low micromolar range (KAs
between 1.36 and 45.5 mM) and are thus included in the SAR
discussion. These compounds possess however protonatable
moieties of the secondary amine or guanidine type in their
molecule, which like the imidazole may shuttle protons and
thus act as CAAs.

ii. The cytosolic and ubiquitous hCA isoforms I and II were
quite efficiently activated by most active derivatives (that are
2–16, 18, 19, 21, 23 and 24), in a low micromolar to submi-
crolar range. Intriguingly, derivatives 15, 21 and 23 did not
produce any hCA I activation up to 100 mM, whereas 18 did
not activates neither hCA I nor hCA II. The methylation of
histamine 1 at position Ns (2), a (4), 4 (5) and the imidazole/
thiazole swap (6) increased up to one order of magnitude
the hCA I activation profile (from 2.1 to 0.11 mM). The pres-
ence of an extra proton transfer group (COOH) as in 7 (Ns-
methyl-histidine) further improved 2-fold the KA (52 vs
110 nM) against hCA I compared to compound 2. The Np-
methylation of histamine (3, KA of 3.1 mM) slightly decreased
the activation efficacy of the molecule, situations also
encountered for the inclusion of the aliphatic amine into a
cycle (8, KA of 3.16 mM) or the amine/ether swap (as in 9
and 10, KAs of 3.15 and 4.29 mM). Substituting the amine
group with N-linked thioureas as in 11 and 12 improved 2-
fold the KAs towards hCA I with respect to histamine.

Among the remaining derivatives, only the bis-imidazole 16
reported an improved KA over the lead towards this isoform
(KA of 0.72 mM). In fact, the presence of S-linked thioureas
worsened the activation efficacy 2- (14, KA of 4.25 mM) or 4-
fold (13, KA of 8.79 mM) with respect to the lead histamine.
Oddly, the S-linked thiourea 19 showed a 2-fold improved
KA compared to histamine, although bearing a dimethyla-
mino group in place of the imidazole ring. As an exception,
the N-rich compound 24 interestingly activated hCA I just
two times less than histamine, in spite of a completely
diverse structure. On the contrary, all histamine derivatives
here reported showed a superior hCA II activation efficacy
with respect to the lead (KA > 100 lM). Among mostly low
micromolar CAAs (KAs in the range 2.1–13.5 lM), derivatives
3, 4 and 7 stood out as the most potent hCA II modulators
of the study (KAs in the range 82 nM–0.57lM). In particular,
the a-methylation of histamine, as in 4, induced the largest
increase of efficacy, up to a KA of 82 nM, when compared to
the ineffective (as CAA) lead molecule.

iii. No submicromolar KA values was measured for 1–30 as hCA
IV activators. Indeed, all KAs are in a rather flat low micromo-
lar range (KAs in the range 1.02–13.9 lM), making this mem-
brane-associated isozyme the less activated one by the
compounds tested in this work. Interestingly, with the excep-
tion of compound 18, all derivatives were more efficient
CAAs than the lead histamine, which showed a KA of
25.3 lM. Of note, the imidazole/thiazole swap led to the
most effective activation increase with respect to the lead,
with a KA of 1.02 lM in case of derivative 6.

iv. The other cytosolic isoform investigated here, hCA VII, was
the most effectively activated one by the compounds investi-
gated in this study. Indeed, a wide subset of KAs were
detected in a submicromolar range (from 0.10 to 45.5 lM) for
some of these derivatives. All of them showed much better
activation profile than the reference compound histamine
(KA of 37.5lM) towards hCA VII. Contrariwise to hCA I and II,
the most efficient CAAs were not detected among the meth-
ylhistamine derivatives 2–5: Ns-methylhistidine 7, N-methylpi-
peridine 8 and the aryl ether 10, showed KAs ranging
between 110 and 190 nM. The bis-imidazole 16 stood out as
the most effective hCA VII activator of the study with a KA of
100 nM. Intriguingly, compound 23 did not activate hCA VII
below 100 lM, whereas derivative 30, previously classified
among the inactive compounds for the other CA isoforms,
weakly activated this CNS-associated CA (KA of 5.06 lM). In
fact, this isoform is one of the most widely spread in the
brain, probably being involved in crucial metabolic/pH regu-
lation processes, while it is not expressed in other tissues. It
is thus relevant that a rather wide set of compounds was
detected here (8, 9, 10, 13, 16), which showed a promising
isoform selectivity towards hCA VII over the ubiquitous CAs
(up to 100-fold over hCA II).

Table 2 also include the literature references regarding the
compounds ability to cross the BBB, which presumably should
also lead to brain CA activating effects, as well as evidences for
their action at central level.

4. Conclusions and future perspectives

In the present study, we investigated the CA activating effects of
a series of histamine receptors agonists/antagonists (compounds
2–30 in Figure 2) towards four hCA isoforms expressed in human

Table 1. hCA I, II, IV and VII activation with compounds 2–30 (Figure 2) by a
stopped-flow CO2 hydrase assay.28 Histamine 1 used as standard.

Compound

KA (mM)a Data

hCA I hCA II hCA IV hCA VII BBB crossing Central action Ref

1 2.1 125 25.3 37.5 – þ 35

2 0.11 8.91 3.21 2.07
3 3.1 0.43 7.6 0.23
4 0.12 0.082 2.91 1.25 þ 36

5 0.36 5.4 5.13 0.39 þ 37

6 0.87 7.45 1.02 0.7
7 0.052 0.57 13.9 0.19
8 3.16 5.24 4.66 0.12 þ 38

9 3.15 7.66 8.01 0.52 þ þ 39

10 4.29 9.9 8.12 0.11 þ þ 40

11 0.88 8.39 9.07 0.43 þ 41

12 0.98 8.75 9.62 1.01 þ 42

13 8.79 6.3 8.54 0.59 þ 43

14 4.25 8.31 8.05 1.00 þ 44

15 >100 2.1 6.59 5.31 þ þ 45

16 0.72 2.14 3.3 0.10 46

17 >100 >100 >100 >100 þ 47

18 >100 >100 32.3 45.5 þ 48

19 1.36 6.93 9.08 5.21
20 >100 >100 >100 >100 þ þ 49

21 >100 13.5 9.9 7.05 þ þ 50

22 >100 >100 >100 >100 þ þ 51

23 >100 9.82 15.9 >100 þ 52

24 5.23 9.62 6.78 2.05 þ þ 53

25 >100 >100 >100 >100
26 >100 >100 >100 >100 þ þ 54

27 >100 >100 >100 >100
28 >100 >100 >100 >100 þ þ 55

29 >100 >100 >100 >100 þ þ 56

30 >100 >100 >100 5.06 þ þ 57

aFrom three different assays (errors within ± 10% of the reported values). –
means no BBB crossing; þ means that there are evidences of BBB crossing and
central action; no sign means that no literature data are available.
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brain, that are CA I, II, IV and VII. Though all derivatives possess
moieties which can in principle shuttle protons in the pH range of
6–8, a consistent subset of them (17, 20, 22, 25–30), not having
the histamine chemotype in their structure, did not report any
activation effect for the tested CA isoforms (KAs >100 mM). hCA I
and II were effectively activated by methylhistamine derivatives
(2–7), whereas more intriguing SAR were observed for hCA VII
with more lipophilic groups (as in 6, 8 or 10) promoting greater
and more selective isoform activation. Of note, a subset of select-
ive hCA VII activators was identified, that could serve to drive the
identification and optimisation of new brain specific CAAs. We are
currently witnessing a second youth period for CAAs, because of
innovative pharmacological studies spurring researchers to take
into account these lately neglected agents for their potential clin-
ical relevance in the treatment of emotional memory disorders,
including the improvement of the clinical efficacy of exposure-
based treatments of obsessive-compulsive disorders, phobias, gen-
eralised anxiety, and post-traumatic stress disorder. The here gath-
ered data might also provide more insights on the
pharmacodynamics of therapeutically used histamine modulators,
whose therapeutic action and/or side effects could be related to
polypharmacology. Overall, this work might bring new lights on
the intricate relationship between CA activation and
brain physiology.
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