

COMPARATIVE ANALYSIS OF SOFTWARE REUSABILITY ATTRIBUTES IN

WEB AND MOBILE APPLICATIONS

BESHAR DHAYA NOR

A dissertation submitted in partial

fulfillment of the requirement for the award of the

Degree of Master of Computer Science (Software Engineering)

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

APRIL, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/42955406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 v

ABSTRACT

Software reuse is an important approach to software engineering, where it aims to

use previous software components to create new software systems. Reusability

minimizes work repetition, development time, cost, efforts, and increases systems

reliability. Reusability measurements help developers to provide the right metrics for

measuring the reusability attributes and to identify reusable components among the

wealth of existing programs. The main problem encountered in software reuse is the

proper selection of the right software component for reuse due to similarity between

the desired functionality and the function of the retrieved software component. In

addition, it is difficult to define the right metrics that capture important quality

attributes of a given class. This research aims to identify and measure the attributes

that affect the software components reusability in two open source web and mobile

applications. It also aims to compare the usage rate of reusability components in

these applications to decide their ability to reuse. Four attributes were selected due to

their impacts on reusability namely flexibility, portability, variability and

understandability. Five metrics were identified to measure these attributes based on

specified formulas. The metrics are Coupling Between Object (CBO), Lack Of

Cohesion (LCOM), Depth Of Inheritance (DIT), Number Of Children (NOC) and

Line Of Code (LOC). The research results indicate that the same attributes and

metrics are suitable for measuring the reusability components in both applications.

The comparison between the two applications for reuse indicates that the web

application is more difficult for reuse than the mobile application.

 vi

ABSTRAK

Penggunaan semula perisian adalah pendekatan yang penting dalam kejuruteraan

perisian, di mana ianya bertujuan untuk menggunakan komponen-komponen perisian

yang dibangunkan sebelum ini untuk membina sistem baru. Penggunaan semula akan

meminimumkan kerja yang berulang-ulang, masa pembinaan, kos, usaha, dan

meningkatkan kebolehpercayaan sistem. Mengukur penggunaan-semula membantu

pembangun sistem mendapatkan metrik yang betul dalam mengukur ciri-ciri

penggunaan-semula dan seterusnya mengenalpasti komponen-komponen yang boleh

diguna semula di dalam program-program sedia ada. Masalah utama yang berlaku di

dalam kaedah penggunaan-semula adalah pemilihan komponen perisian yang terbaik

dan bersesuaian disebabkan persamaan di antara fungsi-fungsi yang diingini dengan

fungsi-fungsi yang telah sedia ada di dalam komponen perisian yang ingin diambil

fungsinya. Tambahan lagi, adalah sukar untuk menentukan metrik yang betul yang

dapat mengambil ciri-ciri yang terbaik di dalam kelas yang diberikan. Penyelidikan

ini memfokuskan untuk mengenal pasti dan mengukur ciri-ciri yang mempengaruhi

penggunaan semula komponen-komponen perisian di dalam dua sumber terbuka iaitu

aplikasi laman web dan aplikasi mudah alih. Ia juga memfokuskan untuk membuat

perbandingan berkenaan kadar penggunaan komponen-komponen yang digunakan

semula dalam dua aplikasi ini bagi menentukan keupayaan ia untuk digunakan

semula. Empat ciri telah dipilih disebabkan impak ciri tersebut kepada penggunaan-

semula iaitu fleksibiliti, mudah alih, kepelbagaian dan kebolehan memahami. Lima

metrik telah dikenalpasti untuk mengukur sifat-sifat ini berdasarkan formula yang

khusus. Metrik tersebut adalah CBO, LCOM, DIT, NOC dan LOC. Hasil

penyelidikan ini menunjukkan ciri-ciri dan metrik tersebut adalah sesuai untuk

mengukur komponen penggunaan semula dalam kedua-dua aplikasi. Perbandingan

tersebut menunjukkan aplikasi web lebih sukar untuk diguna semula berbanding

aplikasi mudah alih.

 vii

CONTENTS

TITLE i

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

CHAPTER 1 INTRODUCTION 1

1.1 Introducation 1

1.2 Problem Statements 2

1.3 Research Questions 3

1.4 Research Objectives 3

1.5 Research Significance 4

1.6 Research Scope 4

1.7 Dissertation Outlines 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Software Quality 6

2.3 Software Reusability 7

2.3.1 Reuse Benefits 9

 viii

2.3.2 Reusability in Component 10

2.3.3 Software Component 12

2.4 Reusability Attributes 12

2.5 Common Attributes Definitions 14

2.5.1 Flexibility 14

2.5.2 Maintainability 14

2.5.3 Portability 14

2.5.4 Variability 14

2.5.5 Understandability 15

2.5.6 Size 15

2.5.7 Complexity 15

2.5.8 Scope coverage 15

2.5.9 Availability 15

2.6 Reusability Metrics 16

2.6.1 Object Oriented Metrics 17

2.6.2 Component Based Metrics 18

2.7 Common Metrics 20

2.7.1 Lines of Code (LOC) 20

2.7.2 Depth of Inheritance Tree (DIT) 20

2.7.3 Number of Children (NOC) 20

2.7.4 Coupling (CBO) 21

2.7.5 Cohesion (LCOM) 21

2.7.6 Number of Methods (NOM) 21

2.8 Web Applications 22

2.8.1 Design 22

2.8.2 Reuse 23

2.9 Mobile Applications 24

2.9.1 Design 25

2.9.2 Reuse 27

2.10 Related Work 28

2.11 Summary 31

CHAPTER 3 RESEARCH METHODOLOGY 32

3.1 Introducation 32

 ix

3.2 Research Design 32

3.3 Phase1 34

3.3.1 Coupling and Cohesion 35

3.3.2 Depth of Inheritance Tree 35

3.3.3 Number of Children 36

3.3.4 Lines of Code 36

3.4 Phase2 36

3.4.1 Selected Applications 36

3.4.2 Metrics Calculation 37

3.5 Phase3 37

3.6 Summary 37

CHAPTER 4 RESULTS AND ANALYSIS 39

4.1 Introduction 39

4.2 Practical Approach to Evaluate Reusability 39

4.3 Web Application 40

4.3.1 Metrics 40

4.3.2 Attributes Measurement 42

4.4 Mobile Application 45

4.4.1 Metrics 45

4.4.2 Attributes Measurement 47

4.5 Comparison Results 48

4.6 Summary 53

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 55

5.1 Introduction 55

5.2 Research Findings 55

5.3 Future Works 56

REFERENCES 57

VITA 123

 x

LIST OF TABLES

2.1 Comparison of different metrics 19

2.2 Effect of metrics on reusability 22

2.3 Related work on measuring reusability 31

3.1 Reusability attributes and metrics 34

3.2 Metrics calculations 37

4.1 Result of all classes in web application 42

4.2 Result of all classes in mobile application 47

4.3 CBO metric for both applications 48

4.4 DIT metric for both applications 49

4.5 LOC metric for both applications 50

4.6 LCOM metric for both applications 51

4.7 NOC metric for both applications 52

4.8 Effects of attributes and metrics on reusability 53

 xi

LIST OF FIGURES

3.1 Research procedure 33

4.1 Class DAOfactory 41

4.2 Class Instructionactivity 45

4.3 CBO representation 48

4.4 DIT representation 49

4.5 LOC representation 50

4.6 LCOM representation 51

4.7 NOC representation 52

xii

LIST OF SYMBOLS AND ABBREVIATIONS

CBO - Coupling Between Object.

LCOM - Lack of Cohesion.

NOC - Number of Children.

LOC - Line of Codes.

DIT - Depth of Inheritance Tree.

NOM - Number of Methods.

CBD - Component-Based Development.

WMC - Weighted Methods Per Class.

RFC - Response For Class.

AR - Average Degree of Reusability.

SBRM - Specialize Class to Base Class Reusable Metrics.

CC - Cyclomatic Complexity.

CPD - Component Packing Density.

CID - Component Interaction Density.

ROI - Relevance of Identifiers.

CIC - Correlation Identifier's Comments.

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Web Application 64

B Mobile Application 107

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Software has become critical to advancement in almost all areas of human endeavor.

There are serious problems in the cost, timeliness, maintenance and quality of many

software products. Software engineering has objectives of solving these problems by

producing good quality, maintainable software, on time, within budget (Singaravel et

al., 2010). Generally, a software-development work requires various kinds of

resources to complete the project on time. The ability of some functions or packages

to be reused in the project will help to evolve the software instead of developing the

module from the scratch (Babu & Srivatsa, 2009). Software reuse is an important

approach to software engineering. It is the process of building applications that made

use of formerly developed software component (Bhanu, 2014).

 Software reusability is an important aspect of the software-development

process, where it can use previous components to create new software systems. The

cost to develop a new system from scratch is significant. This has made custom

software development very expensive. It is generally assumed that the reuse of

existing software will enhance the reliability of a new software application. This

concept is almost universally accepted because of the obvious fact that a product will

work properly if it has already worked before (Sharma et al., 2009). The idea of

software reuse appeared in 1968, opening new horizons for software design (Sandhu

et al., 2010), and have been promoted in recent years. The software-development

community is gradually drifting toward promoting software reuse to develop any

new software system virtually from the existing systems (Gil, 2006). Reusability is

2

as the degree to which a component can be reused and minimizes repetition of work,

development time, cost, efforts, and increases system reliability (AL-Badarenn et al.,

2011). It also improves the maintainability and portability of the system (Sharma et

al., 2009). As an example of the role of reusability in reducing the cost of the

software development, (Agrawal & Patel, 2012) stated that the U.S. Department of

defense only could be saving $300 million annually by increasing its level of reuse

by as little as 1%. In addition, using a software reuse concept in Missile Systems

Division increased the productivity by 50%, and using reusable modules to develop

the prototype of a force fusion system reduced 20% of the development time of the

estimated time for developing the new system.

A good software reuse process can facilitate the increase of productivity of

program design and development, reliability of software products, and the decrease

of costs and implementation time. Technologies would enable software companies to

build specialized components that can be sold to systems integrators and custom

builders, who would combine them with other, largely purchased, off-the- shelf

components to create high-quality custom applications. An established software

components industry would provide a rapid and responsive channel for marketing

software innovations, while constantly improving quality, reliability, and capability

(Sandhu et al., 2010).

To assess various properties of components to choose the right components

and reuse them correctly, metrics is required (Monga et al., 2014). The

measurements of the reusability help developers to control the level of the reuse and

providing the metrics for identifying one of the important quality property's

reusability. The measurement may help us not only to learn how to build reusable

components, but also to identify reusable components among the wealth of existing

programs (Agrawal & Patel, 2012).

1.2 Problem Statement

At present, reuse includes different approaches, such as reusing components

developed in-house, reusing of commercial-off-the-shelf (COTS) or open-source

software (OSS) components (Mohagheghi & Conradi, 2008). Software reuse aims to

use existing components to build new components or products. Software may be

3

source code or executable, design templates, software architectures, or any other

asset. Due to increasing number of components in the market, it becomes necessary

to qualify the reusability of these components to define the effective ones for reuse

(Sharma et al., 2009). However, it is a challenge to find the right reusable artifacts

from huge components. In addition, measuring software reusability attributes is a

difficult activity for both developers and managers (Kumari, 2011, Bauer et al.,

2014). The problems of selecting the proper software component for reuse (Otis et

al., 2013) are related not only to the similarity between the functions delivered by the

retrieved software component, but also to the effort needed to modify the chosen

component to accommodate the desired functionality. That is why it is so important

to have efficient reuse metrics that assists to use a given software component in new

environment (Sandh et al., 2010).

This dissertation selects some attributes that affect software reusability and

identify a set of metrics for measuring the reusability of components in two open

source object-oriented web and mobile applications. In addition, their usage rate in

these applications is compared to define the possibility of reusing the components

and the applications. This can help developers in the selection process of the right

components for reuse in other software environments and shorten the effort, cost and

time. Moreover, it helps to acquire sound knowledge of the required metrics.

1.3 Research Questions

The research problem raises the following questions:

(i) What are the attributes that affect the software component reusability?

(ii) How to measure the reusability attributes of these components?

(iii) Do the web and mobile applications use the same attributes at the same

rate?

1.4 Research Objectives

(i) To identify attributes that affect reusability of software components in

web and mobile applications.

4

(ii) To measure the attributes reusability in both applications with proper

metrics.

(iii) To perform comparative analysis between the usage rates of component

reusability in both applications that assists in selection of components for

reuse.

1.5 Research Significance

Selection of suitable components is necessary to achieve objectives for improving

product quality within time and budget constraints. Identifying the significant

attributes and the proper metrics to measure the quality and efficiency of software

components to be reused will help in building high quality and reliable software with

reduced cost and time. They help in project estimation and progress monitoring,

evaluation of work products, process improvement, and experimental validation of

best practices.

1.6 Research Scope

This research aims to measure the attributes that affect the reusability of components

of two object oriented open sources in mobile and web software applications, and

compare the usage rate of component reusability in these applications, where there

are no standard limits or specified range of the metrics value except high and low

criterion (Amin et al. 2011, Taibi, 2014, Agrawal & Patel, 2012, Monga et al. 2014,

Taibi, 2013, Dubey & Rana, 2010, Gui, 2009). Four reusability attributes of

components will be measured according to measurement metrics to define their rate

in each application. This will lead to determining the component's ability to be

reused in building new software application. The focus of this research is as follows:

(i) Two open source component based applications related to exam system;

one mobile application (Dice, 2014) and another web application (Osama,

2012) are chosen.

(ii) The following attributes that affect their component reusability and their

metrics are selected:

5

 Flexibility: Coupling between object (CBO) and lack of Cohesion

(LCOM).

 Variability: Number of Children (NOC).

 Understandability: Size of Codes (LOC).

 Portability: Depth of inheritance tree (DIT).

(iii) Compare the usage rate of component reusability in the two applications.

1.7 Dissertation Outlines

This research is organized in five chapters. Chapter 2 reviews the literature,

including the notion of web and mobile applications, their reusability attributes and

metrics. Chapter 3 explains the methodology and the attributes that affect the

reusability and their metrics. Chapter 4 shows the results, which includes the

reusability attribute measurements. It also includes a comparison of the usage rate of

each reusability component in two open source object-oriented web and mobile

applications. The conclusions and future work are presented in Chapter 5.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Software Engineering aims for quality software producing strategies. In which

software development life cycle involves sequences of different activities during the

development process (Singaravel et al., 2010). Software reuse is the use of existing

software artifacts to create new software (Singh et al., 2010). It plays an important

role in increasing quality of software products (Gandhi & Bhatia, 2011).

Huge web and mobile applications are created to perform different tasks on

different platforms. The applications' construction is commonly based on

components based or objects oriented. So same attributes characterize them.

Researchers used much metrics to measure various reusability attributes for all

applications. This chapter reviews the previous studies and researches and introduces

a brief knowledge about web and mobile applications. It also defines software

reusability concept, definition, benefits and reusability metrics.

2.2 Software Quality

Developing a good software system is a very challenging task. To produce a good

software product, numerous measures for software quality attributes need to be taken

into account (Iqbaland & Qureshi, 2012, Suri & Garg, 2009) System complication

dimensions play a vital role in controlling and supervision of software quality

because it normally affects the software quality attributes like software reliability,

7

software testability and software maintainability, indicated that reusability is one of

the attributes that determine the quality into the software.

 Reusability is the key paradigm for increasing software quality in software

development. It is an important area of software engineering research that promises

significant improvements in software productivity and quality (Singh et al., 2010).

 Pylkki (2013) the main objective of reuse is to increase software quality and

productivity. Reusable assets are not limited to the source code, but can also include

documentation or organizational practices. Modern programming languages provide

support for reusing large portions of source code with classes, modules and

frameworks. Constructing systems out of ready-made components can manage

complexity if the components have been clearly defined, standardized interfaces and

connection methods.

 Software reusability is an attribute that refers to the expected reuse potential

as a software component (Sandhu et al., 2010). Since reusability is an attribute of

software quality, hence can measure software quality by quantifying its reusability.

Productivity, maintainability, portability and therefore, the overall quality into the

product can be improved by software reusability (AL-Badareen et al., 2011).

2.3 Software Reusability

The idea of software reuse is not new (Hristov et al., 2012). Its roots date

back to 1968 when McIlroy has presented his seminal work on reusable components

at the NATO Software Engineering Conference in Garmisch, Germany. However,

there has only been limited practical experience with reuse until the late 1980s, when

large-scale reuse programs were adopted by companies, mainly in the United States

(e.g., by IBM and Hewlett Packard) and Japan (e.g., by Toshiba and Fujitsu). These

efforts have also pushed forward the research in the 1990s, and in turn created a

growing interest in systematic software reuse and reuse programs for organizations

of that time.

Reuse is an act of synthesizing a solution for a problem based on predefined

solutions to sub problems (Kumar, 2012). Software reusability refers to the

probability of reuse of software. The ability to reuse relies in an essential way to the

8

ability to build larger things from smaller parts, and being able to identify

commonalities among those parts.

Sandhu et al. (2010) Software reuse not only improves productivity but also

has a positive impact upon the quality and maintainability of software products and

enhances the reliability of a new software application.

AL-Badareen et al. (2011) The concept of the software reuse is not only

applied to source code fragment, but can also mean all the information that is related

to the product generating processes, including software requirements, analysis,

design, and any information required by the developers to build a software.

Singaravel et al. (2010) The reusability of a piece of code does not mean that

it can copy-paste the same code in many places within an application. A piece of

reusable code means that the same code can be reused in different places without re-

writing it. The metric of reusability is how many programs can reuse the piece of

code without looking at the source code.

Software reuse in its most common form can be seen in the component based

software development (Amin et al., 2011), where it has been promoted in recent

years. The software-development community is gradually drifting toward the

promise of widespread software reuse, in which any new software system can be

derived virtually from the existing systems. There are two approaches for reuse of

code: develop the code from scratch or identify and extract the reusable code from

already developed code (Manhas et al., 2010, Kumar, 2012).

Software reusability is defined by many researchers. Amin et al. (2011)

defined it as the “characteristics of an asset that make it easy to use in different

contexts, software systems, or in building different assets."

Babu and Srivatsa (2009) defined software reusability as the process of

creating a software system from existing software assets rather than the building

software system from scratch. Software reusability is the development of new

software from the existing one.

Sagar et al. (2010) defined reusability as the degree to which a component

can be reused, and reduces the software development cost by enabling less writing

and more assemblies.

Sridhar at el. (2014) Software reuse is the process of building software

applications that made use of formerly developed software components.

9

Singh et al. (2010) defined reusability as the use of engineering knowledge or

artifacts from existing software components to build a new system. Reusability is the

key paradigm for increasing software quality to the software development.

Agrawal & Patel (2012) defined the reusability as one of the quality attributes

that has prime importance in object oriented software development as reusability

leads to increase in developer productivity, reduce a development cost as well as the

time to market.

Sharma et al. (2009) defined reuse as the process of adapting a generalized

component to various contexts of use. They indicated that the main idea of software

reuse is to use previous software components to create new software programs. Thus,

software reuse is software design, where previous components are the building

blocks for the generation of new systems.

 Trived & Kumar (2012) defined Software reuse in the process of

implementing or updating software systems using existing software components.

Hristov et al. (2012) stated that it was important to distinguish between

software reuse and reusability as the reuse is focused on the practice of reuse itself

while the reusability tries to make the potential of artifacts for being reused

measureable. Generally, the researchers use the two words synonymously.

2.3.1 Reuse Benefits

Software reuse is the improvement efforts of the productivity of the software because

reuse can result in higher-quality software at a lower cost and delivered within a

shorter time. It reused software is more accurate than new software because already

it has been tried and tested in working system (Kumar, 2012).

Reusability reduces implementation time, increase the likelihood that prior

testing and use eliminated bugs and localizes code modifications when a change in

implementation is required (Kakkar et al., 2012).

Software reuse reduces development time, effort, cost and increase's

productivity and quality. Studies in software engineering confirm these benefits

(Amin et al., 2011).

10

In general, the reuse of codes, components and other artifacts aims to (Trived

& Kumar, 2012).

(i) Reduce time to market.

(ii) Reduce a development cost.

(iii) Improve the productivity of development teams.

(iv) Improve the predictability of the development process.

(v) Increase the quality and reliability of products.

(vi) Reduced overall process risk.

The main idea of software reuse is to use previous software

components/artifacts to create new software systems. Therefore, it minimizes

repetition of work, development time, cost and efforts and increase systems

reliability. It also improves the portability and maintainability of the system (Sharma

et al., 2009).

2.3.2 Reusability in Component

In software industry, the evolution of reusability started from Object-oriented

systems, then Component-based systems, and now it talks with Service-oriented

systems (Karthikeyan & Geetha, 2012). In the case of component-based

development, software reuse refers to the utilization of a software component within

a product to be used in another product (Sharma et al., 2009). A reusable component

can be seen as a box, which contains the code and the documentation. These boxes

are defined as (Sharma et al., 2009, Singh et al., 2010).

(i) Black Box Reuse

In black box reuse, the re-user sees the interface, not the implementation of the

component. The interface contains public methods, user documentation,

requirements and restrictions of the component.

(ii) Glass Box Reuse

In glass box reuse, the inside of the box can be seen as well as the outside, but it is

not possible to touch the inside.

11

(iii) White Box Reuse

In white box reuse, it is possible to see and change the inside of the box as well as its

interface. A white box can share its internal structure or implementation with another

box through inheritance or delegation.

In component-based development, there are two broad reuse developments.

One is the development of systems with reuse, and another is the development of

components for reuse. In first case, application is developed by reusing several

already-built-in components. These components have already been tested thoroughly,

which will enhance the quality into the product and will save time and cost. Another

approach is the development of components for reuse. Here, components are

developed by keeping in mind the high reusability for this component. These

components need to be compatible for a wide range of applications, developed in

variety of languages for different platforms. One of the essential problems in

software reuse is the retrieval and selection of suitable software components from a

large library of components (Sharma et al., 2009).

In case of an object-oriented software programs, an object-oriented software

system is a collection of classes, which abstract data types and templates in a way of

making classes more abstract without actually knowing what data type will be

handled by the operations on the class. With the help of template, a single class can

be used to handle different types of data, and a single function can be used to accept

different types of data, which makes the code easier to maintain and classes more

reusable (Gandi et al., 2010).

An object-oriented system start by defining a class that contains related or

similar attributes and methods. The classes are used as the basis for objects. A class

is a template from which objects can be created. This set of objects shares a common

structure, and a common behavior manifested by the set of methods. A method is an

operation on an object and is defined in the class declaration. A message is a request

that an object makes of another object to perform an operation. The operation

executed as a result of receiving a message is called a method. A high degree of

inheritance is an indicator of system health. Strong coupling complicates a system,

since a module is harder to understand, change, or correct if it is interrelated with

other modules. The more independent a class, the easier it is to reuse it in another

application. High cohesion indicates good class subdivision (Goel & Bhatia, 2013).

12

2.3.3 Software Component

Software component reuse is the software engineering practice of creating new

software applications from existing components, rather than designing and building

them from scratch (Babu & Srivatsa, 2009). A component can be considered an

independent replaceable part of the application that provides a clear distinct function.

Reusable components can be requirements of specifications, design documents,

source code, user interfaces, user documentation, or any other items associated with

software. All products resulting from the software-development life cycle have the

potential for reuse. A software component can be a code block, module, function,

class, control or the project or software itself (Trived & Kumar, 2012, Manhas et al.,

2010). In the context of object orientation, a class can be said to be a component

because it is the only unit of composition (Amin et al., 2011). In the context of

component-based software development, the component is a reusable piece of

software (Capiluppi & Boldyreff, 2011).

2.4 Reusability Attributes

Software reusability is a significant aspect of the software-development process,

where it is able to use previous software components to create new software systems.

Software components have attributes that affect their reusability. These attributes are

related to using a given software component in new environment and for another

software system. The environmental attributes as well as attributes derived from the

software should be considered, identified and measured. As the number of

components available on the market increases, it is becoming more important to

devise software metrics to qualify the various characteristics of components. Among

several quality characteristics, the reusability is particularly important when reusing

components (Sharma et al., 2009).

Hristov et al. (2012) mentioned several characteristics of software to

determine such factors are adaptability, complexity, compose-ability, maintainability,

modularity, portability, programming language, quality, reliability, retrieve-ability,

size and understandability. They indicated that most of the existing research is rather

incoherent and only covers one or a few of these aspects so that to our knowledge,

13

there is no publication that has tried to bring all these aspects together in a single

model.

 Sandhu et al. (2010) indicated that metrics collectively determined

reusability of a software component is still at its naive stage, and function that makes

use of this metrics to find reusability of software components is still not clear.

Sagayaraj & Ganapathy (2011) mentioned some general reusability attributes

include ease of understanding, functional completeness, reliability, good error and

exception handling, information hiding, high cohesion and low coupling, portability

and modularity.

Sharma et al. (2009) identified some attributes for predicting component

reusability such as small size of code, simple structure and good

documentation.Hence considered reusability is a measure of four factors on which

the reusability of the component depends namely customizability, interface

complexity, understandability, and portability. The customizability is defined as the

ability to modify a component as per application requirement. It should be high, and

it categorized from very low to very high where a number is assigned for each

category. The interface complexity refers to the interface between component and

applications, which acts as a primary source for understanding, use and

implementation and finally maintenance of the component. The interface complexity

should be as low as possible, and it is also categorized from very low to very high.

The understandability refers to any documentation provides help to users, and it

includes component manuals, demos, help system, and marketing information.

Portability refers to the ability of a component to be transferred from one

environment to another with little modification. The component should be easily and

quickly portable.

Jatain & Gaur (2012) proposed a model based on four factors: Changeability,

Interface Complexity, Understandability of Software and Documentation Quality.

They used soft computing techniques, namely neuro-fuzzy approach to determine

reusability of software components in existing systems as well as the reusable

components. They claimed that neuro-fuzzy technique can be a powerful tool to

tackle important problems in software engineering and can be further extended as

software metric model.

14

Taibi (2014) indicated that complexity, modularity and understandability

enhance the quality of object-oriented program source code and potentially improve

its reusability.

2.5 Common Attributes Definitions

2.5.1 Flexibility

It is the ease of modification system or component for use in applications or

environments other than that it was designed for it (Amin et al., 2011, Monga et al.,

2014).

2.5.2 Maintainability

It is the ease with which a software system or component can be modified to change

or add capabilities, correct faults or defects, improve performance or other attributes,

or adapt to a changed environment (Monga et al., 2014).

Maintainability is related to reusing in terms of error tracking and debugging.

If the component is maintainable, it is more likely to be reused (Amin et al., 2011).

2.5.3 Portability

It is the ease with which a system or component can be transferred from one

hardware or software environment to another. Portability is considered as a factor in

the sense that a cohesive component is more portable. The portability of a component

depends on its independence, i.e. the ability of the component to perform its

functionality without external support (Amin et al., 2011, Monga et al., 2014).

2.5.4 Variability

It can be defined as the configure ability of a component, that it can be configured in

15

multiple configurations. Variability decreases understandability (Amin et al., 2011).

2.5.5 Understandability

It is the ease with which a system can be comprehended at both the system

organizational and detailed statement levels. The understandability attribute is also

related to the maintainability of the component, a component that is easy to

understand is easy to maintain (Amin et al., 2011). It also can be defined as the

degree of knowing how and what things are working and interacting in the system

(Monga et al., 2014).

2.5.6 Size

Size may include only the lines of code in a program, or it may include the lines of

code along with commented line of code (Monga et al., 2014). It is the length of the

software (Amin et al., 2011).

2.5.7 Complexity

It refers to the difficulty in understanding the design and implementation of software.

A complex software or component is difficult to be reused (Monga et al., 2014).

2.5.8 Scope coverage

It is the attribute that measures the number of features provided by the component

against the total number of features in the SPL scope (Amin et al., 2011).

2.5.9 Availability

It refers to how easy and fast (or hard and slow) is to retrieve a software component

(Hristov et al., 2012).

16

2.6 Reusability Metrics

The potential benefits of software reuse and the maturity of reusability concepts lead

us to think about how the author might measure it (Amin et al. 2011). The concept of

reuse is very popular today because it saves time, cost, and effort to develop a

software system. Thus, it is necessary to have an effective and efficient method to

measure software component reusability. Measuring reusability is not a

straightforward process due to the variety of metrics and qualities linked to software

reuse and the lack of comprehensive empirical studies to support the proposed

metrics or models (Taibi, 2013,Taibi, 2014).

Software metrics is units of measurement used to measure different attributes

of a software product, and process. Metrics plays a very important role to develop

good-quality software (Kumari & Bhasin, 2011).

Researchers used much metrics to measure various reusability attributes for

all applications. The software metrics is useful in helping software developers to

develop effective software reuse requires that the users of the system have access to

appropriate components. The user must access these components accurately and

quickly, and be able to modify them if necessary. Various attributes, which ascertain

the quality into the software, include maintainability, defect density, fault proneness,

normalized rework, comprehensibility, reusability, etc. At present, the requirement is

to associate the reusability attributes with the metrics and how this metrics

collectively ascertains the reusability of the software component (Suri and Garg,

2009).

Metrics should be identified to measure these attributes. It relates to a defined

measurement approach and a measurement scale. A metric is expressed in units, and

can be defined for more than one attribute. The primary aims for reusing metrics are

(Patwa and Malviya, 2012):

(i) To provide realistic measures of reuse

(ii) To estimate the benefits of reuse: The metrics is useful in finding the

estimates of the benefits from specific factor, i.e. reuse and testing. Exact

values matter less than reasonable estimates.

(iii) To provide feedback to developers and management:

17

Developers need a defined method to measure and report what they have

done.

(iv) To give simple, easy-to-understand values.

(v) To yield consistent, repeatable values independent of who calculates them

and proves them mathematically and / or axiomatically sound.

There are a number of metrics available for measuring the reusability for

object-oriented systems. They focus upon the object structure, which reflects on each

individual entity such as methods and classes, and on the external attributes that

measure the interaction among entities such as coupling &inheritance (Sharma et al.,

2009). Some of these object-oriented metrics can be used in CBD (Sagar et al.,

2010). However, there are some difficulties in applying existing object-oriented

metrics into the component development and CBSD because these metrics requires

analysis of source code. Object- oriented (OO) metrics cannot be used to measure the

component’s quality. The reason may be that in OO development, reuse is only

limited up to class level and within the same application, while in CBSD, the reuse is

able even the whole component and also in multiple applications (Sharma et al.,

2009).

2.6.1 Object-oriented (OO) Metrics

OO design techniques have become one of the most powerful mechanisms to

develop an efficient software system because it promotes better design and views a

software system as a set of interacting objects. OO software can play an important

role in reusability for software applications and development (Dubey& Rana, 2010).

With the advent of an OO approach, specific measures were introduced to

assess the quality of OO software systems. The rationale behind OO metrics is that a

good OO design must keep complexity low, and this can be accomplished by

reducing coupling and increasing cohesion. The first serious attempt in this direction

was the metrics suite by Chidamber and Kemerer (CK), which became the most

popular OO metrics suite. This metrics is weighted methods per class (WMC), depth

of the inheritance tree (DIT), number of children (NOC), coupling between object

classes (CBO), response to a class (RFC) and lack of cohesion in methods (LCOM),

(Concas et al., 2010).

18

The application of object-oriented technology produces well-structured

software systems with comprehensible architectures, which are easy to test, maintain,

and extend. However, the OO approach does not ensure the production of software

with high quality nor avoid errors introduced by programmers at both development

and maintenance phases. Therefore, various OO metrics is proposed in the literature

as a means of determining whether the investigated software hold desired OO design

properties such as coupling, complexity, cohesion, and inheritance to improve the

quality into the software. Many of these measures have been proposed by different

researchers and practitioners (Cheikhi at el, 2014).

Patwa and Malviya (2012) proposed much software metrics to measure the

benefits of reuse within OO system. These systems are reusability of a class in a

System (RCS), average degree of reusability (AR) metrics and specialize class to

base class reusable metrics (SBRM).

 Gandhi & Bhatia (2010) used the same metrics of CK (1994) and stated that

the most significant metrics for reusability among those metric is DIT, which

indicates the length of inheritance and NOC, which indicates the width.

 Kaur and Singh (2013) mentioned several complexity metrics for OO

program reusability. These metrics includes WMC, DIT, RFC, CBO, LCOM, NOC,

LOC, and cyclomatic complexity (CC).

 Goel & Bhatia (2013) used different reusability metrics to evaluate three

features of OO program, namely multilevel inheritance, multiple inheritances and

hierarchical inheritance. The metrics is DIT, NOC, CBO, LCOM, WMC, and RFC.

Their results have shown that multilevel inheritance has more impact on reusability.

2.6.2 Component-based Metrics

Component-based development (CBD) is the process of assembling existing software

components into an application such that they satisfy a predefined functionality.

CBD reduces development time, effort; cost (Sagar et al., 2010). It is necessary to

measure the software complexity in each development approach because it affects

many other aspects of software like development effort, cost, testability,

maintainability, etc. So many metrics has been proposed for measuring software

complexity (Kaur and Singh, 2013).

19

 Narasimhan et al. (2009) conducted a comparison among different metrics to

select a particular type of metrics based on reusability, complexity, size, testing time

and maintenance. The metrics values are compared using benchmark software

programs. The metrics in table 2.1 measure the reusability of a component. A high

LCOM, NOC, and DIT imply that the corresponding components are highly

reusable. A high CID, CPD, WMC, CSC, and CBO, implies that the corresponding

components are less reusable. A low CRIT Size, CRIT Link implies that the

corresponding components are highly reusable. It is noted that a component is

considered a good one if it is highly reusable.

Table 2.1: Comparison of Different Metrics (Narasimhan et al., 2009).

Metrics Author (Year)
Strengths &

Limitations

WMC, RFC, LCOM,

CBO, DIT, NOC
Chidamber & Kemerer (1994).

Broad indicator, but

lack of specificity.

CPC, CSC, CDC,

CCC
Cho & Kim (2001). Narrow indicator.

CPD, CID, CIID,

COID, CAID, CRIT,

CRIT bridge, CRIT,

ANAC, ACD,

AACD.

Narasimhan & Hendradjaya

 (2007).

Covers a broad set of

issues.

 Kaur and Singh (2013) mentioned existing complexity metrics for component

based. The metrics included component packing density (CPD), component

interaction density (CID), component incoming interaction density (CIID),

component outgoing interaction density (COID), component average interaction

density(CAID), link criticality metric (CRITlink), bridge criticality metric

(CRITbridge), inheritance criticality metric (CRITinheritance), size criticality metric

(CRITsize), and Criticality Metric. The researchers state that most of the existing

metrics are applicable to small programs or components, while the objective of

having metrics is to test the behavior, reusability, and reliability of the components

when placed in a large system. Since measuring the black box component complexity

20

during component selection is still a difficult task, they proposed a metric named

Interface Complexity Metric for Black Box components, which is based on

component interface specification. This metric helps an application developer in

selecting a less-complex and more-reusable component during the selection of

components for CBSD. This facilitates in reducing the integration and testing effort.

2.7 Common Metrics

Literature contains much metrics for reusability attributes as explained in previous

sections. Clear and brief explanations of common metrics, especially the ones used

for this research are provided as follows.

2.7.1 Lines of Code (LOC)

This metrics is applied for measuring the size of the program by considering the

number lines into a program. LOC counts all lines like as source line and the number

of statements, the number of comment lines and the number of blank lines (Agrawal

and Patel, 2012). It is generally used to calculate the size of software or its

components by calculating the total number of lines in it (Monga et al., 2014).

2.7.2 Depth of Inheritance Tree (DIT)

This metric is applied for measuring the inheritance complexity of the programs. DIT

is the Maximum depth from the root node of a tree to special node. Here, class is

represented as a node. Deeper node on the tree accepts more the methods because

they inherit and the more classes in the tree, and it makes the class more complex

(Agrawal and Patel, 2012). A high DIT value is known to increase the number of

faults (Monga et al., 2014).

2.7.3 Number Of Children (NOC)

NOC is applied when there are many sub-classes of the particular class in the

hierarchy within the class exist. When children as a class are more, then it requires

21

more testing because super class may be misused (Agrawal and Patel, 2012). It is the

measure that counts the children as a class. A large number of children mean that the

functionality to the class is reused through inheritance (Amin et al., 2011).

2.7.4 Coupling Between Object (CBO)

Coupling is also called dependency. It is the level of dependency of one module to

another. Coupling is one important component, which help to determine the quality

to the design or software. Good program design is to achieve low coupling (Agrawal

and Patel, 2012). Coupling means links or dependency of a class to be other. High

CBO means low reusability (Monga et al., 2014). Gui (2009) defined Coupling as

the extent to which the various sub-components interact. If they are interdependent,

then changes to one are likely to have significant effects of the behavior of others.

Hence, loose coupling between its sub-components is a desirable characteristic.

2.7.5 Lack Of Cohesion (LCOM)

Cohesive indicates that a certain class performs a set of closely related to actions. An

LCOM means that a class is performing various unrelated tasks. Principles of OO

demand low coupling between modules and high cohesion of the module (Agrawal

and Patel, 2012). The cohesion ensures that a specific class is not or least dependent

on some other method or class (Monga et al., 2014).

2.7.6 Number Of Methods (NOM)

This metric gives the average number of operation per class (Monga et al., 2014). It

is an indicator of the size of a class (Amin et al., 2011).

Monga et al. (2014) had summarized the effects of the metrics on reusability as

shown in table 2.2.

22

Table 2.2: Effect of Metrics on Reusability (Monga et al., 2014).

2.8 Web Applications

Web applications refer to applications designed to work on desktop computer

browsers. Essentially, they work with devices with a browser. They can also work on

mobile devices, being given the condition that they do not rely on specific browser

features that are unavailable on most mobile devices (Serran et al., 2013).

2.8.1 Design

Building complex Web application is a time-consuming task as they must provide

navigational access to critical information resources, not only allowing the user to

browse through the potentially large universe of information but also to operate it.

 Most methodologies of Web application design formalize the design of a

Web application by three models: the application (or content) model, the navigation

model, and the presentation model. The application model defines the contents of the

application and its behavior. The navigation model defines the information units of

consumption (nodes) for the user and the navigation paths (links) between units. The

presentation model defines the abstract user interface. There are two levels of

abstractions or approaches, in which the design of a Web application may be

improved while preserving its functionality. An approach is to apply changes in the

code level in order to increase maintainability and extensibility of the application. A

second approach to design improvement of a web application is to apply changes at

the model level. For OO web design methods like OOHDM, the application model of

Metric Name Metric Value Reusability Value

LOC Increase Decrease

DIT Increase Decrease

NOC Increase Decrease

LCOM Decrease Increase

CBO Increase Decrease

NOM Increase Increase

23

a web application is an OO model and as such. Changes at this level are described by

model refactoring, which affects mainly on internal qualities, such as maintainability

(Garrido et al., 2009).

At present, most web applications are mostly designed with multiple tiers for

flexibility and software reusability. It is difficult to model the behavior of multi-tier

web applications because the workload is dynamic and unpredictable, and the

resource demand in each tier is different. For example, the 3-tier web application

architecture, which consists of presentation, application and data tiers, has been

widely used (Huang et al., 2014).

2.8.2 Reuse

Reusability is important, especially in web application development because they

need to be rapidly developed and frequently modified (Hokamura et al., 2010). Many

industrial web application's software has been developed. Unfortunately, most of

them were procedure-oriented, thus making them unsuitable for reuse and

customization effectively as well as becoming more and more complicated.

Considering this, efforts have been made to push legacy system software into the

new OO technology development. There are many repeated works in this

development, particularly in the design phase. An approach is needed to achieve

reusability, extensibility and reliability in web application development; only then,

web engineers/developers can reuse design as well as implementation. The need for

software reuse has become evident because complex software remains difficult to

implement, expensive to develop and risky to maintain. The idea behind reuse is not

to develop anything that already exists, but just reuses it. This will lead to shortened

development time, reduced complexity, increased productivity, extensibility and

reliability of web applications (Nuruzzamanet et al., 2013). He has offered a novel

solution to produce high-quality web applications within a shortest development

timeframe through the means of customization, reusability, extensibility and

flexibility. They conducted a comprehensive evaluation on the proposed OO

framework and emphasized the reuse of design, code and testing as a tool to uncover

strengths and weaknesses of the OO framework for dynamic web engineering. There

are several studies and open source frameworks for improving reusability of

24

components for web applications. However, the existing techniques are depended on

specific frameworks or architecture, and the architecture, and the techniques require

web applications to be implemented by the frameworks or architecture. Therefore,

reusability brought by the techniques is restricted to limited web applications. There

are common reusable functional such as access control, access analysis, and

performance tuning for multiple web applications. Therefore, mechanism for

implementing reusable components, which are available for multiple web

applications is important. To achieve that, Hokamura et al. (2010) used a domain-

specific aspect-oriented (AO) mechanism based upon an abstraction model common

to all web applications. AO contributes to flexible mechanism by adding new

functional for the base programs. They have indicated that the domain-specific AO

mechanism is an effective platform to implement reusable functional common in

many web applications.

 Ghosheh et al.(2008) Proposed new metrics used for measuring the

maintainability of web applications from class diagrams. The metrics is based on

Web Application Extension (WAE) for UML to measure size, complexity, coupling

and reusability.

2.9 Mobile Applications

They are applications developed to run on devices such as smart phones or tablets.

Users typically access them through online app stores, such as Google Play, Black-

Berry World, the Apple App Store, and the Windows Phone marketplace. The

number of available products is amazing, with Google Play alone offering 700,000

apps at the end of 2012 (Mojica et al., 2014).

Huge penetration of mobile devices, in particular, smart phones, and the

development of mobile broadband are important factors for the development of

Mobile applications and services (Hammershoj et al., 2010). The popularity of smart

phones has increased tremendously expressed by the doubling of the number of sold

smart phones from 149 million units in 2010 to 297 million units in 2011. The

market share of smart phones has also increased from 19% of total sold mobile

phones to 31%. It is obvious that the popularity of smart phones is not due to

telephony or SMS that can also be offered by both feature phones and low cost

57

 REFERENCES

Agrawal, A. & Patel, S. (2012). An Approach to Analysis Software Reusability.

International Journal of Advanced Research in Computer Science, 3(3), pp.

286-291.

AL-Badareen, A., Selamat, M., Jabar, M., Din, J. & Turaev, S. (2011). Reusable

Software Component Life Cycle. International Journal of Computers, 5(2),

pp. 191-199.

Aloysius, A. & Arockiam, L. (2012). Coupling Complexity Metric: A Cognitive

Approach. International Journal of Information Technology & Computer

Science, 4(9), pp. 29-35.

Amin, F., Mahmood, A. & Oxley, A. (2011). Reusability Assessment of Open

Source Components for Software Product Lines. International Journal of New

Computer Architectures and their Applications (IJNCAA), 1(3), pp. 519-533.

Babu, G. & SRIVATSA, S. (2009). ANALYSIS AND MEASURES OF

SOFTWARE REUSABILITY. International Journal of Reviews in

Computing, 1(5), pp. 41-46.

Bauer, V., Eckhardt, J., Hauptmann, B. & Klimek, M. (2014, June). An exploratory

study on reuse at google. Proceedings of the 1st International Workshop on

Software Engineering Research and Industrial Practices. Hyderabad. ACM.

pp.14-23.

Briand, L., Devanbu, P. & Melo, W. (1997). An Investigation into Coupling

Measures for C++. Proceedings of the 19th International Conference on

Software Engineering. Boston. IEEE. pp. 412-421.

Capiluppi, A., Stol, K. & Boldyreff, C. (2011). Software reuse in open source: A

case study. International Journal of Open Source Software and Processes

(IJOSSP), 3(3), pp.10-35.

Cheikhi, L., Al-Qutaish, R., Idri, A. & Sellami, A. (2014). Chidamber and Kemerer

Object-Oriented Measures: Analysis of their Design from the Metrology

58

Perspective. International Journal of Software Engineering & Its Applications,

8(2), pp. 359-374.

Cramer, H., Rost, M., Belloni, N., Bentley, F. & Chincholle, D. (2010). Research in

the large using app stores, markets, and other wide distribution channels in

Ubicomp research. Proceedings of the 12th ACM international conference

adjunct papers on Ubiquitous computing-Adjunct. Copenhagen. ACM. pp.

511-514.

Concas, G., Marchesi, M., Murgia, A., Pinna, S., & Tonelli, R. (2010). Assessing

traditional and new metrics for object-oriented systems. Proceedings of the

ICSE Workshop on Emerging Trends in Software Metrics. South African.

ACM. pp. 24-31.

Dubey, S. & Rana, A. (2010). Assessment of usability metrics for object-oriented

software system. ACM SIGSOFT Software Engineering Notes, 35(6), pp. 1-4.

Gandhi, P., Bhatia, P. K., Kumari, U. & Bhasin, S. (2011). Estimation of generic

reusability for object-oriented software an empirical approach. ACM SIGSOFT

Software Engineering Notes, 36(3), pp. 1-4.

Gandhi, P. & Bhatia, P. (2010). Reusability Metrics for Object-Oriented System: An

Alternative Approach. International Journal of Software Engineering (IJSE),

1(4), pp. 63-72.

Garrido, A., Rossi, G. & Distante, D. (2009). Systematic improvement of web

applications design. Journal of Web Engineering, 8(4), pp. 371-404.

Ghosheh, E., Black, S., & Qaddour, J. (2008). Design metrics for web application

maintainability measurement. Proceedings of the International Conference on

Computer Systems and Applications. Doha. IEEE. pp. 778-784.

Glasberg, D., El-Emam, K., Memo, W. & Madhavji, N. (2000). Validating object-

oriented design metrics on a commercial java application. Canada: National

Research Council.

Goel, B. & Bhatia, P. (2013). Analysis of reusability of object-oriented systems using

object-oriented metrics. ACM SIGSOFT Software Engineering Notes, 38(4),

pp. 1-5.

Gui, G. & Scott, P. (2009). Measuring Software Component Reusability by Coupling

and Cohesion Metrics. Journal of computers, 4(9), pp. 797-805.

59

Hammershoj, A., Sapuppo, A. & Tadayoni, R. (2010). Challenges for mobile

application development. Proceedings of the 14th International Conference on

Intelligence in Next Generation Networks (ICIN). Berlin. IEEE. pp. 1-8.

Hokamura, K., Ubayashi, N., Nakajima, S., & Iwai, A. (2010). Reusable aspect

components for web applications. Proceedings of the TENCON 2010-2010

IEEE Region 10 Conference. Fukuoka. IEEE. pp. 1059-1064.

Hristov, D., Hummel, O., Huq, M. & Janjic, W. (2012). Structuring Software

Reusability Metrics for Component-Based Software Development.

Proceedings of the Seventh International Conference on Software Engineering

Advances. Lisbon. IARIA. pp. 421-429.

Huang, D., He, B. & Miao, C. (2014). A Survey of Resource Management in Multi-

Tier Web Applications. IEEE Communications Surveys & Tutorials, 16 (3),

pp. 1574-1590.

Huy, N. & Thanh, D. (2012). Developing apps for mobile phones. Proceedings of the

7th International Conference on Computing and Convergence Technology

(ICCCT). Seoul. IEEE. pp. 907-912.

Iqbal, N. & Qureshi, M. (2012). Improvement of Key Problems of Software Testing

in Quality Assurance. Science International Journal -Lahore,21(1), pp. 25-28.

Jatain, A. & Gaur, D. (2012). Estimation of component reusability by identifying

quality attributes of component: a fuzzy approach. Proceedings of the Second

International Conference on Computational Science, Engineering and

Information Technology. Avinashilingam University. ACM. pp. 738-742.

Kakkar, P., Sharma, M. & Sandhu, P. (2012). Modeling of Reusability of Procedure

based Software Components using Naive Bayes Classifier Approach.

International Journal of Computer Applications, 55(15), pp. 12-17.

Karthikeyan, T. & Geetha, J. (2012). A Study and Critical Survey on Service

Reusability Metrics. International Journal of Information Technology &

Computer Science, 4(5), pp. 25-31.

Kumar, A. (2012). Measuring Software Reusability using SVM based Classifier

Approach. International Journal of Information Technology and Knowledge

Management, 5(1), pp. 205-209.

Kumari, U. & Bhasin, S. (2011). Application of object-oriented metrics To C++ and

Java: a comparative study. ACM SIGSOFT Software Engineering Notes, 36(2),

pp. 1-10.

http://www.avinuty.ac.in/

60

Kaur, N. & Singh, A. (2013). A Metric for Accessing Black Box Component

Reusability. International Journal of Scientific & Engineering Research,

Volume 4(7), pp. 1114-1121.

Lionbridge (2014). Mobile Web Apps vs. Mobile Native Apps. How to Make the

Right Choice. Retrieved on April 17, 2014, from

 http://www.lionbridge.com/files/2012/11/Lionbridge-WP_MobileApps2.pd.

Manhas, S., Sandhu, P., Chopra, V. & Neeru, N. (2010). Identification of Reusable

Software Modules in Function Oriented Software Systems using Neural

Network Based Technique. World Academy of Science, Engineering and

Technology, 4(1), pp. 18-28.

Mikkonen, T. & Taivalsaari, A. (2011). Apps vs. Open Web: The Battle of the

Decade. Proceedings of the 2nd Workshop on Software Engineering for

Mobile Application Development. Santa Monica. MSE. pp. 22-26.

Mohagheghi, P. & Conradi, R. (2008). An empirical investigation of software reuse

benefits in a large telecom product. ACM Transactions on Software

Engineering and Methodology (TOSEM), 17(3), pp. 13-21.

Mojica Ruiz, I., Adams, B., Nagappan, M., Dienst, S., Berger, T., & Hassan, A.

(2014). A large scale empirical study on software reuse in mobile apps.

Software IEEE, 31(2), pp. 78-86.

Monga, C., Jatain, A. & Gaur, D. (2014). Impact of quality attributes on software

reusability and metrics to assess these attributes. Proceedings of the Advance

Computing Conference (IACC). Gurgaon. IEEE. pp.1430-1434.

Narasimhan, V., Parthasarathy, P. & Das, M. (2009). Evaluation of a suite of metrics

for component based software engineering (CBSE). Issues in Informing

Science and Information Technology, 6(5/6), pp. 731-740.

Nuruzzaman, M., Hussain, A. & Tahir, H. (2013). Towards Increasing Web

Application Development Productivity through Object-Oriented Framework.

International Journal of Future Computer and Communication, 2(3), pp.220-

225.

Okike, E. (2010). A Pedagogical Evaluation and Discussion about the Lack of

Cohesion in Method (LCOM) Metric Using Field Experiment. International

Journal of Computer Science Issues (IJCSI), 7(2), pp. 36-43.

61

Patwa, S. & Malviya, A. (2012). Reusability metrics and effect of reusability on

testing of object oriented systems. ACM SIGSOFT Software Engineering

Notes, 37(5), pp. 1-4.

Pylkki, V. (2013). Evaluating application generators for multi-platform mobile

application development. University of Tamper: Master’s Thesis.

Redin, R., Oliveira, M., Brisolara, L., Mattos, J., Lamb, L., Wagner, F. & Carro, L.

(2008). On the use of software quality metrics to improve physical properties

of embedded systems. Brazil: Institute of Informatics (UFRGS).

Sridhar, M., Srinivas, Y. & Krishna Prasad, M. (2013). Software reuse in a paralysis

dataset based on categorical clustering and the Pearson distribution. Journal of

King Saud University-Computer and Information Sciences, 26(3), pp. 347-

354.

Sagar, S., Nerurkar, N. & Sharma, A. (2010). A soft computing based approach to

estimate reusability of software components. ACM SIGSOFT Software

Engineering Notes, 35(5), pp. 1-5.

Sagayaraj, S. & Ganapathy, G. (2011). Extraction of method signatures from

ontology towards reusability for the given system requirement specification.

Proceedings of the International Conference of Applied and Engineering

Mathematics. London. WCE. pp. 988-994.

Sandhu, P., Kakkar, P. and Sharma, S. (2010). Mechanical and Electrical

Technology. Proceedings of the 2nd International Conference on

International Conference On Mechanical Engineering And Technology

(ICMET). Singapore. IEEE. pp. 769-773.

Serrano, N., Hernantes, J. & Gallardo, G. (2013). Mobile Web Apps. Software,

IEEE, 30(5), pp. 22-27.

Sharma, A., Grover, P. S. & Kumar, R. (2009). Reusability assessment for software

components. ACM SIGSOFT Software Engineering Notes, 34(2), pp.1-6.

Singaravel, G., Palanisamy, V. & Krishnan, A. (2010). Overview analysis of

reusability metrics in software development for risk reduction. Proceedings of

International Conference on Innovative Computing Technologies (ICICT).

Tamil Nadu. IEEE. pp. 1-5.

Singh, S., Thapa, M., Singh, S. & Singh, G. (2010). Software Engineering- Survey

of Reusability Based on Software Component. International Journal of

Computer Applications, 8(12), pp. 39-42.

62

Singh, Y., Bhatia, P. K. & Sangwan, O. (2011). Software reusability assessment

using soft computing techniques. ACM SIGSOFT Software Engineering Notes,

36(1), pp. 1-7.

Suri , P. & Garg, N. (2009). Software Reuse Metrics: Measuring Component

Independence and its applicability in Software Reuse. International Journal of

Computer Science and Network Security, 9(5), pp. 237-248.

Taibi, F (2014). Empirical Analysis of the Reusability of Object-Oriented Program

Code in Open-Source Software. International Journal of Computer,

Information Science and Engineering, 8 (1), pp. 4553-4557.

Taibi, F. (2013). Reusability of open-source program code: a conceptual model and

empirical investigation. ACM SIGSOFT Software Engineering Notes, 38(4),

pp. 1-5.

Trivedi, P. & Kumar, R. (2012). Software Metrics to Estimate Software Quality

using Software Component Reusability. International Journal of Computer

Science Issues (IJCSI), 9(2), pp. 144-149.

