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ABSTRACT 

Software reuse is an important approach to software engineering, where it aims to 

use previous software components to create new software systems. Reusability 

minimizes work repetition, development time, cost, efforts, and increases systems 

reliability. Reusability measurements help developers to provide the right metrics for 

measuring the reusability attributes and to identify reusable components among the 

wealth of existing programs. The main problem encountered in software reuse is the 

proper selection of the right software component for reuse due to similarity between 

the desired functionality and the function of the retrieved software component. In 

addition, it is difficult to define the right metrics that capture important quality 

attributes of a given class. This research aims to identify and measure the attributes 

that affect the software components reusability in two open source web and mobile 

applications. It also aims to compare the usage rate of reusability components in 

these applications to decide their ability to reuse. Four attributes were selected due to 

their impacts on reusability namely flexibility, portability, variability and 

understandability. Five metrics were identified to measure these attributes based on 

specified formulas. The metrics are Coupling Between Object (CBO), Lack Of 

Cohesion (LCOM), Depth Of Inheritance (DIT), Number Of Children (NOC) and 

Line Of Code (LOC). The research results indicate that the same attributes and 

metrics are suitable for measuring the reusability components in both applications. 

The comparison between the two applications for reuse indicates that the web 

application is more difficult for reuse than the mobile application. 
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ABSTRAK 

Penggunaan semula perisian adalah pendekatan yang penting dalam kejuruteraan 

perisian, di mana ianya bertujuan untuk menggunakan komponen-komponen perisian 

yang dibangunkan sebelum ini untuk membina sistem baru. Penggunaan semula akan 

meminimumkan kerja yang berulang-ulang, masa pembinaan, kos, usaha, dan 

meningkatkan kebolehpercayaan sistem. Mengukur penggunaan-semula membantu 

pembangun sistem mendapatkan metrik yang betul dalam mengukur ciri-ciri 

penggunaan-semula dan seterusnya mengenalpasti komponen-komponen yang boleh 

diguna semula di dalam program-program sedia ada. Masalah utama yang berlaku di 

dalam kaedah penggunaan-semula adalah pemilihan komponen perisian yang terbaik 

dan bersesuaian disebabkan persamaan di antara fungsi-fungsi yang diingini dengan 

fungsi-fungsi yang telah sedia ada di dalam komponen perisian yang ingin diambil 

fungsinya. Tambahan lagi, adalah sukar untuk menentukan metrik yang betul yang 

dapat mengambil ciri-ciri yang terbaik di dalam kelas yang diberikan. Penyelidikan 

ini memfokuskan untuk mengenal pasti dan mengukur ciri-ciri yang mempengaruhi 

penggunaan semula komponen-komponen perisian di dalam dua sumber terbuka iaitu 

aplikasi laman web dan aplikasi mudah alih. Ia juga memfokuskan untuk membuat 

perbandingan berkenaan kadar penggunaan komponen-komponen yang digunakan 

semula dalam dua aplikasi ini bagi menentukan keupayaan ia untuk digunakan 

semula. Empat ciri telah dipilih disebabkan impak ciri tersebut kepada penggunaan-

semula iaitu fleksibiliti, mudah alih, kepelbagaian dan kebolehan memahami. Lima 

metrik telah dikenalpasti untuk mengukur sifat-sifat ini berdasarkan formula yang 

khusus. Metrik tersebut adalah CBO, LCOM,  DIT, NOC dan LOC. Hasil 

penyelidikan ini menunjukkan ciri-ciri dan metrik tersebut adalah sesuai untuk 

mengukur komponen penggunaan semula dalam kedua-dua aplikasi. Perbandingan 

tersebut menunjukkan aplikasi web lebih sukar untuk diguna semula berbanding 

aplikasi mudah alih. 
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CHAPTER 1 

INTRODUCTION 

1.1    Introduction  

Software has become critical to advancement in almost all areas of human endeavor. 

There are serious problems in the cost, timeliness, maintenance and quality of many 

software products. Software engineering has objectives of solving these problems by 

producing good quality, maintainable software, on time, within budget (Singaravel et 

al., 2010). Generally, a software-development work requires various kinds of 

resources to complete the project on time. The ability of some functions or packages 

to be reused in the project will help to evolve the software instead of developing the 

module from the scratch (Babu & Srivatsa, 2009). Software reuse is an important 

approach to software engineering. It is the process of building applications that made 

use of formerly developed software component (Bhanu, 2014).   

 Software reusability is an important aspect of the software-development 

process, where it can use previous components to create new software systems. The 

cost to develop a new system from scratch is significant. This has made custom 

software development very expensive. It is generally assumed that the reuse of 

existing software will enhance the reliability of a new software application. This 

concept is almost universally accepted because of the obvious fact that a product will 

work properly if it has already worked before (Sharma et al., 2009). The idea of 

software reuse appeared in 1968, opening new horizons for software design (Sandhu 

et al., 2010), and have been promoted in recent years. The software-development 

community is gradually drifting toward promoting software reuse to develop any 

new software system virtually from the existing systems (Gil, 2006). Reusability is 
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as the degree to which a component can be reused and minimizes repetition of work, 

development time, cost, efforts, and increases system reliability (AL-Badarenn et al., 

2011). It also improves the maintainability and portability of the system (Sharma et 

al., 2009). As an example of the role of reusability in reducing the cost of the 

software development, (Agrawal & Patel, 2012) stated that the U.S. Department of 

defense only could be saving $300 million annually by increasing its level of reuse 

by as little as 1%.  In addition, using a software reuse concept in Missile Systems 

Division increased the productivity by 50%, and using reusable modules to develop 

the prototype of a force fusion system reduced 20% of the development time of the 

estimated time for developing the new system. 

A good software reuse process can  facilitate the increase of productivity of 

program design and development, reliability of software products, and the decrease 

of costs and implementation time. Technologies would enable software companies to 

build specialized components that can be sold to systems integrators and custom 

builders, who would combine them with other, largely purchased, off-the- shelf 

components to create high-quality custom applications. An established software 

components industry would provide a rapid and responsive channel for marketing 

software innovations, while constantly improving quality, reliability, and capability 

(Sandhu et al., 2010).                     

To assess various properties of components to choose the right components 

and reuse them correctly, metrics is required (Monga et al., 2014). The 

measurements of the reusability help developers to control the level of the reuse and 

providing the metrics for identifying one of the important quality property's 

reusability. The measurement may help us not only to learn how to build reusable 

components, but also to identify reusable components among the wealth of existing 

programs (Agrawal & Patel, 2012). 

1.2    Problem Statement 

At present, reuse includes different approaches, such as reusing components 

developed in-house, reusing of commercial-off-the-shelf (COTS) or open-source 

software (OSS) components (Mohagheghi & Conradi, 2008). Software reuse aims to 

use existing components to build new components or products. Software may be 



3 
 

source code or executable, design templates, software architectures, or any other 

asset. Due to increasing number of components in the market, it becomes necessary 

to qualify the reusability of these components to define the effective ones for reuse 

(Sharma et al., 2009). However, it is a challenge to find the right reusable artifacts 

from huge components. In addition, measuring software reusability attributes is a 

difficult activity for both developers and managers (Kumari, 2011, Bauer et al., 

2014). The problems  of selecting the proper software component for reuse (Otis et 

al., 2013) are related not only to the similarity between the functions delivered by the 

retrieved software component, but also to the effort needed to modify the chosen 

component to accommodate the desired functionality. That is why it is so important 

to have efficient reuse metrics that assists to use a given software component in new 

environment (Sandh et al., 2010). 

This dissertation selects some attributes that affect software reusability and 

identify a set of metrics for measuring the reusability of components in two open 

source object-oriented web and mobile applications. In addition, their usage rate in 

these applications is compared to define the possibility of reusing the components 

and the applications. This can help developers in the selection process of the right 

components for reuse in other software environments and shorten the effort, cost and 

time. Moreover, it helps to acquire sound knowledge of the required metrics. 

1.3    Research Questions  

The research problem raises the following questions:  

(i) What are the attributes that affect the software component reusability? 

(ii) How to measure the reusability attributes of these components? 

(iii) Do the web and mobile applications use the same attributes at the same 

rate? 

1.4    Research Objectives 

(i) To identify attributes that affect reusability of software components in 

web and mobile applications. 
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(ii) To measure the attributes reusability in both applications with proper 

metrics. 

(iii) To perform comparative analysis between the usage rates of component 

reusability in both applications that assists in selection of components for 

reuse. 

1.5    Research Significance 

Selection of suitable components is necessary to achieve objectives for improving 

product quality within time and budget constraints. Identifying the significant 

attributes and the proper metrics to measure the quality and efficiency of software 

components to be reused will help in building high quality and reliable software with 

reduced cost and time. They help in project estimation and progress monitoring, 

evaluation of work products, process improvement, and experimental validation of 

best practices. 

1.6    Research Scope 

This research aims to measure the attributes that affect the reusability of components 

of two object oriented open sources in mobile and web software applications, and 

compare the usage rate of component reusability in these applications, where there 

are no standard limits or specified range of the metrics value except high and low 

criterion (Amin et al. 2011, Taibi, 2014, Agrawal & Patel, 2012, Monga et al. 2014, 

Taibi, 2013, Dubey & Rana, 2010, Gui, 2009). Four reusability attributes of 

components will be measured according to measurement metrics to define their rate 

in each application. This will lead to determining the component's ability to be 

reused in building new software application. The focus of this research is as follows: 

(i) Two open source component based applications related to exam system; 

one mobile application (Dice, 2014) and another web application (Osama, 

2012) are chosen.   

(ii) The following attributes that affect their component reusability and their 

metrics are selected: 
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 Flexibility: Coupling between object (CBO) and lack of Cohesion 

(LCOM). 

 Variability: Number of Children (NOC). 

 Understandability: Size of Codes (LOC). 

 Portability: Depth of inheritance tree (DIT). 

(iii) Compare the usage rate of component reusability in the two applications. 

1.7    Dissertation Outlines 

This research is organized in five chapters. Chapter 2 reviews the literature, 

including the notion of web and mobile applications, their reusability attributes and 

metrics. Chapter 3 explains the methodology and the attributes that affect the 

reusability and their metrics. Chapter 4 shows the results, which includes the 

reusability attribute measurements. It also includes a comparison of the usage rate of 

each reusability component in two open source object-oriented web and mobile 

applications. The conclusions and future work are presented in Chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1    Introduction  

Software Engineering aims for quality software producing strategies. In which 

software development life cycle involves sequences of different activities during the 

development process (Singaravel et al., 2010). Software reuse is the use of existing 

software artifacts to create new software (Singh et al., 2010). It plays an important 

role in increasing quality of software products (Gandhi & Bhatia, 2011). 

Huge web and mobile applications are created to perform different tasks on 

different platforms. The applications' construction is commonly based on 

components based or objects oriented. So same attributes characterize them. 

Researchers used much metrics to measure various reusability attributes for all 

applications. This chapter reviews the previous studies and researches and introduces 

a brief knowledge about web and mobile applications. It also defines software 

reusability concept, definition, benefits and reusability metrics. 

2.2    Software Quality 

Developing a good software system is a very challenging task. To produce a good 

software product, numerous measures for software quality attributes need to be taken 

into account (Iqbaland & Qureshi, 2012, Suri & Garg, 2009) System complication 

dimensions play a vital role in controlling and supervision of software quality 

because it normally affects the software quality attributes like software reliability, 



7 
 

software testability and software maintainability, indicated that reusability is one of 

the attributes that determine the quality into the software. 

            Reusability is the key paradigm for increasing software quality in software 

development. It is an important area of software engineering research that promises 

significant improvements in software productivity and quality (Singh et al., 2010). 

            Pylkki (2013) the main objective of reuse is to increase software quality and 

productivity. Reusable assets are not limited to the source code, but can also include 

documentation or organizational practices. Modern programming languages provide 

support for reusing large portions of source code with classes, modules and 

frameworks. Constructing systems out of ready-made components can manage 

complexity if the components have been clearly defined, standardized interfaces and 

connection methods. 

            Software reusability is an attribute that refers to the expected reuse potential 

as a software component (Sandhu et al., 2010). Since reusability is an attribute of 

software quality, hence can measure software quality by quantifying its reusability. 

Productivity, maintainability, portability and therefore, the overall quality into the 

product can be improved by software reusability (AL-Badareen et al., 2011). 

2.3    Software Reusability 

The idea of software reuse is not new (Hristov et al., 2012). Its roots date 

back to 1968 when McIlroy has presented his seminal work on reusable components 

at the NATO Software Engineering Conference in Garmisch, Germany. However, 

there has only been limited practical experience with reuse until the late 1980s, when 

large-scale reuse programs were adopted by companies, mainly in the United States 

(e.g., by IBM and Hewlett Packard) and Japan (e.g., by Toshiba and Fujitsu). These 

efforts have also pushed forward the research in the 1990s, and in turn created a 

growing interest in systematic software reuse and reuse programs for organizations 

of that time. 

Reuse is an act of synthesizing a solution for a problem based on predefined 

solutions to sub problems (Kumar, 2012). Software reusability refers to the 

probability of reuse of software. The ability to reuse relies in an essential way to the 
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ability to build larger things from smaller parts, and being able to identify 

commonalities among those parts.  

Sandhu et al. (2010) Software reuse not only improves productivity but also 

has a positive impact upon the quality and maintainability of software products and 

enhances the reliability of a new software application. 

AL-Badareen et al. (2011) The concept of the software reuse is not only 

applied to source code fragment, but can also mean all the information that is related 

to the product generating processes, including software requirements, analysis, 

design, and any information required by the developers to build a software. 

Singaravel et al. (2010) The reusability of a piece of code does not mean that 

it can  copy-paste the same code in many places within an application. A piece of 

reusable code means that the same code can be reused in different places without re-

writing it. The metric of reusability is how many programs can reuse the piece of 

code without looking at the source code. 

Software reuse in its most common form can be seen in the component based 

software development (Amin et al., 2011), where it has been promoted in recent 

years. The software-development community is gradually drifting toward the 

promise of widespread software reuse, in which any new software system can be 

derived virtually from the existing systems. There are two approaches for reuse of 

code: develop the code from scratch or identify and extract the reusable code from 

already developed code (Manhas et al., 2010, Kumar, 2012). 

Software reusability is defined by many researchers. Amin et al. (2011) 

defined it as the “characteristics of an asset that make it easy to use in different 

contexts, software systems, or in building different assets."  

Babu and Srivatsa (2009)  defined software reusability as the process of 

creating a software system from existing software assets rather than the building 

software system from scratch. Software reusability is the development of new 

software from the existing one.  

Sagar et al. (2010) defined reusability as the degree to which a component 

can be reused, and reduces the software development cost by enabling less writing 

and more assemblies. 

Sridhar at el. (2014) Software reuse is the process of building software 

applications that made use of formerly developed software components. 
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Singh et al. (2010) defined reusability as the use of engineering knowledge or 

artifacts from existing software components to build a new system. Reusability is the 

key paradigm for increasing software quality to the software development. 

Agrawal & Patel (2012) defined the reusability as one of the quality attributes 

that has prime importance in object oriented software development as reusability 

leads to increase in developer productivity, reduce a development cost as well as the 

time to market. 

Sharma et al. (2009) defined reuse as the process of adapting a generalized 

component to various contexts of use. They indicated that the main idea of software 

reuse is to use previous software components to create new software programs. Thus, 

software reuse is software design, where previous components are the building 

blocks for the generation of new systems. 

 Trived & Kumar (2012) defined Software reuse in the process of 

implementing or updating software systems using existing software components. 

Hristov et al. (2012) stated that it was important to distinguish between 

software reuse and reusability as the reuse is focused on the practice of reuse itself 

while the reusability tries to make the potential of artifacts for being reused 

measureable. Generally, the researchers use the two words synonymously.  

2.3.1  Reuse Benefits  

Software reuse is the improvement efforts of the productivity of the software because 

reuse can result in higher-quality  software at a lower cost and delivered within a 

shorter time. It reused software is more accurate than new software because already 

it has been tried and tested in working system (Kumar, 2012).  

Reusability reduces implementation time, increase the likelihood that prior 

testing and use eliminated  bugs and localizes code modifications when a change in 

implementation is required (Kakkar et al., 2012). 

Software reuse reduces development time, effort, cost and increase's 

productivity and quality. Studies in software engineering confirm these benefits 

(Amin et al., 2011).  
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In general, the reuse of codes, components and other artifacts aims to (Trived 

& Kumar, 2012). 

(i) Reduce time to market. 

(ii) Reduce a development cost. 

(iii) Improve the productivity of development teams. 

(iv) Improve the predictability of the development process. 

(v) Increase the quality and reliability of products. 

(vi) Reduced overall process risk. 

The main idea of software reuse is to use previous software 

components/artifacts to create new software systems. Therefore, it minimizes 

repetition of work, development time, cost and efforts and increase systems 

reliability. It also improves the portability and maintainability of the system (Sharma 

et al., 2009). 

2.3.2  Reusability in Component 

In software industry, the evolution of reusability started from Object-oriented 

systems, then Component-based systems, and now it talks with Service-oriented 

systems (Karthikeyan & Geetha, 2012). In the case of component-based 

development, software reuse refers to the utilization of a software component within 

a product to be used in another product (Sharma et al., 2009). A reusable component 

can be seen as a box, which contains the code and the documentation. These boxes 

are defined as (Sharma et al., 2009, Singh et al., 2010). 

(i) Black Box Reuse 

In black box reuse, the re-user sees the interface, not the implementation of the 

component. The interface contains public methods, user documentation, 

requirements and restrictions of the component. 

(ii) Glass Box Reuse 

 

In glass box reuse, the inside of the box can be seen as well as the outside, but it is 

not possible to touch the inside. 
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(iii) White Box Reuse 

In white box reuse, it is possible to see and change the inside of the box as well as its 

interface. A white box can share its internal structure or implementation with another 

box through inheritance or delegation. 

In component-based development, there are two broad reuse developments. 

One is the development of systems with reuse, and another is the development of 

components for reuse. In first case, application is developed by reusing several 

already-built-in components. These components have already been tested thoroughly, 

which will enhance the quality into the product and will save time and cost. Another 

approach is the development of components for reuse. Here, components are 

developed by keeping in mind the high reusability for this component. These 

components need to be compatible for a wide range of applications, developed in 

variety of languages for different platforms. One of the essential problems in 

software reuse is the retrieval and selection of suitable software components from a 

large library of components (Sharma et al., 2009). 

In case of an object-oriented software programs, an object-oriented software 

system is a collection of classes, which abstract data types and templates in a way of 

making classes more abstract without actually knowing what data type will be 

handled by the operations on the class. With the help of template, a single class can 

be used to handle different types of data, and a single function can be used to accept 

different types of data, which makes the code easier to maintain and classes more 

reusable (Gandi et al., 2010). 

An object-oriented system start by defining a class that contains related or 

similar attributes and methods. The classes are used as the basis for objects. A class 

is a template from which objects can be created. This set of objects shares a common 

structure, and a common behavior manifested by the set of methods. A method is an 

operation on an object and is defined in the class declaration. A message is a request 

that an object makes of another object to perform an operation. The operation 

executed as a result of receiving a message is called a method. A high degree of 

inheritance is an indicator of system health. Strong coupling complicates a system, 

since a module is harder to understand, change, or correct if it is interrelated with 

other modules. The more independent a class, the easier it is to reuse it in another 

application. High cohesion indicates good class subdivision (Goel & Bhatia, 2013). 
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2.3.3    Software Component 

Software component reuse is the software engineering practice of creating new 

software applications from existing components, rather than designing and building 

them from scratch (Babu & Srivatsa, 2009). A component can be considered an 

independent replaceable part of the application that provides a clear distinct function. 

Reusable components can be requirements of specifications, design documents, 

source code, user interfaces, user documentation, or any other items associated with 

software. All products resulting from the software-development  life cycle have the 

potential for reuse. A software component can be a code block, module, function, 

class, control or the project or software itself (Trived & Kumar, 2012, Manhas et al., 

2010). In the context of object orientation, a class can be said to be a component 

because it is the only unit of composition (Amin et al., 2011). In the context of 

component-based software development, the component is a reusable piece of 

software (Capiluppi & Boldyreff, 2011). 

2.4    Reusability Attributes 

Software reusability is a significant aspect of the software-development process, 

where it is able to use previous software components to create new software systems. 

Software components have attributes that affect their reusability. These attributes are 

related to using a given software component in new environment and for another 

software system. The environmental attributes as well as attributes derived from the 

software should be considered, identified and measured. As the number of 

components available on the market increases, it is becoming more important to 

devise software metrics to qualify the various characteristics of components. Among 

several quality characteristics, the reusability is particularly important when reusing 

components (Sharma et al., 2009).  

Hristov et al. (2012) mentioned several characteristics of software to 

determine such factors are adaptability, complexity, compose-ability, maintainability, 

modularity, portability, programming language, quality, reliability, retrieve-ability, 

size and understandability. They indicated that most of the existing research is rather 

incoherent and only covers one or a few of these aspects so that to our knowledge, 
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there is no publication that has tried to bring all these aspects together in a single 

model. 

 Sandhu et al. (2010) indicated that metrics collectively determined 

reusability of a software component is still at its naive stage, and function that makes 

use of this metrics to find reusability of software components is still not clear. 

Sagayaraj & Ganapathy (2011) mentioned some general reusability attributes 

include ease of understanding, functional completeness, reliability, good error and 

exception handling, information hiding, high cohesion and low coupling, portability 

and modularity.  

Sharma et al. (2009) identified some attributes for predicting component 

reusability such as small size of code, simple structure and good 

documentation.Hence considered reusability is a measure of four factors on which 

the reusability of the component depends namely customizability, interface 

complexity, understandability, and portability. The customizability is defined as the 

ability to modify a component as per application requirement. It should be high, and 

it categorized from very low to very high where a number is assigned for each 

category. The interface complexity refers to the interface between component and 

applications, which acts as a primary source for understanding, use and 

implementation and finally maintenance of the component. The interface complexity 

should be as low as possible, and it is also categorized from very low to very high. 

The understandability refers to any documentation provides help to users, and it 

includes component manuals, demos, help system, and marketing information. 

Portability refers to the ability of a component to be transferred from one 

environment to another with little modification. The component should be easily and 

quickly portable.  

Jatain & Gaur (2012) proposed a model based on four factors: Changeability, 

Interface Complexity, Understandability of Software and Documentation Quality. 

They used soft computing techniques, namely neuro-fuzzy approach to determine 

reusability of software components in existing systems as well as the reusable 

components. They claimed that neuro-fuzzy technique can be a powerful tool to 

tackle important problems in software engineering and can be further extended as 

software metric model.                    
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Taibi (2014) indicated that complexity, modularity and understandability 

enhance the quality of object-oriented program source code and potentially improve 

its reusability. 

 

2.5    Common Attributes Definitions 

2.5.1   Flexibility 

It is the ease of modification system or component for use in applications or 

environments other than that it was designed for it (Amin et al., 2011, Monga et al., 

2014). 

2.5.2    Maintainability  

 

It is the ease with which a software system or component can be modified to change  

or add capabilities, correct faults or defects, improve performance or other attributes, 

or adapt to a changed environment (Monga et al., 2014).  

Maintainability is related to reusing in terms of error tracking and debugging. 

If the component is maintainable, it is more likely to be reused (Amin et al., 2011). 

 

2.5.3    Portability 

 

It is the ease with which a system or component can be transferred from one 

hardware or software environment to another. Portability is considered as a factor in 

the sense that a cohesive component is more portable. The portability of a component 

depends on its independence, i.e. the ability of the component to perform its 

functionality without external support (Amin et al., 2011, Monga et al., 2014). 

 

2.5.4    Variability 

 

It can be defined as the configure ability of a component, that it can be configured in 
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multiple configurations. Variability decreases understandability (Amin et al., 2011). 

2.5.5 Understandability 

It is the ease with which a system can be comprehended at both the system 

organizational and detailed statement levels. The understandability attribute is also 

related to the maintainability of the component, a component that is easy to 

understand is easy to maintain (Amin et al., 2011). It also can be defined as the 

degree of knowing how and what things are working and interacting in the system 

(Monga et al., 2014).  

2.5.6   Size  

Size may include only the lines of code in a program, or it may include the lines of 

code along with commented line of code (Monga et al., 2014). It is the length of the 

software (Amin et al., 2011). 

2.5.7 Complexity 

It refers to the difficulty in understanding the design and implementation of software. 

A complex software or component is difficult to be reused (Monga et al., 2014). 

2.5.8 Scope coverage 

It is the attribute that measures the number of features provided by the component 

against the total number of features in the SPL scope (Amin et al., 2011). 

2.5.9 Availability 

It refers to how easy and fast (or hard and slow) is to retrieve a software component 

(Hristov et al., 2012). 



16 
 

2.6    Reusability Metrics 

The potential benefits of software reuse and the maturity of reusability concepts lead 

us to think about how the author might measure it (Amin et al. 2011). The concept of 

reuse is very popular today because it saves time, cost, and effort to develop a 

software system. Thus, it is necessary to have an effective and efficient method to 

measure software component reusability. Measuring reusability is not a 

straightforward process due to the variety of metrics and qualities linked to software 

reuse and the lack of comprehensive empirical studies to support the proposed 

metrics or models (Taibi, 2013,Taibi, 2014). 

Software metrics is units of measurement used to measure different attributes 

of a software product, and process. Metrics plays a very important role to develop 

good-quality  software (Kumari & Bhasin, 2011). 

Researchers used much metrics to measure various reusability attributes for 

all applications. The software metrics is useful in helping software developers to 

develop effective software reuse requires that the users of the system have access to 

appropriate components. The user must access these components accurately and 

quickly, and be able to modify them if necessary. Various attributes, which ascertain 

the quality into the software, include maintainability, defect density, fault proneness, 

normalized rework, comprehensibility, reusability, etc. At present, the requirement is 

to associate the reusability attributes with the metrics and how this metrics 

collectively ascertains the reusability of the software component (Suri and Garg, 

2009). 

Metrics should be identified to measure these attributes. It relates to a defined 

measurement approach and a measurement scale. A metric is expressed in units, and 

can be defined for more than one attribute. The primary aims for reusing metrics are 

(Patwa and Malviya, 2012): 

(i) To provide realistic measures of reuse 

(ii) To estimate the benefits of reuse: The metrics is useful in finding the 

estimates of the benefits from specific factor, i.e. reuse and testing. Exact 

values matter less than reasonable estimates. 

(iii) To provide feedback to developers and management:  
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Developers need a defined method to measure and report what they have 

done. 

(iv) To give simple, easy-to-understand values. 

(v) To yield consistent, repeatable values independent of who calculates them 

and proves them mathematically and / or axiomatically sound. 

There are a number of metrics available for measuring the reusability for 

object-oriented systems. They focus upon the object structure, which reflects on each 

individual entity such as methods and classes, and on the external attributes that 

measure the interaction among entities such as coupling &inheritance (Sharma et al., 

2009).  Some of these object-oriented metrics can be used in CBD (Sagar et al., 

2010). However, there are some difficulties in applying existing object-oriented 

metrics into the component development and CBSD because these metrics requires 

analysis of source code. Object- oriented (OO) metrics cannot be used to measure the 

component’s quality. The reason may be that in OO development, reuse is only 

limited up to class level and within the same application, while in CBSD, the reuse is 

able even the whole component and also in multiple applications (Sharma et al., 

2009). 

2.6.1  Object-oriented (OO) Metrics 

OO design techniques have become one of the most powerful mechanisms to 

develop an efficient software system because it promotes better design and views a 

software system as a set of interacting objects. OO software can play an important 

role in reusability for software applications and development (Dubey& Rana, 2010). 

With the advent of an OO approach, specific measures were introduced to 

assess the quality of OO software systems. The rationale behind OO metrics is that a 

good OO design must keep complexity low, and this can be accomplished by 

reducing coupling and increasing cohesion. The first serious attempt in this direction 

was the metrics suite by Chidamber and Kemerer (CK), which became the most 

popular OO metrics suite. This metrics is weighted methods per class (WMC), depth 

of the inheritance tree (DIT), number of children (NOC), coupling between object 

classes (CBO), response to a class (RFC) and lack of cohesion in methods (LCOM), 

(Concas et al., 2010). 
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The application of object-oriented technology produces well-structured 

software systems with comprehensible architectures, which are easy to test, maintain, 

and extend. However, the OO approach does not ensure the production of software 

with high quality nor avoid errors introduced by programmers at both development 

and maintenance phases. Therefore, various OO metrics is proposed in the literature 

as a means of determining whether the investigated software hold desired OO design 

properties such as coupling, complexity, cohesion, and inheritance to improve the 

quality into the software. Many of these measures have been proposed by different 

researchers and practitioners (Cheikhi at el, 2014). 

Patwa and Malviya (2012) proposed much software metrics to measure the 

benefits of reuse within OO system. These systems are reusability of a class in a 

System (RCS), average degree of reusability (AR) metrics and specialize class to 

base class reusable metrics (SBRM). 

            Gandhi & Bhatia (2010) used the same metrics of CK (1994) and stated that 

the most significant metrics for reusability among those metric is DIT, which 

indicates the length of inheritance and NOC, which indicates the width. 

            Kaur and Singh (2013) mentioned several complexity metrics for OO 

program reusability. These metrics includes WMC, DIT, RFC, CBO, LCOM, NOC, 

LOC, and cyclomatic complexity (CC). 

            Goel & Bhatia (2013) used different reusability metrics to evaluate three 

features of OO program, namely multilevel inheritance, multiple inheritances and 

hierarchical inheritance. The metrics is DIT, NOC, CBO, LCOM, WMC, and RFC. 

Their results have shown that multilevel inheritance has more impact on reusability. 

 
 

2.6.2  Component-based Metrics 

 

 

Component-based development (CBD) is the process of assembling existing software 

components into an application such that they satisfy a predefined functionality. 

CBD reduces development time, effort; cost (Sagar et al., 2010). It is necessary to 

measure the software complexity in each development approach because it affects 

many other aspects of software like development effort, cost, testability, 

maintainability, etc. So many metrics has been proposed for measuring software 

complexity (Kaur and Singh, 2013). 
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            Narasimhan et al. (2009) conducted a comparison among different metrics to 

select a particular type of metrics based on reusability, complexity, size, testing time 

and maintenance. The metrics values are compared using benchmark software 

programs. The metrics in table 2.1 measure the reusability of a component. A high 

LCOM, NOC, and DIT imply that the corresponding components are highly 

reusable. A high CID, CPD, WMC, CSC, and CBO, implies that the corresponding 

components are less reusable. A low CRIT Size, CRIT Link implies that the 

corresponding components are highly reusable. It is noted that a component is 

considered a good one if it is highly reusable. 

Table 2.1: Comparison of Different Metrics (Narasimhan et al., 2009).  

 

Metrics Author (Year)  
Strengths & 

Limitations 

WMC, RFC, LCOM, 

CBO, DIT, NOC 
Chidamber & Kemerer (1994). 

Broad indicator, but 

lack of specificity. 

CPC, CSC, CDC, 

CCC 
Cho & Kim (2001). Narrow indicator. 

CPD, CID, CIID, 

COID, CAID, CRIT, 

CRIT bridge, CRIT, 

ANAC, ACD, 

AACD. 

Narasimhan & Hendradjaya 

 (2007). 

Covers a broad set of 

issues. 

            Kaur and Singh (2013) mentioned existing complexity metrics for component 

based. The metrics included component packing density (CPD), component 

interaction density (CID), component incoming interaction density (CIID), 

component outgoing interaction density (COID), component average interaction 

density(CAID), link criticality metric (CRITlink), bridge criticality metric 

(CRITbridge), inheritance criticality metric (CRITinheritance), size criticality metric 

(CRITsize), and Criticality Metric. The researchers state that most of the existing 

metrics are applicable to small programs or components, while the objective of 

having metrics is to test the behavior, reusability, and reliability of the components 

when placed in a large system. Since measuring the black box component complexity 
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during component selection is still a difficult task, they proposed a metric named 

Interface Complexity Metric for Black Box components, which is based on 

component interface specification. This metric helps an application developer in 

selecting a less-complex and more-reusable component during the selection of 

components for CBSD. This facilitates in reducing the integration and testing effort. 

2.7  Common Metrics 

Literature contains much metrics for reusability attributes as explained in previous 

sections.  Clear and brief explanations of common metrics, especially the ones used 

for this research are provided as follows.  

2.7.1  Lines of Code (LOC)  

This metrics is applied for measuring the size of the program by considering the 

number lines into a program. LOC counts all lines like as source line and the number 

of statements, the number of comment lines and the number of blank lines (Agrawal 

and Patel, 2012). It is generally used to calculate the size of software or its 

components by calculating the total number of lines in it (Monga et al., 2014). 

2.7.2  Depth of Inheritance Tree (DIT)  

This metric is applied for measuring the inheritance complexity of the programs. DIT 

is the Maximum depth from the root node of a tree to special node. Here, class is 

represented as a node. Deeper node on the tree accepts more  the methods because 

they inherit and the more classes in the tree, and it makes the class more complex 

(Agrawal and Patel, 2012). A high DIT value is known to increase the number of 

faults (Monga et al., 2014). 

 

2.7.3  Number Of Children  (NOC) 

 

NOC is applied when there are many sub-classes of the particular class in the 

hierarchy within the class exist. When children as a class are more, then it requires 



21 
 

more testing because super class may be misused (Agrawal and Patel, 2012).  It is the 

measure that counts the children as a class. A large number of children mean that the 

functionality to the class is reused through inheritance (Amin et al., 2011). 

2.7.4  Coupling Between Object (CBO) 

Coupling is also called dependency. It is the level of dependency of one module to 

another. Coupling is one important component, which help to determine the quality 

to the design or software. Good program design is to achieve low coupling (Agrawal 

and Patel, 2012). Coupling means links or dependency of a class to be other. High 

CBO means low reusability (Monga et al., 2014). Gui (2009) defined Coupling as 

the extent to which the various sub-components interact. If they are interdependent, 

then changes to one are likely to have significant effects of the behavior of others. 

Hence, loose coupling between its sub-components is a desirable characteristic. 

2.7.5   Lack Of Cohesion (LCOM) 

Cohesive indicates that a certain class performs a set of closely related to actions. An 

LCOM means that a class is performing various unrelated tasks. Principles of OO 

demand low coupling between modules and high cohesion of the module (Agrawal 

and Patel, 2012). The cohesion ensures that a specific class is not or least dependent 

on some other method or class (Monga et al., 2014). 

2.7.6   Number Of Methods (NOM) 

This metric gives the average number of operation per class (Monga et al., 2014). It 

is an indicator of the size of a class (Amin et al., 2011).  

Monga et al. (2014) had summarized the effects of the metrics on reusability as 

shown in table 2.2. 
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Table 2.2: Effect of Metrics on Reusability (Monga et al., 2014). 

 

 

  

 

 

2.8    Web Applications 

Web applications refer to applications designed to work on desktop computer 

browsers. Essentially, they work with devices with a browser. They can also work on 

mobile devices, being given the condition that they do not rely on specific browser 

features that are unavailable on most mobile devices (Serran et al., 2013). 

2.8.1  Design 

Building complex Web application is a time-consuming task as they must provide 

navigational access to critical information resources, not only allowing the user to 

browse through the potentially large universe of information but also to operate it.  

            Most methodologies of Web application design formalize the design of a 

Web application by  three models: the application (or content) model, the navigation 

model, and the presentation model. The application model defines the contents of the 

application and its behavior. The navigation model defines the information units of 

consumption (nodes) for the user and the navigation paths (links) between units. The 

presentation model defines the abstract user interface. There are two levels of 

abstractions or approaches, in which the design of a Web application may be 

improved while preserving its functionality. An approach is to apply changes in the 

code level in order to increase maintainability and extensibility of the application. A 

second approach to design improvement of a web application is to apply changes at 

the model level. For OO web design methods like OOHDM, the application model of 

Metric Name Metric Value Reusability Value 

LOC Increase Decrease 

DIT Increase Decrease 

NOC Increase Decrease 

LCOM Decrease Increase 

CBO Increase Decrease 

NOM Increase Increase 
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a web application is an OO model and as such. Changes at this level are described by 

model refactoring, which affects mainly on internal qualities, such as maintainability 

(Garrido et al., 2009). 

At present, most web applications are mostly designed with multiple tiers for 

flexibility and software reusability. It is difficult to model the behavior of multi-tier 

web applications because the workload is dynamic and unpredictable, and the 

resource demand in each tier is different. For example, the 3-tier web application 

architecture, which consists of presentation, application and data tiers, has been 

widely used (Huang et al., 2014). 

2.8.2  Reuse  

Reusability is important, especially in web application development because they 

need to be rapidly developed and frequently modified (Hokamura et al., 2010). Many 

industrial web application's software has been developed. Unfortunately, most of 

them were procedure-oriented, thus making them unsuitable for reuse and 

customization effectively as well as becoming more and more complicated. 

Considering this, efforts have been made to push legacy system software into the 

new OO technology development. There are many repeated works in this 

development, particularly in the design phase. An approach is needed to achieve 

reusability, extensibility and reliability in web application development; only then, 

web engineers/developers can reuse design as well as implementation. The need for 

software reuse has become evident because complex software remains difficult to 

implement, expensive to develop and risky to maintain. The idea behind reuse is not 

to develop anything that already exists, but just reuses it. This will lead to shortened 

development time, reduced complexity, increased productivity, extensibility and 

reliability of web applications (Nuruzzamanet et al., 2013). He has offered a novel 

solution to produce high-quality  web applications within a shortest development 

timeframe through the means of customization, reusability, extensibility and 

flexibility. They conducted a comprehensive evaluation on the proposed OO 

framework and emphasized the reuse of design, code and testing as a tool to uncover 

strengths and weaknesses of the OO framework for dynamic web engineering. There 

are several studies and open source frameworks for improving reusability of 
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components for web applications. However, the existing techniques are depended on 

specific frameworks or architecture, and the architecture, and the techniques require 

web applications to be implemented by the frameworks or architecture. Therefore, 

reusability brought by the techniques is restricted to limited web applications. There 

are common reusable functional such as access control, access analysis, and 

performance tuning for multiple web applications. Therefore, mechanism for 

implementing reusable components, which are available for multiple web 

applications is important. To achieve that, Hokamura et al. (2010) used a domain-

specific aspect-oriented (AO) mechanism based upon an abstraction model common 

to all web applications. AO contributes to flexible mechanism by adding new 

functional for the base programs. They have indicated that the domain-specific AO 

mechanism is an effective platform to implement reusable functional common in 

many web applications.  

            Ghosheh et al.(2008) Proposed new metrics used for measuring the 

maintainability of web applications from class diagrams. The metrics is based on 

Web Application Extension (WAE) for UML to measure size, complexity, coupling 

and reusability. 

2.9    Mobile Applications 

They are applications developed to run on devices such as smart phones or tablets. 

Users typically access them through online app stores, such as Google Play, Black- 

Berry World, the Apple App Store, and the Windows Phone marketplace. The 

number of available products is amazing, with Google Play alone offering 700,000 

apps at the end of 2012 (Mojica et al., 2014). 

Huge penetration of mobile devices, in particular, smart phones, and the 

development of mobile broadband are important factors for the development of 

Mobile applications and services (Hammershoj et al., 2010). The popularity of smart 

phones has increased tremendously expressed by the doubling of the number of sold 

smart phones from 149 million units in 2010 to 297 million units in 2011. The 

market share of smart phones has also increased from 19% of total sold mobile 

phones to 31%. It is obvious that the popularity of smart phones is not due to 

telephony or SMS that can also be offered by both feature phones and low cost 
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