
Adv. Calc. Var. 2020; aop

Research Article

Vincenzo Vespri and Matias Vestberg*

An extensive study of the regularity of
solutions to doubly singular equations
https://doi.org/10.1515/acv-2019-0102
Received November 19, 2019; accepted January 28, 2020

Abstract: In recent years,manypapers have beendevoted to the regularity of doubly nonlinear singular evolu-
tion equations. Many of the proofs are unnecessarily complicated, rely on superfluous assumptions or follow
an inappropriate approximation procedure. This makes the theory unclear and quite chaotic to a nonspe-
cialist. The aim of this paper is to fix all the misprints, to follow correct procedures, to exhibit, possibly, the
shortest and most elegant proofs and to give a complete and self-contained overview of the theory.
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1 Introduction
This work is concerned with the regularity properties of weak solutions to doubly nonlinear equations whose
model case is

∂tu − ∇ ⋅ (um−1|∇u|p−2∇u) = 0 in ΩT := Ω × (0, T), (1.1)

where Ω ⊂ ℝn is an open bounded set, and the parameters m and p are restricted to the range

p ∈ (1, 2), m > 1, and 2 < m + p < 3. (1.2)

The term doubly nonlinear refers to the fact that the diffusion part depends nonlinearly both on the gradi-
ent and the solution itself. This kind of equations describe several physical phenomena and were introduced
by [16] (see also the nice survey by Kalashnikov [14]). Moreover, these equations have an intrinsic mathe-
matical interest because they represent a natural bridge between the more natural generalizations of the
heat equation: the parabolic p-Laplace and the Porous Medium equations.

Especially in recent years, many papers have been devoted to this topic. The approaches are sometimes
not rigorous, sometimes notwith sharp assumptions orwith unnecessarily long proofs. The natural definition
of weak solutions is obtained from (1.1) by a formal application of the chain rule and requires that a certain
power of u (rather than u itself) has aweak gradient. This is perhaps themost delicate point: toomany papers
devoted to this topic do not take this aspect into account carefully, and use incorrect approximations or non-
admissible test-functions. For more details, we refer the reader to Section 2.

Analogously, some results presented below, such as the L1-Harnack inequality and the expansion of
positivity have been obtained previously under the assumption that the function u itself has weak gradient,
see [8] and [9]. While the existence of a locally p-integrable gradient could be justified by the reasoning

*Corresponding author: Matias Vestberg, Department of Mathematics and Systems Analysis, Aalto University,
P. O. Box 11100, 00076 Espoo, Finland, e-mail: matias.vestberg@aalto.fi
Vincenzo Vespri, Dipartimento di Matematica ed Informatica “Ulisse Dini”, Università degli Studi di Firenze,
Viale Morgagni 67/a, 50134 Firenze, Italy, e-mail: vincenzo.vespri@unifi.it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/429554039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 | V. Vespri and M. Vestberg, Regularity of solutions to doubly singular equations

in [13, Section 5], we have showed that the strategies developed in [8] and [9] are applicable also without
making reference to ∇u. But we do not limit ourselves to fix this aspect. We go through the regularity theory
andweuse a unified approach giving shorter and different proofswith respect to the ones known in literature.
In this way, a reader can have a self-contained overview of the theory of doubly nonlinear singular parabolic
equations.We obtain different results under various ranges for the parameters. The time continuity, mollified
weak formulation, energy estimates, expansion of positivity and L1-Harnack inequality are obtained in the
full range (1.2). Local boundedness of weak solutions is shown in the smaller range

m + p > 3 − p
n − ( n−pp )

. (1.3)

We recall that this range is sharp. In the special case m = 1, (1.1) becomes the singular parabolic p-Laplace
equation. Then condition (1.3) and the integrability required of u in Definition 2.1 below reduce to p > 2n

n+2
and u ∈ L2, respectively, which are well-known sharp conditions to guarantee local boundedness for this
equation, see for example [4, Chapter V].

The local Hölder continuity will be proved only in the so-called supercritical range

m + p > 3 − p
n
. (1.4)

Note that (1.4) is a stricter condition than (1.3). We decided that it was too dispersive for the reader to prove
Hölder continuity also in the sub-critical case because it requires a slightly different approach (and assump-
tions). In the last section, we prove Harnack estimates in the supercritical range. Note that, as proven in [5]
for the p-Laplacian, this result is sharp.

2 Setting and definition of solutions
In order to motivate the natural definition of weak solutions, we reformulate (1.1). Formally applying the
chain rule, we can write the equation in the form

∂tu − ∇ ⋅ (β1−p|∇uβ|p−2∇uβ) = 0, (2.1)

where
β := 1 + m − 1

p − 1 > 1. (2.2)

For later reference we note that (1.3) can be expressed conveniently in terms of β, p and n as

p(β + 1)
1 − β(p − 1) > n. (2.3)

We will prove our result not only for solutions to (2.1), but for all equations of the form

∂tu − ∇ ⋅ A(x, t, u, ∇uβ) = 0, (2.4)

where A(x, t, u, ξ) is a vector field satisfying

|A(x, t, u, ξ)| ≤ C1|ξ|p−1 (2.5)
A(x, t, u, ξ) ⋅ ξ ≥ C0|ξ|p (2.6)

An example of an equation that satisfies these conditions is

∂tu −
n
∑
i,j=1
(aij(x, t)β1−p|∇uβ|p−2u

β
xi )xj = 0 in ΩT := Ω × (0, T),

where the coefficients aij are bounded andmeasurable andwhere thematrix (aij(x, t))ni,j=1 is positive definite
uniformly in (x, t). We arrive at the definition of weak solutions bymultiplying (2.4) by a smooth test function
and integrating formally by parts.
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Definition 2.1. A function u : ΩT → ℝ is a weak solution to (2.4) if and only if u ≥ 0, uβ ∈ Lp(0, T;W1,p(Ω)),
u ∈ Lβ+1(ΩT) and

∬
ΩT

A(x, t, u, ∇uβ) ⋅ ∇φ − u∂tφ dx dt = 0 (2.7)

for all φ ∈ C∞0 (ΩT).

Remark 2.2. The extra integrability condition u ∈ Lβ+1(ΩT) is made to justify a test function containing uβ.
The condition is needed since we are considering the fast diffusion case, in which βp < β + 1. By contrast, in
the slow diffusion case m + p > 3 which is not considered in this article, the inequality holds in the reverse
direction, which means that no additional integrability is needed. For explicit calculations illustrating this
point, consider the flat case of the equation studied in [18] and [19]. Earlier works treating the slow diffusion
case (although not necessarily with the same definition) are [17] and [12].

3 Preliminaries
Here we introduce some notation and present auxiliary tools that will be useful in the course of the paper.

3.1 Notation

With Bρ(xo) we denote the open ball in ℝn of radius ρ centered at xo, and the corresponding closed ball is
denoted B̄ρ(xo). Furthermore, we use the notation Qρ,θ(zo) := Bρ(xo) × (to − θ, to) for space-time cylinders,
where zo := (xo , to) ∈ ΩT . For w, v ≥ 0 we define

b[v, w] := 1
β + 1 (v

β+1 − wβ+1) − wβ(v − w) = β
β + 1 (w

β+1 − vβ+1) − v(wβ − vβ),

b[v, w]+ := b[v, w]χ(w,∞)(v),
(3.1)

where β is defined by (2.2). For any real-valued essentially bounded function g defined on a measurable set
E ⊂ ℝn+1 we define its essential oscillation in E as

ess osc
E

g := ess sup
E

g − ess inf
E

g.

The oscillation oscE g of a bounded function g is defined analogously, using the ordinary supremum and
infimum. The parameters C0, C1,m, n, p will collectively be referred to as the data.

3.2 Auxiliary tools

We now recall some elementary lemmas that will be used later, and start by defining a mollification in time
as in [15], see also [2]. For T > 0, t ∈ [0, T], h ∈ (0, T) and v ∈ L1(ΩT) we set

vh(x, t) :=
1
h

t

∫
0

e
s−t
h v(x, s)ds. (3.2)

Moreover, we define the reversed analogue by

vh(x, t) :=
1
h

T

∫
t

e
t−s
h v(x, s)ds.

For details regarding the properties of the exponential mollification we refer to [15, Lemma 2.2], [2, Lem-
ma 2.2], [20, Lemma 2.9]. The properties of the mollification that we will use have been collected for
convenience into the following lemma.
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Lemma 3.1. Suppose that v ∈ L1(ΩT), and let p ∈ [1,∞). Then the mollification vh defined in (3.2) has the
following properties:
(i) If v ∈ Lp(ΩT), then vh ∈ Lp(ΩT),

‖vh‖Lp(ΩT ) ≤ ‖v‖Lp(ΩT ),

and vh → v in Lp(ΩT).
(ii) In the above situation, vh has a weak time derivative ∂tvh on ΩT given by

∂tvh =
1
h
(v − vh),

whereas for vh we have

∂tvh =
1
h
(vh − v).

(iii) If v ∈ Lp(0, T;W1,p(Ω)), then vh → v in Lp(0, T;W1,p(Ω)) as h → 0.
(iv) If v ∈ Lp(0, T; Lp(Ω)), then vh ∈ C([0, T]; Lp(Ω)).

The next lemma provides us with some useful estimates for the quantity b[v, w] that was defined in (3.1). The
proof can be found in [1, Lemma 2.3].

Lemma 3.2. Let v, w ≥ 0 and β > 1. Then there exists a constant c depending only on β such that:
(i) 1

c |w
β+1
2 − v

β+1
2 |2 ≤ b[v, w] ≤ c|w

β+1
2 − v

β+1
2 |2,

(ii) 1
c |w

β − vβ|2 ≤ (wβ−1 + vβ−1)b[v, w] ≤ c|wβ − vβ|2,
(iii) b[v, w] ≤ c|vβ − wβ|

β+1
β .

Next, we recall a well-known parabolic Sobolev inequality, which can be found for example in [4].

Lemma 3.3. Let zo = (xo , to) ∈ ℝn+1 and θ > 0. Suppose that q > 0, p > 1. Then for every

u ∈ L∞(to − θ, to; Lq(Br(xo))) ∩ Lp(to − θ, to;W1,p
0 (Br(xo)))

we have

∬
Qr,θ(zo)

|u|p(1+
q
n ) dx dt ≤ c( ess sup

t∈(to−θ,to)
∫

Br(xo)×{t}

|u|q dx)
p
n

∬
Qr,θ(zo)

|∇u|p dx dt

for a constant c = c(n, p, q).

The following lemma can be proved using an inductive argument, see for example [11, Lemma 7.1].

Lemma 3.4. Let (Yj)∞j=0 be a positive sequence such that

Yj+1 ≤ CbjY1+δj ,

where C, b > 1 and δ > 0. If

Y0 ≤ C−
1
δ b−

1
δ2 ,

then (Yj) converges to zero as j →∞.

A form of the following lemma was originally proved by De Giorgi [3], see also [4].

Lemma 3.5. Let v ∈ W1,1(Bρ(xo)) for some ρ > 0 and xo ∈ ℝn. Let k and l be real numbers such that k < l.
Then there exists a constant c depending only on n (and thus independent of k, l, v, xo and ρ) such that for any
representative of v, we have

(l − k)|{x ∈ Bρ(xo) : v(x) > l}| ≤
cρn+1

|{x ∈ Bρ(xo) : v(x) < k}|
∫

{k<v<l}∩Bρ(xo)

|∇v|dx.
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The following lemma is a special case of [4, Theorem 1.1 in Section IV.1].

Lemma 3.6. Let 1 < p < 2 and suppose that v ∈ Lp(0, T;W1,p(Ω)) ∩ L∞(ΩT) is a weak solution to the equation

∂tv − ∇ ⋅ (Ã(x, t, v, ∇v)) = 0,

where Ã satisfies the structure conditions

|Ã(x, t, v, ξ)| ≤ C̃1|ξ|p−1

Ã(x, t, v, ξ) ⋅ ξ ≥ C̃0|ξ|p .

Then v is locally Hölder continuous in ΩT and there are constants c > 1 and ν ∈ (0, 1) depending only on
n, p, C̃0, C̃1 such that for any subset K ⊂ ΩT , compactly contained in Ω × (0, T], we have for all (x, t), (y, s) ∈ K
that

|v(x, t) − v(y, s)| ≤ c‖v‖L∞(ΩT )(
‖v‖

2−p
p
L∞(ΩT )|x − y| + |t − s|

1
p

dp(K)
)
ν

,

where
dp(K) := inf

(x,t)∈K
(y,s)∈∂pΩT

(‖v‖
2−p
p
L∞(ΩT )|x − y| + |t − s|

1
p ).

The next lemma shows that weak solutions to (2.4) which are bounded from below and above by positive
constants are in fact also solutions to an equation of parabolic p-Laplace type (in the case M = 1). It also
investigates how solutions are affected by re-scaling.

Lemma 3.7. Let A satisfy the structure conditions (2.5) and (2.6) and suppose that u is a weak solution to (2.4)
in the cylinder BR(xo) × (0,M3−m−pτ). Suppose furthermore that

β0M ≤ u ≤ β1M, (3.3)

for some positive constants β0, β1. Then the function

v(x, t) = M−1u(x,M3−m−p t), (x, t) ∈ BR(xo) × (0, τ),

has a weak p-integrable gradient, and is a weak solution in BR(xo) × (0, τ) to the equation

∂tv − ∇ ⋅ (Ã(x, t, ∇v)) = 0, (3.4)

where
Ã(x, t, ξ) := M2−m−pA(x,M3−m−p t,Mv(x, t), βMβvβ−1(x, t)ξ).

The vector field Ã satisfies the structure conditions

|Ã(x, t, ξ)| ≤ C1βp−1β
(β−1)(p−1)
1 |ξ|p−1

Ã(x, t, ξ) ⋅ ξ ≥ C0βp−1β
(β−1)(p−1)
0 |ξ|p ,

where C0 and C1 are the constants appearing in the structure conditions (2.5) and (2.6).

Proof. The bounds on u show that the chain rule holds in the following form:

∇u = ∇(uβ)
1
β = β−1u1−β∇uβ . (3.5)

Note especially that the lower bound on u guarantees that u1−β stays bounded despite the negative exponent.
From these observations it follows that also v has a weak gradient which is p-integrable. By a change of
variables in the time variable in the weak formulation (2.7), and by taking note of (3.5), one can see that v
satisfies (3.4) weakly. The structure conditions for Ã follow from the corresponding conditions satisfied by A,
and the bounds (3.3).
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3.3 Continuity in time and mollified weak formulation

In this subsection we show that weak solutions are continuous in time as maps into Lβ+1loc (Ω). The proof is
adapted from [20]. We start with a lemma.

Lemma 3.8. Suppose that u is a weak solution in the sense of Definition 2.1 and define

V := {w ∈ Lβ+1(ΩT) : wβ ∈ Lp(0, T;W1,p(Ω)), ∂twβ ∈ L
β+1
β (ΩT)}.

Then, for every ζ ∈ C∞0 (ΩT ,ℝ≥0) and w ∈ V we have

∬
ΩT

∂tζb[u, w]dx dt = ∬
ΩT

A(x, t, u, ∇uβ) ⋅ ∇[ζ(uβ − wβ)] + ζ∂twβ(u − w)dx dt. (3.6)

Proof. Let w ∈ V, ζ ∈ C∞0 (ΩT ,ℝ≥0) and choose

φ = ζ(wβ − [uβ]h)

as test function in (2.7). Our goal is to pass to the limit h → 0. It follows from Lemma 3.1 (iii) that

∬
ΩT

A(x, t, u, ∇uβ) ⋅ ∇φ dt dt 󳨀󳨀󳨀󳨀→
h→0
∬
ΩT

A(x, t, u, ∇uβ) ⋅ ∇[ζ(wβ − uβ)]dx dt.

Note that Lemma 3.1 (ii) implies
([uβ]

1
β
h − u)∂t[u

β]h ≤ 0,

which shows that we can treat the parabolic part as follows.

∬
ΩT

u∂tφ dx dt = ∬
ΩT

ζu∂twβ dx dt −∬
ΩT

ζ[uβ]
1
β
h ∂t[u

β]h dx dt

+∬
ΩT

ζ ([uβ]
1
β
h − u)∂t[u

β]h dx dt +∬
ΩT

∂tζu(wβ − [uβ]h)dx dt

≤ ∬
ΩT

ζu∂twβ dx dt +∬
ΩT

β
β + 1∂tζ[u

β]
β+1
β
h dx dt +∬

ΩT

∂tζu(wβ − [uβ]h)dx dt

󳨀󳨀󳨀󳨀→
h→0
∬
ΩT

ζu∂twβ dx dt +∬
ΩT

∂tζ(
β

β + 1u
β+1 + u(wβ − uβ))dx dt

= ∬
ΩT

ζ∂twβ(u − w)dx dt −∬
ΩT

∂tζb[u, w]dx dt,

This shows “≤” in (3.6). The reverse inequality can be derived in the same way by taking

φ = ζ(wβ − [vβ]h)

as test function.

Theorem 3.9. Let u be a weak solution in the sense of Definition 2.1. Then u ∈ C([0, T]; Lβ+1loc (Ω)).

Proof. We prove continuity on the interval [0, 12T] and describe later how the argument can be modified to
showcontinuity also on [12T, T], thus completing the proof.Wefirst note that due to Lemma3.1,w := ([uβ]h̄)

1
β

belongs to the set of admissible comparison functions V of Lemma 3.8. Furthermore, since Lemma 3.1 (iv)
guarantees that wβ is continuous [0, T] → L

β+1
β (Ω) and since

|w(x, s) − w(x, t)|β+1 ≤ |wβ(x, s) − wβ(x, t)|
β+1
β = |[uβ]h̄(x, s) − [u

β]h̄(x, t)|
β+1
β ,

we see that w is continuous [0, T] → Lβ+1(Ω). We will show that u is essentially the uniform limit on the time
interval [0, 12T] of the functions w as h → 0, and the continuity will follow from this. For a compact set K ⊂ Ω
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we take η ∈ C∞0 (Ω; [0, 1]) such that η = 1 on K and |∇η| ≤ CK . Furthermore, take ψ ∈ C∞([0, T]; [0, 1]) with
ψ = 1 on [T, 12T], ψ = 0 on [

3
4T, T] and |ψ

󸀠| ≤ 8
T . For τ ∈ (0,

1
2T) and ε > 0 so small that τ + ε < 1

2T we define

χτε(t) =
{{{
{{{
{

0, t < τ,
ε−1(t − τ), t ∈ [τ, τ + ε],
1, t > τ + ε.

We use (3.6) with ζ = ηχτεψ and w = ([uβ]h̄)
1
β to obtain

ε−1
τ+ε

∫
τ

∫
Ω

b[u, w]η dx dt = ∬
ΩT

A(x, t, u, ∇uβ) ⋅ ∇[η(uβ − wβ)]χτεψ dx dt

+∬
ΩT

ηχτεψ∂twβ(u − w)dx dt −∬
ΩT

b[u, w]ηψ󸀠 dx dt

≤ ∬
ΩT

|A(x, t, u, ∇uβ)|(|∇uβ − ∇[uβ]h̄| + |∇η||u
β − [uβ]h̄|)dx dt +

8
T ∬

ΩT

b[u, w]dx dt.

Here we were able to drop the term involving ∂twβ since Lemma 3.1 (ii) shows that the factors ∂twβ and
(u − w) are of opposite sign, and hence their product is nonpositive. Passing to the limit ε → 0 we see that

∫
K

b[u, w](x, τ)dx ≤ CK∬
ΩT

|A(x, t, u, ∇uβ)|(|∇uβ − ∇[uβ]h̄| + |u
β − [uβ]h̄|)dx dt +

8
T ∬

ΩT

b[u, w]dx dt (3.7)

for all τ ∈ [0, 12T] \ Nh, where Nh is a set of measure zero. Note that the integrand on the left-hand side can
be estimated using Lemma 3.2 (ii) and the fact that β > 1 as follows:

|u − w|β+1 = (|u − w|
β+1
2 )2 ≤ 󵄨󵄨󵄨󵄨u

β+1
2 − w

β+1
2 󵄨󵄨󵄨󵄨

2 ≤ cb[u, w].

For the term on the last line of (3.7) we can use Lemma 3.2 (iii) to make the estimate

b[u, w] ≤ c|uβ − [uβ]h̄
󵄨󵄨󵄨󵄨
β+1
β = c|uβ − [uβ]h̄

󵄨󵄨󵄨󵄨
1
β |uβ − [uβ]h̄

󵄨󵄨󵄨󵄨 ≤ c(u + ([u
β]h̄)

1
β )|uβ − [uβ]h̄|.

The first factor stays bounded in Lβ+1 as h → 0 and the second factor converges to zero in L
β+1
β as h → 0.

The fact that |A(u, ∇uβ)| ∈ Lp󸀠 (ΩT) combined with Lemma 3.1 (iii) show that also the first integral on the
right-hand side of (3.7) converges to zero as h → 0. Picking now a sequence hj → 0 and wj = ([uβ]h̄j )

1
β and

N := ∪Nhj (which has measure zero) we see that (3.7) combined with the previous observations implies

lim
j→∞

sup
τ∈[0, 12 T]\N

∫
K

|u − wj|β+1(x, τ)dx = 0. (3.8)

As noted earlier, eachwj is continuous as amap [0, T] → Lβ+1(K) so the uniform limit (3.8) shows that u has a
representativewhich is continuous on [0, 12T] \ N. By thedensity of this set in [0,

1
2T],wefinda representative

of u which is continuous [0, 12T] → Lβ+1(K). The continuity on [12T, T] follows from a similar argument with
w = ([uβ]h)

1
β and with ψ and χτε mirrored on the interval [0, T] under the map t 󳨃→ T − t.

Now that we have established the continuity in time it is possible to show that weak solutions in the sense of
Definition 2.1 satisfy a mollified weak formulation.

Lemma 3.10. Let u be a weak solution in the sense of Definition 2.1. Then we have

∬
ΩT

[A(x, ⋅ , u, ∇uβ)]h ⋅ ∇ϕ + ∂tuhϕ dx dt − ∫
Ω

u(x, 0)ϕh̄(x, 0)dx = 0 (3.9)

for all ϕ ∈ C∞(Ω × [0, T]) with support contained in K × [0, τ] ,where K ⊂ Ω is compact and τ ∈ (0, T). Here
u(x, 0) refers to the value at time zero of the continuous representative of u as a map [0, T] → Lβ+1(K).
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Proof. Consider the piecewise smooth function

ηε(t) :=
{
{
{

t
ε , t ∈ [0, ε],
1, t ∈ (ε, T],

and use (2.7) with the test function φ = ηεϕh̄. Taking the limit ε → 0 and using Fubini’s theoremwe see that
the elliptic term will converge to the integral of [A(x, ⋅ , u, ∇uβ)]h ⋅ ∇ϕ. Note now that

∬
ΩT

u∂t(ηεϕh̄)dx dt = ∬
ΩT

uηε
ϕh̄ − ϕ
h

dx dt + ε−1
ε

∫
0

∫
Ω

uϕh̄ dx dt.

In the first termwe can pass to the limit ε → 0, use Fubini’s theorem and Lemma 3.1 (ii) to obtain the integral
of ∂tuhφ. It remains to investigate what happens to the last term in the limit ε → 0. Note that we can write
this term as

ε−1
ε

∫
0

∫
K

uϕh̄ dx dt = ε
−1

ε

∫
0

∫
K

u(x, t)ϕh̄(0)dx dt + ε
−1

ε

∫
0

∫
K

u(x, t)[ϕh̄(t) − ϕh̄(0)]dx dt.

The second term on the right-hand side converges to zero since ϕh̄ is uniformly continuous and ‖u(t)‖Lβ+1(K)
is bounded independent of t. The first term on the right-hand side converges to the second integral on the
left-hand side of (3.9) since u ∈ C([0, T]; Lβ+1(K)) and ϕh̄(0) ∈ L

β+1
β (Ω).

4 Energy estimates
Here we discuss various energy estimates. We begin by showing that the assumptions on u made in Defini-
tion 2.1 allow suitable choices of test functions in the mollified weak formulation. This is a crucial step in
obtaining a rigorous proof for the energy estimates.

We want to use test functions involving (uβ − kβ)± for some k ≥ 0. Since these functions have a p-
integrable gradient, they automatically fit with the elliptic term in (3.9). The minimal integrability of u
which justifies the test function becomes apparent from the diffusive part of the mollified weak formulation:
If u ∈ Lq then ∂tuh ∈ Lq and (uβ − kβ)± ∈ L

q
β . These exponents should be at least dual exponents so we need

1
q
+
1
q
β
≤ 1,

which is equivalent to q ≥ β + 1. This is exactly the integrability we required in Definition 2.1.
We now show the energy estimate for solutions according to Definition 2.1.

Lemma 4.1. Let u be a weak solution in the sense of Definition 2.1. Then

∬
ΩT

|∇(uβ − kβ)±|pφp dx dt + ess sup
τ∈[0,T]
∫
Ω

b[u, k]χ{(u−k)±>0}φp(x, τ)dx

≤ C∬
ΩT

(uβ − kβ)p±|∇φ|p dx dt + C∬
ΩT

b[u, k]χ{(u−k)±>0}|∂tφp|dx dt (4.1)

for all smooth φ ≥ 0 defined on Ω̄T , vanishing for x outside a compact K ⊂ Ω and for all times less than some
δ > 0. The constant C only depends on the data.

Proof. We prove the case for the positive part. The case for the negative part is similar. We use the molli-
fied weak formulation (3.9) with the test function ϕ = (uβ − kβ)+φpξτ,ε where φ is as in the statement of the
lemma and ξτ,ε is defined as

ξτ,ε(t) :=
{{{
{{{
{

1, t < τ,
1 − ε−1(τ − t), t ∈ [τ, τ + ε],
0, t > τ + ε.

(4.2)
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Even though ϕ is nonsmooth, it is still an admissible test function since we can find a sequence of functions
ϕj ∈ C∞0 (ΩT) converging to ϕ in Lp(0, T;W1,p

0 (Ω)) ∩ L
β+1
β (ΩT). Our goal is to make some estimates in (3.9)

and pass to the limit h → 0 and then ε → 0. We first show that the term involving the initial value vanishes
in this process. Taking into account the support of ϕ, we have

∫
Ω

u(x, 0)ϕh̄(x, 0)dx = ∬
ΩT

u(x, 0)h−1e−
t
h ϕ(x, t)dx dt =

T

∫
δ

∫
Ω

u(x, 0)h−1e−
t
h ϕ(x, t)dx dt

≤
T

∫
δ

∫
Ω

u(x, 0)δ−1( δh e
− δh )ϕ(x, t)dx dt 󳨀󳨀󳨀󳨀→

h→0
0,

due to the dominated convergence theorem. The elliptic term can be treated using Lemma 3.1 (i) as

∬
ΩT

[A(x, ⋅ , u, ∇uβ)]h ⋅ ∇ϕ dx dt 󳨀󳨀󳨀󳨀→
h→0
∬
ΩT

A(x, t, u, ∇uβ) ⋅ ∇ϕ dx dt

󳨀󳨀󳨀→
ε→0
∬
Ωτ

A(x, t, u, ∇uβ) ⋅ ∇[(uβ − kβ)+φp]dx dt.

We now calculate

∇ϕ = φpξτ,εχ{u>k}∇uβ + p(uβ − kβ)+ξτ,εφp−1∇φ.

From the properties of the vector field, here denoted only A(u, ∇uβ) for brevity, and Young’s inequality we
obtain

A(u, ∇uβ) ⋅ ∇[(uβ − kβ)+φp] = A(u, ∇uβ) ⋅ ∇uβχ{u>k}φp + A(u, ∇uβ) ⋅ ∇(φp)(uβ − kβ)+
≥ c|∇uβ|pχ{u>k}φp − |A(u, ∇uβ)||∇φ|pφp−1(uβ − kβ)+
≥ c|∇uβ|pχ{u>k}φp − c|∇uβ|p−1φp−1(uβ − kβ)+|∇φ|
≥ c|∇uβ|pχ{u>k}φp − c(uβ − kβ)

p
+|∇φ|p .

Using Lemma 3.1 (ii) and the fact that s 󳨃→ (sβ − kβ)+ is increasing, we can treat the diffusion term as

∂tuhϕ = (
u − uh
h )
[(uβ − kβ)+ − ([uh]β − kβ)+]φpξτ,ε + ∂tuh([uh]β − kβ)+φpξτ,ε

≥ ∂tG(uh)φpξτ,ε ,

where

G(u) :=
u

∫
0

(sβ − kβ)+ ds = b[u, k]χ{u>k}. (4.3)

The chain rule works in our case since Lemma 3.1 guarantees that both uh and ∂tuh are in Lβ+1(ΩT). Thus,
we may estimate

∬
ΩT

∂tuhϕ dx dt ≥ ∬
ΩT

∂tG(uh)φpξτ,ε dx dt

= −∬
ΩT

G(uh)∂t(φpξτ,ε)dx dt

󳨀󳨀󳨀󳨀→
h→0
−∬
ΩT

G(u)∂t(φpξτ,ε)dx dt = −∬
ΩT

G(u)∂tφpξτ,ε dx dt + ε−1
τ+ε

∫
τ

∫
Ω

G(u)φp dx dt

󳨀󳨀󳨀→
ε→0
−∬
Ωτ

G(u)∂tφp dx dt + ∫
Ω

G(u)φp(x, τ)dx,
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for a.e. τ. Putting together the estimates for the elliptic and diffusion terms we have

c∬
Ωτ

|∇uβ|pχ{u>k}φp dx dt + ∫
Ω

G(u)φp(x, τ)dx ≤ c∬
Ωτ

(uβ − kβ)p+|∇φ|p dx dt +∬
Ωτ

G(u)|∂tφp|dx dt

for a.e. τ. We obtain the desired estimate by using (4.3) and noting that the right-hand side can be estimated
upwards by replacing τ by T.

The following variant of the energy estimate will also be useful.

Lemma 4.2. Let φ ∈ C∞0 (Ω;ℝ≥0) and suppose that [t1, t2] ⊂ (0, T). Then the time-continuous representative
of u satisfies

c−1
t2

∫
t1

∫
Ω

|∇(uβ − kβ)−|p dx dt + ∫
Ω

b[u, k]χ{u<k}φp(x, t2)dx dt

≤ c
t2

∫
t1

∫
Ω

(uβ − kβ)p−|∇φ|p dx dt + ∫
Ω

b[u, k]χ{u<k}φp(x, t1)dx, (4.4)

where c > 0 is a constant depending only on p, C0, C1.

Proof. We use the mollified weak formulation (3.9) with the test function ϕ = −(uβ − kβ)−φp(x)ξε(t), where

ξε(t) =

{{{{{{{{{
{{{{{{{{{
{

0, t ≤ t1,
ε−1(t − t1), t ∈ (t1, t1 + ε),
1, t ∈ [t1 + ε, t2],
ε−1(t2 + ε − t), t ∈ (t2, t2 + ε), t ∈ (t2, t2 + ε),
0, t ≥ t2 + ε.

Reasoning as in the proof of Lemma 4.1 leads to (4.4).

5 L1-Harnack inequality
In order to obtain the reduction of the oscillation we will use the fact that weak solutions satisfy a local L1-
Harnack inequality. Such a resultwas already obtained in [8, Theorem5.1] in a quite general setting, allowing
for all m > 0 and also a source term satisfying certain structure conditions. However, the proofs were made
under the assumption that u itself has a gradient, whereas our definition requires only that uβ has a gradient.
It turns out that the same strategy as in [8] works also in our case with somemodifications. In this section we
present the full proof in the case m > 1 and without a source term.

Theorem 5.1 (Harnack inequality). Let u be a nonnegative weak solution to problem (2.4), where the vec-
tor field A(x, t, u, ξ) satisfies the structure conditions (2.5) and (2.6), and the parameters satisfy condi-
tions (1.2). Then there exists a positive constant γ depending only on m, n, p, C0, C1 such that for all cylinders
B̄2ρ(y) × [s, t] ⊂ Ω × [0, T),

ess sup
τ∈[s,t]

∫
Bρ(y)

u(x, τ)dx ≤ γ ess inf
τ∈[s,t]

∫
B2ρ(y)

u(x, τ)dx + γ( t − s
ρλ
)

1
3−m−p

,

where λ = n(p + m − 3) + p.

Note that λ can have any sign. If we use the time continuous representative of u, we can replace the essential
infimumand supremumby the actual infimumand supremum. Before proceedingwe note that by translation
we may assume that s = 0. All of the calculations will be performed under this assumption, and the time
interval [s, t] will henceforth be labelled [0, τ], where τ ∈ (0, T). The first step of the argument is a lemma
corresponding to [8, Lemma 5.2].
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Lemma 5.2. Let u be a weak solution, τ ∈ (0, T), σ ∈ (0, 1) and Bρ(xo) ⊂ Ω. Then

∬
Bσρ(xo)×(0,τ)

|∇uβ|p(uβ + εβ)
m+p−3
βp −1t

1
p dx dt + ∬

Bσρ(xo)×(0,τ)

Fε(u)t
1
p −1 dx dt

≤
cρ
(1 − σ)p (

τ
ρλ
)

1
p
[ sup
t∈[0,τ]
∫

Bρ(xo)

u(x, t)dx + ερn]
2p+m−3

p

, (5.1)

where λ = n(p + m − 3) + p, ε = ( τρp )
1

3−m−p and Fε is defined in (5.2) below. The constant c depends only on
m, n, p, C0, C1.

Proof. Consider the mollified weak formulation (3.9) with the test function

ϕ(x, t) = −(uβ + εβ)
m+p−3
βp t

1
p φp(x)ξτ,δ(t),

where ε > 0, ξτ,δ is defined as in (4.2) and φ ∈ C∞0 (Bρ(xo); [0, 1]) satisfies φ = 1 on Bσρ(xo). We may thus
choose φ such that

|∇φ| ≤ 2(1 − σ)−1ρ−1.

We have

∇ϕ = (3 − m − p)
βp
(uβ + εβ)

m+p−3
βp −1t

1
p φp(x)ξτ,δ(t)∇uβ − (uβ + εβ)

m+p−3
βp t

1
p ξτ,δ(t)∇φp(x).

We see that

∬
ΩT

[A(x, ⋅ , u, ∇uβ)]h ⋅ ∇ϕ dx dt 󳨀󳨀󳨀󳨀→
h→0
∬
ΩT

A(x, t, u, ∇uβ) ⋅ ∇ϕ dx dt

and

A(x, t, u, ∇uβ) ⋅ ∇ϕ = (3 − m − p)
βp
(uβ + εβ)

m+p−3
βp −1t

1
p φpξτ,δA(x, t, u, ∇uβ) ⋅ ∇uβ

− p(uβ + εβ)
m+p−3
βp t

1
p ξτ,δφp−1A(x, t, u, ∇uβ) ⋅ ∇φ

≥ c0|∇uβ|p(uβ + εβ)
m+p−3
βp −1t

1
p φpξτ,δ − c1(uβ + εβ)

m+p−3
βp t

1
p ξτ,δφp−1|∇uβ|p−1|∇φ|

≥ ĉ0|∇uβ|p(uβ + εβ)
m+p−3
βp −1t

1
p φpξτ,δ − ĉ1(uβ + εβ)p−1+

m+p−3
βp t

1
p ξτ,δ|∇φ|p .

Here c0, c1, ĉ0, ĉ1 are constants depending only on m, p, C0, C1. For the initial value term we note that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

u(x, 0)ϕh̄(x, 0)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∬
ΩT

u(x, 0)h−1e−
t
h ϕ(x, t)dx dt

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ c ∬
suppφ×[0,T]

u(x, 0)( th e
− th )t

1
p −1 dx dt 󳨀󳨀󳨀󳨀→

h→0
0,

by the dominated convergence theorem. The diffusion part is treated as follows:

ϕ∂tuh = ([([uh]β + εβ)
m+p−3
βp − (uβ + εβ)

m+p−3
βp ]
(u − uh)

h
− ([uh]β + εβ)

m+p−3
βp ∂tuh)t

1
p φpξτ,δ

≥ −([uh]β + εβ)
m+p−3
βp ∂tuh t

1
p φpξτ,δ

= −∂t[F(uh)]t
1
p φpξτ,δ ,

where

Fε(s) :=
s

∫
0

(tβ + εβ)
m+p−3
βp dt ≤

s

∫
0

t
m+p−3
p dt = p

2p + m − 3 s
2p+m−3

p . (5.2)
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From this we see that

∬
ΩT

ϕ∂tuhϕ dx dt ≥ ∬
ΩT

Fε(uh)∂t(t
1
p φpξτ,δ)dx dt

󳨀󳨀󳨀󳨀→
h→0
∬
ΩT

Fε(u)∂t(t
1
p φpξτ,δ)dx dt

=
1
p∬

ΩT

Fε(u)φp t
1
p −1ξτ,δ dx dt − δ−1

τ+δ

∫
τ

∫
Ω

Fε(u)φp t
1
p dx dt

󳨀󳨀󳨀󳨀→
δ→0

1
p∬

Ωτ

Fε(u)φp t
1
p −1 dx dt − τ

1
p ∫
Ω

Fε(u)φp(x, τ)dx.

To conclude the limit in the last term, we use the Lipschitz continuity of F and the time-continuity of u.
Combining these estimates we have

∬
Ωτ

|∇uβ|p(uβ + εβ)
m+p−3
βp −1t

1
p φp dx dt +∬

Ωτ

Fε(u)φp t
1
p −1 dx dt

≤ c∬
Ωτ

(uβ + εβ)p−1+
m+p−3
βp t

1
p |∇φ|p dx dt + cτ

1
p ∫
Ω

Fε(u)φp(x, τ)dx. (5.3)

Taking into account the estimate in (5.2) and the support of φ, and applying Hölder’s inequality, we see that

τ
1
p ∫
Ω

Fε(u)φp(x, τ)dx ≤ cτ
1
p ∫
Bρ(xo)

u
2p+m−3

p (x, τ)φp(x)dx

≤ τ
1
p [ ∫

Bρ(xo)

u(x, τ)dx]
2p+m−3

p

|Bρ(xo)|
3−m−p
p

≤ cτ
1
p [ sup

t∈[0,τ]
∫

Bρ(xo)

u(x, t)dx]
2p+m−3

p

ρ
n(3−m−p)

p

= cρ( τ
ρλ
)

1
p
[ sup
t∈[0,τ]
∫

Bρ(xo)

u(x, t)dx]
2p+m−3

p

.

Using the bound on the gradient of φ, we may now estimate the other term on the right-hand side of (5.3) as

∬
Ωτ

(uβ + εβ)p−1+
m+p−3
βp t

1
p |∇φ|p dx dt ≤ c

(1 − σ)pρp ∬
Bρ(xo)×(0,τ)

(uβ + εβ)
m+p−3
β (uβ + εβ)

2p+m−3
βp t

1
p dx dt

≤
c

(1 − σ)pρp ε
m+p−3

τ

∫
0

∫
Bρ(xo)

(uβ + εβ)
2p+m−3
βp dx t

1
p dt

≤
c

(1 − σ)pρp ε
m+p−3τ

1
p +1 sup

t∈[0,τ]
∫

Bρ(xo)

(uβ + εβ)
2p+m−3
βp (x, t)dx. (5.4)

In the second step we use the fact that the exponent β−1(m + p − 3) is negative. In the last step we estimate
the integral over the ball by the supremum in time of such integrals, leaving only an integral in time of the fac-
tor t

1
p . The integral appearing in the last expression may be estimated further using Hölder’s inequality and

the definition of λ as

∫
Bρ(xo)

(uβ + εβ)
2p+m−3
βp dx ≤ [ ∫

Bρ(xo)

(uβ + εβ)
1
β dx]

2p+m−3
p

|Bρ(xo)|
3−m−p
p ≤ c[ ∫

Bρ(xo)

u dx + ερn]
2p+m−3

p

ρ1−
λ
p . (5.5)
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Since the exponent p−1(2p + m − 3) is positive, we can combine (5.4) and (5.5) taking the supremum inside
the square brackets to obtain

∬
Ωτ

(uβ + εβ)p−1+
m+p−3
βp t

1
p |∇φ|p dx dt ≤ cρ

(1 − σ)p (
τ
ρp )

εm+p−3( τ
ρλ
)

1
p
[ sup
t∈[0,τ]
∫

Bρ(xo)

u(x, t)dx + ερn]
2p+m−3

p

.

Combining the estimate for the two terms on the right-hand side of (5.3), we end up with

∬
Ωτ

|∇uβ|p(uβ + εβ)
m+p−3
βp −1t

1
p φp dx dt +∬

Ωτ

Fε(u)φp t
1
p −1 dx dt

≤
cρ
(1 − σ)p (

τ
ρλ
)

1
p
[1 + εm+p−3( τρp )][ sup

t∈[0,τ]
∫

Bρ(xo)

u(x, t)dx + ερn]
2p+m−3

p

.

Choosing now ε = ( τρp )
1

3−m−p confirms (5.1).

Because of the somewhat more complicated calculations in our setting, we also need the following result,
which does not appear in [8].

Lemma 5.3. Let Fε be defined by (5.2) and let ε > 0. Then there is a constant c = c(m, p) such that

(uβ + εβ)[
3−m−p
βp +1](p−1) ≤ cFε(u) + cε

m+p−3
p +1 (5.6)

for all u ≥ 0.

Proof. Assume first u > 2ε. Then since m + p − 3 < 0,

Fε(u) =
u

∫
0

(tβ + εβ)
m+p−3
βp dt ≥

u

∫
ε

(tβ + εβ)
m+p−3
βp dt ≥

u

∫
ε

(2tβ)
m+p−3
βp dt

= c(u
m+p−3
p +1 − ε

m+p−3
p +1) ≥ c̃u

m+p−3
p +1,

where in the last step we used the assumption u > 2ε and the fact that the exponent of ε is positive. On the
other hand, since u > 2ε we also have

(uβ + εβ)[
3−m−p
βp +1](p−1) ≤ cu[

3−m−p
p +β](p−1) = cu

m+p−3
p +1,

and combining the two estimates, we have verified the claim in the case u > 2ε. Suppose now u ≤ 2ε. Then

Fε(u) =
u

∫
0

(tβ + εβ)
m+p−3
βp dt ≥

u

∫
0

((1 + 2β)εβ)
m+p−3
βp dt = cε

m+p−3
p u ≥ cu

m+p−3
p +1

= c(uβ)[
3−m−p
βp +1](p−1) ≥ c1(uβ + εβ)[

3−m−p
βp +1](p−1) − c2ε

m+p−3
p +1,

where in the last stepwe used the fact that for positive α and nonnegative a, bwe have aα ≥ 2−α(a + b)α − bα.
Thus, we have verified the claim also in the case u ≤ 2ε.

The next lemma corresponds to [8, Lemma 5.3]. A formal application of the chain rule shows that the inte-
grands on the left-hand side in both lemmas are essentially the same, although in our case the gradient of u
need not exist. The proof in our case is somewhat more complicated as we need also to use Lemma 5.3.

Lemma 5.4. Let u be aweak solution and δ ∈ (0, 1). Then there is a constant c depending only onm, n, p, C0, C1
such that

1
ρ

τ

∫
0

∫
Bσρ(xo)

|∇uβ|p−1 dx dt ≤ δ sup
t∈[0,τ]
∫

Bρ(xo)

u(x, t)dx + cδ
3−2p−m
3−m−p

(1 − σ)
p2

3−m−p

(
τ
ρλ
)

1
3−m−p

.
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Proof. Choose ε as in Lemma 5.2. By Hölder’s inequality and the previous lemma, we have
τ

∫
0

∫
Bσρ(xo)

|∇uβ|p−1 dx dt =
τ

∫
0

∫
Bσρ(xo)

[|∇uβ|p−1(uβ + εβ)[
m+p−3
βp −1]

(p−1)
p t

p−1
p2 ][(uβ + εβ)[

3−m−p
βp +1]

(p−1)
p t

1−p
p2 ]dx dt

≤ [
τ

∫
0

∫
Bσρ(xo)

|∇uβ|p(uβ + εβ)
m+p−3
βp −1t

1
p dx dt]

p−1
p

× [
τ

∫
0

∫
Bσρ(xo)

(uβ + εβ)[
3−m−p
βp +1](p−1)t

1−p
p dx dt]

1
p

. (5.7)

The second integral in the last expression can be estimated by combining (5.6) and (5.1):
τ

∫
0

∫
Bσρ(xo)

(uβ + εβ)[
3−m−p
βp +1](p−1)t

1−p
p dx dt ≤ c

τ

∫
0

∫
Bσρ(xo)

(Fε(u) + ε
m+p−3
p +1)t

1−p
p dx dt

≤ c
τ

∫
0

∫
Bσρ(xo)

Fε(u)t
1−p
p dx dt + cρnε

m+p−3
p +1τ

1
p

≤
cρ
(1 − σ)p (

τ
ρλ
)

1
p
[ sup
t∈[0,τ]
∫

Bρ(xo)

u(x, t)dx + ερn]
2p+m−3

p

+ cρ( τ
ρλ
)

1
p
(ερn)

2p+m−3
p

≤
cρ
(1 − σ)p (

τ
ρλ
)

1
p
[ sup
t∈[0,τ]
∫

Bρ(xo)

u(x, t)dx + ερn]
2p+m−3

p

.

Since also the other integral appearing in the last expression of (5.7) can be estimated using (5.1), we have
τ

∫
0

∫
Bσρ(xo)

|∇uβ|p−1 dx dt ≤ cρ
(1 − σ)p (

τ
ρλ
)

1
p
[ sup
t∈[0,τ]
∫

Bρ(xo)

u(x, t)dx + ερn]
2p+m−3

p

.

Dividing by ρ and applying Young’s inequality to the right-hand side yields the claim.

Now we can finally prove the Harnack inequality.

Proof of Theorem 5.1. For j ∈ ℕ we choose

ρj := 2(1 − 2−j)ρ, ρ̃j :=
1
2 (ρj + ρj+1),

Bj := Bρj (xo), B̃j := Bρ̃j (xo).

Pick ζj ∈ C∞0 (Bρ̃j (xo); [0, 1]) such that ζj = 1 on Bρj (xo) and We use the weak formulation (2.7) with the test
function φ = ζjξ rτ1 ,τ2 where r > 0, τ1 < τ2 < τ and

ξ rτ1 ,τ2 (t) =

{{{{{{{{{
{{{{{{{{{
{

0, t < τ1,
r−1(t − τ1), t ∈ [τ1, τ1 + r],
1, t ∈ (τ1 + r, τ2),
r−1(τ2 + r − t), t ∈ [τ2, τ2 + r],
0, t > τ2 + r.

This implies

1
r

τ2

∫
τ1

∫
Ω

uζj dx dt = ∬
ΩT

A(u, ∇uβ) ⋅ ∇ζjξ rτ1 ,τ2 dx dt +
1
r

τ2

∫
τ1

∫
Ω

uζj dx dt.



V. Vespri and M. Vestberg, Regularity of solutions to doubly singular equations | 15

Passing to the limit r → 0 and using the structure conditions and properties of ζj, we have

∫
Bj

u(x, τ1)dx ≤ ∫
Ω

uζj(x, τ1)dx =
τ2

∫
τ1

∫
Ω

A(u, ∇uβ) ⋅ ∇ζj dx dt + ∫
Ω

uζj(x, τ2)dx

≤
τ2

∫
τ1

∫
Ω

|A(u, ∇uβ)||∇ζj|dx dt + ∫
Ω

uζj(x, τ2)dx

≤ c2
j

ρ

τ

∫
0

∫

B̃j

|∇uβ|p−1 dx dt + ∫
Bj+1

u(x, τ2)dx

for all τ1, τ2 due to the time-continuity of u. Although we assumed τ1 < τ2, we see by a similar calculation
that the estimate remains valid for τ1 ≥ τ2. We want to estimate the double integral in the last expression
using Lemma 5.4 with ρ replaced by ρj+1, and consequently with σ := ρ̃j

ρj+1 . Directly from the definition it
follows that 1

1 − σ < 2
j+2.

Taking this into account, Lemma 5.4 shows that

∫
Bj

u(x, τ1)dx ≤ c2jδ sup
t∈[0,τ]
∫
Bj+1

u(x, t)dx + c2
jp2

3−m−p +j

δ
2p+m−3
3−m−p
(
τ
ρλ
)

1
3−m−p
+ ∫
Bj+1

u(x, τ2)dx

for all δ ∈ (0, 1). Here we also used the fact that all the elements of the sequence (ρj) are comparable in size
to ρ. Taking now δ = c−12−1εo, where εo ∈ (0, 1) and c ≥ 1 is the constant from the previous estimate, we see
that

∫
Bj

u(x, τ1)dx ≤ εo sup
t∈[0,τ]
∫
Bj+1

u(x, t)dx + cbj( τ
ρλ
)

1
3−m−p
+ ∫
B2ρ(xo)

u(x, τ2)dx,

where b = b(m, n, p, C0, C1) and c = c(m, n, p, C0, C1, εo). We also used the fact that Bj+1 ⊂ B2ρ(xo). Recall-
ing that the inequality holds for a.e. τ1, τ2 ∈ (0, τ), we see that it implies

Sj ≤ εoSj+1 + cbj(
τ
ρλ
)

1
3−m−p
+ I,

where

Sj := sup
t∈[0,τ]
∫
Bj

u(x, t)dx, I := inf
t∈[0,τ]

∫
B2ρ(xo)

u(x, t)dx. (5.8)

Iterating (5.8), we have

sup
t∈[0,τ]
∫

Bρ(xo)

u(x, t)dx = S1 ≤ εMo SM+1 + cb(
τ
ρλ
)

1
3−m−p

M−1
∑
j=0
(bεo)j + I

M−1
∑
j=0

εjo . (5.9)

Choose now for example εo = 1
2b so that both of the sums in (5.9) converge in the limit M →∞. Then, since

SM+1 ≤ sup
t∈[0,τ]

∫
B2ρ(xo)

u(x, t)dx,

where the right-hand side finite due to the time-continuity of u, we see that we can pass to the limit M →∞
which yields the claim.

6 Expansion of positivity
In this section we show that weak solutions exhibit expansion of positivity. This type of result was already
obtained in [9], with arguments relying on the existence of ∇u. We demonstrate that the strategy in [9] can be
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modified so that one only needs to use ∇uβ whose existence is guaranteed directly by Definition 2.1. For the
reader’s convenience detailed proofs are provided. We start with a lemma corresponding to [8, Lemma 3.1].

Lemma 6.1 (General De Giorgi-type lemma). Suppose that v : ΩT → ℝ≥0 satisfies vβ ∈ Lp(0, T;W1,p(Ω)) and
the energy estimate

cg∬
ΩT

|∇vβ|pφpχ{v<k} dx dt + ce ess sup
t∈[0,T]
∫
Ω

b[v, k]χ{v<k}φp(x, t)dx

≤ ∬
ΩT

|∇φ|p(vβ − kβ)p− + (v
β+1
2 − k

β+1
2 )2−φ

p−1|∂tφ|dx dt (6.1)

for somepositive constants cg and ce andall k ≥ 0and functions φ ∈ C∞(Ω̄ × [0, T]; [0, 1]) vanishing in aneigh-
borhood of ∂pΩT . Suppose K > 0, a ∈ (0, 1) and that Qρ,θρp (zo) ⊂ ΩT Then there is a constant c > 0 depending
only on m, n, p such that if

|Qρ,θρp (zo) ∩ {v < K}| ≤ ccec
n
p
g (1 − aβ)n+2

(θKm+p−3)
n
p

[1 + θKm+p−3]
(n+p)
p

|Qρ,θρp (zo)|, (6.2)

then v ≥ aK a.e. in Q ρ
2 ,θ(

ρ
2 )p
(zo).

Proof. Define

ρj :=
ρ
2 +

ρ
2j+1

, kβj := (a
β +
(1 − aβ)

2j
)Kβ , Bj := Bρj (yo), Tj := (to − θρpj , to),

Qj := Bj × Tj = Qρj ,θρpj (yo , to), Aj := Qj ∩ {v < kj}, Yj :=
|Aj|
|Qj|

.

Pick φj ∈ C∞(Qj; [0, 1]) such that φj = 1 on Qj+1 and φj = 0 in a neighborhood of ∂pQj, and

|∇φj| ≤ 2j+3ρ−1, |∂tφ| ≤ cpθ−12jρ−p .

In the set where v < kj+1 we have

(vβ − kβj )− ≥ k
β
j − k

β
j+1 =
(1 − aβ)
2j+1

Kβ ,

so

(1 − aβ)p

2(j+1)p
Kβp|Aj+1| ≤ ∬

Aj+1

(vβ − kβj )
p
− dx dt ≤ ( ∬

Aj+1

(vβ − kβj )
p (n+p)

n
− dx dt)

n
n+p

|Aj+1|
p
n+p . (6.3)

We treat the integral inside the brackets by applying Hölder’s inequality to the integral over the space vari-
ables. One of the resulting integrals is then estimatedby taking the essential supremumover the time interval,
and the Gagliardo–Nirenberg inequality provides an upper bound for the other integral. All in all, we have

∬
Aj+1

(vβ − kβj )
p (n+p)

n
− dx dt = ∫

Tj+1

∫
Bj+1

(vβ − kβj )
p pn
− χAj+1 (vβ − k

β
j )
p
− dx dt

≤ ∫
Tj+1

[ ∫
Bj+1

(vβ − kβj )
p
−χAj+1 dx]

p
n

[ ∫
Bj+1

(vβ − kβj )
p∗
− dx]

p
p∗

dt

≤ [ ess sup
Tj+1
∫
Bj+1

(vβ − kβj )
p
−χAj+1 dx]

p
n

∫
Tj

[∫
Bj

((vβ − kβj )−φj)
p∗ dx]

p
p∗

dt

≤ c[ ess sup
Tj+1
∫
Bj+1

(vβ − kβj )
p−2
− χAj+1 (vβ − k

β
j )
2
− dx]

p
n

∬
Qj

|∇((vβ − kβj )−φj)|
p dx dt
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≤ c(1 − aβ)(p−2)
p
n Kβ(p−2)

p
n 2j(2−p)

p
n k(β−1)

p
n

j [ ess sup
Tj+1
∫
Bj+1

k1−βj (v
β − kβj )

2
− dx]

p
n

×∬
Qj

|∇((vβ − kβj )−φj)|
p dx dt

≤ c(1 − aβ)(p−2)
p
n K

p
n (m+p−3)2j(2−p)

p
n [ ess sup

Tj
∫
Bj

b[v, kj]χ{v<kj}φ
p
j dx]

p
n

×∬
Qj

|∇((vβ − kβj )−φj)|
p dx dt

≤ cc−
p
n

e c−1g (1 − aβ)(p−2)
p
n K

p
n (m+p−3)2j(2−p)

p
n

× [∬
Qj

|∇φj|p(vβ − k
β
j )
p
− + (v

β+1
2 − k

β+1
2
j )

2
−φ

p−1
j |∂τφj|dx dt]

p+n
n ,

where c = c(m, n, p). We have also used Lemma 3.2 (ii) and the fact that kj ≤ K. In the last step we use (6.1).
Taking also into account the bounds on the derivatives of φj and the bound for kj we end up with

[ ∬
Aj+1

(vβ − kβj )
p (n+p)

n
− dx dt]

n
n+p

≤ cc
− p
n+p

e c
− n
n+p

g (1 − aβ)(p−2)
p
n+p K

p(m+p−3)
n+p 2j

p(2−p)
n+p [Kβp2jpρ−p + Kβ+1θ−12−jρ−p]|Aj|

≤ cc
− p
n+p

e c
− n
n+p

g (1 − aβ)
(p−2)p
n+p K

p(m+p−3)
n+p +βp2j

p(n+2)
n+p ρ−p[1 + K3−m−pθ−1]|Aj|.

Combining the last estimate with (6.3), we end up with

|Aj+1| ≤ cc
−p
n+p
e c

−n
n+p
g (1 − aβ)

(p−2)p
n+p −pK

p(m+p−3)
n+p 2j[

p(n+2)
n+p +p]ρ−p[1 + K3−m−pθ−1]|Aj|1+

p
n+p .

Dividing by |Qj| gives us the desired iterative estimate

Yj+1 ≤ cc
−p
n+p
e c

−n
n+p
g (1 − aβ)

(p−2)p
n+p −p[θKm+p−3]

p
n+p 2j[

p(n+2)
n+p +p][1 + K3−m−pθ−1]Y

1+ p
n+p

j .

Thus Lemma 3.4 shows that if

Y0 ≤ ccec
n
p
g (1 − aβ)n+2

(θKm+p−3)
n
p

[1 + θKm+p−3]
(n+p)
p

for a suitable constant c depending only on m, n, p, then we have Yj → 0, which means that v ≥ aK
in Q ρ

2 ,θ(
ρ
2 )p
(zo).

The following variant of the De Giorgi lemma will also be useful. The extra assumption (6.4), regarding
the values of u at the initial time of the space-time cylinder, allows us to get a lower bound which holds
on a cylinder which has only been reduced in the spatial dimensions. It is understood that we consider the
time-continuous representative of u, so that (6.4) makes sense.

Lemma 6.2 (Variant of the general De Giorgi-type lemma). Let u be a weak solution in the sense of Defini-
tion 2.1. Suppose that Qρ,θρp (zo) ⊂ ΩT and that

u(x, to − θρp) ≥ K (6.4)

for a.e. x ∈ Bρ(xo). Then there is a constant c depending only on m, n, p, C0, C1 such that if

|Qρ,θρp (zo) ∩ {u < K}| ≤ c
(1 − aβ)n+2

θKm+p−3
|Qρ,θρp (zo)|, (6.5)

then u ≥ aK a.e. in Q ρ
2 ,θρp (zo).
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Proof. Define kj, ρj and Bj as in Lemma 6.1, but choose

Qj := Bj × ∆ = Bj × (to − θρp , to) = Qρj ,θρp .

As before, we denote Aj = Qj ∩ {u < kj} and Yj = |Aj|/|Qj|. Choose φj ∈ C∞0 (Bj; [0, 1]) such that φj = 1 on Bj+1
and

|∇φj| ≤ ρ−12j+3.

We use the energy estimate (4.4) of Lemma4.2withφ = φj, k = kj, t1 = to − θρp and t2 ∈ ∆. Assumption (6.4)
guarantees that the second term on the right-hand side of (4.4) vanishes and we end up with

∬
Qj

|∇(uβ − kβj )−|
pφpj dx dt + ess sup

∆
∫
Bj

b[u, kj]χ{u<kj}φ
p
j dx ≤ c∬

Qj

(uβ − kβj )
p
−|∇φj|p dx dt,

where c = c(p, C0, C1). As in Lemma 6.1 we see that

(1 − aβ)p

2(j+1)p
Kβp|Aj+1| ≤ ( ∬

Aj+1

(uβ − kβj )
p (n+p)

n
− dx dt)

n
n+p

|Aj+1|
p
n+p . (6.6)

Similarly as in the proof of Lemma 6.1 we may estimate the integral inside the brackets as

∬
Aj+1

(uβ − kβj )
p (n+p)

n
− dx dt ≤ [ ess sup

∆
∫
Bj

(uβ − kβj )
p
−χAj+1φ

p
j dx]

p
n

∫
∆

[∫
Bj

((uβ − kβj )−φj)
p∗ dx]

p
p∗

dt

≤ c(1 − aβ)(p−2)
p
n Kβ(p−2)

p
n 2j(2−p)

p
n k(β−1)

p
n

j [ ess sup
∆
∫
Bj

(uβ − kβj )
2
−k

1−β
j φpj dx]

p
n

×∬
Qj

|∇((uβ − kβ)−φj)|p dx dt

≤ c(1 − aβ)(p−2)
p
n K(m+p−3)

p
n 2j(2−p)

p
n [∬

Qj

(uβ − kβj )
p
−|∇φj|p dx dt]

p+n
n

≤ c(1 − aβ)(p−2)
p
n K(m+p−3)

p
n 2j(2−p)

p
n (Kβpρ−p2jp|Aj|)

p+n
n ,

where the constant c only depends on m, n, p, C0, C1. Combining this estimate with (6.6), we have

|Aj+1| ≤ c(1 − aβ)
(p−2)p
n+p −pK

p(m+p−3)
n+p 2j[

p(n+2)
n+p +p]ρ−p|Aj|1+

p
n+p

Dividing by |Qj| ,we obtain

Yj+1 ≤ c(1 − aβ)
(p−2)p
n+p −p(θKm+p−3)

p
n+p 2j[

p(n+2)
n+p +p]Y

1+ p
n+p

j .

In light of Lemma 3.4, this means that there exists a constant c = c(m, n, p, C0, C1) such that if

Y0 ≤ c
(1 − aβ)n+2

θKm+p−3
,

then Yj → 0.

A version of the following result was proven in [6, Lemma 1.1 of Chapter 4] for the parabolic p-Laplace
equation. We use the same strategy.

Lemma 6.3. Let u be a weak solution on ΩT . Suppose that Bρ(y) × {s} ⊂ ΩT and that

|Bρ(y) ∩ {u( ⋅ , s) ≥ M}| ≥ α|Bρ(y)|. (6.7)

Then there are δ = δ(m, n, p, C0, C1, α) and ϵ = ϵ(α) such that

|Bρ(y) ∩ {u( ⋅ , t) ≥ ϵM}| ≥
1
2α|Bρ(y)| (6.8)

for all t ∈ (s, min{T, s + δM3−m−pρp}).
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Proof. Let τ < min{T, s + δM3−m−pρp}, where δ is a positive number which is yet to be chosen and consider
(4.4) of Lemma 4.2 with t1 = s, t2 = τ and k = M. Discarding the first term on the left-hand side, which is
nonnegative we end up with

∫
Ω

[b[u,M]χ{u<M}φp](x, τ)dx ≤ ∫
Ω

[b[u,M]χ{u<M}φp](x, s)dx + c
τ

∫
s

∫
Ω

(uβ −Mβ)p−|∇φ|p dx dt, (6.9)

where φ ∈ C∞0 (Ω;ℝ≥0) and the constant c only depends on p, C0, C1. Taking σ ∈ (0, 1) and a function
φ ∈ C∞0 (Bρ(y); [0, 1]) such that φ = 1 on B(1−σ)ρ(y) and |∇φ| ≤

2
σρ , estimate (6.9) implies

∫
B(1−σ)ρ(y)

b[u,M]χ{u<M}(x, τ)dx ≤ ∫
Bρ(y)

b[u,M]χ{u<M}(x, s)dx +
c

σpρp

τ

∫
0

∫
Bρ(y)

(uβ −Mβ)p− dx dt. (6.10)

From the properties of b it follows that when u < M we have

b[u,M] ≤ b[0,M] = β
β + 1M

β+1.

Using this result and assumption (6.7), we conclude that

∫
Bρ(y)

b[u,M]χ{u<M}(x, s)dx ≤
β

β + 1M
β+1|Bρ(y) ∩ {u( ⋅ , s) < M}|

≤
β

β + 1M
β+1(1 − α)|Bρ(y)|.

Recall that τ ∈ (s, s + δM3−m−pρp) where δ is to be chosen so

c
σpρp

τ

∫
0

∫
Bρ(y)

(uβ −Mβ)p− dx dt ≤
cδ
σp
Mβ+1|Bρ(y)|.

We estimate the term on the left-hand side of (6.10) as

∫
B(1−σ)ρ(y)

b[u,M]χ{u<M}(x, τ)dx = ∫
Bρ(y)

b[u,M]χ{u<M}(x, τ)dx − ∫
Bρ(y)\B(1−σ)ρ(y)

b[u,M]χ{u<M}(x, τ)dx

≥ ∫
Bρ(y)

b[u,M]χ{u<M}(x, τ)dx − c
β
nσMβ+1|Bρ(y)|.

Picking ϵ ∈ (0, 1), we can estimate the last integral as

∫
Bρ(y)

b[u,M]χ{u<M}(x, τ)dx ≥ ∫
Bρ(y)∩{u<ϵM}

b[u,M](x, τ)dx

≥ b[ϵM,M]|Bρ(y) ∩ {u( ⋅ , τ) < ϵM}|

≥
β

β + 1M
β+1(1 − 2ϵ)|Bρ(y) ∩ {u( ⋅ , τ) < ϵM}|.

Combining all the estimates, we have

|Bρ(y) ∩ {u( ⋅ , τ) < ϵM}| ≤
|Bρ(y)|
(1 − 2ϵ) [c̃

β
nσ + (1 − α) + cσ−pδ], (6.11)

where c̃βn = c̃
β
n(β, n) and c = c(m, n, p, C0, C1). Choose σ = σ(α, n,m, p) so small that c̃βnσ < α8 . With this

choice of σ, choose δ = δ(m, n, p, C0, C1, α) so small that cσ−pδ < α8 . Here c denotes the constant in (6.11).
This leads to

|Bρ(y) ∩ {u( ⋅ , τ) < ϵM}| ≤
|Bρ(y)|
(1 − 2ϵ)(1 −

3α
4 ).

From this it follows that (6.8) is true for any

0 < ϵ ≤ α
4(2 − α) .
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We are now ready to prove the main result of this section.

Theorem 6.4 (Expansion of positivity). Suppose that (xo , s) ∈ ΩT and u is a weak solution satisfying

|Bρ(xo) ∩ {u( ⋅ , s) ≥ M}| ≥ α|Bρ(xo)| (6.12)

for some M > 0 and α ∈ (0, 1). Then there exist ε, δ, η ∈ (0, 1) depending only on m, p, n, C0, C1, α such that
if B16ρ(xo) × (s, s + δM3−m−pρp) ⊂ ΩT , then

u ≥ ηM in B2ρ(xo) × (s + (1 − ε)δM3−m−pρp , s + δM3−m−pρp).

Proof. The proof is divided into several steps.

Step1: Changeof variables, transformedequation and energy estimates. Let δ = δ(m, n, p, C0, C1, α) ∈ (0, 1)
be the constant from Lemma 6.3. By translation we may assume that (y, s) = (0̄, 0). Furthermore, we assume
that B16ρ(0̄) × (0, δM3−m−pρp) ⊂ ΩT , since otherwise there is nothing to prove. Introduce the new variables
(y, τ) defined by the equations

y = x
ρ
, −e−τ = t − δM

3−m−pρp

δM3−m−pρp
.

These coordinates transform the cylinder B16ρ(0̄) × (0, δM3−m−pρp) into B16(0̄) × (0,∞), preserving the
direction of time. Define the function v : B16(0̄) × (0,∞) → ℝ,

v(y, τ) = e
τ

3−m−p

M
u(x, t) = e

τ
3−m−p

M
u(ρy, δM3−m−pρp(1 − e−τ)).

A routine calculation confirms that vβ ∈ Lp(0, S;W1,p(B16(0̄))), for all S > 0, and that v is a weak solution to
the equation

∂τv − ∇ ⋅ Ã(y, τ, v, ∇vβ) =
1

3 − m − p v,

where

Ã(y, τ, v, ξ) = δρp−1 e
( m+p−2
3−m−p )τ

Mm+p−2 A(ρy, δM
3−m−pρp(1 − e−τ),Me−

τ
3−m−p v, ρ−1Mβe−

βτ
3−m−p ξ)

satisfies the structure conditions
Ã(y, τ, v, ξ) ⋅ ξ ≥ δC0|ξ|p ,
|Ã(y, τ, v, ξ)| ≤ δC1|ξ|p−1,

(6.13)

where C0 and C1 are the constants appearing in the structure conditions (2.5) and (2.6). The time continuity
of u obtained in Section 3.3 implies that v ∈ C([0,∞); Lβ+1loc (B16(0̄)). This allows us to reason as in the proof
of Lemma 3.10, to conclude that v satisfies the mollified weak formulation
∞

∫
0

∫

B16(0̄)

[Ã(y, ⋅ , v, ∇vβ)]h ⋅ ∇ϕ + ∂τvhϕ dy dτ − ∫
B16(0̄)

(vϕh̃)(y, 0)dy =
1

3 − m − p

∞

∫
0

∫

B16(0̄)

vhϕ dy dτ (6.14)

for all ϕ ∈ C∞0 (B16(0̄) × (0,∞)). The only difference is that we have replaced ϕh̄ by

ϕh̃(y, τ) :=
1
h

∞

∫
τ

e
τ−s
h ϕ(y, s)ds,

which in practice always can be written as a finite integral due to the support of ϕ. This enables us to prove
an energy estimate for v. Namely, we use (6.14) with the test function ϕ = −(vβ − kβ)−φpξr(τ), where φ is
a smooth function vanishing near ∂p(B16(0̄) × (0,∞)), and

ξr(τ) =
{{{
{{{
{

1, τ ≤ τ̃,
r−1(τ̃ + r − t), τ ∈ [τ̃, τ̃ + r],
0, τ > τ̃ + r.
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Here τ̃ > 0. We see that
∞

∫
0

∫

B16(0̄)

[Ã(y, τ, v, ∇vβ)]h ⋅ ∇ϕ dy dτ

󳨀󳨀󳨀󳨀→
h→0

∞

∫
0

∫

B16(0̄)

Ã(y, τ, v, ∇vβ) ⋅ ∇ϕ dy dτ

󳨀󳨀󳨀→
r→0
−

τ̃

∫
0

∫

B16(0̄)

Ã(y, τ, v, ∇vβ) ⋅ ∇[(vβ − kβ)−φp]dy dτ

=
τ̃

∫
0

∫

B16(0̄)

Ã(y, τ, v, ∇vβ) ⋅ ∇vβχ{v<k}φp − Ã(y, τ, v, ∇vβ) ⋅ ∇φp(vβ − kβ)− dy dτ

≥
τ̃

∫
0

∫

B16(0̄)

δC0|∇vβ|pφpχ{v<k} − δC̃1|∇vβ|p−1φp−1|∇φ|(vβ − kβ)− dy dτ

≥
τ̃

∫
0

∫

B16(0̄)

δ C02 |∇v
β|pφpχ{v<k} − δĈ1|∇φ|p(vβ − kβ)

p
− dy dτ,

where Ĉ1 = Ĉ1(C1, p). Reasoning similarly as in the proof of Lemma 4.1, the parabolic term can be treated as
∞

∫
0

∫

B16(0̄)

∂τvhϕ dy dτ ≥ −
∞

∫
0

∫

B16(0̄)

b[vh , k]χ{vh<k}∂τ(φpξr)dy dτ

󳨀󳨀󳨀󳨀→
h→0
−
∞

∫
0

∫

B16(0̄)

b[v, k]χ{v<k}ξr∂τφp dy dτ + r−1
τ̃+r

∫
τ̃

∫

B16(0̄)

b[v, k]χ{v<k}φp dy dτ

󳨀󳨀󳨀→
r→0
−

τ̃

∫
0

∫

B16(0̄)

b[v, k]χ{v<k}∂τφp dy dτ − ∫
B16(0̄)

b[v, k]χ{v<k}φp(y, τ̃)dy.

As in the proof of Lemma 4.1, one can see that the second term on the left-hand side of (6.14) vanishes in the
limit h → 0. Combining the estimates for all terms, we end up with

δ C02

τ̃

∫
0

∫

B16(0̄)

|∇vβ|pφpχ{v<k} dy dτ + ∫
B16(0̄)

b[v, k]χ{v<k}φp(z, τ̃)dy

≤ δĈ1
τ̃

∫
0

∫

B16(0̄)

|∇φ|p(vβ − kβ)p− dy dτ +
τ̃

∫
0

∫

B16(0̄)

b[v, k]χ{v<k}∂τφp dy dτ.

Note that we were able to drop the term on the right-hand side of (6.14) since it is nonpositive. Using Lem-
ma 3.2 (i) to estimate b[v, k] on the right-hand side and taking into account that δ ∈ (0, 1), we finally obtain
the desired energy estimate

cδ
τ̃

∫
0

∫

B16(0̄)

|∇vβ|pφpχ{v<k} dy dτ + c ess sup
τ∈[0,τ̃]

∫

B16(0̄)

b[v, k]χ{v<k}φp(y, τ)dy

≤
τ̃

∫
0

∫

B16(0̄)

|∇φ|p(vβ − kβ)p− + (v
β+1
2 − k

β+1
2 )2−φ

p−1|∂τφ|dy dτ, (6.15)

where c = c(C0, C1, p,m) and τ̃ is any positive number.
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Step 2: Measure estimates of sublevel sets. From assumption (6.12) and Lemma 6.3 it follows that there is
an ϵ = ϵ(α) such that

|B1(0̄) ∩ {v( ⋅ , τ) > ϵe
τ

3−m−p }| ≥
α
2 |B1(0̄)| (6.16)

for all τ ∈ [0,∞). Pick τo > 0 to be determined later and define

ko := ϵe
τo

3−m−p , kj :=
ko
(2

1
β )j

, j ∈ ℕ0. (6.17)

With these definitions, (6.16) implies that

|B8(0̄) ∩ {v( ⋅ , τ) > kj}| ≥
α
28
−n|B8(0̄)| (6.18)

for all τ ∈ [τo ,∞) and j ∈ ℕ0. We introduce the cylinders

Qτo := B8(0̄) × (τo + k
3−m−p
o , τo + 2k3−m−po ), Q󸀠τo := B16(0̄) × (τo , τo + 2k

3−m−p
o ).

Pick ζ1 ∈ C∞0 (B16(0̄)) such that ζ1 = 1 on B8(0̄) and |∇ζ1| ≤
1
4 . Pick ζ2 ∈ C

∞(ℝ) such that ζ2(τ) = 0 for τ < τo,
ζ2(τ) = 1 for τ ≥ τo +k3−m−po and0 ≤ ζ 󸀠2(τ) ≤

2
k3−m−p
o

. Using the energy estimate (6.15)withφ(y, τ) = ζ1(y)ζ2(τ),
k = kj and τ1 = τo + 2k3−m−po yields

∬
Qτo

|∇vβ|pχ{v<kj} dy dτ ≤
c
δ ∬
Q󸀠
τo

(vβ − kβj )
p
− +

2
k3−m−po
(v

β+1
2 − k

β+1
2
j )

2
− dy dτ

≤ cδ−1(kβpj +
kβ+1j

k3−m−po
)|Qτo |

≤ cδ−1kβpj |Qτo |, (6.19)

where in the second step we used the fact that the measures of Qτo and Q󸀠τo are comparable. In the last step
we used that kj ≤ ko. The constant c still depends only on C0, C1, p,m. We define the sets

Aj := Qτo ∩ {v < kj}, Aj(τ) := B8(0̄) ∩ {v( ⋅ , τ) < kj}.

By the isoperimetric inequality (3.5) and (6.18) we have

kβj
2 |Aj+1(τ)| = (k

β
j − k

β
j+1)|Aj+1(τ)| ≤

cn
|B8(0̄) \ Aj(τ)|

∫
Aj(τ)\Aj+1(τ)

|∇vβ(y, τ)|dy

≤
c̃n
α ∫
Aj(τ)\Aj+1(τ)

|∇vβ(y, τ)|dy.

Integrating the estimate over the time interval (to + k3−m−po , τo + 2k3−m−po ) and using Hölder’s inequality
and (6.19), we obtain

kβj
2 |Aj+1| ≤

c̃n
α ∫
Aj\Aj+1

|∇vβ(y, τ)|dy

≤
c̃n
α [ ∫

Aj\Aj+1

|∇vβ(y, τ)|p dy]
1
p

|Aj \ Aj+1|1−
1
p

≤
ckβj
αδ

1
p
|Qτo |

1
p |Aj \ Aj+1|

p−1
p ,

where c depends on m, n, p, C0, C1. Hence,

|Aj+1|
p
p−1 ≤

c

α
p
p−1 δ

1
p−1
|Qτo |

1
p−1 |Aj \ Aj+1| = γ|Qτo |

1
p−1 |Aj \ Aj+1|,
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where γ := cα−
p
p−1 δ−

1
p−1 . Adding this equation for j ∈ {0, . . . , j0 − 1} where j0 ∈ ℕ and noting that |Aj| is

decreasing in j we have

j0|Aj0 |
p
p−1 ≤ γ|Qτo |

1
p−1 |(

j0−1
∑
j=0
(|Aj| − |Aj+1|)) ≤ γ|Qτo |

p
p−1 |.

Taking into account the definition of Aj, this means that

|Qτo ∩ {v < kj0 }| ≤ (
γ
j0
)
p−1
p
|Qτo |.

Recalling that δ is already determined in terms of m, n, p, C0, C1, α, this estimate shows that any ν > 0 we
may choose j0 = j0(m, n, p, C0, C1, α, ν) ∈ ℕ such that

|Qτo ∩ {v < kj0 }| ≤ ν|Qτo |.

Let j∗ ∈ [j0,∞) be the smallest real number for which (2j∗ )
3−m−p

β is an integer. Then j∗ only depends on
m, n, p, C0, C1, α, ν and

|Qτo ∩ {v < kj∗ }| ≤ ν|Qτo |, (6.20)

where we have extended the definition of kj in (6.17) to all real numbers.

Step 3: Segmenting the cylinder. For i belonging to {0, . . . (2j∗ )
3−m−p

β − 1}We define the subcylinders

Qi = B8(0̄) × (τo + k3−m−po + ik3−m−pj∗ , τo + k3−m−po + (i + 1)k3−m−pj∗ ),

which is a partition of Qτo (discarding only a set of measure zero). Thus, (6.20) implies that for at least one
of the subcylinders we must have

|Qi ∩ {v < kj∗ }| ≤ ν|Qi|.

Since v satisfies the energy estimates (6.15), we may apply Lemma 6.1 to Qi with ρ = 8, θ = 8−pk3−m−pj∗ ,
K = kj∗ and a = 1

2 . Now cg = cδ for a constant c only depending on m, n, p, C1, C0 and also ce only depends
on these parameters. Plugging in everything into (6.2) we see that there is a constant c depending only on
m, n, p, C1, C0, such that if ν ≤ νo := cδ

n
p , then

v ≥ 12 kj∗ in B4(0̄) × (τo + k3−m−po + (i + 1 − 2−p)k3−m−pj∗ , τo + k3−m−po + (i + 1)k3−m−pj∗ ). (6.21)

Fixing j0 := j0(m, n, p, C0, C1, α, νo), we obtain by the definitions of νo and δ that the corresponding j∗
ultimately depends only on m, n, p, C0, C1, α, and that (6.21) is indeed valid. Hence, there is a constant
τ1 ∈ (τo + k

3−m−p
o , τo + 2k3−m−po ) such that for a.e. y ∈ B4(0̄),

v(y, τ1) ≥
1
2 kj∗ =

ko
2
j∗
β +1
=

ϵ

2
j∗
β +1

e
τo

3−m−p = σoe
τo

3−m−p , (6.22)

where σo = σo(m, n, p, C0, C1, α).

Step 4: Returning to the original coordinates. By the definition of v, (6.22) says that for a.e. x ∈ B4ρ(0̄),

u(x, t1) ≥ σoMe
τo−τ1
3−m−p =: Mo ,

where t1 := δM3−m−pρp(1 − e−τ1 ). We want to apply Lemma 6.2 with K = Mo, a = 1
2 and θ = c2

−n−2M3−m−p
o ,

where c is the constant from the assumption (6.5). With these choices the assumption in Lemma 6.2 is auto-
matically true since it becomes the statement |Q ∩ {u < Mo}| ≤ |Q| for a certain cylinder Q. As a consequence,
Lemma 6.2 implies that

u ≥ 12Mo (6.23)

in B2ρ(0̄) × (t1, t1 + c2−n−2M3−m−p
o (4ρ)p). In order to complete the proof, it is sufficient that

t1 + c2−n−2M3−m−p
o (4ρ)p) = δM3−m−pρp .
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Using the definition of t1, we see that this is equivalent to

τo = ln(
2n+2δ

c4pσ3−m−po
),

where c is the constant fromassumption (6.5). The right-hand side depends only onm, n, p, C0, C1, α. Hence,
with this choice of τo, (6.23) and the upper bound for τ1 imply that

u ≥ 12Mo =
σo
2 e

τo−τ1
3−m−pM > σo2 e

− 2k
3−m−p
o
3−m−p M =: ηM

in B2ρ(0̄) × (t1, δM3−m−pρp). Note that η only depends on m, n, p, C0, C1, α. From the upper bound for τ1 it
also follows that

t1 = δM3−m−pρp(1 − e−τ1 ) < δM3−m−pρp(1 − e−τ0−2k
3−m−p
o ),

so the claim of the theorem is true if we take

ε = e−τ0−2k
3−m−p
o ,

and the right-hand side clearly only depends only on m, n, p, C0, C1, α.

7 Local boundedness
Weprove that in the range (1.3) allweak solutions are locally bounded.Weuse aDeGiorgi iteration combining
the energy estimates obtained in Lemma 4.1 with a Sobolev embedding.

Theorem 7.1. Let u be a weak solution in the sense of Definition 2.1 and suppose that the parameters m and
p satisfy (1.3). Then u is locally bounded and for any cylinder of the form Qρ,2τ(zo) contained in ΩT and any
σ ∈ (0, 1) we have the explicit bound

ess sup
Qσρ,στ(zo)

u ≤ c[((1 − σ)pτ)−
n+p
p ∬
Qρ,τ(zo)

uβ+1 dx dt]
p

pβn+(β+1)(p−n)

+ (
τ
ρp )

1
3−m−p

,

where c is a constant depending only on m, n, p, C0, C1.

Proof. Suppose that Qρ,τ(zo) ⊂ ΩT . Define sequences

ρj := σρ +
(1 − σ)
2j

ρ, τj := στ +
(1 − σ)
2j

τ, kj := k(1 − 2−j)
2
β+1 ,

where k > 0 is a number to be fixed later. We also define the cylinders Qj := Qρj ,τj (zo) = Bj × Tj. Choose func-
tions φj ∈ C∞(Qj; [0, 1]) vanishing near the parabolic boundary of Qj and satisfying ϕj = 1 on Qj+1 and for
which

|∇φj| ≤
2j+2
(1 − σ)ρ , |∂tφj| ≤

2j+2
(1 − σ)τ .

Furthermore, we define the sequence

Yj := ∬
Qj

(u
β+1
2 − k

β+1
2
j )

2
+ dx dt.

Note that Yj is finite for every j since u ∈ Lβ+1(ΩT). Define the auxiliary parameters

M := β + 1
β

, q := p( 1M +
1
n)
=
p
M(

n +M
n )

.

A straightforward calculation shows that (2.3) (and hence (1.3)) guarantees that q > 1. Thus, we may use
Hölder’s inequality to estimate

Yj+1 ≤ [ ∬
Qj+1

(u
β+1
2 − k

β+1
2
j+1 )

2q
+ dx dt]

1
q

|Qj+1 ∩ {u > kj+1}|
1
q󸀠 . (7.1)
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We will use the shorthand notation

ϕ := (u
β+1
2 − k

β+1
2
j+1 )

2
M
+ ≤ (uβ − k

β
j+1)+.

The upper bound, is a consequence of the definition ofM and the fact that 2
M > 1. In the following calculation

we express the integral on the right-hand side of (7.1) in terms of ϕ and split the integral into space and time
variables. We apply Hölder’s inequality to the integral over the space variables, and then estimate one of the
resulting factors upwards by the essential supremum over time. After this, we introduce the cut-off function
φj which allowsus to apply theGagliardo–Nirenberg inequality.Wealso apply Lemma3.2 (i). Thus,weobtain
two factors which both are bounded by the right-hand side of the energy estimate (4.1). All in all, we have

∬
Qj+1

ϕp(
n+M
n ) dx dt = ∫

Tj+1

∫
Bj+1

ϕpϕ
pM
n dx dt (7.2)

≤ ∫
Tj+1

[ ∫
Bj+1

ϕp∗ dx]
p
p∗

[ ∫
Bj+1

ϕM dx]
p
n

dt

≤ [ ess sup
Tj+1
∫
Bj+1

ϕM dx]
p
n

∫
Tj+1

[ ∫
Bj+1

ϕp∗ dx]
p
p∗

dt

≤ [ ess sup
Tj+1
∫
Bj+1

(u
β+1
2 − k

β+1
2
j+1 )

2
+ dx]

p
n

∫
Tj+1

[ ∫
Bj+1

(uβ − kβj+1)
p∗
+ dx]

p
p∗

dt

≤ [ ess sup
Tj
∫
Bj

(u
β+1
2 − k

β+1
2
j+1 )

2
+φ

p
j dx]

p
n

∫
Tj

[∫
Bj

((uβ − kβj+1)+φj)
p∗ dx]

p
p∗

dt

≤ c[ ess sup
Tj
∫
Bj

b[u, kj]χ{u>kj}φ
p
j dx]

p
n

∫
Tj

∫
Bj

|∇[(uβ − kβj+1)+φj]|
p dx dt

≤ c[∬
Qj

(uβ − kβj+1)
p
+|∇φj|p + (u

β+1
2 − k

β+1
2
j+1 )

2
+φ

p−1
j |∂tφj|dx dt]

n+p
n

.

The constant c depends only on m, n, p, C0, C1. In the set where u > kj+1 we can estimate

(uβ − kβj+1)
p
+

(u
β+1
2 − k

β+1
2
j )

2
+

= um+p−3
(1 − (kj+1/u)β)p+
(1 − (kj/u)

β+1
2 )2+
≤

um+p−3

(1 − (kj/kj+1)
β+1
2 )2
≤

ckm+p−3

(1 − (kj/kj+1)
β+1
2 )2
< c2jkm+p−3,

where the constant c only depends on m, p. In the second last step we used m + p < 3, and the fact that kj+1
is comparable in size to k. Applying the previous estimate to the first term to the last line of (7.2) and noting
that in the second term we can replace kj+1 by kj we obtain

∬
Qj+1

ϕp(
n+M
n ) dx dt ≤ c[∬

Qj

[2jkm+p−3|∇φj|p + φp−1j |∂tφj|](u
β+1
2 − k

β+1
2
j )

2
+ dx dt]

n+p
n

.

Combining this estimate with the bounds for φj and its derivatives leads to

∬
Qj+1

ϕp(
n+M
n ) dx dt ≤ c( 2(p+1)j

(1 − σ)pτ [(
τ
ρp )

km+p−3 + 1]Yj)
n+p
n

.

From the last expression we see that if k ≥ ( τρp )
1

3−m−p , then

∬
Qj+1

ϕp(
n+M
n ) dx dt ≤ c( 2(p+1)j

(1 − σ)pτ Yj)
n+p
n
. (7.3)
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Observe now that

|Qj ∩ {u > kj+1}|kβ+12−2(j+1) = |Qj ∩ {u > kj+1}|(k
β+1
2
j+1 − k

β+1
2
j )

2 ≤ ∬
Qj∩{u>kj+1}

(u
β+1
2 − k

β+1
2
j )

2 dx dt ≤ Yj . (7.4)

Using (7.3) and (7.4) in (7.1), we end up with

Yj+1 ≤ CbjY1+δj ,

where

b = 2(
n+p
n )(p+1)

1
q +

2
q󸀠 , C = ck−(β+1)

1
q󸀠

((1 − σ)pτ)
n+p
nq

, δ = p
nq
=

M
n +M

and c only depends on m, n, p, C0, C1. We want to show that Yj → 0. According to Lemma 3.4 this is true
provided that

Y0 ≤ C−
1
δ b−

1
δ2 .

Using the definition of Y0 and the parameters, we see that this is equivalent to

k ≥ c[((1 − σ)pτ)−
n+p
p ∬
Qρ,τ(zo)

uβ+1 dx dt]
p

pβn+(β+1)(p−n)

, (7.5)

where c is a constant depending only on m, n, p, C0, C1. Since

∬
Qσρ,στ(zo)

(u
β+1
2 − k

β+1
2 )2+ dx dt ≤ Yj → 0,

this means that u ≤ k almost everywhere in Qσρ,(1+σ)τ(zo). The only lower bounds for k required in this argu-
ment were k ≥ ( τρp )

1
3−m−p and (7.5), so we have verified the estimate for the essential supremum.

We end this section by proving that the estimate of Theorem 7.1 can be somewhat improved. This result
will also be used in the reasoning leading to the Harnack estimate in Section 9. Note first that (2.3) can be
rephrased as

(β + 1)p + n(m + p − 3) > 0.

Thus there exists r ∈ (0, β + 1) such that

λr := rp + n(m + p − 3) > 0. (7.6)

The next theorem shows that there is an upper bound in terms of the Lr-norm of u.

Theorem 7.2. Let r ∈ (0, β + 1) be such that (7.6) is valid. Then for any cylinder Q2ρ,2τ(zo) ⊂ ΩT ,

ess sup
Qρ,τ(zo)

u ≤ c[τ−
n+p
p ∬
Q2ρ,2τ(zo)

ur dx dt]
p
λr

+ c( τρp )
1

3−m−p
(7.7)

where the constant c depends only on r and the data.

Proof. Define the increasing sequences

ρj := (2 − 2−j)ρ, τj := (2 − 2−j)τ.

Define cylinders Qj = Qρj ,τj (zo). Applying Theorem 7.1 to the cylinder Qj+1 with σ =
ρj
ρj+1 =

τj
τj+1 and noting

that 1 − σ > 2−(j+2), we end up with

ess sup
Qj

u ≤ c[2j(n+p)τ
− n+pp
j ∬

Qj+1

uβ+1 dx dt]
p

pβn+(β+1)(p−n)

+ (
τj
ρpj
)

1
3−m−p

≤ c[2j(n+p)τ−
n+p
p ∬
Qj+1

uβ+1 dx dt]
p

pβn+(β+1)(p−n)

+ (
2τ
ρp )

1
3−m−p

,
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where in the second step we used the fact that ρj ≥ ρ and τ ≤ τj < 2τ. Denoting now Mj := ess supQj u and
noting that u ≤ Mj+1 a.e. in Qj+1, we see that

Mj ≤ cM
p(β+1−r)

pβn+(β+1)(p−n)
j+1 [2j(n+p)τ−

n+p
p ∬
Q2ρ,2τ(zo)

ur dx dt]
p

pβn+(β+1)(p−n)

+ (
2τ
ρp )

1
3−m−p

.

Due to (7.6), the exponent of Mj+1 lies in the interval (0, 1). Applying Young’s inequality to increase the
exponent of Mj+1 to 1 we end up with

Mj ≤ εMj+1 + c(ε)[2j(n+p)τ−
n+p
p ∬
Q2ρ,2τ(zo)

ur dx dt]
p
λr

+ (
2τ
ρp )

1
3−m−p

= εMj+1 + c(ε)bj[τ−
n+p
p ∬
Q2ρ,2τ(zo)

ur dx dt]
p
λr

+ (
2τ
ρp )

1
3−m−p

,

where b = 2
p(n+p)
λr and the constant ε > 0 can be chosen freely. Iterating the last inequality, we obtain

M0 ≤ εNMN + c(ε)[τ−
n+p
p ∬
Q2ρ,2τ(zo)

ur dx dt]
p
λr N−1
∑
j=0
(εb)j + (2τρp )

1
3−m−p

N−1
∑
j=0

εj

for N ≥ 1. Choosing ε = 1
2b , we see that both sums on the right-hand side converge as N →∞. Since MN is

bounded from above by the essential supremum of u over Q2ρ,2τ(zo), the term εNMN vanishes in the limit
and we end up with (7.7).

8 Hölder continuity
In this section we consider onlym and p in the supercritical range (1.4). We show that in this case weak solu-
tions are locally Hölder continuous. The starting point of the argument is a De Giorgi-type lemma providing
a sufficient condition for the reduction of the oscillation from above. First we introduce some notation. For
0 < μ+ < ∞ we denote

θ = εμ3−m−p+ , (8.1)
where ε ∈ (0, 1]. A sufficiently small value of εwill be chosen later in this section. Initially it is important that
our results work for all ε ∈ (0, 1].

Lemma 8.1. Let u be a weak solution to (2.4) in the sense of Definition 2.1. Suppose that we are given a number
0 < μ+ < ∞, and let θ be chosen as in (8.1). Moreover, suppose Qρ,θρp (zo) ⊂ ΩT is a parabolic cylinder satisfying

ess sup
Qρ,θρp (zo)

u ≤ μ+.

Then there exists a constant νo depending only on m, n, p, C0, C1 such that if
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Qρ,θρp (zo) ∩ {uβ >

μβ+
2 }
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ νoε

n
p |Qρ,θρp (zo)|,

then
uβ ≤ 34μ

β
+

a.e. in Qρ/2,θ(ρ/2)p (zo).

Proof. Define sequences of numbers and sets as follows:

ρj :=
1
2(1 +

1
2j
)ρ, kβj := (1 −

1
4 −

1
2j+2
)μβ+, Qj := Qρj ,θρpj (zo), Aj := Qj ∩ {u > kj}, Yj :=

|Aj|
|Qj|

.

We can now choose functions φj ∈ C∞(Qj; [0, 1]) vanishing near the parabolic boundary of Qj and satisfying
ϕj = 1 on Qj and for which

|∇φj| ≤ ρ−12j+2, |∂tφj| ≤ cpθ−1ρ−p2jp .
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Note that in the set where u > kj+1 we have

uβ − kβj > k
β
j+1 − k

β
j =

μβ+
2j+3

. (8.2)

This observation and Hölder’s inequality show that

μβp+
2(j+3)p
|Aj+1| ≤ ∬

Aj+1

(uβ − kβj )
p
+ dx dt ≤ [ ∬

Aj+1

(uβ − kβj )
p (n+p)

n
+ dx dt]

n
n+p

|Aj+1|
p
n+p . (8.3)

The integral in the last expression can be estimated using Hölder’s inequality and (8.2) as

∬
Aj+1

(uβ − kβj )
p (n+p)

n
+ dx dt ≤ ∫

Tj+1

∫
Bj+1

(uβ − kβj )
p pn
+ χAj+1 (uβ − k

β
j )
p
+ dx dt

≤ ∫
Tj+1

[ ∫
Bj+1

(uβ − kβj )
p
+χAj+1 dx]

p
n

[ ∫
Bj+1

(uβ − kβj )
p∗
+ dx]

p
p∗

dt

≤ c2j(2−p)
p
n μβ(p−2)

p
n

+ ∫
Tj+1

[ ∫
Bj+1

(uβ − kβj )
2
+ dx]

p
n

[ ∫
Bj+1

(uβ − kβj )
p∗
+ dx]

p
p∗

dt

≤ c2j(2−p)
p
n μβ(p−2)

p
n

+ [ ess sup
Tj+1
∫
Bj+1

(uβ − kβj )
2
+ dx]

p
n

∫
Tj+1

[ ∫
Bj+1

(uβ − kβj )
p∗
+ dx]

p
p∗

dt,

where in the last step we have estimated one of the integrals over space upwards by taking the essential
supremum in time. Note that by Lemma 3.2 (ii) we have

1
c
(uβ − kβj )

2
+ ≤ (uβ−1 + k

β−1
j )b[u, kj] ≤ 2μ

β−1
+ b[u, kj].

Using this observation and introducing the cut-off functions φj puts us into a position to apply Sobolev
inequality and the energy estimate (4.1) as follows:

∬
Aj+1

(uβ − kβj )
p (n+p)

n
+ dx dt ≤ c2j(2−p)

p
n μ

p
n (m+p−3)
+ [ ess sup

Tj
∫
Bj

b[u, kj]+φpj dx]
p
n

∫
Tj

[∫
Bj

[(uβ − kβj )+φj]
p∗ dx]

p
p∗

dt

≤ c2j(2−p)
p
n μ

p
n (m+p−3)
+ [ ess sup

Tj
∫
Bj

b[u, kj]+φpj dx]
p
n

∫
Tj

∫
Bj

|∇[(uβ − kβj )+φj]|
p dx dt

≤ c2j(2−p)
p
n μ

p
n (m+p−3)
+ [∬

Aj

(uβ − kβj )
p
+|∇φj|p + b[u, kj]φ

p−1
j |∂tφj|dx dt]

n+p
n

.

The second term in the last integral can be estimated using Lemma 3.2 (iii) and the bound for |∂tφj| as

b[u, kj]φp−1j |∂tφj| ≤ cμ
β+1
+ θ−1ρ−p2jp = cε−1μβp+ ρ−p2jp .

Using this and the bound for |∇φj| and u, we see that

∬
Aj+1

(uβ − kβj )
p (n+p)

n
+ dx dt ≤ c2j

p
n (n+2)μ

p
n (m+p−3)
+ (ε−1ρ−pμβp+ |Aj|)

n+p
n .

Combining this estimate with (8.3) and the observation that |Aj+1| ≤ |Aj|, we have

|Aj+1| ≤ cε−12jp[1+
n+2
n+p ]μ

p
n+p (m+p−3)
+ ρ−p|Aj|1+

p
n+p

= cε−
n
n+p bjθ−

p
n+p ρ−p|Aj|1+

p
n+p ,
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where c and b only depend on m, n, p, C0, C1. Dividing the last expression by |Qj| and noting that |Qj| is
proportional to θρn+p, we obtain

Yj+1 ≤ cε−
n
n+p bjY

1+ p
n+p

j .

Setting δ := p
n+p , we see that Lemma 3.4 guarantees that Yj → 0 provided that

|Qρ,θρp (zo) ∩ {uβ > μ
β
+
2 }|

|Qρ,θρp (zo)|
= Y0 ≤ (cε−

n
n+p )−

1
δ b−

1
δ2 = ε

n
p νo ,

where νo = c−
1
δ b−

1
δ2 only depends on m, n, p, C0, C1. Since |Qj| is bounded from above, this also means that

|Aj| → 0. Furthermore, since
Qρ/2,θ(ρ/2)p (zo) ∩ {uβ >

3
4μ

β
+} ⊂ Aj

for all j, the measure of the set on the left-hand side must be zero.

8.1 Reduction of the oscillation

We are now ready to prove the reduction of the oscillation in the case 0 ≤ u ≤ μ+. If the condition of the
De Giorgi lemma holds, then we have a reduction of the oscillation from above. Suppose now that the condi-
tion in the De Giorgi lemma fails, i.e.

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Qρ,θρp (zo) ∩ {uβ >

μβ+
2 }
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> νoε

n
p |Qρ,θρp (zo)|.

Then there is a set ∆ ⊂ (to − θρp , to) of positive measure such that

|{x ∈ Bρ(xo) : u(x, τ) > 2−
1
β μ+}| > νoε

n
p |Bρ(xo)|

for all τ ∈ ∆. Provided that Q̄2ρ,θρp ⊂ Ω × [0, T), the L1-Harnack inequality of Theorem 5.1 for the time-
continuous representative of u shows that for τ ∈ ∆,

νoε
n
p cnρn2−

1
β μ+ < 2−

1
β μ+|{x ∈ Bρ(xo) | u(x, τ) > 2−

1
β μ+}| ≤ ∫

Bρ(xo)

u(x, τ)dx

≤ γ inf
t∈(to−θρp ,to)

∫
B2ρ(xo)

u(x, t)dx + γ( θρ
p

ρλ
)

1
3−m−p

. (8.4)

By the definition of λ and θ we see that

(
θρp

ρλ
)

1
3−m−p
= ε

1
3−m−p μ+ρn .

Moving this term to the right-hand side of (8.4), we obtain

ε
n
p (c − γεκ)μ+ρn ≤ γ inf

t∈(to−θρp ,to)
∫

B2ρ(xo)

u(x, t)dx, (8.5)

where c = c(m, n, p, C0, C1) and
κ = 1

3 − m − p −
n
p

is a positive number by (1.4). If we now choose

ε := min{( c2γ)
1
κ
, 1},

which clearly only depends on m, n, p, C0, C1 we also see from (8.5) that

Cμ+ρn ≤ inf
t∈(to−θρp ,to)

∫
B2ρ(xo)

u(x, t)dx (8.6)
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for a constant C = C(m, n, p, C0, C1) ≤ 1. Take now ζ > 0 and note that

∫
B2ρ(xo)

u(x, t)dx = ∫
B2ρ(xo)∩{u(x,t)≥ζμ+}

u(x, t)dx + ∫
B2ρ(xo)∩{u(x,t)<ζμ+}

u(x, t)dx

≤ μ+|B2ρ(xo) ∩ {u(x, t) ≥ ζμ+}| + ζμ+|B2ρ(xo)|.

With the choice ζ := C2−(n+1)cn , where C is the constant from (8.6), the last estimate and (8.6) show that

|B2ρ(xo) ∩ {u(x, t) ≥ ζμ+}| ≥ α|B2ρ(xo)| for all t ∈ (to − θρp , to) (8.7)

for a constant α dependingonly onm, n, p, C0, C1. Supposenow thatQ32ρ,θρp (zo) ⊂ ΩT . This puts us in aposi-
tion to apply Theorem 6.4 for a sufficiently small M. Namely, taking M = min{ζ, ( ε2p )

1
3−m−p }μ+, we see that

(8.7) is still valid with ζμ+ replaced by M and furthermore that

B32ρ(xo) × (to − δM3−m−p(2ρ)p , to) ⊂ Q32ρ,θρp (zo) ⊂ ΩT ,

where δ ∈ (0, 1) is the constant from Theorem 6.4. Hence, we may apply Theorem 6.4 with

s = to − δM3−m−p(2ρ)p

and ρ replaced by 2ρ to conclude that there is a ξ ∈ (0, 1) and ε̃ < ε depending only on m, n, p, C0, C1 such
that

u ≥ ξμ+ in B4ρ(xo) × (to − ε̃μ3−m−p+ ρp , to), (8.8)

which is the reduction of the oscillation from below. Combining the previous reasoning and Lemma 8.1,
we have shown the following.

Lemma 8.2. There are constants ε, γ, η ∈ (0, 1) depending only on m, n, p, C0, C1 such that for any weak
solution u and number μ+ > 0 satisfying the conditions Q32ρ,εμ3−m−p

+ ρp (zo) ⊂ ΩT and u ≤ μ+ on Qρ,εμ3−m−p
+ ρp (zo),

we have
ess osc

Q ρ
2 ,γεμ3−m−p

+ ρp
(zo)

u ≤ ημ+. (8.9)

Furthermore, one of the following condition must hold in the cylinder Q ρ
2 ,γεμ

3−m−p
+ ρp (zo):

ess sup
Q ρ

2 ,γεμ3−m−p
+ ρp

(zo)
u ≤ (1 + η2 )μ+, (8.10a)

ess inf
Q ρ

2 ,γεμ3−m−p
+ ρp

(zo)
u ≥ (1 − η2 )μ+. (8.10b)

Proof. By Lemma 8.1 and the previous reasoning, (8.9) is valid with γ =min{2−p , ̃εε } and η =max{(34 )
1
β , 1−ξ},

where ε̃ and ξ are the constants appearing in (8.8). Furthermore, if (8.10a) fails, (8.9) shows that we must
have

ess inf
Q ρ

2 ,γεμ3−m−p
+ ρp

(zo)
u ≥ (1 + η2 )μ+ − ημ+ = (

1 − η
2 )μ+,

so that (8.10b) holds.

Lemma 8.3. There are constants c and ν depending only on m, n, p, C0, C1 such that for any weak solution u
and number μ+ > 0 for which Q32ρ,εμ3−m−p

+ ρp (zo) ⊂ ΩT and u ≤ μ+ on Qρ,εμ3−m−p
+ ρp (zo), we have

ess osc
Q
r,εμ3−m−p

+ rp
(zo)

u ≤ cμ+(
r
ρ)

ν
(8.11)

for all 0 < r ≤ ρ. Here, ε is the constant from Lemma 8.2.

Proof. Denote C := 2max{2, γ−
1
p }, where γ is the constant from Lemma 8.2 and define

μj+ := (
1 + η
2 )

j
μ+, ρj :=

ρ
Cj
.
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With these choices,
Qρ1 ,ε(μ1+)3−m−pρp1 (zo) ⊂ Q ρ

2 ,γεμ
3−m−p
+ ρp (zo),

and Lemma 8.2 guarantees that
ess osc

Qρ1,ε(μ1+)3−m−pρp1
(zo)

u ≤ ημ+

Furthermore, if we are in the case (8.10a), we have u ≤ μ1 onQρ1 ,ε(μ1+)3−m−pρp1 (zo) andwemay apply Lemma8.2
to this subcylinder instead to conclude that

ess osc
Qρ2,ε(μ1+)3−m−pρp2

(zo)
u ≤ ημ1+.

Also, Lemma 8.2 guarantees that one of the conditions of (8.10) holds with ρ replaced by ρ1 and μ+ replaced
by μ1+. If condition (8.10a) is true, we are again in a position to continue the iteration. Continuing in this way,
we see that as long as we stay in case (8.10a) at every step of the iteration we have

ess osc
Q
ρj ,ε(μ

j
+)

3−m−pρpj
(zo)

u ≤ ημj−1+ , (8.12)

ess sup
Q
ρj−1,ε(μ

j−1
+ )3−m−pρpj−1

(zo)
u ≤ μj−1+ . (8.13)

Either this estimate holds for every j ∈ ℕ, or there is a k ∈ ℕ such that (8.12) holds for all j ∈ {1, . . . , k} and

ess inf
Q ρk−1

2 ,γε(μk−1+ )3−m−pρpk−1
(zo)

u ≥ (1 − η2 )μ
k−1
+ = (

1 − η
1 + η)μ

k
+. (8.14)

We assume for now the existence of such a k and investigate its consequences. In the end we will show that
estimate (8.11) holds whether k exists or not. Since

ρk−1
2 =

C
2 ρk ≥ 2ρk , γε(μk−1+ )3−m−pρ

p
k−1 = γC

p(
2

1 + η)
3−m−p

ε(μk+)3−m−pρ
p
k

≥ 2p( 2
1 + η)

3−m−p
ε(μk+)3−m−pρ

p
k

> ε(μk+)3−m−p(2ρk)p ,

it follows from (8.14) and (8.13) with j = k that

(
1 − η
1 + η)μ

k
+ ≤ u ≤

2
1 + η μ

k
+ in Q2ρk ,ε(μk+)3−m−p(2ρk)p (zo).

Up to a translation in the time variable this is exactly the situation of Lemma 3.7 withM = μk+. By translation
we may assume that to = 0. Lemma 3.7 shows that the function

v(x, t) = (μk+)−1u(x, (μk+)3−m−p t), (x, t) ∈ Q2ρk ,ε(2ρk)p (xo , 0),

solves an equation of parabolic p-Laplace type, where the constants in the structure conditions only depend
on m, n, p, C0, C1. Applying Lemma 3.6 to v then shows that for all (x, t), (y, s) ∈ Qρk ,ε(ρk)p (xo , 0),

|v(x, t) − v(y, s)| ≤ c[ |x − y| + |t − s|
1
p

ρk
]
νo
,

where the constants c and νo only dependonm, n, p, C0, C1. Since the fraction in the last estimate is bounded
from above by 2 + ε

1
p , we see that for any 0 < ν ≤ νo we have

|v(x, t) − v(y, s)| ≤ c(2 + ε
1
p )νo−ν[
|x − y| + |t − s|

1
p

ρk
]
ν
< c(2 + ε

1
p )νo[
|x − y| + |t − s|

1
p

ρk
]
ν

for all (x, t), (y, s) ∈ Qρk ,ε(ρk)p (xo , 0). For the original function u this translates into

|u(x, t) − u(y, s)| ≤ cμk+[
|x − y| + (μk+)

m+p−3
p |t − s|

1
p

ρk
]
ν

(8.15)
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for all (x, t), (y, s) ∈ Qρk ,ε(μk+)3−m−pρpk
(zo) and 0 < ν ≤ νo. The constant c still depends only on m, n, p, C0, C1.

Now we are ready to prove (8.11). For this, take 0 < r ≤ ρ. Pick j ∈ ℕ0 such that

(
1 + η
2 )
(j+1) (3−m−p)

p ρ
Cj+1
< r ≤ (1 + η2 )

j (3−m−p)
p ρ

Cj
.

From the left inequality we can deduce that

ln[ rρ ] > ln[
1
C(

1 + η
2 )

3−m−p
p
] + j ln [1C(

1 + η
2 )

3−m−p
p
],

and with some further manipulations that

j > −1 − b ln[ rρ ], (8.16)

for some b > 0 depending only on m, n, C0, C1. Note that r < ρj and

εμ3−m−p+ rp ≤ ε(μj+)3−m−pρ
p
j ,

so
Qr,εμ3−m−p

+ rp (zo) ⊂ Qρj ,ε(μj+)3−m−pρpj
(zo).

If j ≤ k (or if k does not exist, which means that (8.12) is valid for all j), then (8.12) and (8.16) imply that

ess osc
Q
r,εμ3−m−p

+ rp
(zo)

u ≤ ημj−1+ =
2η
1 + η μ+[

1 + η
2 ]

j
< ημ+[

2
1 + η ]

2
[

2
1 + η ]

b ln[ rρ ]
= cμ+(

r
ρ)

ν1

for some positive constants c and ν1 depending only onm, n, p, C0, C1. Suppose now instead that j > k. Then
Qr,εμ3−m−p

+ rp (zo) ⊂ Qρk ,ε(μk+)3−m−pρpk
(zo) so from (8.15) we see that

ess osc
Q
r,εμ3−m−p

+ rp
(zo)

u ≤ cμk+[
2r + (μk+)

m+p−3
p ε

1
p μ

(3−m−p)
p
+ r

ρk
]
ν

= c(1 + η2 )
k
μ+[

2r + ( 2
1+η )

k (3−m−p)
p ε

1
p r

ρ
Ck

]
ν

≤ c[( 2
1 + η)

ν(3−m−p)
p −1

Cν]
k
μ+(

r
ρ)

ν
.

Observe now that the expression inside the square brackets can be made smaller than or equal to one by
taking ν ≤ ν2, where the upper bound ν2 depends only on C and η and hence only on m, n, p, C0, C1. Taking
now ν := min{ν1, ν2}, we finally have verified that (8.11) holds in all cases.

8.2 Hölder continuity

Using Lemma 8.9, we can now easily prove the local Hölder continuity.

Theorem 8.4. Let u be a weak solution in the sense of Definition 2.1. Let m and p be in the supercritical
range (1.4). Then u is locally Hölder continuous inΩT and the Hölder exponent depends only on m, n, p, C0, C1.

Proof. Let zo ∈ ΩT . Pick R > 0 such that the (n + 1)-dimensional closed ball B̄n+12R (zo) centered at zo is con-
tained in ΩT and define

μ+ = ess sup
B̄n+12R (zo)

u < ∞.

The number μ+ is finite since the range (1.4) is contained in the range (1.3) which according to Theorem 7.1
guarantees local boundedness. By picking a suitable representative of u, wemay assume that μ+ is the actual
supremum of u on the ball B̄n+12R (zo). We can now choose ρ > 0 so small that for all z ∈ B̄n+1R (zo), we have

Qρ,εμ3−m−p
+ ρp (z) ⊂ B̄

n+1
2R (zo), Q32ρ,εμ3−m−p

+ ρp (z) ⊂ ΩT .
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From the first condition it follows that u ≤ μ+ in every cylinder Qρ,εμ3−m−p
+ ρp (z) where z ∈ B̄

n+1
R (zo). Thus,

according to Lemma 8.3,
ess osc

Q
r,εμ3−m−p

+ rp
(z)
u ≤ cμ+(

r
ρ)

ν
(8.17)

for every r ∈ (0, ρ) and z ∈ B̄n+1R (zo). If in the above estimate we had the oscillation rather than the essen-
tial oscillation, we could now apply (8.17) to any pair of points that are sufficiently close to each other.
Since this is not case, we must first exclude a set of measure zero so that the different types of oscilla-
tion coincide. In order to ensure that we are only disregarding a set of measure zero, this should be done
only for a countable number of cylinders. We now make this idea precise. For every (z, r) in the count-
able set [B̄n+1R (zo) ∩ ℚ

n+1] × [(0, ρ) ∩ ℚ], there is a set Nzr ⊂ Qr,εμ3−m−p
+ rp (z) of measure zero such that for

all (y, s) ∈ Qr,εμ3−m−p
+ rp (z) \ N

z
r ,

ess inf
Q
r,εμ3−m−p

+ rp
(z)
u ≤ u(y, s) ≤ ess sup

Q
r,εμ3−m−p

+ rp
(z)
u.

Define N = ⋃(z,r) Nzr , and suppose that z1, z2 ∈ Bn+1R (zo) \ N. We may also assume that t1 ≤ t2. Suppose first
that z1 ∈ Qρ,εμ3−m−p

+ ρp (z2) ∪ (Bρ(x2) × {t2}). Then there is a sequence of numbers (zj) ⊂ Bn+1R (zo) ∩ ℚ
n+1 such

that zj → z2, tj ≥ t2, and z1 ∈ Qρ,εμ3−m−p
+ ρp (z

j) for all j ∈ ℕ. Define

̂rj := |x1 − xj| < ρ, ̃rj := (
|t1 − tj|
εμ3−m−p+

)
1
p
< ρ,

̂r := |x1 − x2| < ρ, ̃r := (
|t1 − t2|
εμ3−m−p+

)
1
p
< ρ.

Take now rj ∈ (max{ ̂rj , ̃rj}, max{ ̂rj , ̃rj} + 1
j ) ∩ ℚ such that rj < ρ. Then rj converges tomax{ ̂r, ̃r} =: r. Moreover,

z1 ∈ Qrj ,εμ3−m−p
+ rpj
(zj) \ N and also z2 belongs to this set for large j so

|u(z1) − u(z2)| ≤ ess osc
Q
rj ,εμ

3−m−p
+ rpj

(zj)
u

≤ cμ+(
rj
ρ )

ν
󳨀󳨀󳨀󳨀→
j→∞

cμ+(
r
ρ)

ν
≤ cμ+ρ−ν(|x1 − x2| + (

|t1 − t2|
εμ3−m−p+

)
1
p
)
ν
≤ C|z1 − z2|

ν
p ,

where the constant C depends on the data and ρ, μ+. Suppose now instead that z1 does not belong to the
set Qρ,εμ3−m−p

+ ρp (z2) ∪ (Bρ(x2) × {t2}). Then

|u(z1) − u(z2)| ≤
max{u(z1), u(z2)}
|z1 − z2|

ν
p
|z1 − z2|

ν
p ≤ μ+min{ρ, εμ3−m−p+ ρp}−

ν
p |z1 − z2|

ν
p .

Thus, we have verified that for all z1, z2 ∈ B̄n+1R (zo) \ N,

|u(z1) − u(z2)| ≤ C|z1 − z2|
ν
p (8.18)

for a constant C = C(m, n, p, C0, C1, μ+, R). (Note that ρ depends only on R, the data and μ+.) Since the set N
has measure zero, we can re-define u at every point of N as the unique limit guaranteed by (8.18) when
approaching the point through the set B̄n+1R (zo) \ N. In this waywe obtain a representative of uwhich satisfies
(8.18) for all points z1, z2 ∈ B̄n+1R (zo).

9 Harnack estimates
We conclude this paper considering the Harnack inequality for solutions of parabolic singular supercritical
equations. Such results were proved in [5] for equations of parabolic p-Laplace and porousmedium type. For
doubly nonlinear equations see [10] under more restrictive assumptions. Our method is based on the pattern
scheme of [7].

Let us state and prove some lemmas.
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Lemma 9.1 (Measure-to-point estimate). Let u ≥ 0 be a weak solution of (2.4). Suppose that

B16ρ(xo) × [to , to +M3−m−pρp] ⊂ ΩT .

Let μ ∈ (0, 1] and suppose that
|Bρ(xo) ∩ {u( ⋅ , to) ≥ M}| ≥ μ|Bρ(xo)|. (9.1)

Then there exist constants ξ, τ ∈ (0, 1) depending only on the data and μ such that

u ≥ ξM, in B2ρ(xo) × [to +
τ
2M

3−m−pρp , to + τM3−m−pρp].

Moreover, τ can be chosen arbitrarily small by decreasing ξ .

Proof. Assumption (9.1) and the fact that Bρ(xo) × [to , to +M3−m−pρp] is contained in the domain ΩT allow
us to apply Lemma 6.3 to conclude that there exists ϵ(μ) such that

|Bρ(xo) ∩ {u( ⋅ , t) ≥ ϵM}| ≥
μ
2 |Bρ(xo)| (9.2)

for all t ∈ (to , to + δM3−m−pρp). Here, δ = δ(data, μ) ∈ (0, 1) is the constant from Lemma 6.3. In order to
facilitate the latter part of the proof, we note that we may instead use δ = δ(data, μ2 ) which by the con-
struction in the proof of Lemma 6.3 is a smaller number. Note that (9.2) remains valid if we replace M
by any θM, where θ ∈ (0, 1]. Since B16ρ(xo) × [to , to +M3−m−pρp] is contained in the domain, we may
apply Theorem 6.4 with M replaced by ϵθM, α = μ2 and considering all s in (to , to + δM3−m−pρp) for which
s + δ(ϵθM)3−m−pρp) ≤ to +M3−m−pρp. Thus, we obtain

u ≥ ηϵθM in B2ρ(xo) × (to + (1 − ε)δ(ϵθM)3−m−pρp , to + δM3−m−pρp).

Here, η and ε only depend on the data and μ. For any τ ∈ (0, δ) we may thus first choose θ so small that

(1 − ε)δ(ϵθ)3−m−p < τ2

and then choose ξ = ηϵθ.

We now prove an alternative form of the reduction of the oscillation which will be convenient in the sequel.

Lemma 9.2 (Estimates of Hölder regularity). Let u be a weak solution of (2.4) in ΩT in the supercritical range.
Then for any S > 0 there exist constants C̄ > 0 and ᾱ > 0 depending only on S and the data such that if
Q32R,k3−m−pRp (zo) ⊂ ΩT for some k, R > 0, then

sup
QR,k3−m−pRp (zo)

u ≤ S k 󳨐⇒ osc
Qr,k3−m−p rp

u ≤ C̄k( rR)
ᾱ
, r ≤ R. (9.3)

Proof. Let ε be the constant from Lemma 8.2 and define the re-scaled function

v(x, t) = S−1u(x, to + ε−1t), (x, t) ∈ Q32R,εk3−m−pRp (xo , 0).

Then v satisfies an equation of type (2.4), where the constants appearing in the structure conditions depend
only on S and the data from the original problem. Furthermore,

sup
QR,εk3−m−pRp (xo ,0)

≤ k,

so Lemma 8.3 implies that for all r ∈ (0, R],

osc
Qr,εk3−m−p rp (xo ,0)

v ≤ c̃k( rR)
ᾱ
,

where c̃ and ᾱ only depend on S and the data of the original problem. Expressing this estimate in terms of u
and the original coordinates, we obtain the desired estimate with C̄ = c̃S.
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We will also use the following version of the expansion of positivity.

Lemma 9.3 (Expansion of positivity). There exists λ̄ > p
3−m−p and, for any μ > 0, c(μ), γ1(μ), γ2(μ) ∈ (0, 1)

depending only on μ and the data, such that if u ≥ 0 is a solution in B16R(0̄) × [0, k3−m−pRp], then

|Br(0̄) ∩ {u( ⋅ , 0) ≥ k}| ≥ μ|Br(0̄)|

󳨐⇒ inf
Bρ
u( ⋅ , k3−m−prp(γ1(μ) + γ2(μ)(1 − (

r
ρ)

λ̄(3−m−p)−p
))) ≥ c(μ)k( rρ)

λ̄
(9.4)

whenever r < ρ ≤ R. Here, γ1(μ) and γ2(μ) are so small that γ1(μ) + γ2(μ) ≤ 1, which guarantees that the time
level is contained in the interval k3−m−pRp. Moreover, the γi(μ) can be chosen arbitrarily small by lowering c(μ).

Proof. Suppose that the measure condition of (9.4) holds. Then, by Lemma 9.1, we have

u ≥ ξ(μ)k, in B2r(0̄) × [
τ(μ)
2 k3−m−prp , +τ(μ)k3−m−prp]. (9.5)

Denote ξ1 := ξ(1) and note that, since m + p < 3, we can suppose that

b1 := 2p ξ3−m−p1 ≤
1
2 . (9.6)

Consider first the case 2r ≤ R. We may now define

ρj := 2jr for all j ∈ ℕ such that ρj ≤ R,

τ1 := τ(1) ≤
1
7 .

Note that we are considering the case where at least ρ1 is defined. The bound on τ1 can be obtained due to
Lemma 9.1. This might require shrinking ξ1, but this does not violate the bound on b1. We define recursively

t0 =
τ(μ)
2 k3−m−prp , tj+1 = tj +

τ1
2 (ξ(μ)kξ

j
1)

3−m−pρpj+1.

From (9.5) it follows that |Br(0̄) ∩ {u( ⋅ , t0) ≥ ξ(μ)k}| = |Br(0̄)|. Hence, we may apply Lemma 9.1 with μ = 1
repeatedly and obtain

u ≥ ξ(μ)ξ j1k in Bρj+1 × [tj , tj +
τ1
2 (ξ(μ)kξ

j−1
1 )

3−m−pρpj ] (9.7)

for all integers j ≥ 1 such that ρj ≤ R, provided that the end time of the cylinder in (9.7) does not exceed
k3−m−pRp. In fact, this cannot happen, since an explicit calculation shows that for all integers N ≥ 1,

tN =
τ(μ)
2 k3−m−prp + τ12 k

3−m−pξ(μ)3−m−prp2p
N−1
∑
j=0

bj1

≤ k3−m−pRp τ12 (1 + 2
p 1 − b

N
1

1 − b1
)

≤ k3−m−pRp5τ1, (9.8)

where in the first step we used the fact that ξ(μ) ≤ ξ1 < 1 and τ(μ) ≤ τ1. Thus, we have

tN +
τ1
2 (ξ(μ)kξ

N−1
1 )

3−m−pρpN ≤ tN + k
3−m−pRp2τ1 ≤ k3−m−pRp7τ1 ≤ k3−m−pRp ,

which means that the cylinders are all contained in the domain of u. From (9.6) we infer

tj +
τ1
2 (ξ(μ)kξ

j−1
1 )

3−m−pρpj ≥ tj+1,

and thus (9.7) implies that

u ≥ ξ(μ)( rρj
)
λ̄
k in Bρj+1 × [tj , tj+1],
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where λ̄ = − log2 ξ1 >
p

3−m−p . Using the first line of (9.8), we can re-write tN as

tN = k3−m−prp[
τ(μ)
2 +

2p−1τ1ξ(μ)3−m−p
(1 − b1)

(1 − bN1 )]

= k3−m−prp[γ1(μ) + γ2(μ)(1 − (
r
ρN
)
λ̄(3−m−p)−p

)].

For an arbitrary ρ ∈ [r, R] we now choose the smallest integer N such that ρ ≤ 2N+1r. But this means that

ρN = 2N r ≤ ρ ≤ R.

Thus, we may conclude that

u ≥ ξ(μ)( rρN
)
λ̄
k ≥ ξ(μ)( rρ)

λ̄
k = c(μ)( rρ)

λ̄
k in Bρ × [tN , tN+1].

It now suffices to note that since ρN ≤ ρ ≤ ρN+1,

[tN , tN+1] ∋ k3−m−prp[γ1(μ) + γ2(μ)(1 − (
r
ρ)

λ̄(3−m−p)−p
)].

By the definitions it is clear that γ1(μ) and γ2(μ) can be made arbitrarily small by lowering c(μ). It only
remains to consider the case that 2r > R. But in this case a bound of the correct form follows already from
(9.5) since r < ρ < 2r.

Since we are considering the super-critical range, Theorem 7.2 holds with r = 1. Combining this result with
the L1-Harnack estimate of Theorem 5.1, we immediately obtain the following lemma.

Lemma 9.4. Let u be a solution to (2.4) for some m, p satisfying (1.4) and suppose that Q̄4ρ,2τ(zo) ⊂ Ω × [0, T).
Then

sup
Qρ,τ(zo)

u ≤ cτ−
n
λ [ inf

t∈[to−2τ,to]
∫

B4ρ(xo)

u(x, t)dx]
p
λ

+ c( τρp )
1

3−m−p
,

where λ = p + n(m + p − 3) and the constant c only depends on m, n, p, C0, C1.

Hereweare able to use the actual infimumand supremumrather than their essential equivalents, sincewe are
considering the continuous representative of u. Similar results havebeen shownpreviously in [5, AppendixA]
for the p-Laplacian with p < 2 and in [10] for singular doubly nonlinear equations under more restrictive
assumptions.

Now we are ready prove the final result of this paper. For simplicity, we have opted to formulate and
prove the theorem for a cylinder centered at the origin, but obviously the result is translation invariant. Note
that since an infimum can only increase when passing to a smaller set, we could replace the ball in the right
estimate in (9.10) by BR/4(0̄), so that the supremum and infimum are taken over the same ball.

Theorem 9.5 (Harnack inequality). Let u ≥ 0 solve (2.4) for some m, p satisfying (1.4), in a domain containing
B34R(0̄) × [−T, T]. Suppose that u(0, 0) > 0 and

4 Rp sup
B2R(0̄)

u( ⋅ , 0)3−m−p ≤ T. (9.9)

Then there exist constants C̄ ≥ 1, θ̄ > 0 depending only on the data such that

C̄−1 sup
BR/4(0̄)

u( ⋅ , s) ≤ u(0, 0) ≤ C̄ inf
BR(0̄)

u( ⋅ , t) for −θ̄u(0, 0)3−m−pRp ≤ s, t ≤ θ̄u(0, 0)3−m−p Rp . (9.10)

Proof. In the cylinder B34(0̄) × [−T󸀠, T󸀠], where T󸀠 = T R−p u(0, 0)m+p−3, the function

v(x, t) = u(0, 0)−1 u(R x, Rp u(0, 0)3−m−p t)

satisfies a doubly singular equation with the same structure conditions as the original equation. With these
definitions, (9.9) implies

1 ≤ M3−m−p := sup
B1(0̄)

v( ⋅ , 0)3−m−p ≤ T
󸀠

4 , (9.11)



V. Vespri and M. Vestberg, Regularity of solutions to doubly singular equations | 37

where the left inequality follows from the fact that v(0̄, 0) = 1. We first prove the inf bound in (9.10). Let
λ̄ > p

3−m−p be the expansion of positivity exponent, define ψ(ρ) = (1 − ρ)λ̄ supB̄ρ v( ⋅ , 0) for ρ ∈ [0, 1] and
choose ρ0 ∈ [0, 1], xo ∈ B̄ρ0 (0̄) such that

max
[0,1]

ψ = ψ(ρ0) = (1 − ρ0)λ̄ v0, v0 = v(xo , 0) ≥ 1.

Let ̄ξ ∈ [0, 1) be the unique number such that (1 − ̄ξ )−λ̄ = 2. Setting r = ̄ξ (1 − ρ0), we have

v0 rλ̄ = ψ(ρ0) ̄ξ λ̄ ≥ ̄ξ λ̄ , (9.12)

where we used the fact that ψ(ρ0) ≥ ψ(0) = 1. Furthermore, we may estimate

sup
B̄r(x0)

v( ⋅ , 0) ≤ (1 − [ ̄ξ (1 − ρ0) + ρ0])−λ̄(1 − [ ̄ξ (1 − ρ0) + ρ0])λ̄ sup
B̄ ̄ξ(1−ρ0)+ρ0 (0̄)

v( ⋅ , 0)

= (1 − ̄ξ )−λ̄(1 − ρ0)−λ̄ψ( ̄ξ (1 − ρ0) + ρ0)

≤ (1 − ̄ξ )−λ̄(1 − ρ0)−λ̄ψ(ρ0)

= (1 − ̄ξ )−λ̄v0
= 2 v0. (9.13)

Let a := v3−m−p0 rp. By construction v0 ≤ M and by (9.11), Br(xo) × [−4a, 4a] is contained in the domain of v.
Thus we can apply Lemma 9.4 to conclude that

sup
B r

4
(xo)×[−a,a]

v ≤ c
a

n
n(m+p−3)+p

( ∫
Br(xo)

v(x, 0) dx)
p

n(m+p−3)+p

+ ca
1

3−m−p r
p

m+p−3

≤ c (2v0r
n)

p
n(m+p−3)+p

(v3−m−p0 rp)
n

n(m+p−3)+p
+ cv0 ≤ cv0, (9.14)

where we used (9.13) to bound the integral. The constant c depends only on the data. Since a = v3−m−p0 rp,
we can apply (9.3) with k = v0, and taking S to be the constant c from the last line of the previous estimate,
in both Br/4(xo) × [−v3−m−p0 ( r4 )

p , 0] and Br/4(xo) × [v3−m−p0 ρp − v3−m−p0 ( r4 )
p , v3−m−p0 ρp] for any ρ ≤ r

4 to get

osc(v, Bρ(xo) × [−v3−m−p0 ρp , v3−m−p0 ρp]) ≤ c̄v0(
ρ
r )

ᾱ
, ρ ≤ r4 ,

where the constants c̄ and ᾱ only depend on the data. This estimate also relies on the fact that B8r(xo)×[−a, a]
is contained in B8 × [−T󸀠, T󸀠], and hence in the domain of v. As v(xo) = vo, we infer that

v ≥ vo2 in Bη̄r(xo) × [−η̄pa, η̄pa]

for some suitable η̄ ∈ (0, 1/4) depending only on the data. Thus,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Br(xo) ∩ {v( ⋅ , t) ≥

v0
2 }
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥ η̄n|Br(xo)|

for all |t| ≤ v3−m−p0 η̄p rp. For any such time, the cylinder B32(xo) × [t, t + ( v02 )
3−m−p2p] is contained in the

domain of v, so we may apply Lemma 9.3 with k = v02 and R = ρ = 2. Choosing the γi(η̄n) so small that
γ1(η̄n) + γ2(η̄n) < η̄

p

2 , its conclusion implies, thanks to B2(x0) ⊇ B1,

inf
B1
v( ⋅ , t + γrv3−m−p0 rp) ≥ c̄v0rλ̄ , γr := γ1(η̄n) + γ2(η̄n)(1 − (

r
2)

λ̄(3−m−p)−p
) <

η̄p

2

for all |t| ≤ η̄pv3−m−p0 rp. The latter readily gives v(x, t) ≥ c̄v0rλ̄ for x ∈ B1 and |t| ≤ η̄pv3−m−p0
rp
2 . Finally, observe

that since r ≤ 1 and λ̄ ≥ p
3−m−p , it holds

v3−m−p0 rp ≥ (v0rλ̄)3−m−p ,

so that (9.12) yields v(x, t) ≥ c̄ ̄ξ λ̄ =: 1
C̄ for x ∈ B1 and |t| ≤ η̄

p ̄ξ λ̄(3−m−p)

2 =: θ̄. Expressing this in terms of u, we
obtain the estimate for the infimum in (9.10).
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To prove the bound for the supremum, we proceed similarly. Indeed, let x∗ ∈ B̄R(0̄) be such that
u(x∗, 0) = supB̄R(0̄) u( ⋅ , 0) and define the rescaled translated function

w(x, t) = u(x∗, 0)−1u(x∗ + Rx, Rpu(x∗, 0)3−m−p t), (x, t) ∈ B65(0̄) × [−T̃, T̃],

where T̃ = R−pu(x∗, 0)m+p−3T. Proceeding as before, we obtain that w(x, t) ≥ 1
C̄ for x ∈ B̄1(0̄) and |t| ≤ θ̄.

Writing this estimate in terms of u we see that

u(x, t) ≥ u(x∗, 0)
C̄

, x ∈ B̄R(x∗), |t| ≤ Rpu(x∗, 0)3−m−p θ̄.

Noting that 0̄ ∈ B̄R(x∗), and taking into account the definition of x∗ we obtain

C̄−1 sup
B̄R(0̄)

u( ⋅ , 0) ≤ u(0̄, 0). (9.15)

Since u is a solution on B̄R(0̄) × [−H, H] with H = 4Rpu(0̄, 0)3−m−p, we can combine (9.15) and Lemma 9.4
(with to = H4 and τ = H2 ) to conclude similarly as in (9.14) that

sup
BR/4(0̄)×[− H4 ,

H
4 ]
u ≤ cu(0̄, 0),

which concludes the proof.
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