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1 Introduction

This work is concerned with the regularity properties of weak solutions to doubly nonlinear equations whose
model case is
o = V- ™ [VulP?Vu) =0 inQr := Q x (0, T), (1.1)

where Q ¢ R" is an open bounded set, and the parameters m and p are restricted to the range
pe(1,2), m>1, and 2<m+p<3. (1.2)

The term doubly nonlinear refers to the fact that the diffusion part depends nonlinearly both on the gradi-
ent and the solution itself. This kind of equations describe several physical phenomena and were introduced
by [16] (see also the nice survey by Kalashnikov [14]). Moreover, these equations have an intrinsic mathe-
matical interest because they represent a natural bridge between the more natural generalizations of the
heat equation: the parabolic p-Laplace and the Porous Medium equations.

Especially in recent years, many papers have been devoted to this topic. The approaches are sometimes
not rigorous, sometimes not with sharp assumptions or with unnecessarily long proofs. The natural definition
of weak solutions is obtained from (1.1) by a formal application of the chain rule and requires that a certain
power of u (rather than u itself) has a weak gradient. This is perhaps the most delicate point: too many papers
devoted to this topic do not take this aspect into account carefully, and use incorrect approximations or non-
admissible test-functions. For more details, we refer the reader to Section 2.

Analogously, some results presented below, such as the L!-Harnack inequality and the expansion of
positivity have been obtained previously under the assumption that the function u itself has weak gradient,
see [8] and [9]. While the existence of a locally p-integrable gradient could be justified by the reasoning

*Corresponding author: Matias Vestberg, Department of Mathematics and Systems Analysis, Aalto University,
P. 0. Box 11100, 00076 Espoo, Finland, e-mail: matias.vestberg@aalto.fi

Vincenzo Vespri, Dipartimento di Matematica ed Informatica “Ulisse Dini”, Universita degli Studi di Firenze,
Viale Morgagni 67/a, 50134 Firenze, Italy, e-mail: vincenzo.vespri@unifi.it


https://core.ac.uk/display/429554039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 —— V. Vespriand M. Vestberg, Regularity of solutions to doubly singular equations DE GRUYTER

in [13, Section 5], we have showed that the strategies developed in [8] and [9] are applicable also without
making reference to Vu. But we do not limit ourselves to fix this aspect. We go through the regularity theory
and we use a unified approach giving shorter and different proofs with respect to the ones known in literature.
In this way, a reader can have a self-contained overview of the theory of doubly nonlinear singular parabolic
equations. We obtain different results under various ranges for the parameters. The time continuity, mollified
weak formulation, energy estimates, expansion of positivity and L!-Harnack inequality are obtained in the
full range (1.2). Local boundedness of weak solutions is shown in the smaller range

p

. 1.3
(D) 4

m+p>3-
We recall that this range is sharp. In the special case m = 1, (1.1) becomes the singular parabolic p-Laplace
equation. Then condition (1.3) and the integrability required of u in Definition 2.1 below reduce to p > %
and u € L?, respectively, which are well-known sharp conditions to guarantee local boundedness for this
equation, see for example [4, Chapter V].
The local Holder continuity will be proved only in the so-called supercritical range

m+p>3—%. (1.4)

Note that (1.4) is a stricter condition than (1.3). We decided that it was too dispersive for the reader to prove
Holder continuity also in the sub-critical case because it requires a slightly different approach (and assump-
tions). In the last section, we prove Harnack estimates in the supercritical range. Note that, as proven in [5]
for the p-Laplacian, this result is sharp.

2 Setting and definition of solutions

In order to motivate the natural definition of weak solutions, we reformulate (1.1). Formally applying the
chain rule, we can write the equation in the form

oiu — V- (BP VP P-2vuf) = 0, (2.1)
where I
=1 1. 2.2
Bi=lr 1> (2.2)
For later reference we note that (1.3) can be expressed conveniently in terms of 8, p and n as
p(B+1)
—— >n. (2.3)
1-Bp-1)

We will prove our result not only for solutions to (2.1), but for all equations of the form
du-V-Ax, t,u, vuf) =0, (2.4)
where A(x, t, u, &) is a vector field satisfying

|A(X1 t,u, '{)' < Cll{lp_l (2.5)
A(X) ts usé’)'gz C0|€|p (26)

An example of an equation that satisfies these conditions is

n
du— Y (ay(x, OB PIVUPIP 2l ), =0 inQr:=0Qx(0,T),
i,j=1
where the coefficients a;j are bounded and measurable and where the matrix (a;;(x, t));f i=1 is positive definite
uniformly in (x, t). We arrive at the definition of weak solutions by multiplying (2.4) by a smooth test function
and integrating formally by parts.
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Definition 2.1. A function u: Q7 — R is a weak solution to (2.4) if and only if u > 0, uf € LP(0, T; W1P(Q)),
u e LA1(Qr) and
”A(x, t,u,Vuﬂ)~V(p—uat(p dxdt=0 2.7)
Qr
forall ¢ € C3°(Qr).

Remark 2.2. The extra integrability condition u € LF*1(Qr) is made to justify a test function containing u®.
The condition is needed since we are considering the fast diffusion case, in which p < 8 + 1. By contrast, in
the slow diffusion case m + p > 3 which is not considered in this article, the inequality holds in the reverse
direction, which means that no additional integrability is needed. For explicit calculations illustrating this
point, consider the flat case of the equation studied in [18] and [19]. Earlier works treating the slow diffusion
case (although not necessarily with the same definition) are [17] and [12].

3 Preliminaries

Here we introduce some notation and present auxiliary tools that will be useful in the course of the paper.

3.1 Notation

With B, (x,) we denote the open ball in R" of radius p centered at x,, and the corresponding closed ball is
denoted Bp(xo). Furthermore, we use the notation Qp, ¢(z,) := By(x,) x (t, — 0, t,) for space-time cylinders,
where z, := (X,, to) € Q7. For w, v > 0 we define

Bl WP WPy —whv —w) = I%(Wﬂﬂ —vB —vwh —vP), G5.1)

blv, w1t := b[v, WlX(w,00)(V),

blv, w] :=

where S is defined by (2.2). For any real-valued essentially bounded function g defined on a measurable set
E ¢ R™! we define its essential oscillation in E as

€SS0sC g :=esssup g — ess infg.
E E E

The oscillation oscg g of a bounded function g is defined analogously, using the ordinary supremum and
infimum. The parameters Cg, C1, m, n, p will collectively be referred to as the data.

3.2 Auxiliary tools

We now recall some elementary lemmas that will be used later, and start by defining a mollification in time
asin [15], seealso [2]. For T > 0, t € [0, T], h € (0, T) and v € L}(Qr) we set

Va(x, t) :=

= -

t
Je%v(x, s)ds. (3.2)
0

Moreover, we define the reversed analogue by

= -

T
V(X t) := JeFTsv(x, s)ds.

t

For details regarding the properties of the exponential mollification we refer to [15, Lemma 2.2], [2, Lem-
ma 2.2], [20, Lemma 2.9]. The properties of the mollification that we will use have been collected for
convenience into the following lemma.
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Lemma 3.1. Suppose that v € L'(Qr), and let p € [1, co). Then the mollification vy, defined in (3.2) has the
following properties:
(1) Ifv e LP(Qr), thenvy € LP(Qr),

Vil < IVIrar)s
and vy — vin LP(Qr).
(ii) In the above situation, vy, has a weak time derivative d,vy on Qr given by
1
ovp = —(v—vp),
tVh h( h)

whereas for v;: we have

1
O¢vy = E(vﬁ -V).

(iii) If v € LP(0, T; WY-P(Q)), then vy, — v in LP(0, T; WYP(Q)) as h — 0.
(iv) Ifv € LP(0, T; LP(Q)), then vy, € C([0, T]; LP(Q)).

The next lemma provides us with some useful estimates for the quantity b[v, w] that was defined in (3.1). The
proof can be found in [1, Lemma 2.3].

Lemma 3.2. Let v, w > 0 and 8 > 1. Then there exists a constant c depending only on f3 such that:
@ %Iwﬁ%1 V2 <oy, w] < cwT v,

(i) Liwh A2 < (wﬁ-lﬂx vBDb[v, w] < clwh - VA2,

(iii) b[v, w] < c|vf — wh| 7.

Next, we recall a well-known parabolic Sobolev inequality, which can be found for example in [4].

Lemma 3.3. Letz, = (Xo, to) € R™! and 6 > 0. Suppose that q > 0, p > 1. Then for every
U € L®(to - 6, to; L1(By(x0))) N LP(to - 0, to3 Wy (Br(x0)))

we have
D
n

” [uP+D dx de < c( ess sup I lul9 dx ” |Vul? dx dt
te(t,—0,t,)

Qr6(20) By (x0)x{t} Qr6(20)
for a constant ¢ = c(n, p, q).
The following lemma can be proved using an inductive argument, see for example [11, Lemma 7.1].
Lemma 3.4. Let (Y,-)]f’jo be a positive sequence such that
Yji1 < CHY]T,
where C,b > 1and 6 > 0. If
Yo<Ciba,
then (Y;) converges to zero as j — oo.
A form of the following lemma was originally proved by De Giorgi [3], see also [4].

Lemma 3.5. Letv ¢ Wl’l(Bp(xo)) for some p > 0 and x, € R". Let k and 1 be real numbers such that k < l.
Then there exists a constant ¢ depending only on n (and thus independent of k, 1, v, x, and p) such that for any
representative of v, we have

Cpn+1

[{x € Bp(xo) : v(x) < k|
{k<v<l}nB,(x,)

(I-I)l{x € Bp(xo) : v(x) > I}| < [Vv|dx.
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The following lemma is a special case of [4, Theorem 1.1 in Section IV.1].

Lemma 3.6. Let1 < p < 2 and suppose thatv € LP(0, T; WHP(Q)) n L®(Qr) is a weak solution to the equation
ov—-V-(A(x, t,v,Vv)) = 0,
where A satisfies the structure conditions

IA(x, t,v,&)| < C11&P?
Ax, t,v, &) - & = ColéIP.

Then v is locally Holder continuous in Qr and there are constants ¢ > 1 and v € (0, 1) depending only on
n, p, Co, C1 such that for any subset K ¢ Qt, compactly contained in Q x (0, T], we have for all (x, t), (y,s) € K
that

2-p

=£ 1
"V"Lf;o(g )|X—)’| + |t_ S|17 v
v(x, t) = v(y, )| < cllvlire ( L ) ,
y ( T) dp(K)
where
. = 1
dp() = inf (Wl g b~y + 1t =s17).

(y,5)€0,Qr

The next lemma shows that weak solutions to (2.4) which are bounded from below and above by positive
constants are in fact also solutions to an equation of parabolic p-Laplace type (in the case M = 1). It also
investigates how solutions are affected by re-scaling.

Lemma 3.7. Let A satisfy the structure conditions (2.5) and (2.6) and suppose that u is a weak solution to (2.4)
in the cylinder Bgr(x,) x (0, M>~™PT). Suppose furthermore that

BoM <u<fBiM, (3.3)
for some positive constants o, 1. Then the function
v(x, t) = M u(x, M>"™Pt),  (x,t) € Br(Xo) x (0, 7),
has a weak p-integrable gradient, and is a weak solution in Br(x,) x (0, T) to the equation
0v—V-(A(x, t,Vv)) =0, (3.4)

where
A(x, t, &) := M2 PA(x, M>™Pt, Mv(x, t), BMPVE1(x, t)¢).

The vector field A satisfies the structure conditions
~ 1 p(B-1)®-1), pp—
A, t, O] < C1pr BLVE Vgt
~ _1p(B-1)(p-1
A, t,8)- €2 CopP LBy V0,
where Cy and C; are the constants appearing in the structure conditions (2.5) and (2.6).

Proof. The bounds on u show that the chain rule holds in the following form:
Vu = Vub)i = B rutPvub. (3.5)

Note especially that the lower bound on u guarantees that u'~# stays bounded despite the negative exponent.
From these observations it follows that also v has a weak gradient which is p-integrable. By a change of
variables in the time variable in the weak formulation (2.7), and by taking note of (3.5), one can see that v
satisfies (3.4) weakly. The structure conditions for A follow from the corresponding conditions satisfied by 4,
and the bounds (3.3). O
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3.3 Continuity in time and mollified weak formulation

In this subsection we show that weak solutions are continuous in time as maps into Lﬁ:cl(ﬂ). The proof is
adapted from [20]. We start with a lemma.

Lemma 3.8. Suppose that u is a weak solution in the sense of Definition 2.1 and define
B+
V= {we IFQr) s wP € (0, T; WHP(Q)), owh ¢ L7 (Qp)).
Then, for every { € C3°(Qr, Ryo) and w € V we have

” 306w, w] dx dt = ” A, t, u, VuP) - V[P - wh)] + (oowh(u - w) dxdt. (3.6)
QT QT
Proof. Letw €V, { € C°(Qr, Ry0) and choose
@ = WP - [uP]p)
as test function in (2.7). Our goal is to pass to the limit h — 0. It follows from Lemma 3.1 (iii) that
ﬂ A(x, t,u, VuP) . v dtdt — ﬂ Ax, t,u, VuP) . vi{wP - uP)] dxdt.
QT QT
Note that Lemma 3.1 (ii) implies
(WP1] - w)o Py < 0,

which shows that we can treat the parabolic part as follows.

” uoep dxdt = ” (uatwﬁ dxdt - ” ([uﬁ]éat[uﬁ]h dxdt

Qr Qr Qr
+ ” (([uﬂ]}% —u)o [uPlp dxdt + ” oru(wh — [uP1y) dx dt
QT QT
B+1
< ” Cudwh dx dt + ” ﬁf 0Tl drde+ ” 3 Cu(wP — [uP1y) dx dt

Qr Qr Qr

- oot (5 st
Qr Qr

_ B . , ,
y WP (u - w) dxdt y 3:(b[u, wl dx de

This shows “<” in (3.6). The reverse inequality can be derived in the same way by taking
¢ = WP - V1)
as test function. O

Theorem 3.9. Let u be a weak solution in the sense of Definition 2.1. Then u € C([0, T]; Lﬁ”(Q)).

loc

Proof. We prove continuity on the interval [0, %T] and describe later how the argument can be modified t9
show continuity also on [% T, T], thus completing the proof. We first note that due to Lemma 3.1, w := ([uf] AL
belongs to the set of admissible comparison f}mctions V of Lemma 3.8. Furthermore, since Lemma 3.1 (iv)
guarantees that w? is continuous [0, T] — L # (Q) and since

wx, s) - wix, OFF < [whix, s)— whix, 01 = [Pl s) — Wl 00 61 F

we see that w is continuous [0, T] — LF*1(Q). We will show that u is essentially the uniform limit on the time
interval [O, % T] of the functions w as h — 0, and the continuity will follow from this. For a compact set K ¢ Q
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we take 7 € C3°(Q; [0, 1]) such that n = 1 on K and |Vn| < Ck. Furthermore, take 3 € C*([0, T]; [0, 1]) with
Y=1on|[T, 3T, =00n[3T, T]and [§’'| < §.For7 € (0, 3T) and £ > O so small that 7 + £ < 3 T we define

0, t<T,
Xe)=4e(t-1), telr,T+e],

1, t>1+e€.

We use (3.6) with { = nyZy and w = ([uﬁ];[)/l? to obtain
T+E
el J J’ blu, windxdt = ” Ax, t, u, VuP) - VP - wh)xZy dx dt
T Q or

T By _ _ !
+(J;Jn)(81/)atw (u-w)dxdt E‘Jb[u,w]mp dx dt

< ” |A(x, t, u, VuP)|(IVuP - V[uP1;| + [Vnllub - [uPlR)) dxde + % ” bu, w] dxdt.

Q Qr

Here we were able to drop the term involving dwP since Lemma 3.1 (ii) shows that the factors o,w? and
(u — w) are of opposite sign, and hence their product is nonpositive. Passing to the limit € — 0 we see that

J blu, wi(x, T)dx < Ck ” |A(x, t, u, VuP)|(IVuf — VIuP5] + [uP - [WP];]) dxdt + % ” blu, wldxdt (3.7)
K Qr Qr

for all T € [0, 1 T] \ Ny, where Ny, is a set of measure zero. Note that the integrand on the left-hand side can
be estimated using Lemma 3.2 (ii) and the fact that 8 > 1 as follows:

B+1 B+1 B+1
lu-wht = (u-wl7)? <|u7 —w= > <cblu, wl.

For the term on the last line of (3.7) we can use Lemma 3.2 (iii) to make the estimate

B+
B

blu, w] < cluf — [WP1;| T = cluf — (WPl [uP - [wP1;| < cu+ (WP1R) )P — [P,

The first factor stays bounded in LA*! as h — 0 and the second factor converges to zero in Lﬂ% as h — 0.
The fact that |A(u, VuP)| € Lp'(QT) combined with Lemma 3.1 (iii) show that also the first integral on the
right-hand side of (3.7) converges to zero as h — 0. Picking now a sequence h; — 0 and w; = ([uP] ;l],)/% and
N := UNy, (which has measure zero) we see that (3.7) combined with the previous observations implies

lim sup J lu - wjP*(x, 7)dx = 0. (3.8)

J=0re(0,3TIW ¢

Asnoted earlier, each wj is continuous as amap [0, T] — LB*1(K) so the uniform limit (3.8) shows that u has a
representative which is continuous on [0, % T] \ N.Bythedensity of this setin [0, % T], we find arepresentative
of u which is continuous [0, 3 T] — LA*1(K). The continuity on [% T, T] follows from a similar argument with
w = ([uP ]h)% and with ¥ and xZ mirrored on the interval [0, T] under themap t — T - t. O

Now that we have established the continuity in time it is possible to show that weak solutions in the sense of
Definition 2.1 satisfy a mollified weak formulation.

Lemma 3.10. Let u be a weak solution in the sense of Definition 2.1. Then we have
” [AGx, - 1, VP - Vb + dpunch dx i — J u(x, 0)py (x, 0) dx = 0 (3.9)
Q7 Q

for all ¢ € C*(Q x [0, T]) with support contained in K x [0, 7] ,where K c Q is compact and 7 € (0, T). Here
u(x, 0) refers to the value at time zero of the continuous representative of u as a map [0, T] — LF+1(K).
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Proof. Consider the piecewise smooth function

and use (2.7) with the test function ¢ = n.¢;. Taking the limit ¢ — 0 and using Fubini’s theorem we see that
the elliptic term will converge to the integral of [A(x, -, u, VuP)]p - V¢. Note now that

U uor(nepy) dx dt = ” un, ¢ﬁh_ ¢ dxdt + &1 Jg j ugy dx dt.

QT QT 0Q

In the first term we can pass to the limit ¢ — 0, use Fubini’s theorem and Lemma 3.1 (ii) to obtain the integral
of o¢up@. It remains to investigate what happens to the last term in the limit € — 0. Note that we can write
this term as

& & €

el j j ug dxde = £ J J u(x, Oy (0) dxdt + €71 J J u(x, [y - $(0)] dxdt.

0K 0K 0K
The second term on the right-hand side converges to zero since ¢y, is uniformly continuous and [[u(#)l|zs+1(x)
is bounded independent of t. The first term on the right-hand siﬂglle converges to the second integral on the
left-hand side of (3.9) since u € C([0, T]; LF*1(K)) and ¢5(0) e L7 (Q). O

4 Energy estimates

Here we discuss various energy estimates. We begin by showing that the assumptions on u made in Defini-
tion 2.1 allow suitable choices of test functions in the mollified weak formulation. This is a crucial step in
obtaining a rigorous proof for the energy estimates.

We want to use test functions involving (uf — kf), for some k > 0. Since these functions have a p-
integrable gradient, they automatically fit with the elliptic term in (3.9). The minimal integrability of u
which justifies the test function becomes apparent from the diffusive part of the mollified weak formulation:
Ifu € L9 then d:up € L9 and (uf — kP), ¢ L. These exponents should be at least dual exponents so we need

1 1 1
—+7§ 5

B
which is equivalent to g >  + 1. This is exactly the integrability we required in Definition 2.1.
We now show the energy estimate for solutions according to Definition 2.1.

Lemma 4.1. Let u be a weak solution in the sense of Definition 2.1. Then

[[ 17?19 dxde + esssup [ blu, Kixiues.o0 970 7) dx

7€(0,T]
Q7 Q
<C ”(uﬁ — KPPVl dxdt + C ” blu, KlXiw_i.0) 1P| dx dt (4.1)
Qr Qr

for all smooth ¢ > 0 defined on Qr, vanishing for x outside a compact K c Q and for all times less than some
6 > 0. The constant C only depends on the data.

Proof. We prove the case for the positive part. The case for the negative part is similar. We use the molli-
fied weak formulation (3.9) with the test function ¢ = (u? — kf), pP&; . where ¢ is as in the statement of the
lemma and & ;¢ is defined as
1, t<T,
Get)y:=31-eYr-0), telr,T+¢€], (4.2)

0, t>T+e€.
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Even though ¢ is nonsmooth, it is still an admissible teﬁst function since we can find a sequence of functions
¢; € C°(Qr) converging to ¢ in LP(0, T; W1 P(Q))nLF (Qr). Our goal is to make some estimates in (3.9)
and pass to the limit h — 0 and then € — 0. We first show that the term involving the initial value vanishes
in this process. Taking into account the support of ¢, we have

J u(x, 0)¢(x, 0) dx = ” u(x, 0)h e m(x, t) dxdt =
Qr

Q

O e, 1

J u(x, 0)h e i (x, t) dxdt
Q

< J I u(x, 0)867t e‘%>¢(x, t)dxdt m o,
50

due to the dominated convergence theorem. The elliptic term can be treated using Lemma 3.1 (i) as
”[A(x, U, Vuﬂ) -Vepdxdt —O> ”A(x, t,u,Vuﬁ)-Vq,') dx dt
QT QT

— ”A(X, t,u, VuP) . v{uf - kﬂ)+<Pp] dxdt.
£
Qr

We now calculate

Ve - (pp&’g)({”k}vuﬂ +p(uﬂ - kﬂ)+{r,£(Pp71V(P.

From the properties of the vector field, here denoted only A(u, Vuf) for brevity, and Young’s inequality we
obtain

A, Vul) - V[P - kP), 9P = Au, ViP) - Viby g P + A(u, VuP) - v(pP) (WP - iP),
> c|Vuﬂ|px{u>k}goP — |AGu, VuP)|IVolpePt (uf - KP),
> c|VUub Pxusig P — clVuP PP L (uf — KkP), Vo)
> VUl Pxsige? - cuf - B velP.

Using Lemma 3.1 (ii) and the fact that s — (sP - KkP), is increasing, we can treat the diffusion term as

dutng = (X010 — k), = ([un)? ~ k), 1976, + Oeun((unlf - k). 97 r,e
> 0/G(un)pPér e,
where .
6(w) = [ (6" - k). ds = blu, KiXuon- (4.3)
0

The chain rule works in our case since Lemma 3.1 guarantees that both uj and osuy, are in LF+1(Qr). Thus,
we may estimate

” deund dxdt > ” 3G(up) P& ¢ dx dt

Qr Qr

. ” Gun)oe(@P%,.¢) dxdt
Qr
S (g GW)dr(@PEr) dxde = - (g GO Er e dxdt + 71 Tjsl G(w)p? dxdt

s ” G(u)deg? dxdt + J GP(x, 7) dx,

E—

Q, Q
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for a.e. 7. Putting together the estimates for the elliptic and diffusion terms we have

c ” IVuﬁlp)({u>k}(pp dxdt + J GweP(x,T)dx < ¢ ”(uﬂ - kﬁ)fIV(plp dxdt + ” G(u)|0¢p?| dx dt

T Q Qr Qr

for a.e. . We obtain the desired estimate by using (4.3) and noting that the right-hand side can be estimated
upwards by replacing 1 by T. O

The following variant of the energy estimate will also be useful.

Lemma 4.2. Let ¢ € C3°(Q;Ryo) and suppose that [t1, t;] c (0, T). Then the time-continuous representative
of u satisfies
t;
¢! J J VP - kPY_IP dx dt + J blu, klxu<a@? (x, t2) dx dt
t Q Q
t;

< CJ J(uﬁ - kﬁ)f|V¢|p dxdt + J blu, Ky u<q@P (x, t1) dx, (4.4)
t1 Q Q

where ¢ > 0 is a constant depending only on p, Cop, C1.

Proof. We use the mollified weak formulation (3.9) with the test function ¢ = —(uP - KP )- P (x)é:(t), where

0, t<t,
et -t), te(ty,t+e),
&) =191, telty+e tal,
ety +e-t), te(ta,tr+e),te(ty,tr+e),
_0, t>t, +€.
Reasoning as in the proof of Lemma 4.1 leads to (4.4). O

5 L!-Harnack inequality

In order to obtain the reduction of the oscillation we will use the fact that weak solutions satisfy a local L*-
Harnack inequality. Such a result was already obtained in [8, Theorem 5.1] in a quite general setting, allowing
for all m > 0 and also a source term satisfying certain structure conditions. However, the proofs were made
under the assumption that u itself has a gradient, whereas our definition requires only that u? has a gradient.
It turns out that the same strategy as in [8] works also in our case with some modifications. In this section we
present the full proof in the case m > 1 and without a source term.

Theorem 5.1 (Harnack inequality). Let u be a nonnegative weak solution to problem (2.4), where the vec-
tor field A(x, t, u, &) satisfies the structure conditions (2.5) and (2.6), and the parameters satisfy condi-
tions (1.2). Then there exists a positive constant y depending only on m, n, p, Co, C1 such that for all cylinders
Bop(y) x [s,t] cQx[0,T),

. t—S\3m
ess sup J u(x, 7)dx < yessinf J u(x, 7) dx+y(—A )3 p,
1€(s,t] T€[s,t] 1%
B, (y) By (y)

where A = n(p + m - 3) + p.

Note that A can have any sign. If we use the time continuous representative of u, we can replace the essential
infimum and supremum by the actual infimum and supremum. Before proceeding we note that by translation
we may assume that s = 0. All of the calculations will be performed under this assumption, and the time
interval [s, t] will henceforth be labelled [0, 7], where T € (0, T). The first step of the argument is a lemma
corresponding to [8, Lemma 5.2].
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Lemma 5.2. Let u be a weak solution, T € (0, T), 0 € (0, 1) and B,(x,) c Q. Then

IVubP b + eﬁ)%flt% dxdt + ” Fetr ™ dxdt

Bgp(x0)x(0,7) Bop(X0)x(0,7)
1 2p+m-3
cp ( T )p[ J 2l 7
< — sup u(x, t)ydx + ep , (5.1)
(1-o0)P P/1 te[0,1]

pXo

where A=n(p+m-3)+p, € = (#)ﬁ and F. is defined in (5.2) below. The constant ¢ depends only on
m, n, p, Co, Cy.

Proof. Consider the mollified weak formulation (3.9) with the test function
Bx, 1) =~ + 9T 7 9P (0&.6(0),

where € > 0, &; 5 is defined as in (4.2) and ¢ € C5°(B,(xo); [0, 1]) satisfies ¢ = 1 on Bg,(x,). We may thus
choose ¢ such that

Vol <2(1-0)"tpL.

We have
Ve = B—/‘;n—p—p)(uﬁ + &) 5 P ()& 5 (OVUE — (P + £B) T 7 &, 5(6)V P (x).
We see that
” [A(x, -, u, Vuﬁ)]h -Vodxdt ﬁ ” A(x, t,u, Vuﬁ) -V dxdt
QT - QT
and

A(x, t, u, VuP). Vo = G_[;n—p_p)(uﬂ + eﬁ)%_ltz% P& sA(x, t, u, vuby . vuf

-pf+ sﬁ)%’;’_3 l'll’f-,—,g(pp_lA(X, t,u, vuf) - vop
m+p-3 m+p-3
> col VPP (P + €8) T L5 P Ep 5 — cr(uP + €F) T 5 &p 5P VLB V|
> GolVuPP (P + €8) T 5 P gy 5 — 1 (uP + BT 5 £, 51V PP

Here ¢y, c1, Co, C1 are constants depending only on m, p, Co, C;. For the initial value term we note that

= ” u(x, 0)h e h d(x, t) dx dtl

Qr

<c ” u(x, O)(Ee‘%)t%’_1 dxdt — 0,
h h—0

supp ¢x[0,T]

‘ [ utx, 0x5x, 0)ax
Q

by the dominated convergence theorem. The diffusion part is treated as follows:

Pocun = ([([uh]ﬂ e eﬁ)mgf]w — ([un]? + 8ﬂ)%6tuh)t5¢”§f,a

> —([unlP + €8)" T dqunts @P&r s
= —O([F(up)tr pP&r 5,
where

p 2p+m-3

S S
Fe(s) = J(tﬁ + P dt < jt%p% dt=—* s » . (5.2)
2p+m-3
0 0
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From this we see that

([ poaung axaes [[ Fetumonte o2 ax e

QT QT
— || Fetwor e} p7gr.5) dxat
— QT
1 T+6
== ” Fg(u)<ppt1%_1§},5 dxdt- 671 J ng(u)(pptI% dxdt
p Qr T Q
~ 119 ” Fg(u)(ppt?li_1 dxdt - 17 J Fe (WP (x, ) dx.
Q; Q

To conclude the limit in the last term, we use the Lipschitz continuity of F and the time-continuity of u.
Combining these estimates we have

” VPP (U + sﬁ)%’lt%q)p dxdt + ” Fg(u)qﬂ"t%*1 dx dt
Q, Qr

<c ”(uﬁ + sﬁ)p_“%t% [VolP dxdt + cri JFg(u)(pp(x, 7)dx. (5.3)
o, Q

Taking into account the estimate in (5.2) and the support of ¢, and applying Holder’s inequality, we see that

1 1 2p+m-3
> JFg(u)fpp(x, T)dx < cTv J u P (x, TP (x)dx
Q By (x,)
2p+m-3
1 p 3-m-p
< TP [ J u(x, 1) dX] |Bp(x0) 7

Bp(xo)
2p+m-3
1 r n@-m-p)
<ctr| sup J u(x, t)dx p o’
te(0,7]
Bp(xo

=cp(i);[ sup J u(x,t)dx]

A
1% tel0,1] B

2p+m-3
p

p(Xo

Using the bound on the gradient of ¢, we may now estimate the other term on the right-hand side of (5.3) as

Jj(uﬁ + gﬁ)p_“%tﬂwplp dxdt < m ” (P + gﬁ)%w(uﬁ + gﬁ)72p22_3 7 d dt
Qr B, (x0)x(0,7)
T
2p+m-3
< m8m+p73 J J (uﬁ + Eﬁ) pﬂp dx tl% dt
0 By(xo0)
C m+p-3 1.1 J B B 2p+m-3
<——¢ TP sup (uf + ) P (x, t)dx. (5.4)
(1 - 0)pPp te(0,7]

Bp(xo)

In the second step we use the fact that the exponent §~1(m + p — 3) is negative. In the last step we estimate
the integral over the ball by the supremum in time of such integrals, leaving only an integral in time of the fac-
tor t7. The integral appearing in the last expression may be estimated further using Holder’s inequality and
the definition of A as
2pim=3 2pim=3
P +e'3)2p7iiz_3 dx < [ J wh +£ﬁ)llg dx] ’ IBP(XO)|3}# < c[ J udx+sp"] ’ pl_%. (5.5)

By (x0) By (xo0) B, (x0)
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Since the exponent p~1(2p + m — 3) is positive, we can combine (5.4) and (5.5) taking the supremum inside
the square brackets to obtain

2p+m-3

1
> p

”(uﬁ + sﬁ)p’“%t% [Vol|P dx dt < L<L)£"’+”‘3(L)p sup j u(x, t)dx + sp"]

1-0)P\pP 1
o ( ) 1% P te[O,T]BP(Xo)

Combining the estimate for the two terms on the right-hand side of (5.3), we end up with

U VPP (U + eﬁ)%_lt%q)p dxdt + ” Fg(u)qoi”t%_1 dxdt
T QT

sﬁ(%)é[l+sm”’3(%)][ sup J u(x, t)dx + gp"

te(o,
0Tl g e

2p+m-3
p

Choosing now € = (#)3-'1"-11 confirms (5.1). O

Because of the somewhat more complicated calculations in our setting, we also need the following result,
which does not appear in [8].

Lemma 5.3. Let F, be defined by (5.2) and let € > 0. Then there is a constant ¢ = c(m, p) such that
WP + eﬁ)[s_ﬂ%”](p_l) < cFe(u) + ce™FH (5.6)

forallu > 0.

Proof. Assume first u > 2¢. Then sincem +p - 3 < 0,

u u u
m+p-3 m+p-3 m+p-3
Fe(u) = I(tﬁ v ey dr> j(tﬂ + ey H dr > j(ztﬁ)fﬁi dt
0 € €
_ C(um+;173+1 _ gm:};% +1) > &u m+573+1’

where in the last step we used the assumption u > 2¢ and the fact that the exponent of € is positive. On the
other hand, since u > 2¢ we also have

P + eb)PFEANC-D o PFE+BI0-D) o 241

and combining the two estimates, we have verified the claim in the case u > 2¢. Suppose now u < 2¢. Then

m+p— m+p-3

u u
m+p-3 m+p-3
Fo(u) = I(tﬁ + P de > I((l + 2PVeBY T At = ce ™ u s cut ot
0 [0)

3-m-—, 3—m-— m+p—
_ C(uﬁ)[ﬁTp+1](p—1) > Cl(uﬁ + gﬁ)[ mo -1 _ €€ 23 49

>

where in the last step we used the fact that for positive @ and nonnegative a, b we have a® > 27%(a + b)* — b“.
Thus, we have verified the claim also in the case u < 2e. O

The next lemma corresponds to [8, Lemma 5.3]. A formal application of the chain rule shows that the inte-
grands on the left-hand side in both lemmas are essentially the same, although in our case the gradient of u
need not exist. The proof in our case is somewhat more complicated as we need also to use Lemma 5.3.

Lemma 5.4. Let u be aweak solution and 6 € (0, 1). Then there s a constant ¢ depending onlyonm, n, p, Co, C1
such that

D

te[0,T]

T

3
J J [VuPP~1dxdt < 6 sup J u(x,t)dX+C6— —
0 Bop(Xo) By(x,) (1-og)7ms P
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Proof. Choose ¢ as in Lemma 5.2. By Holder’s inequality and the previous lemma, we have

T

J J VPP~ dx dt

m+, (p-1) p-1 m-, 71’
J [quﬂlp Yub + eP) T -4 tr? ][(uﬂ+€ﬁ)[3 i L ]dxdt

Il
S

0 ng(Xa) Bop(xo)
T p-1
m+p-3 p
< [J J [VuP PP + eP) B lts dxdt]
0 BUp(XD)
T 1
3-m-,
X|:J J Wb + &by 1= D dxdt] . (5.7)
0 Bgp(xo)
The second integral in the last expression can be estimated by combining (5.6) and (5.1):
T T
3-m— 1, m+p-3 1-,
J I WP + )T DS gy dt < CI J (Fow)+e 7 "He7 dxde
0 Bgp(xo) 0 Bgp(xo)
T
mp3 g 1
scj J Fg(u)t v dxdt + cp" e v Tl
0 Bap(xo)
1 2p+m-3
cp ( T )Tz J’ al 7
— sup ulx, t)dx + ¢
(1-o0)p PA te[0,7] P
p(xo)
1
+CP<LA>p(8p")2pP 3
p
1 2p+m-3
cp ( T )p[ J’ nl 7
< — sup u(x, t)dx + ¢
1 -0)P\pr/ | tefo,n : P
p\ Ao

Since also the other integral appearing in the last expression of (5.7) can be estimated using (5.1), we have
sup J u(x, t)dx + ep"]

T 1 2p+m-3
cp [ T\p
|Vub P~ 1dxclts—( )
J ~|. (1-o0)p\pt te[O,r]B

p
Bop(xo p(Xo

Dividing by p and applying Young’s inequality to the right-hand side yields the claim. O

Now we can finally prove the Harnack inequality.

Proof of Theorem 5.1. For j € N we choose
pj:=2(1-27)p, pj:= %(Pi +Pjr1),
Bj := By, (X,), Bj := By, (xo).

Pick {j € C3°(Bp;(x0); [0, 1]) such that {j = 1 on By, (x,) and We use the weak formulation (2.7) with the test
function ¢ = {j¢7 ., wherer > 0,7, <7 <Tand

0, t<T1q,
ri(t-Ty), telty, T1+7],
&, =11, te(Ti+71,12),

ri(zy+r-t), telry,12+71],

0, t>T1y+r.

This implies
17 17
- J Ju(,- dxdt = ”A(u, Vi) VG, o, dxde j j ug; dx de.

710 Qr 1 Q
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Passing to the limit r — 0 and using the structure conditions and properties of ¢j, we have
T2
j u(x, 71)dx < J udi(x, 71)dx = j JA(u, vuby. V¢ dxdt + J udj(x, 72) dx
B; Q 1 Q Q
T2
< j J A, VuP)IVG| dxde + J ugj(x, 72) dx
1 Q Q
. T
2 1
< c; J I VPP~ dxde + I u(x, 7o) dx
0 Bj Bji1
for all 71, T, due to the time-continuity of u. Although we assumed 11 < 7,, we see by a similar calculation
that the estimate remains valid for 71 > 7,. We want to estimate the doulgle integral in the last expression
using Lemma 5.4 with p replaced by pj.1, and consequently with ¢ := [%. Directly from the definition it
follows that

< 2%,
1-0
Taking this into account, Lemma 5.4 shows that
. Tt 1\
J u(x, 71)dx < c2’6 sup J u(x, t)dx + CW(_/\) + J u(x, 75)dx
te[0,1] 53 mp ‘P
B}' Bj+1 Bj+1

forall 6 € (0, 1). Here we also used the fact that all the elements of the sequence (p;) are comparable in size
to p. Taking now § = ¢"'271¢,, where g, € (0, 1) and ¢ > 1 is the constant from the previous estimate, we see
that )

Ju(x, 11)dx < &, sup J u(x, t)dx + cb’(%)sfw + J u(x, ) dx,

te[0,T] P

B; 1 Bap(xo)
where b = b(m, n, p, Co, C1) and ¢ = c(m, n, p, Co, C1, &). We also used the fact that Bj,1; ¢ B2,(x,). Recall-
ing that the inequality holds for a.e. 71, 75 € (0, T), we see that it implies

Sj < €0Sj1 + cbj(i)m +1,

pl
where
Sj = sup ju(x, t)dx, 1I:= inf J u(x, t)dx. (5.8)
te[0,1] te[0,1]
B}* B2p<XO)
Iterating (5.8), we have
T\ Mol o M-1
sup J u(x, t)ydx = Sy < eMSyiq + cb(7> Z (beo) +1 Z el (5.9)
te[O,T]B tx) 1% =0 =0
p\Xo

Choose now for example €, = ﬁ so that both of the sums in (5.9) converge in the limit M — co. Then, since

Smi1 < sup j u(x, t)dx,
te[0,7]
Zp(xo)

where the right-hand side finite due to the time-continuity of u, we see that we can pass to the limit M — co
which yields the claim. O

6 Expansion of positivity

In this section we show that weak solutions exhibit expansion of positivity. This type of result was already
obtained in [9], with arguments relying on the existence of Vu. We demonstrate that the strategy in [9] can be
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modified so that one only needs to use Vuf whose existence is guaranteed directly by Definition 2.1. For the
reader’s convenience detailed proofs are provided. We start with a lemma corresponding to [8, Lemma 3.1].

Lemma 6.1 (General De Giorgi-type lemma). Suppose thatv : Qr — Rsg satisfies v# € L (0, T; WP(Q)) and
the energy estimate

Cg ” |VVB|p(PpX{v<k} dxdt + ce etss[051T1]p J b[v, klxv<iy 0P (x, t) dx
elo,
Qr Q

< ” IVolP(vf — KkBYP + (vl% - kﬁ%l)ﬂpp‘llat(pl dxdt (6.1)
Qr

for some positive constants cg and c. and all k > 0 and functions ¢ € C>®(Q x [0, T); [0, 1]) vanishing in a neigh-
borhood of 0, Q7. Suppose K > 0, a € (0, 1) and that Qp,g,r(z,) C Qr Then there is a constant ¢ > 0 depending
only on m, n, p such that if
n Km+p—3 2
Qoo (20) 0 1V < Kl = ceoch (1 aby2 KTy o, (6.2)
[1+0Km*P=3]"7

thenv > aK a.e. in Q%,e(g)p (o).

Proof. Define

(1-ab)
pri=t K=+ - JKE Byi= Byl Ty (to— 09 o),
|Aj]
Qj:=BjxTj=Qp g#(Vo, to),  Aj:=Qiniv<k} Y := @.

Pick ¢; € C*°(Qj; [0, 1]) such that ¢; = 1 on Qj,1 and ¢; = 0 in a neighborhood of 0,,Q;, and

Vil < 279p71, |0l < cp0712p7P.

In the set where v < kj,1 we have

4P
B _ 8 _(A-ah) g
(v kf)_Zkf ki+1_ 2j+1 K,

SO

1-afy (np) "y >
(ZUTW)KﬁPlAml < ” (v~ K dxdt < ( U WK dxdt) Aja| 75 6.3)

j+1 j+1
We treat the integral inside the brackets by applying Holder’s inequality to the integral over the space vari-
ables. One of the resulting integrals is then estimated by taking the essential supremum over the time interval,
and the Gagliardo-Nirenberg inequality provides an upper bound for the other integral. All in all, we have

) v
H WA - K8 dxde = J j WP = Ky, 08— K dxdlt
Ajia Tj+1 Bjs
< J [ J’(vﬁ_k'][.g)pXAMdX]n[ J’(vﬁ_kf)p*dx]p dt
Tj+1 Bi+1 B,'+1

[jor-trorals

j+1 j J

< [ess sup J WP - kf)IjXA,-u dx]

j+1
%
< c[ esisup J WP - kf)f_z)(A/.+1 WP - kf)f dx] ” Iv((vP - l<f)_<pj)|1" dxdt
j+1
Bjs1 Q;
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. 12 B
c(1- aﬁ)(p_z)ﬁKﬁ(‘”‘z)%zl(z‘p)%kf R [ess sup J k].1 Pk - kf)% dx]
T]‘+1
j+1

X ” |V((vﬁ - kf)_go,-)lp dxdt

Q;

P
<c(1- aﬁ)(p—z)ﬁK%(m+p—3)2i(2—p)5 [ ess sup J b[v, kj]X{V<ki}§D]I', dx]
T.
! J
X ” (= kf)-go,-)lp dx dt
Qi
<cc, 1(1 abye- )f ghmip=-3)5j(2-p) %
" p+n
X [” IVop; [P (vF - kf)’,J + (v/% - k )2 P10, dxdt| "
Q
where ¢ = ¢(m, n, p). We have also used Lemma 3.2 (ii) and the fact that k; < K. In the last step we use (6.1).
Taking also into account the bounds on the derivatives of ¢; and the bound for k; we end up with

(n+p) n+p _p_ m+
[ JJ (Vﬂ _ k}ﬂ)l_’ " dx dt] < cc, n+p n+p (1- aﬁ)(p 2) 74P Kp( ,,f;, 2 21 n+p [Kﬂpzlpp—lf + KB+ig-1 2_]p_p]|A,|
Aj+1

(p=2)p _ p(m+p-3)

_p_ :p(n+2)
<cc,"c "*”(1 afywr K +ﬁpz’pnfp/0"’[1+K3‘”"1”(9‘1]|A,-|.

Combining the last estimate with (6.3), we end up with

i R -2)p _ p(m+p-3) p(n+2) D
Ajal < ccl? ¢ (1 - aP) W PR U Pl g [1 4 K3 |4y o

Dividing by |Q;| gives us the desired iterative estimate

2 - (-2) »_ (n+2) 1+-2
Vi < cci”cg” (1-af) w PLOR™ 23] PSPl [1 4 O-mop gy,

Thus Lemma 3.4 shows that if
(eKm+p—3 ) ﬁ
1+ o] P

Yo < ccech (1 - aP)n+?

for a suitable constant ¢ depending only on m, n, p, then we have Y; — 0, which means that v > aK
in Qg’g(%)p(zo). D

The following variant of the De Giorgi lemma will also be useful. The extra assumption (6.4), regarding
the values of u at the initial time of the space-time cylinder, allows us to get a lower bound which holds
on a cylinder which has only been reduced in the spatial dimensions. It is understood that we consider the
time-continuous representative of u, so that (6.4) makes sense.

Lemma 6.2 (Variant of the general De Giorgi-type lemma). Let u be a weak solution in the sense of Defini-
tion 2.1. Suppose that Qp,gp»(2z,) C Qr and that

u(x, t, - 6p”) 2 K (6.4)
fora.e. x € By(x,). Then there is a constant c depending only on m, n, p, Co, C1 such that if

(1- aﬁ)n+2

|Qp,9p17(Zo) N{u<Kj < CW

|Qp,0pP (zo)l, (6.5)

thenu > aK a.e. in Q/%’@pp (2o).
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Proof. Define kj, pj and Bj as in Lemma 6.1, but choose
Qj:=BjxA=Bjx(t, - 0p®, to) = Qp].,gpp.

As before, we denote Aj = Qj N {u < kj} and Y; = |A;|/|Q;|. Choose @; € C3°(Bj; [0, 1]) such that ¢; = 1 on Bj,q
and

IVl < p~ 2+,
We use the energy estimate (4.4) of Lemma 4.2 with ¢ = ¢, k = kj, t; = t, — OpP and t, € A. Assumption (6.4)
guarantees that the second term on the right-hand side of (4.4) vanishes and we end up with

” V(P - kf)_|1’(pf dx dt + esssup J blu, kj])({u<kj}(pf dx<c ”(ulg - kf)l_’lv(pﬂl’ dx dt,
A

Qj B; Q

where ¢ = ¢(p, Co, C1). As in Lemma 6.1 we see that

(1-abyp zp o

2(]~+—1)pKﬂp|Aj+1| < ” wh - kf)_ dxdt |[Ajeq|™. (6.6)
Aj+1

Similarly as in the proof of Lemma 6.1 we may estimate the integral inside the brackets as

2
¥

p
(n+p) n N p
” WP - kf)’,) odxdt < [ess sup J(uﬁ - k}fg){’)(A].H(pfJ dx] I [ J (P - kf)_(p,-)p dx] dt
Aj+1 A Bi A B]-
P
. 1k B n
<c(l- aﬁ)("’z)fKﬂ(p’z)%21(2*1”519@ oL [essAsup J(u" -2 Pt dx]

J

X ” IV((f - kP)_@;)IP dxdt
Q;

p+n

n

<c(1- aﬂ)(p—z)’ﬁK(mw—B)‘;’21'(2—p)§ [ Jj(uﬁ _ kf)fw(pj P dx dt]
Q;
< c(1 - aP) P25 gmp=3)7 2i2-P)} (KPPpP27|4;))

ptn
n
’

where the constant ¢ only depends on m, n, p, Co, C1. Combining this estimate with (6.6), we have

(p-2)p pmip=3) ;5 p(n+2) p
wp PR 2 +P]p—p|A1.|1+m

41l < c(1 - aP)

Dividing by |Qj| ,we obtain

®-2)p p__irp(n+2) 1+
Vi < c(1 - af) mr P(OK™ 3w ) Ply

In light of Lemma 3.4, this means that there exists a constant ¢ = c¢(m, n, p, Co, C1) such that if

1- aﬁ)n+2
Yo < cpmmps

then Y; — 0. O

A version of the following result was proven in [6, Lemma 1.1 of Chapter 4] for the parabolic p-Laplace
equation. We use the same strategy.

Lemma 6.3. Let u be a weak solution on Qr. Suppose that B,(y) x {s} ¢ Qr and that
IBp(y) 0 {u(-, s) = M}| = a| By (y)|. (6.7)
Then there are § = 6(m, n, p, Co, C1, @) and € = e(a) such that
By 0 (- 6 = €M} = S alBy0)] (68)

forall t € (s, min{T, s + SM>~""PpP}).
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Proof. Let T < min{T, s + 8M> ™ PpP}, where § is a positive number which is yet to be chosen and consider
(4.4) of Lemma 4.2 with t; = s, t, = T and k = M. Discarding the first term on the left-hand side, which is
nonnegative we end up with

J [b[u, MY @®](x, T)dx < J [b[u, MY wan@®](x, s)dx + ¢
Q Q

O s

j(uﬁ ~ MPYP |V dxdt, (6.9)
Q

where ¢ € C3°(Q;R50) and the constant ¢ only depends on p, Co, C;. Taking o € (0, 1) and a function

@ € C°(Bp(y); [0, 1]) such that ¢ = 1 on B(1_¢),(y) and |[Ve| < %, estimate (6.9) implies

T
J blu, Mlxu<m(x, T)dx < j blu, Mlxu<m(x, s)dx + aPC;)P J J (WP — MPY? dx dt. (6.10)
B(i-a)p(y) By(y) 0 By(y)

From the properties of b it follows that when u < M we have

blu, M] < b[0, M] = I%M/“l.

Using this result and assumption (6.7), we conclude that

j blu, Mlxu<m(x, s)dx < ﬁf 1Mﬁ’rlpr(y)m{u(.,s) < M}|
By (y)

ﬁ B+1
< /3+1M (1-a)|By(y)l.
Recall that T € (s, s + 8M>~™PpP) where § is to be chosen so

T
| [ @-mraxacs Qi
0 B,(y)

C
opP pP

We estimate the term on the left-hand side of (6.10) as

j blu, Ml puenn (6, ) dx = j blu, MY pueany (6, 7) dx — j blu, Mlx{uenn (6, 7) dx
B(l—a)p(y) Bp()/) Bp(y)\B(l—a)p(y)
> j blu, Ml (6, 7) dx — cEoMP1 1B, ().
By (y)

Picking € € (0, 1), we can estimate the last integral as

J blu, Mlxw<m(x, T) dx > J blu, M](x, T)dx
B,(y) B, (y)n{u<eM}
> b[eM, M]|B,(y) N {u(-, 1) < eM}|
ﬁ B+1
> B+ 1M (1-26)IBp(y) n{u(-, 1) < eM}|.
Combining all the estimates, we have
[Bo(Y)I
(1-2e¢)
where Eﬁ = &ﬁ(ﬁ, n) and ¢ = ¢c(m, n, p, Co, C1). Choose o = o(a, n, m, p) so small that E:ﬁa < %. With this
choice of g, choose § = §(m, n, p, Co, C1, a) so small that ccP§ < %. Here ¢ denotes the constant in (6.11).
This leads to

[Bp(y) n{u(-, 1) < eM}| < [Z:ﬁ0+ (1-a)+coP6], (6.11)

[Bo(y) n{u(-, 1) < eM}| <

(lfi(g)(l - 37a>

From this it follows that (6.8) is true for any

a
0ce< —2 .
“€=42-w
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We are now ready to prove the main result of this section.

Theorem 6.4 (Expansion of positivity). Suppose that (x,, s) € Qr and u is a weak solution satisfying
IBp(xo) N{u(-, s) > M}| > a|By(xo)| (6.12)

for some M > 0 and a € (0, 1). Then there exist €, 6, n € (0, 1) depending only on m, p, n, Co, C1, a such that
imep(Xo) x(S,8+ 5M3—m—ppp) c Qr, then

u>nM inByp(xe) x (s+(1-&)6M>™PpP s+ §M> ™ PpP).
Proof. The proof is divided into several steps.

Step 1: Change of variables, transformed equation and energy estimates. Let § =68(m, n, p, Co, C1, a) € (0, 1)
be the constant from Lemma 6.3. By translation we may assume that (y, s) = (0, 0). Furthermore, we assume
that B16,(0) x (0, 6M 3-m-ppP) ¢ Qr, since otherwise there is nothing to prove. Introduce the new variables
(y, 7) defined by the equations
t — MP-MPpP
y==, -€e'=—"
p SMF-Ppp

These coordinates transform the cylinder B16p(()) x (0, BM>~™PpP) into By4(0) x (0, c0), preserving the
direction of time. Define the function v : B14(0) x (0, 00) — R,

T T

e 3-m-p e 3-m-p

ux, t) = u(py, SM>MPpP(1 -eT)).

v(y, T) =

A routine calculation confirms that v# € LP(0, S; WP (B1¢(0))), for all S > 0, and that v is a weak solution to
the equation

- 1
o0v-V-A(y,1,V, Vvﬂ) = 3—v,

m-p
where
- 1 e(glj'ﬁilz’) 3 N 1 __Br
Ay, T,v, &) = 6pP~ YL A(py, SMP™™PpP(1 —eT), Me v, p ' MPe™7m5 §)

satisfies the structure conditions .
A(y9 T,V, g) : 5 2 5C0|§’|P,

. 6.13
IA(y’ T,V, al < 5C1|$|p_15 ( )

where Cy and C; are the constants appearing in the structure conditions (2.5) and (2.6). The time continuity

of u obtained in Section 3.3 implies that v € C([0, c0); Lﬁ:cl(BlG((_))). This allows us to reason as in the proof

of Lemma 3.10, to conclude that v satisfies the mollified weak formulation

(o)

| | A vvhl-vgsompayar- [ wgpwody=5—— [ [ wgaydr (6.14
0

1
) ) 3-m-p i
0 By4(0) B16(0) B16(0)

forall ¢ € C3°(B 16(0) x (0, 00)). The only difference is that we have replaced ¢ 5 by

Pi(y, 1) :=

= -

j T by, ) ds,
T

which in practice always can be written as a finite integral due to the support of ¢. This enables us to prove
an energy estimate for v. Namely, we use (6.14) with the test function ¢ = —(vP - kﬁ)Jpp &.(1), where ¢ is
a smooth function vanishing near 9, (B14(0) x (0, 00)), and

1, T<T,
M) =1ri(F+r-t), tTelf, T+71],

0, T>T+T.
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Here T > 0. We see that
| | taorv vl vedydr

0 B14(0)

(o)

h——o—>J’ J Ay, 1,v, WP) . v dydr
0 By4(0)

o

r—

z
N —J J Ay, 7, v, WP) . V[(v® - kP)_pP]dy dr
0 B14(0)

T
= j J Ay, T, v, VWP). Vvﬂ)((v<k}<pp —Ay, 1,v, W) V(p”(vl3 —kP)_dydr
0 B16(0)

>

j 8CoIVVPIP Py yery — 6C1IVVAIP 1P LV (VP - KP)_dydr
Bi(0)

O t—

T
C .
> J J 670|Vvﬁ|p<pp)({v<k} - 6C1|V(p|p(vﬁ — kPP dydr,
0 B16(0)

where C; = C1(Cy, p). Reasoning similarly as in the proof of Lemma 4.1, the parabolic term can be treated as

o0 (o)
J I aTVh‘pdydTZ_J J b[Vh, KlX{v,<k} O (P &) dy dT

0 Bla(o) 0 Blé((_))
. T+r
ﬁ - j j b[v, kX <k ér0- 9P dydt + rt J J b[v, klxp<i@? dy dt
0 B,4(0) 7 B16(0)

T
— - J bV, kX v<ij0- 9P dy dt - J blv, kX< P (v, T) dy.
0 B14(0) B16(0)

As in the proof of Lemma 4.1, one can see that the second term on the left-hand side of (6.14) vanishes in the
limit h — 0. Combining the estimates for all terms, we end up with

T
62 [ [ wPertandydr s [ b Koz )y
0 B14(0) Bi6(0)
T T
<6Cy J J’ IVolP(vP - KkBYP dy dr + J J b[v, klx{v<kjOr@* dy dr.
0 B16(0) 0 B,4(0)
Note that we were able to drop the term on the right-hand side of (6.14) since it is nonpositive. Using Lem-

ma 3.2 (i) to estimate b[v, k] on the right-hand side and taking into account that § € (0, 1), we finally obtain
the desired energy estimate

7€(0,7]

T
cé J J IVVAIP 9Py (v<ig dy dT + cess sup J b[v, klxv<ky@? (v, ) dy
0

B16(0) B16(0)
T

< I j IVolP (V8 — KBY + (v'F — K5 )2 P10, 9| dy dr, (6.15)
0 B14(0)

where ¢ = ¢(Co, C1, p, m) and 7 is any positive number.
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Step 2: Measure estimates of sublevel sets. From assumption (6.12) and Lemma 6.3 it follows that there is
an € = ¢(a) such that

B1(0) N {v(-, 7) > eeT )| > §|Bl(0)| (6.16)
for all T € [0, 00). Pick 7, > O to be determined later and define
ko := eeB-T"‘l)-v, kj:= kf -, j € No. (6.17)
(28)i
With these definitions, (6.16) implies that
_ a__ -
[Bg(0) n{v(-, 1) > kj}| = 58 "|Bg(0)| (6.18)

forall T € [1,, 00) and j € Ny. We introduce the cylinders
Qr, 1= Bs(0) x (T + ko " P, 10+ 2ky "), Qh, = B16(0) x (1o, To + 2kg " F).

Pick {1 € C3°(B16(0)) such that {; = 1 on Bg(0) and |V{1| < £. Pick {» € C*(R) such that {>(1) = 0 for 7 < 7,,
O(t) = 1fort > 1,+k; " P and0 < ) < #.Using the energy estimate (6.15) with o (y, 1) = {1 (V) {2 (1),
k =kjand Ty = 7, + 2k, "7 yields ’

+ Bl
] 19w Pxan dydr < 5 [[ o -1+ (v -k aydr
QTO Q’ kO
kl-;+1
< 66—1<k§317 + S >|QT0|
[
< 6K 1Qy, I, (6.19)

where in the second step we used the fact that the measures of Q;, and Q’Tu are comparable. In the last step
we used that k; < k,. The constant c still depends only on Co, C1, p, m. We define the sets

Aj:=Q, Nn{v<kj}l, Aj(r):= Bs(0O)n{v(-, 1) < kj}.

By the isoperimetric inequality (3.5) and (6.18) we have

K c
A — (K’ — K" . .= B
2 1Aj (D] = (] "fﬁ+1)'A’“(”'S|BS(0)\ el vV (y, 1)l dy

Aj(T\Ajia (1)

il

IN

E" IVvA(y, )| dy.
Aj(T)\Aj1 (1)

Integrating the estimate over the time interval (¢, + ko ™7, 7o + 2k ™ ?) and using Hélder’s inequality
and (6.19), we obtain

K& z
]
S Ml < = Vv (y, T)l dy
Ai\A/‘+1
¢ ’ -1
s;”[ J IVvﬁ(y,r)l”dy] 4\ Ajial' 7
Aj\Aj

C) 1 -t
< —711Qr |7 1Aj \ Ajial 7,

abr

where ¢ depends on m, n, p, Co, C1. Hence,

C 1 1
——1Qr, |7 T4 \ Aji1| = yIQr, [P |Aj \ Ajsal,

p

b
|Aj+1|‘”’1 < I
apr1grt
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where y := ca FIET, Adding this equation for j € {0, ..., jo — 1} where jo, € N and noting that |4j]| is
decreasing in j we have
jo—1

<VIQe, 17T1("Y, (4)1 - 14j:1D) < ¥1Qx, 1771,

j=0

_P_
-1

jolAj,|?
Taking into account the definition of Aj;, this means that

1Qr, NV < K}l < (jlo)p’;lmm

Recalling that § is already determined in terms of m, n, p, Co, C1, a, this estimate shows that any v > 0 we
may choose jo = jo(m, n, p, Co, C1, &, v) € N such that

|Q‘r0 n{v< kj0}| < V|Q‘ro|-

Let j. € [jo, 00) be the smallest real number for which (21*)}# is an integer. Then j. only depends on
m,n,p, CO’ Cl’ a,v and
[Qr, N{v < kj*}l <V|Qq,l, (6.20)

where we have extended the definition of k; in (6.17) to all real numbers.
Step 3: Segmenting the cylinder. Foribelonging to {0, ... (21'*)# — 1} We define the subcylinders
Qi = Bg(0) x (1, + kif’"*‘” + ikj:mfp, To + kﬁfm*p +(i+ 1)ki7m7p),

which is a partition of Q, (discarding only a set of measure zero). Thus, (6.20) implies that for at least one
of the subcylinders we must have
Qi n{v < k;, }| < v|Qil.

Since v satisfies the energy estimates (6.15), we may apply Lemma 6.1 to Q; with p=8, 6 =877 k]i_m_p s
K=kj,anda = % Now cg = ¢4 for a constant ¢ only depending on m, n, p, C1, Co and also c. only depends
on these parameters. Plugging in everything into (6.2) we see that there is a constant ¢ depending only on
m, n, p, C1, Co, such thatifv<v, := 661%, then

1 _ —m— —m— —m— m—
V> Ekj* in B4(0) x (1o + kg ™ p+(i+1—2*p)kj3* N p+(i+1)k]i Py, (6.21)

Fixing jo := jo(m, n, p, Co, C1, @, v,), we obtain by the definitions of v, and 6 that the corresponding j.
ultimately depends only on m, n, p, Co, C1, a, and that (6.21) is indeed valid. Hence, there is a constant
T1 € (To + ko ™, 74 + 2ko ™ P) such that for a.e. y € B4(0),

1 k € To To
vy, T1) 2 okj, = —— = ——eTnT = ggeT (6.22)
2 SFt o+

where g, = 0,(m, n, p, Co, C1, ).
Step 4: Returning to the original coordinates. By the definition of v, (6.22) says that for a.e. x € B4p(()),
u(x, t) = ooMe;o;'Tf}v = M,,

where t1 := M>™™PpP(1 - e~™1). We want to apply Lemma 6.2 with K = My, a = 3 and 6 = ey Vi
where c is the constant from the assumption (6.5). With these choices the assumption in Lemma 6.2 is auto-
matically true since it becomes the statement |Q N {u < M,}| < |Q| for a certain cylinder Q. As a consequence,
Lemma 6.2 implies that

1
u>= EMO (623)
in sz(f)) x (t1, t1 + CZ‘”‘ZMg_m_p(l;p)p). In order to complete the proof, it is sufficient that

ty +c27"2My P (4p)P) = EMPTP P,
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Using the definition of ¢;, we see that this is equivalent to
2n+2 5
T = ln( —_— >,
cpg,mP
where c is the constant from assumption (6.5). The right-hand side depends only on m, n, p, Co, C1, a. Hence,
with this choice of 7,, (6.23) and the upper bound for 7; imply that

1 O ITo-T1 o, _2k P
Uz Mo, = TOeE*M*PM > ?"e smr M =: nM

in sz(()) x (t1, SM3>~™~PpP), Note that n only depends on m, n, p, Co, C1, a. From the upper bound for 77 it
also follows that

3-m-,
ty = BMP M PpP(1 - e™T) < SMP TP pP(1 — e Tk )
so the claim of the theorem is true if we take
71_072](3—77!—10

c=e ,

and the right-hand side clearly only depends only on m, n, p, Co, C1, a. O

7 Local boundedness

We prove that in the range (1.3) all weak solutions are locally bounded. We use a De Giorgi iteration combining
the energy estimates obtained in Lemma 4.1 with a Sobolev embedding.

Theorem 7.1. Let u be a weak solution in the sense of Definition 2.1 and suppose that the parameters m and
p satisfy (1.3). Then u is locally bounded and for any cylinder of the form Qp,2:(20) contained in Qr and any
o € (0, 1) we have the explicit bound

[ — 1
Cnep ppn+(B+1)(p—n) T \3-mp
esssupuSC[((l—U)pT) i JJ uﬁ+1dxdt] +(ﬁ>3 ”,
Qop,ot(20) Qp,7(20)

where c is a constant depending only on m, n, p, Co, C1.

Proof. Suppose that Qp,;(z,) ¢ Qr. Define sequences

(1-o0) (1-o0)
57 p, Tj:i=0T+

where k > 0 is a number to be fixed later. We also define the cylinders Q; := Qp,,+,(zo) = B;j x Tj. Choose func-

tions ¢; € C*°(Qj; [0, 1]) vanishing near the parabolic boundary of Q; and satisfying ¢; = 1 on Qj;1 and for

which

pj = 0p + T, ki:=k(1-27)F,

j+2 N j+2
[Vojl| < m, [0¢gj] < Aot

Furthermore, we define the sequence

+1

g B
Y; = ” W — k7 )2 dxdt.
Q;
Note that Y; is finite for every j since u € LA+1(Q7). Define the auxiliary parameters

B mp(e )= B,

A straightforward calculation shows that (2.3) (and hence (1.3)) guarantees that g > 1. Thus, we may use
Holder’s inequality to estimate

1
+1

g Bliog ‘ %
Yj < ” (u-= —k].+1))r dxdt| Q1 n{u> kjpa}e . (7.1)
Qj+1
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We will use the shorthand notation

B+1 Bl 2
¢ = (uT k]+1 + = 1+1)+
The upper bound, is a consequence of the definition of M and the fact that % > 1. In the following calculation
we express the integral on the right-hand side of (7.1) in terms of ¢ and split the integral into space and time
variables. We apply Holder’s inequality to the integral over the space variables, and then estimate one of the
resulting factors upwards by the essential supremum over time. After this, we introduce the cut-off function
@;j which allows us to apply the Gagliardo—Nirenberg inequality. We also apply Lemma 3.2 (i). Thus, we obtain
two factors which both are bounded by the right-hand side of the energy estimate (4.1). All in all, we have

” ) dx dt = j I¢P¢¥ dxdt (7.2)
Qj+1 Ti+lB}'+1
sj[Jd)p dx] [I¢de]"dt
Tjs1  Bjs Bjs1
< | esssup J qudx]n J [ I PP dx] dt
) Ti“ Bj+l Tj+1 Bj+1
[ +1 pr1 : pL*
< | esssup J W' -k ]+1) dx] J [ J(uﬁ k+1)p dx] dt
Tj1
j+1 Ti+1 B,+1
< essTsupj( 5 k]+1) (pﬁfJ dx]n J [ j((ulg +1)+¢])p dx] dt

B; Ty "B
b
< c[ essTsupj blu, k]-])({,»k},}gaj.J dx] J J IV[(u? - kﬂ )+ @17 dx dt
j
B; Tj B;

n+p
n

/3
<c [”(uﬁ k+1)p|V(p,Ip Uks k]+1)2 pllat(plldxdt]
Q

The constant ¢ depends only on m, n, p, Co, C1. In the set where u > kj,; we can estimate

(uﬂ B kﬁl — ymp3 (1- (ki+1/L;)fg)I+J < umr= S < ckmr 5 < ¢ mp3,
W k7 ) (1-(/wT); (1= (h/ki)T)" (1= (Ki/Kjun) 7)°

where the constant ¢ only depends on m, p. In the second last step we used m + p < 3, and the fact that kj,;
is comparable in size to k. Applying the previous estimate to the first term to the last line of (7.2) and noting
that in the second term we can replace kj.1 by k; we obtain

n+p
n

n+. j - 3 5
” P dxdt < c[ ” (DK™ + g Mol (u'T ~ k7 )] dth]
Qjs1 Qi

Combining this estimate with the bounds for ¢; and its derivatives leads to

n+p

. (p+1)j T
JJ ¢p("M)dthSC<(12_W[(ﬁ%)km+p_3+1]Yj) .

Qjs1

From the last expression we see that if k > (p—T,,) e , then

n+ 2(P+1)] %
” ¢p(TM) dxdt < c<—Y,—) . (7.3)

(1-o0)Pt1
Qj+1
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Observe now that

B+

. Bl 1 pr1
1Qj N {u > ki P 1272040 = Q0 {u > kil 7y - k7 )% < H W™ - k7 ) dxdt <Y (7.4)

Qn{u>kji1}
Using (7.3) and (7.4) in (7.1), we end up with
Yji1 < CHY]T,
where )
b - 2(#)(p+1)%+q% C= Ck_(ﬁ+1)? _ £ _ M
’ ((1_0)”)%’ ng n+M

and c only depends on m, n, p, Co, C;. We want to show that Y; — 0. According to Lemma 3.4 this is true
provided that
1
Yo< C b a2,

Using the definition of Y, and the parameters, we see that this is equivalent to

nﬂm(ﬂfl)(pfn)
; (7.5)

k> c[((l —oPr) ” uPrtdxdt
Qp,T(ZO)
where c is a constant depending only on m, n, p, Co, C1. Since
B+ B+
W7 —k7)2dxdt < ;- 0,
Qap,ur(zo)

this means that u < klalmost everywhere in Qgp,(1+0)r(Z0). The only lower bounds for k required in this argu-
ment were k > (#) sm» and (7.5), so we have verified the estimate for the essential supremum. O

We end this section by proving that the estimate of Theorem 7.1 can be somewhat improved. This result
will also be used in the reasoning leading to the Harnack estimate in Section 9. Note first that (2.3) can be
rephrased as

B+1)p+nim+p-3)>0.

Thus there exists r € (0, S + 1) such that
Ay :=rp+n(m+p-3)>0. (7.6)
The next theorem shows that there is an upper bound in terms of the L™-norm of u.

Theorem 7.2. Letr € (0, B + 1) be such that (7.6) is valid. Then for any cylinder Q2p,2:(20) € Qr,

2 1
_nip Ar T \3m>p
esssupu < c[‘r o ﬂ urdxdt] + c(—)3 ! (7.7)
Qp,T(ZD) pp
QZp,ZT(ZD)

where the constant ¢ depends only on r and the data.
Proof. Define the increasing sequences

pj =2~ Z‘j)p, Tj:=(2- 2‘j)T.
Define cylinder§ Qj = Qp,,7;(zo). Applying Theorem 7.1 to the cylinder Qj1 with ¢ = /% = T}% and noting
that 1 - o > 2702, we end up with

R 1
: -me pBn+(B+1)(p-n) T: \ 357
esssup u < c[zl("*p)r]. E ” WPl dxdt] + (_z)) Z
Qj p].

Qjs1

P 1
. n+ pn+(B+1)(p—n) I
< C[Zl(”*P)T_pp jj uﬁ+1 dxdt]p ! + (£>3 P’
pP
Qj+1
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where in the second step we used the fact that p; > p and 7 < 7j < 27. Denoting now M;j := ess supg, u and
noting that u < Mj,; a.e. in Qj,1, we see that

p(B+1-1)

el 1
M; < cMPPrEom [zi(nw)f‘"f ” u” dx dt] PR n (2)37"@
] = j+1 pP :
Q2p,27(20)
Due to (7.6), the exponent of Mj, lies in the interval (0, 1). Applying Young’s inequality to increase the
exponent of Mj,1 to 1 we end up with

£ 1

. n+; Ar 2 —m-
M; < eMj,q + c(e)[zf("’fp)r‘f ” u’dxdt] + (p—;>3 !

QZP.ZT(ZO)

>

D
. n+p E #,p
= eMj1 + ()b [TP ” u” dx dt] + (E—:)s

QZp,ZT(Zo)

(n+p)
where b = 2°%" and the constant & > 0 can be chosen freely. Iterating the last inequality, we obtain

N _mp . BN gy N
Mo < e "My +c(e)|T 7 u'dxdt| Y (eby + (= Y e
j=0 PP j=0

QZp,ZT (z0)

for N > 1. Choosing € = %, we see that both sums on the right-hand side converge as N — oo. Since My is

bounded from above by the essential supremum of u over Qyp,2:(2,), the term eN My vanishes in the limit
and we end up with (7.7). O

8 Holder continuity

In this section we consider only m and p in the supercritical range (1.4). We show that in this case weak solu-
tions are locally Holder continuous. The starting point of the argument is a De Giorgi-type lemma providing
a sufficient condition for the reduction of the oscillation from above. First we introduce some notation. For
0 < py < oo we denote

0= P, (8.1)
where € € (0, 1]. A sufficiently small value of € will be chosen later in this section. Initially it is important that
our results work for all € € (0, 1].

Lemma 8.1. Let u be a weak solution to (2.4) in the sense of Definition 2.1. Suppose that we are given a number

0 < U4 < 0o, and let O be chosen as in (8.1). Moreover, suppose Qp,9p7(20) C Qris aparabolic cylinder satisfying

esssup u < U..
Qp, 007 (20)

Then there exists a constant v, depending only on m, n, p, Co, C1 such that if

B
|Qp,0pP(Zo) n {uﬁ > 112_+} < Vo€? |Qp,0pr (20)l,

then
ub < 3,8
< oK
a.e.in Qp/2,6(p/2)7 (2o0)-

Proof. Define sequences of numbers and sets as follows:
1 1 B . 11\ 8 , , 4l
piim (145 ) M= (1-7 -5 i Qi=Qapio A=Qinlusk) ¥ o
We can now choose functions ¢; € C*°(Qj; [0, 1]) vanishing near the parabolic boundary of Q; and satisfying
¢; = 1 on Q; and for which

Vil <p™ 12772, |0rpjl < cp 0 pP2P.
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Note that in the set where u > kj,; we have
B

B_ B I
u kﬁ>k}+1 k]. = oR3 (8.2)

This observation and Hélder’s inequality show that

f N
2€+3)P |A]+1| < Jj (uﬁ - kf)f dxdt < |: J-J’ (uﬁ kﬁ)Jr n dX dt |Aj+1|"’+p . (83)

Aj+1 A}+1

The integral in the last expression can be estimated using Holder’s inequality and (8.2) as

(n+p)
”(uﬁ—kf)+ " dxdt < J j(uﬁ KOy, P = K dxdt

Ajr Tj+1 Bjsa
: 2z
< J [ J(uﬁ KoY xa,., dx ] “(uﬁ Kby dx] dt
T}'+1 B]+1 B]+1
L*
E 14
o [ o[t
T/‘+1 Bj+1 +

p
*

P
4 ! ' ’
< o2 P)np -2)k [ess sup J' (uﬁ _ kf)fr dx] J [ J (uﬁ _ kf)z dx] dt,
Tj+1
i1 T,‘+1 B;‘+1

where in the last step we have estimated one of the integrals over space upwards by taking the essential
supremum in time. Note that by Lemma 3.2 (ii) we have

1 - _
U K2 < Pt + kbl k) < 20 olu, K.

Using this observation and introducing the cut-off functions ¢; puts us into a position to apply Sobolev
inequality and the energy estimate (4.1) as follows:
r £
”(uﬂ kﬁ)Jr n dxdt< c2i@-p gyf(mw%) esssupj blu, k1" ] [(u —k )+(p,]p dx]p dt

Aj - A

< czj(z‘p)%yf(mﬂ”” ess supj blu, k1" 1 ] J J IV[(uf - kf)+(pj]|l’ dx dt
- B;

T
A T

n+p
n

P [ _
ul ([~ D1vgi + vt k1o Mougylax dt]
)]

The second term in the last integral can be estimated using Lemma 3.2 (iii) and the bound for |0:¢j| as
blu, k,-](pf_1 10¢jl < el o1 Pop = ce 1Py i,
Using this and the bound for |V¢;| and u, we see that

”(uﬁ - kf)i’(

Ai+1

" dxdt < 2w ("+2)y"(m+p ?

CRVESTdVY )
Combining this estimate with (8.3) and the observation that |Aj+1] < |Aj], we have

(m+p-3)

s
Ao < ce 1 2PI+ER1 7 pPIA

__n_ D _p_
=ce n+p b]e n+pp_p|A].|1+n+p
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where ¢ and b only depend on m, n, p, Co, C;. Dividing the last expression by |Q;| and noting that |Qj| is

proportional to 6p™*P, we obtain
IR £
Yji1 <ce v b/ Y]- ",

Setting 6 := n’%p, we see that Lemma 3.4 guarantees that Y; — O provided that

B
[Qp,0pr (20) N {uﬁ > %}l
1Qp,6pr (20)I

_n 1. _1 n
=Yy <(ce ™) 5bh & =¢grv,,

where v, = c3 b‘ﬁiZ only depends on m, n, p, Co, C;. Since |Qj| is bounded from above, this also means that
|Aj| — O. Furthermore, since

3
Qu/2.60/27 (o) N (P > Zy’i} C A

for all j, the measure of the set on the left-hand side must be zero. O

8.1 Reduction of the oscillation

We are now ready to prove the reduction of the oscillation in the case 0 < u < p,. If the condition of the
De Giorgi lemma holds, then we have a reduction of the oscillation from above. Suppose now that the condi-
tion in the De Giorgi lemma fails, i.e.
Hﬁ u
|Qp,0pl’(zo) n {uﬁ > ?Jr}l > Vo€? |Qp,0pr (20)l.
Then there is a set A c (t, — 0p?, t,) of positive measure such that
_1 n
[{x € Bp(xo) : u(x, T) > 2 P} > vo€? [By(xo)l

for all T € A. Provided that OZp,GpP c Qx[0, T), the L'-Harnack inequality of Theorem 5.1 for the time-
continuous representative of u shows that for t € A,

Voe? cap"2 Fpty < 2 P pil{x € By(Xo) [u(x, ) > 27 p,}] < J u(x, T)dx

By (xo)
00" \ 55
<y inf J u(x, t) dx+y(LA)3 " (8.4)
te(t,—0pP,t,) P
BZp(Xo)
By the definition of A and 6 we see that
D\ e
(GL/\>3 "= gﬁlﬁpn-
o
Moving this term to the right-hand side of (8.4), we obtain
A oK n inf J- , , .
er(c—yeup <y te(tol—%pl’,to) u(x, t)dx (8.5)
BZp(Xu)
where ¢ = ¢(m, n, p, Cy, C1) and 2 .
"T3Tmopp
is a positive number by (1.4). If we now choose
e minf(£)",1)
Ll 2y ’ ’
which clearly only depends on m, n, p, Cy, C1 we also see from (8.5) that
Cup" < inf J ,d 8.6
wep's  nf u(x, t)dx (8.6)

BZp (Xa)
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for a constant C = C(m, n, p, Co, C1) < 1. Take now { > 0 and note that

I u(x, t)dx = J u(x, t)ydx + J u(x, t)dx
BZp(Xo) BZp(Xo)n{u(X’t)2(P+} BZp(Xo)n{u(X5[)<(F+}

< Ui B2p(Xo) N {u(x, t) = (3| + (Ui |Bop(xo)l.
With the choice { := %ﬂ"m, where C is the constant from (8.6), the last estimate and (8.6) show that
|BZp(Xo) N{ux, t) = (Ul = a|BZp(Xo)| forall t € (t, — 6p", to) (8.7)

for a constant a depending onlyonm, n, p, Co, C1. Suppose now that Q32p, gp7(2o) € Q7. This puts usina posi-
1

tion to apply Theorem 6.4 for a sufficiently small M. Namely, taking M = min{(, (2%)73%—1; 1., we see that

(8.7) is still valid with {u, replaced by M and furthermore that

B32p(x0) x (to - 6M3_m_p(2p)py to) € Q32p,0pr(20) € Qr,
where 6 € (0, 1) is the constant from Theorem 6.4. Hence, we may apply Theorem 6.4 with
s =ty — SM>TP(2p)P

and p replaced by 2p to conclude that there isa & € (0, 1) and & < € depending only on m, n, p, Co, C1 such
that

U 2é&uy  inByp(xe) X (to - éﬂi_m_ppp’ to), (8.8)

which is the reduction of the oscillation from below. Combining the previous reasoning and Lemma 8.1,
we have shown the following.

Lemma 8.2. There are constants €,y,n € (0, 1) depending only on m,n, p, Co, C1 such that for any weak
solution u and number u. > 0 satisfying the conditions Q,, ) (zo) cQrandu < pu,onQ P (z0),
we have

€sS0SC U < NHy. (8.9)

Q 3-m—p ,(Z
%!y”u m Ppp( a)

Furthermore, one of the following condition must hold in the cylinder Q, yer’ P pp (z0):
27 +

1+
esssup U< ( 1 >y+, (8.10a)
Q%yywi—M—ppp (o) 2
1 —
essinf u> ( 5 n)m. (8.10Db)
Q%ywifm—ppp (z0)

Proof. By Lemma 8.1 and the previous reasoning, (8.9) is valid with y = min{277, %} andn = max{(%)llg , 1-¢},
where & and ¢ are the constants appearing in (8.8). Furthermore, if (8.10a) fails, (8.9) shows that we must
have

1 1-
ess inf uz( +ﬂ>y+—mu+:<_'7>y+’
Q%,yeyifmfppp (o) 2 2

so that (8.10b) holds. O

Lemma 8.3. There are constants c and v depending only on m, n, p, Co, C1 such that for any weak solution u
and number u. > 0 for which Q32p > pr (zo) cQrandu <y, on Qp £ v (z0), we have

r v
€ss0sC U < cy+<f—)) (8.11)

Qr’wi—mfp'p (o)
forall 0 < r < p. Here, ¢ is the constant from Lemma 8.2.

Proof. Denote C := 2 max{2, y_zl’ }, where y is the constant from Lemma 8.2 and define

i (1+ny P
u’+==( 5 )u+, Pii= G-
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With these choices,

Qpyequtyr-mrp? (Z0) € Q%,ysui""”’pl’ (Zo),

and Lemma 8.2 guarantees that
€ss 0SC u<nu
Q. et 3-mopyh (Z0) !
Furthermore, if we are in the case (8.10a), we have u < y; on Q
to this subcylinder instead to conclude that

p1,£(ut )3 P (zo) and we may apply Lemma 8.2

essosc  u<nul.

Q/Jz ,8()41)3’""”95 (Zo)

Also, Lemma 8.2 guarantees that one of the conditions of (8.10) holds with p replaced by p; and y. replaced
by ul.If condition (8.10a) is true, we are again in a position to continue the iteration. Continuing in this way,
we see that as long as we stay in case (8.10a) at every step of the iteration we have

essosc  u< rly’:l, (8.12)

Qp,-,sw’;ﬁ*m*ﬂp]’.’ Zo
ess sup u< ,u]:l. (8.13)

QPj—le(Vj:l)B_m_pr_l (Zo)
Either this estimate holds for every j € N, or there is a k € N such that (8.12) holds forall j € {1, ..., k} and

1- 1-
ess inf u> (—n>y’f1 = (_’1)111: (8.14)
Qeict pk1y3-mop,p (Z0) 2 1+n
7 Vel k-1

We assume for now the existence of such a k and investigate its consequences. In the end we will show that
estimate (8.11) holds whether k exists or not. Since

Plk-1
2

C k-1y\3-m-p P p 3-m-p ky\3-m-p P
= 5Pk 2Pk YE(U) Pi-1 =YC ( ) e(uy) P

1+n
)37m7p£(yk )3—m—ppp
1+7 + k

> e(uk)> P (2p1)P,

zzp(

it follows from (8.14) and (8.13) with j = k that

1- n k 2 ks
( 147 )]1+ fu< m}l;r m Qsz’g(Hﬁ)3—m—P(zpk)p(ZO)'

Up to a translation in the time variable this is exactly the situation of Lemma 3.7 with M = uX. By translation
we may assume that ¢, = 0. Lemma 3.7 shows that the function

v(x, t) = O u(x, @PPE),  (x, 0) € Qapyepr (Xo, 0),

solves an equation of parabolic p-Laplace type, where the constants in the structure conditions only depend
onm,n,p, Co, C1. Applying Lemma 3.6 to v then shows that for all (x, t), (y, ) € Qp,,(p)» (X0, 0),

|x—w+u—ﬂ5r0
Pk ’

where the constants c and v, only depend on m, n, p, Co, C1. Since the fraction in the last estimate is bounded
1
from above by 2 + €7, we see that for any O < v < v, we have

lv(x, t) = v(y, s)| < c[

IX—yl+|t—s]7
Pk

X =yl +1t=s|7
Pk
for all (x, t), (¥, ) € Qpy,e(pr)» (X0, 0). For the original function u this translates into

vix, ) —v(y, 8)l < c(2+ e%)v"‘v[ ]V <c2+ g%)v"[

m+p-3 1
Ix -yl + (uX) Plt—ﬂpr

(8.15)
Pk

IMLD—HWJNSqﬁ[
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for all (x, t), (y, ) € ka,g(ub;fmfppi (zo) and 0 < v < v,. The constant c still depends only on m, n, p, Co, C.
Now we are ready to prove (8.11). For this, take O < r < p. Pick j € Np such that

B=m-p) (B-m-p)

(+1) J
(L) o (e
2 ci+l 2 o
From the left inequality we can deduce that
3-m-p 3-m-p
w[z]m[e(551) 7 Jem[e(550) 7]
and with some further manipulations that
j>—1—bln[l§], (8.16)

for some b > 0 depending only on m, n, Co, C1. Note that r < pj and

3-m-p j\3-m-p P
epy P <e(uy) " Ppy,

)
Q gmrp(20) € Q, oo pmep? (zo)-
If j < k (or if k does not exist, which means that (8.12) is valid for all j), then (8.12) and (8.16) imply that
essosc u<mil 2n [1+n]i< [ 2 ]2[ 2 ]bm[gl_c (r>w
S (Zo) = MHs _1+r1’br 2 T+ 1+nl l1+n BV
for some positive constants ¢ and v; depending only on m, n, p, Co, C1. Suppose now instead that j > k. Then
Qr,syi""“’rp (zo) C ka,g(ybsfm,ppi (zo) so from (8.15) we see that

e

k=31 G-m-p)
2r + “roeru, Pory
€ss0sc U< cy’j[ Ges) L ]
y’sui*m*ﬂyp (z0) pk
B-m-p)
1+m\K 2r+(ﬁ)k b ey
- w1
Cck
v(3-m-p)
2 -1 k r\v
()~ eln(3)
T+n p

Observe now that the expression inside the square brackets can be made smaller than or equal to one by
taking v < v,, where the upper bound v, depends only on C and 1 and hence only on m, n, p, Co, C;. Taking
now v := min{vy, v,}, we finally have verified that (8.11) holds in all cases. O

8.2 Hoélder continuity

Using Lemma 8.9, we can now easily prove the local Holder continuity.

Theorem 8.4. Let u be a weak solution in the sense of Definition 2.1. Let m and p be in the supercritical
range (1.4). Then u is locally Holder continuous in Qr and the Holder exponent depends only on m, n, p, Cq, C;.

Proof. Let z, € Q7. Pick R > 0 such that the (n + 1)-dimensional closed ball B;’El(zo) centered at z, is con-
tained in Q7 and define
Ui = €sssupu < 0co.
By (o)
The number u, is finite since the range (1.4) is contained in the range (1.3) which according to Theorem 7.1
guarantees local boundedness. By picking a suitable representative of u, we may assume that y, is the actual

supremum of u on the ball B}3!(z,). We can now choose p > 0 so small that for all z € B*'(z,), we have
Q270 (2) € BiRH(Z0)s  Qgpp 007mr,(2) € Q1.
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From the first condition it follows that u < p, in every cylinder Qp, I (2) where z € Bg*l(zo). Thus,
according to Lemma 8.3,

v
ess0sC U < cy+(/§) (8.17)

r,s;a_m_p P @

for every r € (0,p) and z € B,’}“(zo). If in the above estimate we had the oscillation rather than the essen-
tial oscillation, we could now apply (8.17) to any pair of points that are sufficiently close to each other.
Since this is not case, we must first exclude a set of measure zero so that the different types of oscilla-
tion coincide. In order to ensure that we are only disregarding a set of measure zero, this should be done
only for a countable number of cylinders. We now make this idea precise. For every (z, r) in the count-
able set [Bg’z*l(zo) N Q™1 x [(0,p) N Q], there is a set N? ¢ Q s-m-p,,(2) of measure zero such that for
all (v, 8) € Q, , pnr () \ N, '

rep;

r,eU

essinf u<u(y,s)< esssup u.

Q  3-myp,(z
e, »,p(2) Qr.suifmfpvp (2

Define N = | J, ,) N7, and suppose that z1, z € Blr’fl(zo) \ N. We may also assume that t; < t,. Suppose first
that z € Q, -0,y (22) U (By(x2) x {t2}). Then there is a sequence of numbers (Z) ¢ B (zo) N Q"1 such
thatZ — z5, 0 > t5,and z; € Q220 (2/) forall j € N. Define

. ; AR URY;
ri=Ixy =X <p, F:= =y ) <P
EUy

Fi=|x1—-x20<p, T (—'tl_hl)% <
=X = X2 s = —
ey Y
Takenow rj € (max{rj, ¥;}, max{#, ¥;} + )l.) N Qsuch thatr; < p. Then rj converges to max{r, 7} =: r. Moreovet,
Z1 € er gusfmfprp(zi ) \ N and also z, belongs to this set for large j so
ey

lu(z1) —u(zy)| < essosc u

3-m-p p(Z)
Tj-EHs rlp

iV v _ 1y ;
con(2) — an (L) s aup (b -t + (B2 < 0 -z,
p p ey

N 3_ —

j—oo i m-p
where the constant C depends on the data and p, u. Suppose now instead that z; does not belong to the
set Qp,gyi*m*ﬂpp (z2) U (Bp(x2) x {t2}). Then

max{u(z1), u(z2)}

)= | B |z1 -~ za|? < pymin{p, euy " FpPY P |z - 2ol
Z1 —22|P
Thus, we have verified that for all z1, z; € Bﬁ“(zo) \'N,
lu(z1) - u(z)| < Clz1 - z2|? (8.18)

for a constant C = C(m, n, p, Co, C1, U+, R). (Note that p depends only on R, the data and . .) Since the set N
has measure zero, we can re-define u at every point of N as the unique limit guaranteed by (8.18) when
approaching the point through the set BZ” (zo) \ N. In this way we obtain a representative of u which satisfies
(8.18) for all points z1, 22 € B (z,). O

9 Harnack estimates

We conclude this paper considering the Harnack inequality for solutions of parabolic singular supercritical
equations. Such results were proved in [5] for equations of parabolic p-Laplace and porous medium type. For
doubly nonlinear equations see [10] under more restrictive assumptions. Our method is based on the pattern
scheme of [7].

Let us state and prove some lemmas.



34 —— V.Vespriand M. Vestberg, Regularity of solutions to doubly singular equations DE GRUYTER

Lemma 9.1 (Measure-to-point estimate). Let u > 0 be a weak solution of (2.4). Suppose that
Biep(Xo) x [to, to + M37m7ppp] c Qr.

Let y € (0, 1] and suppose that
[Bp(xo) N {u(-, to) = M}| = ulBp(xo)l. 9.1)

Then there exist constants &, T € (0, 1) depending only on the data and u such that
u>E&M, inByy(xo) x [to + %M3‘m‘ppp, to + TM> M PpP],

Moreover, T can be chosen arbitrarily small by decreasing &.

Proof. Assumption (9.1) and the fact that B, (x,) x [to, to + M3~™"PpP] is contained in the domain Qr allow
us to apply Lemma 6.3 to conclude that there exists e(u) such that

1B,(xo) N {u(-, ) > eM}| > ’5‘|Bp(xo>| 9.2)

for all t € (t,, to + SM>~™PpP). Here, 6 = §(data, ) € (0, 1) is the constant from Lemma 6.3. In order to
facilitate the latter part of the proof, we note that we may instead use § = §(data, %) which by the con-
struction in the proof of Lemma 6.3 is a smaller number. Note that (9.2) remains valid if we replace M
by any M, where 6 € (0, 1]. Since Bigp(Xo) X [to, to + M3 ™ PpP] is contained in the domain, we may
apply Theorem 6.4 with M replaced by €M, a = % and considering all s in (t, t, + 6M>"™PpP) for which
s+ 8(eOM)3~"PpP) < t, + M3~ PpP, Thus, we obtain

u>nebM inBap(Xo) x (to + (1 - €)8(€OM)> ™ PpP t, + SM>™PpP).
Here, 17 and € only depend on the data and p. For any 7 € (0, §) we may thus first choose 6 so small that
(1-)8(c0)™ P < 2
and then choose ¢ = nef. O

We now prove an alternative form of the reduction of the oscillation which will be convenient in the sequel.

Lemma 9.2 (Estimates of Holder regularity). Let u be a weak solution of (2.4) in Q7 in the supercritical range.
Then for any S > O there exist constants C >0 and & > O depending only on S and the data such that if
Q32R,13-mrRre(20) € Qr for some k, R > 0, then

&
sup u<Sk = osc uka(%) , T<R. (9.3)

Qg 3-m-pp (Z0) Qpi3-m-ppp
Proof. Let € be the constant from Lemma 8.2 and define the re-scaled function
v, t) = ST u(x, to +€7t), (%, 1) € Q32R,er0-mrRe (X0, 0).

Then v satisfies an equation of type (2.4), where the constants appearing in the structure conditions depend
only on S and the data from the original problem. Furthermore,

sup <k,
Qg ex3-m-pgp (X0,0)

so Lemma 8.3 implies that for all r € (0, R],

r a
0sc v < Ek(—) s
Q,’£k3—mfp,p(xa»0) R

where ¢ and & only depend on S and the data of the original problem. Expressing this estimate in terms of u
and the original coordinates, we obtain the desired estimate with C = ¢S. O
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We will also use the following version of the expansion of positivity.

Lemma 9.3 (Expansion of positivity). There exists A > 37,’;71, and, for any p >0, c(u), y1 (1), y2(u) € (0, 1)

depending only on u and the data, such that if u > 0 is a solution in B1¢g(0) x [0, kK>~™PRP], then

IB+(0) N {u(-, 0) = k}| > u|B;(0)]

r

- igjfu( N k3—m—PrP(y1(y) N yz(y)<1 - (/—))A(B_m_p)_p))) > C(y)k(f))}l (9.4)

whenever r < p < R. Here, y1 (1) and y,(u) are so small that y1(u) + y2(u) < 1, which guarantees that the time
level is contained in the interval k>~™"P RP, Moreover, the y;(u) can be chosen arbitrarily small by lowering c(u).

Proof. Suppose that the measure condition of (9.4) holds. Then, by Lemma 9.1, we have
: A T(H) 3-m-p.p 3-m-p.p
u > &k, in B.(0) x - k P, +T(u)k P . (9.5)
Denote ¢; := &(1) and note that, since m + p < 3, we can suppose that

by =20 P < 2, (9.6)

N|

Consider first the case 2r < R. We may now define
pj:=2/r forallj e Nsuch thatp; <R,
1
T1:=7(1) < <.
1 (1) 7

Note that we are considering the case where at least p; is defined. The bound on 7; can be obtained due to
Lemma 9.1. This might require shrinking &, but this does not violate the bound on b;. We define recursively

T Cm— T i\3—m—
to= "o rip, g = b+ DGOk L.

From (9.5) it follows that |B,(0) N {u(-, to) > &(u)k}| = |B,(0)|. Hence, we may apply Lemma 9.1 with p =1
repeatedly and obtain
j . T i-1\3-m—
wz §Ek By, x [t 4+ ke ©.7)

for all integers j > 1 such that p; < R, provided that the end time of the cylinder in (9.7) does not exceed
k3~™m-PRP In fact, this cannot happen, since an explicit calculation shows that for all integers N > 1,

N-1

ty = "W j3merpp | Tpsmop g3 mr o Y B
2 2 P
N
< k3-’"—1’RPﬂ(1 sop b )
2 - by
< k3>"MPRP57,, (9.8)

where in the first step we used the fact that é(u) < é; < 1 and 7(¢) < 11. Thus, we have
ty + %({(y)kff"l)3‘m“’p§, <ty +k>™PRP21, < kK> PRP7T, < kK>TMPRP,
which means that the cylinders are all contained in the domain of u. From (9.6) we infer
G+ SHERE P! > G,

and thus (9.7) implies that

A
r .
us {(y)(;) k inB,,, x [t tjl,
]
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where A = —log, & > =—2—. Using the first line of (9.8), we can re-write ¢y as

3-m-p*
_ k3‘m_prp[)’1(}1) + )’2(}1)(1 _ (pLN)A(B,mp)p)].

For an arbitrary p € [r, R] we now choose the smallest integer N such that p < 2VN*1r. But this means that
pn=2"r<p<R.

Thus, we may conclude that

u s f(u)(p—:v)ﬂk > f(u)(f))ik - c(u)(f))ik in By x [tw, tyeal.

It now suffices to note that since py < p < py+1,

[tn, Nl 2 k3*m*PrP[y1(y) + )’2(}1)<1 _ (5)’1(3""—17)—17)]'

By the definitions it is clear that y;(u) and y,(u) can be made arbitrarily small by lowering c(u). It only
remains to consider the case that 2r > R. But in this case a bound of the correct form follows already from
(9.5)sincer < p < 2r. O

Since we are considering the super-critical range, Theorem 7.2 holds with r = 1. Combining this result with
the L'-Harnack estimate of Theorem 5.1, we immediately obtain the following lemma.

Lemma 9.4. Let u be a solution to (2.4) for some m, p satisfying (1.4) and suppose that Qup,»:(z0) ¢ Q x [0, T).
Then
g 1
_n . A T \3-mp
sup u<crt A[ inf ] J u(x, t)dx] +c(—) s

Q)+ (zo te[to—21,t, pP
(o) Bup(xo)

where A = p + n(m + p — 3) and the constant c only depends on m, n, p, Co, C1.

Here we are able to use the actual infimum and supremum rather than their essential equivalents, since we are
considering the continuous representative of u. Similar results have been shown previously in [5, Appendix A]
for the p-Laplacian with p < 2 and in [10] for singular doubly nonlinear equations under more restrictive
assumptions.

Now we are ready prove the final result of this paper. For simplicity, we have opted to formulate and
prove the theorem for a cylinder centered at the origin, but obviously the result is translation invariant. Note
that since an infimum can only increase when passing to a smaller set, we could replace the ball in the right
estimate in (9.10) by Bg,4(0), so that the supremum and infimum are taken over the same ball.

Theorem 9.5 (Harnack inequality). Let u > O solve (2.4) for some m, p satisfying (1.4), in a domain containing
B34r(0) x [~T, T]. Suppose that u(0, 0) > 0 and
4RP sup u(-,00 P <T. (9.9)
B,z (0)
Then there exist constants C > 1, 8 > 0 depending only on the data such that
€™t sup u(-,s)<u(0,0)<C inf u(-,t) for—-0u(0,0)> ™ PRP <s,t < 6u(0,0)>™PRP, (9.10)
Bgy4(0) Br(0)

Proof. In the cylinder B3,(0) x [T, T'], where T' = T R™P u(0, 0)™*P~3, the function
v(x, t) = u(0, 0)"* u(R x, RP u(0, 0)>""P¢)

satisfies a doubly singular equation with the same structure conditions as the original equation. With these

definitions, (9.9) implies
T/
1<M>™™P = supv(-,0>™P <, (9.11)
B,(0) 4
1
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where the left inequality follows from the fact that v(0, 0) = 1. We first prove the inf bound in (9.10). Let

A> 37’% be the expansion of positivity exponent, define (p) = (1 - p)’_l supg, v(-,0) for p € [0,1] and

choose pg € [0, 1], X, € B,,(0) such that

%af](l/) = PY(po) = (1 - po)vo, Vo = V(x,0) = 1.

Let € [0, 1) be the unique number such that (1 — €)= = 2. Setting r = € (1 — po), we have
vort = (po)t = &, (9.12)
where we used the fact that ¥(pg) > (0) = 1. Furthermore, we may estimate

sup v(-,0) < (1 - [&(1 - po) +pol) (1 ~ [E(1 - po) + po))*  sup  v(-,0)

B, (xo) Bitropoyens (O
= (1 -9 - po) (&1 - po) + po)
< (-1 - po) o)
=(1-5H"vo
=2vo. (9.13)

Leta := vg""‘p rP. By construction vo < M and by (9.11), B,(x,) x [-4a, 4a] is contained in the domain of v.

Thus we can apply Lemma 9.4 to conclude that

p
Cc (m+p=3)+p 1 P
sup VS ———— J v(x, 0) dx + ca3-mp rmp3
Br (xo)x[-a,a Q n(m+p=3)+p
£ (xo)x[-a,a] 5.0

(ZVO rn) n(m+111]—3)+p

+CVo < CVo (9.14)
(V?)_m_p rp) n(m+;f3)+p ’

where we used (9.13) to bound the integral. The constant ¢ depends only on the data. Since a = vg_m_p rP

we can apply (9.3) with k = vq, and taking S to be the constant ¢ from the last line of the previous estimate,

in both By/(xo) x [vg ™ P(£)P, 0] and Byy4(xo) x [vg " FpP —vg " P (L), vy " PpP] forany p < I to get

Cm— @ r
o P p”])SZ‘vO(é) P

0sc(v, Bp(xo) x [~V 3-m-p

pr, vy

where the constants ¢ and @& only depend on the data. This estimate also relies on the fact that Bg,(x,)x[—a, a]
is contained in Bg x [-T', T'], and hence in the domain of v. As v(x,) = v,, we infer that

1= Vz—o in By, (x0) x [P a, 7P a]

for some suitable 7 € (0, 1/4) depending only on the data. Thus,

Bi(to) 0 {v(-, 0> 2} > 1B, (x0)

for all |¢] < vo ™ 7P rP. For any such time, the cylinder B3> (x,) x [t, t + (X2)3-m-P2P] is contained in the
0 n 2

domain of v, so we may apply Lemma 9.3 with k = % and R = p = 2. Choosing the y;(7") so small that
yi(@™ +y2(7") < %p, its conclusion implies, thanks to B, (xg) 2 By,

) o s ) . r \AB-m-p)-p np
nfv(-, tyvg ") 2 evort, yp = ) + @1 (5) )<%
1

2 2
forall |t| < 7P vg_m_p rP . The latter readily gives v(x, t) > ¢vort forx € By and || < 7P vg_m_p ~*.Finally, observe
that sincer < 1 and A > —2—, it holds

= 3-m-p°’

3-m— AN3—m—
Vo PP 2 (vort)3 TP,

so that (9.12) yields v(x, t) > ¢&" =: % for x € By and |t| < w =: 0. Expressing this in terms of u, we
obtain the estimate for the infimum in (9.10).
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To prove the bound for the supremum, we proceed similarly. Indeed, let x, € Bg(0) be such that
u(x., 0) = supg, g u(-, 0) and define the rescaled translated function

W(Xy t) = u(X*y 0)_1U(X* + Rx, Rpu(x*, O)B_m_pt)) (X, t) € B65(()) X [_T! T],

where T = RPu(x,, 0)™P3T. Proceeding as before, we obtain that w(x, t) > L for x € B;(0) and [t| < 0.

Writing this estimate in terms of u we see that

1
c

, x€Bg(x.), |t|<RPu(x,,0)>™Pf.

u(x., 0)
) > ——
u(x, t) > c

Noting that O € Br(x,), and taking into account the definition of x, we obtain

C ! sup u(-,0) < u(0,O0). (9.15)
Bgr(0)
Since u is a solution on B(0) x [-H, H] with H = 4RPu(0, 0)>~™P, we can combine (9.15) and Lemma 9.4
(with t, = & and 7 = ) to conclude similarly as in (9.14) that

sup u < cu(0, 0),

which concludes the proof. O
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